初一数学_去绝对值练习题 2
七年级上册数学绝对值试题2附答案
30题搞定有理数易错点绝对值日期:________时间:________姓名:________成绩:________一、单选题(共13小题)1.﹣的绝对值是()A.B.C.D.2.a,b是有理数,它们在数轴上的对应点如图所示,则下列大小关系正确的是()A.ab>0B.|a|<|b|C.﹣b>a D.b<a3.实数a、b、c在数轴上的位置如图所示,则代数式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b4.实数a、b在数轴上的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是()A.a+b=0B.a﹣b=0C.|a|<|b|D.ab>05.有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①a+b+c>0;②a﹣b+c<0;③=﹣1;④|a+b|﹣|b﹣c|+|a﹣c|=﹣2c.A.4个B.3个C.2个D.1个6.下列说法中,不正确的个数是()①若a+b=0,则有a,b互为相反数,且=﹣1;②若|a|>|b|,则有(a+b)(a ﹣b)是正数;③三个五次多项式的和也是五次多项式;④a+b+c<0,abc>0,则﹣+﹣的结果有三个;⑤方程ax+b=0(a,b为常数)是关于x的一元一次方程.A.1个B.2个C.3个D.4个7.点A、B在数轴上的位置如图所示,其对应的数分别是a和b,下列结论中正确的是()A.b+a>0B.a﹣b<0C.<0D.|a|>|b|8.下列说法错误的有()①绝对值是它本身的数是正数;②最大的负整数是﹣1;③有理数分为正有理数和负有理数;④在数轴上7与9之间的有理数是8;⑤数轴上表示﹣a的点一定在原点的左边.A.1个B.2个C.3个D.4个9.已知数a,b,c的大小关系如图,下列说法:①ab+ac>0;②﹣a﹣b+c<0;③;④|a﹣b|+|c+b|﹣|a﹣c|=﹣2b;⑤若x为数轴上任意一点,则|x﹣b|+|x﹣a|的最小值为a﹣b.其中正确结论的个数是()A.1B.2C.3D.410.若|abc|=abc,则=()A.1B.﹣1C.1或7D.﹣1或711.已知有理数a,b,c在数轴上的位置如图,且|c|>|a|>|b|,则|a+b|﹣2|c﹣b|+|a+c|=()A.c﹣b B.0C.3b﹣3c D.2a+3b﹣c12.如图,数轴上的A,B两点所表示的数分别是a,b,如果|a|>|b|且ab<0,那么该数轴的原点O的位置应该在()A.点A的左边B.点B的右边C.点A与点B之间且靠近点AD.点A与点B之间且靠近点B13.有理数a,b,c在数轴上对应的点的位置如图所示,则下列各式正确的个数有()①abc>0;②a﹣b+c<0;③;④|a+b|﹣|b﹣c|+|a﹣c|=﹣2c.A.4个B.3个C.2个D.1个二、填空题(共8小题)14.如图,数轴上的点A所表示的数为a,化简|a|﹣|a﹣2|的结果为.15.如果|x﹣1|=2,那么x的值是.16.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于.17.如图,数轴上M点表示的数为m,化简|3+m|+2|2+m|﹣|m﹣3|=.18.已知:abc≠0,则可能的值是.19.若|a|=19,|b|=97,且|a+b|≠a+b,那么a﹣b=.20.已知有理数a,b,c在数轴上的对应位置如图所示,则|a﹣b|﹣2|b﹣c|﹣|a﹣1|化简后的结果是.21.有理数a,b,c在数轴上对应的位置如图所示,给出下面三个结论:①abc<0;②|a﹣b|=|b﹣a|﹣|a﹣c|;③a(b+c)>0;④|a|+|﹣c|﹣|a﹣c|=0;⑤,正确的结论是(请填序号).三、解答题(共9小题)22.如果有理数a、b、c在数轴上的位置如图所示,根据图回答下列问题:(1)比较大小:a﹣10;b+10;c+10;(2)化简﹣|a﹣1|+|b+1|+|c+1|.23.我们在讨论|a|的值时,就会对a进行分类讨论,当a≥0时,|a|=a;当a<0时,|a|=﹣a.现在请你利用这一思想解决下列问题:(1)=(a≠0);(2)=(ab≠0);(3)若abc≠0,的值为;(4)拓展应用:试比较a与大小.24.如图,数轴上有点a,b,c三点.(1)用“<”将a,b,c连接起来.(2)b﹣a1,c﹣a+10(填“<”“>”,“=”)(3)化简:|c﹣b|﹣|c﹣a+1|+|a﹣1|.(4)求下列各式的最小值:①|x﹣1|+|x﹣3|的最小值为;②|x﹣a|+|x﹣b|的最小值为;③当x=时,|x﹣a|+|x﹣b|+|x﹣c|的最小值为.25.有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,化简求值:|c﹣a|+|c﹣b|+|a+b|+2a.26.已知有理数a、b、c在数轴上对应的点如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“=”“>”“<”填空:b0,a+b0,a﹣c0,b﹣c0;(2)化简:|a+b|+|a﹣c|﹣|b|.27.(1)比较下列各式的大小:|5|+|3||5+3|,|﹣5|+|﹣3||(﹣5)+(﹣3)|,|﹣5|+|3||(﹣5)+3|,|0|+|﹣5||0+(﹣5)|…(2)通过(1)的比较、观察,请你猜想归纳:当a、b为有理数时,|a|+|b||a+b|.(填入“≥”、“≤”、“>”或“<”)(3)根据(2)中你得出的结论,求当|x|+|﹣2|=|x﹣2|时,直接写出x的取值范围.28.有理数a、b、c在数轴上的点分别对应为A、B、C,其位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.29.阅读理解:|5|=|5﹣0|,它在数轴上的意义可以理解为:表示5的点与原点(即表示0的点)之间的距离;|6﹣3|=3,它在数轴上的意义可以理解为:表示6的点与3的点之间的距离为3;类似的:|﹣6﹣3|=,它在数轴上的意义表示的点与的点之间的距离是,并在下面数轴上标出这两个数,画出它们之间的距离.归纳:|a﹣b|它在数轴上的意义表示的点与的点之间的距离.应用:|a+5|=1,它在数轴上的意义表示的点与的点之间的距离为1,所以a的值为.30.阅读下列材料,并回答问题.我们知道|a|的几何意义是指数轴上表示数的点与原点的距离,那么|a﹣b|的几何意义又是什么呢?我们不妨考虑一下,取特殊值时的情况.比如考虑|5﹣(﹣6)|的几何意义,在数轴上分别标出表示﹣6和5的点,(如图所示),两点间的距离是11,而|5﹣(﹣6)|=11,因此不难看出|5﹣(﹣6)|就是数轴上表示﹣6和5两点间的距离.(1)|a﹣b|的几何意义是;(2)当|x﹣2|=2时,求出x的值.(3)设Q=|x+6|﹣|x﹣5|,请问Q是否存在最大值,若没有请说明理由,若有,请求出最大值.七年级上册数学期中考试易错点复习绝对值2参考答案一、单选题(共13小题)1、【答案】C2、【答案】C3、【答案】A4、【答案】A5、【答案】C6、【答案】D7、【答案】C 8、【答案】D9、【答案】B10、【答案】D11、【答案】A12、【答案】D13、【答案】B二、填空题(共8小题)14、【答案】215、【答案】3或﹣1.16、【答案】﹣4或﹣10.17、【答案】﹣4.18、【答案】4,﹣4,0.19、【答案】78或11620、【答案】2c-b-121、【答案】①④三、解答题(共9小题)22、【答案】(1)<,<,>;(2)a﹣b+c﹣1.23、【答案】(1)1或﹣1;(2)﹣2或2或0;(3)±4,0;(4)当;当,当;当;当;当.24、【答案】(1)c<a<b;(2)<,<;(3)b.(4)①2;②b﹣a;③a,b﹣c.25、【答案】0.26、【答案】(1)<,=,>,<;(2)a﹣c+b.27、【答案】(1)=,=,>,=(2)≥(3)x≤0.28、【答案】﹣c.29、【答案】9、﹣6、3、9.a、b.a、﹣5、﹣4或﹣6.30、【答案】(1)数轴上表示a和b的两点间的距离.(2)x的值为4或0.(3)Q存在最大值,最大值为11.。
人教版七年级上册数学1.2.4绝对值练习题
初中数学组卷参考答案与试题解析一.选择题(共50小题)1.﹣2的绝对值是()A.2 B.﹣2 C.D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.﹣7的绝对值是()A.7 B.﹣7 C.D.﹣【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣7|=7.故选A.【点评】本题考查了绝对值的性质,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.3.﹣2017的绝对值是()A.2017 B.﹣2017 C.D.﹣【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣2017的绝对值是2007.故选:A.【点评】此题考查了绝对值,解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.|﹣2|的值是()A.﹣2 B.2 C.﹣ D.【分析】根据绝对值的性质作答.【解答】解:∵﹣2<0,∴|﹣2|=2.故选B.【点评】本题考查绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.【分析】根据绝对值的定义即可解题.【解答】解:∵负数的绝对值是它的相反数,∴|﹣15|等于15,故选A.【点评】本题考查了绝对值的定义,熟练运用是解题的关键.6.计算:|﹣|=()A.B.C.3 D.﹣3【分析】利用绝对值的性质可得结果.【解答】解:|﹣|=,故选A.【点评】本题主要考查了绝对值的性质,掌握绝对值的非负性是解答此题的关键.7.若x与3互为相反数,则|x+3|等于()A.0 B.1 C.2 D.3【分析】先求出x的值,进而可得出结论.【解答】解:∵x与3互为相反数,∴x=﹣3,∴|x+3|=|﹣3+3|=0.故选A.【点评】本题考查的是绝对值,熟知0的绝对值是0是解答此题的关键.8.如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k【分析】由数轴可知:k>1,所以可知:k>0,1﹣k<0.计算绝对值再化简即可.【解答】解:由数轴可知:k>1,∴k>0,1﹣k<0.∴|k|+|1﹣k|=k﹣1+k=2k﹣1.故选B.【点评】此题主要考查了绝对值的定义,即正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值还是0.除此之外还考查了数轴的概念和整式的加减.9.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b下列正确的是()A.B.C.D.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,b>0在原点右侧,得到满足题意的图形为选项C.故选C.【点评】此题考查了绝对值的代数意义、几何意义,及异号两数的加法法则.其中绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.几何意义为:|a|表示在数轴上表示a的点到原点的距离.此类题目比较简单,可根据题中已知的条件利用取特殊值的方法进行比较,以简化计算.10.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大【分析】根据0的绝对值为0对A进行判断;根据绝对值和相反数的定义对B、C进行判断;根据正数的绝对值越大,这个数越大;负数的绝对值越大,这个数越小对D进行判断.【解答】解:A、0的绝对值为0,所以A选项错误;B、如果两个数的绝对值相等,那么这两个数相等或互为相反数,所以B选项错误;C、如果一个数是负数,那么这个数的绝对值是它的相反数,所以C选项正确;D、正数的绝对值越大,这个数越大;负数的绝对值越大,这个数越小,所以D 选项错误.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.11.如果a的绝对值是2,那么a是()A.2 B.﹣2 C.±2 D.【分析】根据题意可知:绝对值等于2的数应该是±2.【解答】解:2的绝对值是2,﹣2的绝对值也是2,所以a的值应该是±2.故选C.【点评】本题考查了绝对值的概念,学生要熟练掌握.12.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:甲:b﹣a<0;乙:a+b>0;丙:|a|<|b|;丁:ab>0,其中正确的是()A.甲、乙B.丙、丁C.甲、丙D.乙、丁【分析】根据图示,可得b<﹣3,0<a<3,据此逐项判断即可.【解答】解:∵b<a,∴b﹣a<0;∵b<﹣3,0<a<3,∴a+b<0;∵b<﹣3,0<a<3,∴|b|>3,|a|<3,∴|a|<|b|;∵b<0,a>0,∴ab<0,∴正确的是:甲、丙.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.13.的相反数是()A.B.C.﹣5 D.5【分析】先根据绝对值的性质求出|﹣|,再根据相反数的定义求出其相反数.【解答】解:∵|﹣|=,的相反数是﹣;∴的相反数是﹣,故选B.【点评】本题考查了绝对值的性质和相反数的定义,①绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②相反数的定义:只有符号不同的两个数互为相反数.14.若|a|=2,则a的值是()A.﹣2 B.2 C.D.±2【分析】根据绝对值的意义即可得到答案.【解答】解:∵|a|=2,∴a=±2.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.15.如图,数轴上有A,B,C,D四个点,其中绝对值小于2的数对应的点是()A.点A B.点B C.点C D.点D【分析】根据数轴可得,点A,B,C,D表示的数分别是﹣2,﹣0.5,2,3,求出绝对值,即可解答.【解答】解:点A,B,C,D表示的数分别是﹣2,﹣0.5,2,3,其绝对值分别为2,0.5,2,3,故选B.【点评】本题考查了绝对值,解决本题的关键是明确绝对值的定义.16.﹣|﹣2017|的相反数是()A.2017 B.C.﹣2017 D.﹣【分析】一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:﹣|﹣2017|=﹣2017,故﹣|﹣2017|的相反数是2017,故选A.【点评】本题主要考查互为相反数的概念.只有符号不同的两个数互为相反数.17.a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a【分析】根据数轴判断出a、b的正负情况,然后根据绝对值的性质解答即可.【解答】解:由图形可知,a<0,b<0,所以a+b<0,所以|a+b|=﹣a﹣b.故选:A.【点评】本题考查了数轴,绝对值的性质,熟记数轴的概念并准确判断出a、b 的正负情况是解题的关键.18.如图,数轴上有四个点M,P,N,Q,若点M,N表示的数互为相反数,则图中表示绝对值最大的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先利用相反数的定义确定原点为线段MN的中点,则可判定点Q到原点的距离最大,然后根据绝对值的定义可判定点Q表示的数的绝对值最大.【解答】解:∵点M,N表示的数互为相反数,∴原点为线段MN的中点,∴点Q到原点的距离最大,∴点Q表示的数的绝对值最大.故选D.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了相反数.19.﹣(﹣2)2的绝对值的相反数是()A.4 B.﹣4 C.﹣2 D.2【分析】根据绝对值、相反数的定义进行选择即可.【解答】解:﹣(﹣2)2=﹣4,|﹣4|=4,4的相反数是﹣4,故选B.【点评】本题考查了绝对值、相反数,掌握绝对值和相反数的定义是解题的关键.20.下列算式中,运算结果为负数的是()A.﹣(﹣2)3B.﹣|﹣1| C.﹣(﹣)D.(﹣3)2【分析】根据有理数的乘方的运算方法,以及绝对值的含义和求法,求出每个选项中的数各是多少,判断出运算结果为负数的是哪个即可.【解答】解:﹣(﹣2)3=8>0,﹣|﹣1|=﹣1<0,﹣(﹣)=>0,(﹣3)2=9>0,∴运算结果为负数的是﹣|﹣1|.故选:B.【点评】此题主要考查了有理数的乘方,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1 B.1 C.5 D.﹣5【分析】直接利用绝对值的性质去绝对值,进而求出答案.【解答】解:∵2<a<3,∴|a﹣3|+|2﹣a|=3﹣a+a﹣2=1.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.22.已知|x|=4,|y|=5且x>y,则2x﹣y的值为()A.﹣13 B.+13 C.﹣3或+13 D.+3或﹣13【分析】根据已知条件判断出x,y的值,代入2x﹣y,从而得出答案.【解答】解:∵|x|=4,|y|=5且x>y∴y必小于0,y=﹣5.当x=4或﹣4时,均大于y.所以当x=4时,y=﹣5,代入2x﹣y=2×4+5=13.当x=﹣4时,y=﹣5,代入2x﹣y=2×(﹣4)+5=﹣3.所以2x﹣y=﹣3或+13.故选C.【点评】此题主要考查了绝对值的性质,能够根据已知条件正确地判断出x,y 的值是解答此题的关键.23.若|2a|=﹣2a,则a一定是()A.正数B.负数C.正数或零D.负数或零【分析】根据绝对值的定义,绝对值等于它的相反数的数是负数或零.【解答】解:∵2a的相反数是﹣2a,且|2a|=﹣2a,∴a一定是负数或零.故选D.【点评】本题主要考查了绝对值的定义,属于基础题型.注意不要忽略零.24.有理数中绝对值等于它本身的数是()A.0 B.正数C.负数D.非负数【分析】根据若a>0,则|a|=a;若a=0,则|a|=0可得到有理数中绝对值等于它本身的数是非负数.【解答】解:有理数中绝对值等于它本身的数是正数和0,即非负数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.25.如果a表示一个任意有理数,那么下面说法正确的是()A.﹣a是负数B.|a|一定是正数C.|a|一定不是负数D.|﹣a|一定是负数【分析】根据正数和负数的定义对A、B、C、D四个选项进行一一判断,从而进行求解.【解答】解:A、∵a表示一个任意有理数,若a=0,则﹣a=0不是负数,故A错误;B、若a=0,则|a|=0,0不是负数,故B错误;C、∵a表示一个任意有理数,∴|a|≥0,∴|a|一定不是负数,故C正确;D、若a=0,则|﹣a|=0,0不是负数,故D错误.故选C.【点评】此题主要考查绝对值性质和相反数的定义,此题是一道基础题,比较简单.26.若|﹣a|=5,则a的值是()A.﹣5 B.5 C.D.±5【分析】根据绝对值实数轴上的点到原点的距离,可得绝对值表示的数.【解答】解:|﹣a|=5,a=±5,故选:D.【点评】本题考查了绝对值,互为相反数的绝对值相等.27.3.14﹣π的差的绝对值为()A.0 B.3.14﹣πC.π﹣3.14 D.0.14【分析】首先判断3.14﹣π的正负性,然后根据绝对值的意义即可求解.【解答】解:∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C.【点评】此题考查了绝对值的意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.28.下列说法不正确的是()A.一个数的绝对值一定不小于它本身B.互为相反数的两个数的绝对值相等C.任何数的绝对值都不是负数D.任何有理数的绝对值都是正数【分析】根据绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、一个数的绝对值一定不小于它本身,正确,故本选项错误;B、互为相反数的两个数的绝对值相等,正确,故本选项错误;C、任何数的绝对值都不是负数,正确,故本选项错误;D、任何有理数的绝对值都是正数,错误,0的绝对值是0,0既不是正数也不是负数,故本选项正确.故选D.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.29.一个数的相反数的绝对值是正数,这个数一定是()A.非负数B.正数或负数C.负数D.正数【分析】根据正数和负数的定义和绝对值的性质进行求解.【解答】解:∵一个数的相反数的绝对值是正数,设这个数为x,则|﹣x|>0,∴x为正数或负数.故选B.【点评】此题主要考查正数和负数的定义及绝对值的性质,当a>0时,|a|=a;当a≤0时,|a|=﹣a,解题的关键是如何根据已知条件,去掉绝对值.30.下列各式中,结果相等的一组是()A.1+(﹣3)和﹣(﹣2)B.﹣(﹣2)和﹣|﹣2|C.﹣[﹣(﹣2)]和﹣3+(﹣1)D.﹣(﹣2)和|﹣2|【分析】根据绝对值和相反数的定义求解判定.【解答】解:A、1+(﹣3)=﹣2和﹣(﹣2)=2,故A选项错误;B、﹣(﹣2)=2和﹣|﹣2|=﹣2,故B选项错误;C、﹣[﹣(﹣2)]=﹣2和﹣3+(﹣1=﹣4,故C选项错误;D、﹣(﹣2)=2和|﹣2|=2,故D选项正确.故选:D.【点评】本题主要考查了绝对值和相反数,解题的关键是根据定义求解.31.数轴上表示﹣的点到原点的距离是()A.﹣ B.C.﹣3 D.3【分析】根据绝对值的几何意义,本题即求|﹣|,再由绝对值的代数意义,一个负数的绝对值是它的相反数,即可得出结果.【解答】解:数轴上表示﹣的点到原点的距离是|﹣|=.故选B.【点评】此题考查了绝对值的意义:|a|是数轴上表示数a的点到原点的距离;一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.32.任意数的绝对值一定是()A.正数B.负数C.正数和零D.负数和零【分析】根据绝对值非负数的性质解答.【解答】解:任意数的绝对值一定是非负数,即正数和零.故选C.【点评】本题主要考查了绝对值非负数的性质,是基础题,比较简单.33.下列说法中不正确的是()A.绝对值最小的数是0B.任何负数的绝对值都是它的相反数C.任何有理数的绝对值都不可能是负数D.互为相反数的两个数,一定一个是正数,一个是负数【分析】A.根据绝对值的非负性可知结论;B.根据绝对值的意义可得结论;C.根据绝对值的非负性可知结论;D.根据相反数的意义可得答案.【解答】解:∵任何数的绝对值都是非负数,∴绝对值最小的数是0,任何有理数的绝对值都不可能是负数,故A,C正确;∵任何负数的绝对值都是正数,它的相反数,∴C正确;∵互为相反数的两个数,可能是0,∴D错误,故选D.【点评】本题主要考查了绝对值的性质,相反数的意义,理解绝对值的性质,相反数的意义是解答此题的关键.34.若x=﹣1,则|x﹣4|=()A.3 B.﹣3 C.5 D.﹣5【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|x﹣4|=|﹣1﹣4|=|﹣5|=5,故选:C.【点评】本题考查了绝对值,负数的绝对值是它的相反数.35.下列说法中不正确的是()A.﹣3表示的点到原点的距离是|﹣3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数绝对值一定相等【分析】A、根据绝对值的意义可知:|a|在数轴上表示a的点到原点的距离,即可判断本选项不符合题意;B、可举一个反例,若这个有理数为0,由0的绝对值还是0,而0不为正数,本选项符合题意;C、根据绝对值的意义可知:在数轴上表示的这个点到原点的距离,由距离恒大于等于0得到不符合题意;D、根据相反数的定义可知只有符合不同的两个数互为相反数,可知互为相反数的两数到原点的距离相等,即两数的绝对值相等,不符合题意.【解答】解:A、根据绝对值的意义|﹣3|表示在数轴上表示﹣3的点到原点的距离,故本选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,本选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值为非分数,故不可能为负数,本选项正确,不符合题意;D、根据相反数的定义可知:只有符合不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,本选项正确,不符合题意.故选B.【点评】此题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,掌握绝对值的意义是解本题的关键.36.若|a|>﹣a,则a的取值范围是()A.a>0 B.a≥0 C.a<0 D.自然数【分析】根据一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:若|a|>﹣a,则a的取值范围是a>0.故选A.【点评】注意绝对值具有非负性.37.当a=﹣2,b=3时,|a|+|b|等于()A.﹣1 B.5 C.1 D.﹣5【分析】已知a=﹣2,b=3,可以把其代入|a|+|b|进行求解.【解答】解:∵a=﹣2,b=3,∴|a|+|b|=|﹣2|+|3|=5,故选B.【点评】此题主要考查绝对值的性质,比较简单.38.若|x|﹣|y|=0,则()A.x=y B.x=﹣y C.x=y=0 D.x=y或x=﹣y【分析】由题意|x|﹣|y|=0,移项得|x|=|y|,然后根据绝对值的性质进行求解.【解答】解:∵|x|﹣|y|=0,∴|x|=|y|,∴x=±y,故选D.【点评】此题主要考查绝对值的性质:当a>0时,|a|=a;当a≤0时,|a|=﹣a,解题的关键是如何根据已知条件,去掉绝对值.39.如果|a|=a,则()A.a是非正数B.a是非负数C.a是非正整数D.a是非负整数【分析】直接利用绝对值的性质得出答案即可.【解答】解:∵|a|=a,∴a≥0,故a是非负数.故选:B.【点评】此题主要考查了绝对值,利用绝对值的定义得出a的取值范围是解题关键.40.一个数的绝对值是它本身,则这个数必为()A.这个数必为正数 B.这个数必为0C.这个数是正数和0 D.这个数必为负数【分析】根据绝对值的定义求解即可.【解答】解:若一个数绝对值是它本身,即|a|=a,∵|a|≥0,∴a是正数或0.故选C.【点评】此题主要考查绝对值的定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零.本题是一道基础题,熟练掌握绝对值的定义是解答本题的关键.41.如果有理数a的绝对值等于它本身,那么a是()A.正数B.负数C.正数或0 D.负数或0【分析】根据正数和0的绝对值是其本身,分析可得答案.【解答】解:根据正数和0的绝对值是其本身,∴a是正数或0,故选:C.【点评】本题考查绝对值的运算,即正数和0的绝对值是其本身,负数的绝对值是它的相反数.42.有理数a在数轴上的表示如图所示,那么|1+|a||=()A.1+a B.1﹣a C.﹣1﹣a D.﹣1+a【分析】根据数轴表示数的方法得到﹣1<a<0,根据绝对值的意义得到|a|=﹣a,则|1+|a||=|1﹣a|,再利用绝对值的意义去绝对值即可.【解答】解:∵﹣1<a<0,∴|1+|a||=|1﹣a|=1﹣a.故选B.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了数轴.43.若m<0,则m﹣|m|的值为()A.正数B.负数C.0 D.非正数【分析】根据绝对值的性质:正负数的绝对值是它的相反数,依此先计算绝对值,再合并同类项即可求解.【解答】解:∵m<0,∴m﹣|m|=m+m=2m<0.故选:B.【点评】本题主要考查绝对值的性质,去掉绝对值符号是解决本题的关键.44.若|a|=,则a的值为()A.B.﹣ C.D.【分析】根据绝对值的概念可以求出a的值.【解答】解:∵||=±,∴a=|=±.故选:C.【点评】本题考查的是有理数的乘方和绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键45.若|2x﹣3|<5,则x的取值范围是()A.x<4 B.﹣1<x<4 C.<x<4 D.﹣1<x<【分析】将原式转化为2x﹣3<5或2x﹣3>﹣5,解不等式即可.【解答】解:∵|2x﹣3|<5,∴2x﹣3<5或2x﹣3>﹣5解得x<4或x>﹣1,综上所述,﹣1<x<4,故选B.【点评】此题主要考查了绝对值的定义,理解绝对值的定义是解答此题的关键.46.①﹣a是负数,②任何有理数的绝对值都是正数,③没有绝对值最小的数,④若a+b=0,则a、b互为相反数,⑤若a>b,则|a|>|b|.以上结论正确的有()A.1个 B.2个 C.3个 D.4个【分析】根据绝对值和相反数的定义对每个选项进行分析,本题可以用代入特殊数字法.【解答】解:①a=0时,﹣a不是负数,故①错误;②0的绝对值是0,不是正数,故②错误;③绝对值≥0,所以0的绝对值最小;故③错误;④相反数的定义为:若a+b=0,则a、b互为相反数,故④正确;⑤0>﹣1,但|0|<|﹣1|,故⑤错误;故选A.【点评】本题考查了相反数和绝对值的定义,注意特殊数字0是解题的关键.47.我们可以把|x﹣y|理解为数轴上表示x的点到表示y的点距离.若2≤x≤4,则|x+1|+|x﹣2|+|x﹣3|的最小值和最大值分别为()A.4,8 B.4,9 C.5,8 D.5,9【分析】分两种情况讨论:①当2≤x≤3时,②当3≤x≤4时,先化简|x+1|+|x ﹣2|+|x﹣3|,再根据x的取值范围得到最小值和最大值,从而求解.【解答】解:①当2≤x≤3时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+3﹣x=x+2,当x=2时,最小值为4,当x=3时,最大值为5;②当3≤x≤4时,|x+1|+|x﹣2|+|x﹣3|=x+1+x﹣2+x﹣3=3x﹣4当x=3时,最小值为5,当x=4时,最大值为8.综上所述,|x+1|+|x﹣2|+|x﹣3|的最小值和最大值分别为4,8.故选:A.【点评】考查了绝对值和分类思想的运用,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.48.若有理数a满足a﹣|a|=2a,则a的取值范围是()A.a>0 B.a<0 C.a≥0 D.a≤0【分析】利用绝对值的代数意义判断即可得到a的范围.【解答】解:∵a﹣|a|=2a,∴|a|=﹣a,∴a≤0.故选D【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.49.当式子|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2015|取得最小值时,实数x的值等于()A.2015 B.2014 C.1009 D.1008【分析】观察已知条件可以发现,|x﹣a|表示x到a的距离.要使题中式子取得最小值,则应该找出与最小数和最大数距离相等的x的值,此时式子得出的值则为最小值.【解答】解:由已知条件可知,|x﹣a|表示x到a的距离,只有当x到1的距离等于x到2015的距离时,式子取得最小值.故当x==1008时,式子取得最小值.故选D.【点评】考查了绝对值,做此题需要一定的技巧,要结合绝对值的定义来考虑.另外还要知道,当x与最小数和最大数距离相等时,式子才能取得最小值.50.有理数a、b、c、d所表示的点在数轴上的位置如图所示,若|a﹣c|=|b﹣d|=4,|a﹣d|=5,则b﹣c的值等于()A.﹣3 B.﹣2 C.3 D.2【分析】根据两点间的距离公式和线段的和差关系可求|a﹣b|,|c﹣d|,再根据线段的和差关系即可求解.【解答】解:∵|a﹣c|=|b﹣d|=4,|a﹣d|=5,∴|a﹣b|=5﹣4=1,|c﹣d|=5﹣4=1,∴b﹣c=﹣(5﹣1﹣1)=﹣3.故选:A.【点评】考查了绝对值,数轴,根据是熟练掌握两点间的距离公式.。
初一七年级数学绝对值练习题及答案解析完整版
初一七年级数学绝对值练习题及答案解析Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】知识点回顾:1、一般的,数轴上表示数a的点与原点的距离叫做绝对值,记做a。
2、由绝对值的定义可知:①一个正数的绝对值是它本身;②一个负数的绝对值是它的相反数;③0的绝对值是0.3、两个数比较大小的方法:1)数学中规定:在数轴上表示有理数,它们从左往右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
2)一般地①正数大于0,0大于负数,正数大于负数。
②两个负数,绝对值大的反而小。
小试牛刀:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱=a,则a。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果x<y<0,那么︱x︱︱y︱。
7.︱x-1︱=3,则x =。
8.若︱x+3︱+︱y-4︱=0,则x+y=。
9.有理数a,b在数轴上的位置如图所示,则ab,︱a︱︱b︱。
10.︱x︱<л,则整数x=。
11.已知︱x︱-︱y︱=2,且y=-4,则x=。
12.已知︱x︱=2,︱y︱=3,则x+y=。
13.已知︱x+1︱与︱y-2︱互为相反数,则︱x︱+︱y︱=。
14. 式子︱x+1︱的最小值是,这时,x值为。
15. 下列说法错误的是()A一个正数的绝对值一定是正数B一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是()(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A3B2C1D017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a+b+c 等于()A -1B0C1D2拓展提高:18.如果a ,b 互为相反数,c,d 互为倒数,m 的绝对值为2,求式子 a b a b c ++++m -cd 的值。
人教版七年级数学上册小专题练习二《有理数-绝对值专练》(含答案)
人教版七年级数学上册小专题练习二《有理数-绝对值专练》一、选择题1.若a=2,|b|=5,则a+b=( )A.- 3B.7C.- 7D.- 3或72.在数轴上,绝对值相等的两个数对应的点之间的距离为4,则这两个数分别是()A.4和- 4B.2和- 4C.2和- 2D.- 2和43.绝对值大于2且不大于5的所有整数的和等于()A.7B.0C.12D.244.绝对值不大于8的所有整数的和,绝对值小于6的所有负整数的积分别是( )A.0,0B.10,0C.0,-120D.5,1205.如果|a|=﹣a,下列成立的是()A.a>0B.a<0C.a≥0D.a≤06.下列各组数中,互为相反数的是()A.|+2|与|-2|B.-|+2|与+(-2)C.-(-2)与+(+2)D.|-(-3)|与-|-3|7.已知|x|=4,|y|=5,且xy<0,则x+y的值等于()A.9或-9B.9或-1C.1或-1D.-9或-18.不相等的有理数a.b.c在数轴上,对应点分别为A.B.C.若∣a-b∣+∣b-c∣=∣a-c∣,那么点B在()A.A、C点右边B.A、C点左边C.A、C点之间D.以上均有可能二、填空题9.下列说法:①0的绝对值是0,0的倒数也是0;②若a,b互为相反数,则a+b=0;③若a<0,则|a|=-a;④若|a|=a,则a>0;⑤若a2=b2,则a=b;⑥若|m|=|n|,则m=n.其中正确的有.(填序号)10.已知|a|=3,|b|=|-5|,且ab<0,则a-b=11.若|x+3|+|y﹣4|=0,则x+y的值为.12.数a,b在数轴上对应点的位置如图所示,化简a﹣|b﹣a|=.三、解答题13.有理数a,b,c在数轴上的位置如图所示,化简:|b﹣a|﹣|c﹣b|+|a+b|.14.已知|a|=3,|b|=2且|a﹣b|=b﹣a,求a+b的值.参考答案1.答案为:D2.答案为:C3.答案为:B4.答案为:C.5.答案为:D.6.D7.答案为:C.8.C9.答案为:②③.10.答案为:8或-811.答案为:1.12.答案为:b.13.解:由数轴可知:c<b<0<a,|a|>|b|,∴b﹣a<0,c﹣b<0,a+b>0,∴原式=﹣(b﹣a)+(c﹣b)+(a+b)=﹣b+a+c﹣b+a+b=2a﹣b+c 14.解:∵|a|=3,|b|=2且|a﹣b|=b﹣a,∴b>a,a=﹣3,b=±2∴a+b=﹣1或﹣5.。
绝对值练习题及答案
绝对值练习题及答案绝对值练习题及答案绝对值是数学中一个非常重要的概念,它可以帮助我们解决各种与数值相关的问题。
在这篇文章中,我们将探讨一些绝对值的练习题,并给出相应的答案。
通过这些练习题的训练,我们可以更好地理解和应用绝对值的概念。
一、基础练习题1. 计算以下数的绝对值:-5, 0, 7, -2, 10.答案:5, 0, 7, 2, 10.2. 求解以下方程:|x| =3.答案:x = 3 或 x = -3.3. 如果|x - 2| = 4, 求解x的可能值。
答案:x = 6 或 x = -2.4. 求解以下不等式:|2x - 3| ≤5.答案:-1 ≤ x ≤ 4.二、进阶练习题1. 已知|x - 4| = 2x + 1,求解x的值。
答案:x = -3.解析:将方程两边平方,得到(x - 4)² = (2x + 1)²,展开化简后得到x² - 10x - 15 = 0,解这个方程可以得到x = -3 或 x = 5,但是只有x = -3满足原方程。
2. 若|3x - 2| = 5x + 1,求解x的值。
答案:x = -1 或 x = 1.解析:将方程两边平方,得到(3x - 2)² = (5x + 1)²,展开化简后得到4x² + 14x -3 = 0,解这个方程可以得到x = -1 或 x = 1,均满足原方程。
三、挑战练习题1. 若|2x - 3| < 4x + 1,求解x的值。
答案:-1 < x < 2/3.解析:对于绝对值不等式,我们可以将其转化为两个不等式,即2x - 3 < 4x +1 和 2x - 3 > -(4x + 1),解这两个不等式可以得到-1 < x < 2/3,满足原不等式。
2. 若|3x - 4| > 2x + 1,求解x的值。
答案:x < -1 或 x > 3.解析:同样地,我们将绝对值不等式转化为两个不等式,即3x - 4 > 2x + 1 或3x - 4 < -(2x + 1),解这两个不等式可以得到x < -1 或 x > 3,满足原不等式。
初一数学绝对值练习题
初一数学绝对值练习题一、选择题:1. 绝对值的定义是:一个数的绝对值是其数值与0的距离,即|a|=______。
A. a(当a>0时)B. -a(当a<0时)A和B2. 计算|-5|的结果为:A. 5B. -5C. 0A3. 若|a|=3,则a可能的值是:A. 3B. -3C. 0A和B4. 绝对值的几何意义是表示数轴上一个数到原点的距离,若|-2|=2,则-2在数轴上的位置是:A. 原点B. 距离原点2个单位长度C. 距离原点3个单位长度B5. 已知|a+1|=4,那么a的值可能是:A. 3B. -5C. 5B二、填空题:6. 若|a|=5,则a的值是______。
答案:±57. 计算|-3.5|的结果为______。
答案:3.58. 若一个数的绝对值是它本身,则这个数是______。
答案:非负数9. 若|a-b|=b-a,则a和b的大小关系是______。
答案:a≤b10. 若|-x|=|x|,则x是______。
答案:非负数三、计算题:11. 计算|-7|+|-2|-|3|的值。
答案:7+2-3=612. 若|2x-3|=5,求x的值。
答案:x=4或x=-113. 已知|a|=2,|b|=3,且|a+b|=|a-b|,求a和b的值。
答案:a=2,b=3或a=-2,b=-3四、解答题:14. 一个数的绝对值是它到0的距离,如果一个数的绝对值是4,那么这个数可能是什么?答案:这个数可能是4或-4。
15. 已知|a|=2,|b|=1,且a+b=0,求a和b的值。
答案:由于a+b=0且|a|=2,|b|=1,可以推断出a=2,b=-1或a=-2,b=1。
16. 判断以下说法是否正确,并说明理由:(1)若|a|=|b|,则a=b。
(2)若|a|=|b|,则a=-b。
答案:(1)不正确,因为a和b可以是相反数,例如|-3|=|3|,但-3≠3。
(2)正确,因为如果a和b的绝对值相等,那么它们要么相等,要么互为相反数。
初一去绝对值例题
初一数学中的绝对值概念和性质经常出现在各类题目中,通过运用这些性质,我们可以解决一些实际问题。
以下是一些初一去绝对值的例题:
1. 如果|a|=3,那么a的值是多少?
解:根据绝对值的定义,|a|表示a与0之间的距离,所以a可能是正数3或负数-3,即a=±3。
2. 如果a的绝对值是5,那么-a的绝对值是多少?
解:根据绝对值的性质,-a的绝对值也是5,即|-a|=5。
3. 如果|x-3|=2,那么x的值是多少?
解:根据绝对值的定义,|x-3|表示x与3之间的距离,所以x-3可能是正数2或负数-2。
解得x=1或x=5。
4. 如果|x+2|=x+2,那么x的取值范围是多少?
解:由于绝对值的结果非负,所以x+2≥0,解得x≥-2。
5. 化简下列式子:|a+3|+|a-5|。
解:根据绝对值的性质,当a≥-3时,|a+3|=a+3;当a<-3时,|a+3|=-(a+3)。
同理,当a≥5时,|a-5|=a-5;当a<5时,|a-5|=-(a-5)。
综合讨论可得:
当a≥5时,原式=a+3+a-5=2a-2;
当-3≤a<5时,原式=a+3-(a-5)=8;
当a<-3时,原式=-(a+3)-(a-5)=-2a+2。
这些例题主要考察了初一数学中绝对值的基本概念、性质以及应用。
在解题过程中,我们需要灵活运用这些性质,并注意分类讨论。
七年级数学上册1.2.4 绝对值-求一个数的绝对值-解答题专项练习2(人教版,含解析)
2021-2022学年度人教版七年级数学上册练习1.2.4 绝对值-求一个数的绝对值1.已知:2,1a b ==,求:a b +.2.将 1.5-,(2)--,0,13,1--,( 2.5)+-在数轴上表示出来,并用“<”把它们连接起来.3.一辆出租车从A 站出发,先向东行驶12 km ,接着向西行驶8 km ,然后又向东行驶4 km.(1) 画一条数轴,以A 站为原点,向东为正方向,在数轴上表示出租车行驶的终点位置B ;(2)求各次路程的绝对值的和,并说明这个数据的实际意义是什么?(3)若出租车每行驶1 km 耗油0.05升,出租车由起点A 到终点B 共耗油多少升?4.在数轴上表示出下列各数,并用“<”连接比较各数的大小.-(+4),+(-1),|-3.5|,0,-2.55.已知|a|=7,|b|=3,且a >b ,求a+b 的值.6.若|m |=6,|n |=7,则m+n 的值多少?7.画一条数轴,并在数轴上表示:3.5和它的相反数,绝对值等于3的数,最大的负整数和最小的正整数,并把这些数由小到大用“<”号连接起来.8.将 1.5--,0,-2,1,32⎛⎫-- ⎪⎝⎭在数轴上表示出来,并用“<”把它们连接起来.9.已知下列各有理数:1-- , 112, 0 , - (- 3.5),-3.(1)画出数轴,在数轴上标出这些数表示的点;(2)用“<”把这些数连接起来.10.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来:3,()1--,﹣3.5,0,2--11.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”连接起来.10,3,,|4|2---12.把下列各数在数轴上表示出来,并用“<”连接0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭.13.把下列各数填在相应的集合内:6,﹣3,2.5,0,﹣1,9--,()3.15--.(1)整数集合 …};(2)分数集合 …};(3)非负数集合 …};(4)正数集合 …}.14.把下列各数填在相应的表示集合的括号内.1-,13-,3--,0,227,0.3-,1.7,()2-- 整数:( ……)非负整数:( ……)正数:( ……)有理数:( ……)15.已知a ,b ,c ,d ,m ,它们之间有如下关系:a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为5,则(a +b +cd)m -cd 的值是多少?参考答案1.1或3解析:根据绝对值的定义得到a 和b 的值,代入计算即可.详解: 解:∵2,1a b ==, ∴a=±2,b=±1,∴a+b=-3,或a+b=-1,或a+b=1,或a+b=3,∴a b +=1或3.点睛:本题考查了绝对值的意义,解题的关键是根据绝对值的性质得到a 和b 的值.2.作图见解析;()1( 2.5) 1.51023+-<-<--<<<--解析:根据绝对值、相反数、数轴的性质,在数轴上把各个数表示出来,即可得到答案. 详解:(2)2--= 11--=-,( 2.5) 2.5+-=-数轴表示如下:结合数轴,用“<”把它们连接起来如下:()1( 2.5) 1.51023+-<-<--<<<--. 点睛:本题考查了绝对值、相反数、数轴的知识;解题的关键是熟练掌握绝对值、相反数、数轴的的性质,从而完成求解.3.(1)详见解析;(2) 24km ,它的实际意义是出租车行驶的总路程是24 km ;(3)1.2升 解析:(1)根据题意画出数轴解答即可;(2)根据绝对值的意义和有理数的加法法则即可求出各次路程的绝对值的和,实际意义是出租车行驶的总路程,据此即可解答;(3)用出租车行驶的总路程×0.05即可求出结果.详解:解:(1)终点B的位置如图所示.(2)|12|+|-8|+|4|=24(km);它的实际意义是出租车行驶的总路程是24 km;(3)0.05×24=1.2(升).即出租车由起点A到终点B共耗油1.2升.点睛:本题考查了数轴、有理数的绝对值和有理数的加法运算,属于基本题型,熟练掌握基本知识是解题的关键.4.−(+4)<−2.5<+(−1)<0<|−3.5|;数轴见解析.解析:先把数轴补充完整,再在数轴上表示出各数,从左到右用“<”连接起来即可详解:解:如图所示−(+4)<−2.5<+(−1)<0<|−3.5|.点睛:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键5.4或10解析:利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.详解:∵|a|=7,|b|=3,∴a=±7,b=±3,又∵a>b,∴a=7,b=3或-3,则a+b=4或10.点睛:考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.6.m+n 的值为±1或±13.解析:根据绝对值的性质可以求出m =±6,n=±3,后计算m+n 的值即可求解.详解:∵|m|=6,|n|=7,∴m=±6,n=±7,当m=6,n=7时,m+n=6+7=13;当m=6,n=-7时,m+n=6-7=-1;当m=-6,n=7时,m+n=-6+7=1;当m=-6,n=-7时,m+n=-6-7=-13, 综合上述,m+n 的值为±1或±13.点睛:此题考查绝对值的性质,解题关键在于分情况讨论.7.数轴见解析, 3.53113 3.5-<-<-<<<解析:先按要求求出各数,再在数轴上表示出来,在根据数轴即可判定各数的大小. 详解:3.5的相反数为-3.5,绝对值等于3的数有-3、3,最大的负整数是-1,最小的正整数为1. 数轴为:﹣3.5<﹣3<﹣1<1<3<3.5.点睛:本题考查数轴及有理数的大小的比较.正确求出各有理数是解题的关键.8.在数轴上表示见解析;32 1.5012⎛⎫-<--<<<-- ⎪⎝⎭ 解析:先化简 1.5--与32⎛⎫-- ⎪⎝⎭,然后即可将各数在数轴上进行表示,再根据数轴上比较大小的方法即可用“<”把它们连接起来.详解: 解: 1.5 1.5--=-,3322⎛⎫--= ⎪⎝⎭, 有理数 1.5--,0,-2,1,32⎛⎫-- ⎪⎝⎭在数轴上表示如下:用“<”把它们连接起来是32 1.5012⎛⎫-<--<<<-- ⎪⎝⎭. 点睛:本题考查了有理数的相反数、绝对值、有理数在数轴上的表示以及比较有理数的大小等知识,属于基础题型,熟练掌握有理数的基本知识是解题的关键.9.图见解析,310-<--<<11( 3.5)2<--解析:(1)根据题意及绝对值的意义,相反数的意义进行化简,然后画出数轴,(2)由(1)中的数轴可直接进行解答.详解:解:(1)由()1=1, 3.5 3.5-----=,则把这些数在数轴上表示如图所示:(2)由(1)可得:用“<”把这些数连接起来为:310-<--<<11( 3.5)2<--.点睛:本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.10.数轴见解析,﹣3.5<2--<0<()1--<3解析:根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上原点的右边表示正数,原点的左边表示负数,从而可得答案.详解:解:由()11,22,--=--=-把3,()1--,﹣3.5,0,2--在数轴上表示如图:由数轴上的点表示的数是右边的数总比左边的数大,得:﹣3.5<2--<0<()1--<3.点睛:本题考查的是利用数轴上的点表示有理数,相反数的含义,求一个数的绝对值,有理数的大小比较,掌握以上的知识是解题的关键.11.在数轴上表示见解析,14302--<-<< 解析:先化简|4|--,再根据有理数在数轴上的表示方法即可将已知的各数在数轴上进行表示,然后根据数轴上右边的数总比左边的数大即可将已知的有理数进行比较.详解: 解:|4|--=﹣4,则有理数10,3,,|4|2---在数轴上表示如图:按从小到大的顺序连接如下:14302--<-<<.点睛:本题考查了数轴和有理数的大小比较,属于基础题目,熟练掌握基本知识是解题的关键.12.在数轴上表示见解析,()331300.51442--<-<--<<--< 解析:先化简,再把各个数表示在数轴上,然后用“<”连接各数.详解:()0.50.5--=,3344--=-,114433⎛⎫+-=- ⎪⎝⎭, 所以0,112,3-,()0.5--,34--,143⎛⎫+- ⎪⎝⎭ 在数轴上表示如下:所以()331300.51442--<-<--<<--<. 点睛:本题考查了绝对值的化简、相反数的意义、数轴及有理数的大小比较,根据在数轴上表示的数,右边的总大于左边的,用“<”号从左往右依次把各数连接起来.13.(1)6,﹣3,0,﹣1,9--;(2)2.5,()3.15--;(3)6,2.5,0,()3.15--;(4)6,2.5,()3.15--.解析:根据整数、分数、非负数、正有理数以及负数的定义进行判断即可.详解:99--=-,()3.15 3.15--=,由题可得:(1)整数集合 6,﹣3,0,﹣1,9--,…};(2)分数集合 2.5,()3.15--,…};(3)非负数集合 6,2.5,0,()3.15--,…};(4)正数集合 6,2.5,()3.15--,…}.点睛:本题主要考查了有理数的分类,绝对值以及相反数的定义,解题时注意:整数和分数统称为有理数;整数包括正整数、0、负整数;分数包括正分数、负分数.14.1-,3--,0,()2--;0,()2--;227,1.7,()2--;1-,13-,3--,0,227,0.3-,1.7,()2--解析:先把给出的数化简后,利用数集的分类标准赛选即可.详解: 整数:(){}1,3,0,2-----,;非负整数:(){}0,2--,; 正数:()22,1.7,27⎧⎫--⎨⎬⎩⎭, 有理数:()1221,,3,0,,0.3,1.7,237⎧⎫-------⎨⎬⎩⎭,. 点睛:本题考查数集问题,掌握数集的概念,会用数集选数、判断和区分,掌握数集的分类标准,清楚数集的表示.15.4或-6解析:只有符号不同的两个数是互为相反数;两个数互为相反数,两个数的和为0;两个数乘积为1,则两个数互为倒数;数轴上表示一个数的点到原点的距离是这个数的绝对值;根据相反数,倒数,绝对值的定义求解.详解:解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵m的绝对值为5,∴m=5或m=-5.∴当m=5时,原式=(0+1)×5-1=4;当m=-5时,原式=(0+1)×(-5)-1=-6.∴原式的值是4或-6.点睛:本题主要考查相反数,倒数,绝对值的定义和性质,解决本题的关键是要熟练掌握相反数,倒数,绝对值的定义和性质.。
七年级数学上绝对值专项练题
七年级数学上绝对值专项练题一、绝对值专项练习题。
1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。
- 负数的绝对值是它的相反数,所以| - 3|=3。
- 0的绝对值是0,即|0| = 0。
- |-(2)/(3)|=(2)/(3)。
2. 已知| a| = 3,求a的值。
解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。
3. 比较大小:| - 5|与4。
解析:- 先求出| - 5| = 5。
- 因为5>4,所以| - 5|>4。
4. 计算:| - 2|+|3|。
解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。
- 然后计算2 + 3=5。
5. 计算:| - 4|-| - 2|。
解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。
- 再计算4-2 = 2。
6. 若| x - 1| = 0,求x的值。
解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。
7. 已知| a|=| - 2|,求a的值。
解析:- 先求出| - 2| = 2。
- 因为| a| = 2,所以a = 2或a=-2。
8. 计算:| - 3|×| - 2|。
解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。
- 然后计算3×2 = 6。
9. 计算:(| - 6|)/(|2|)。
解析:- 先求绝对值,| - 6| = 6,|2| = 2。
- 再计算(6)/(2)=3。
10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。
解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。
初一数学绝对值经典练习题
初一数学绝对值经典练习题绝对值是数学中常见的概念之一,初一阶段学生学习绝对值也是很重要的一部分。
下面我将给你提供一些初一数学中关于绝对值的经典练习题,并解答每个题目。
1.计算以下绝对值:a) |3| b) |-5| c) |0| d) |-3| e) |10|解答:a) |3| = 3b) |-5| = 5c) |0| = 0d) |-3| = 3e) |10| = 102.计算下列绝对值:a) |7 - 9|b) |12 - 7|c) |5 - 5|d) |-9 + 9|e) |11 - 17|解答:a) |7 - 9| = |-2| = 2b) |12 - 7| = |5| = 5c) |5 - 5| = |0| = 0d) |-9 + 9| = |0| = 0e) |11 - 17| = |-6| = 63.解方程:a) |x - 5| = 3b) |2x + 1| = 7c) |7 - x| = 4d) |5x - 3| = 0e) |x + 1| = |x - 1|解答:a) |x - 5| = 3当x - 5 > 0时,x - 5 = 3,解得x = 8;当x - 5 < 0时,-(x - 5) = 3,解得x = 2;所以方程的解为x = 8或x = 2。
b) |2x + 1| = 7当2x + 1 > 0时,2x + 1 = 7,解得x = 3;当2x + 1 < 0时,-(2x + 1) = 7,解得x = -4;所以方程的解为x = 3或x = -4。
c) |7 - x| = 4当7 - x > 0时,7 - x = 4,解得x = 3;当7 - x < 0时,-(7 - x) = 4,解得x = 11;所以方程的解为x = 3或x = 11。
d) |5x - 3| = 0当5x - 3 > 0时,5x - 3 = 0,解得x = 0.6;当5x - 3 < 0时,-(5x - 3) = 0,解得x = 0.6;所以方程的解为x = 0.6。
七年级数学上册 绝对值 专项练习题汇总
七年级数学上册 绝对值 专项练习题型一1、(1)若7=x ,则x = ,若7-=x ,则x = .(2)若108=+x ,则x = ,若)(35--=+-x ,则x = . 2、绝对值等于5的整数是 ,绝对值小于等于5的整数有 个,他们的和为 ,积为 。
3、下列各组判断中,正确的是( )A 、若b a =,则一定有b a = ;B 、若b a >,则一定有b a >C 、 若b a >,则一定有b a > ;D 、若b a =,则一定有()22b a -= 4、如果22b a >,则( )A 、b a >B 、b a >C 、b a <D 、b a < 5、下列式子正确的是( )A 、a a ->B 、a a -<C 、a a -≤D 、a a -≥6、已知4=x ,求4+x 的值.7、已知的值,求,y x y x +==32.8、已知25==b a ,,且b a <,求b a 与的值.9、已知123a b c ===,,,且c b a >>,求c b a -+的值.10、已知043<+==b a b a ,且,,求b a -的值.11、若a b b a b a -=-==,且,25,求b a +的值.12、已知123===c b a ,,,且c b a <<,求c b a ++的值.13、已知85==b a ,,且()b a b a +-=+,求b a +的值.14、已知75.2==b a ,,且ab ab -=,求b a +的值.15、已知2123==y x ,,且y x xy ->,求0的值.七年级数学上册 绝对值 专项练习题型二填空(复习基础)1、已知32==y x ,,求3y x +的值.2、已知32--y x 和互为相反数,求yx 2+的值.3、已知5a b c d x =、为相反数,、互为倒数,,求下式的值:()()()199919982cd b a cd b a x -+++++-4、如果a 、b 互为相反数,c 、d 互为倒数,1+y 没有倒数,1-x 的绝对值等于2.求下式)1)(1(2-+-+++-b a y xcdb a 的值.5、已知12x -=,3y =,且x 与y 互为相反数,求2143x xy y --的值. 6、若2a b c d m 、互为相反数,、互为倒数,的绝对值为,求下式的值:bm am cd m mb a 201012010324-+--++7、已知2315与x --互为相反数,互为倒数,、y x 求xy x 432+的值.8、若,a b 互为相反数,,c d 互为倒数,x 的绝对值是1,求a bx cd x+++的值.9、已知,a b 互为相反数,,c d 互为倒数,x 的绝对值等于1,求()cd x b a x -++2的值.10、若已知a 与b 互为相反数,且4a b -=,求21a ab ba ab -+++的值.11、已知,a b 互为倒数,,c d 互为相反数,10=<e e 且,求()()200520042003e d c ab -+--的值.七年级数学上册 绝对值 专项练习题型三格式(填空简单 解答题数统一)1、已知()0212=-++b a ,求b a 25-的值.2、已知()0212=++-b a ,求()2018b a +的值.3、非零整数m n ,满足50m n +-=,所有这样的整数组()m n ,共有 对. 4、若42a b -=-+,则_______a b +=. 5、若7322102m n p ++-+-=,则23__p n m+=+.6、已知a 、b 、c 都是负数,并且0x a y b z c -+-+-=,则 0xyz (填<>或).7、已知031=++-b a ,求b a +的值.8、若有理数()02132=-+-b a b a 满足、,则b a 的值为.9、已知084=-+-b a ,求abba +的值.10、已知()242--=+y x ,求xy 的值.11、已知2-a 与3-b 互为相反数,求b a 23+的值.12、“*”代表一种新运算,已知abba b a +=*,求y x *的值,其中x 和y 满足方程031212=-++y x )(13、已知有理数01331=-+++-c b a c b a 满足、、,求()()239125c b a c b a ⨯⨯÷⨯⨯的值.14、若3x y -+与1999x y +-互为相反数,求2x yx y+-的值.15、已知12--b ab 与互为相反数,试求下式的值:()()()()()(2002200212211111++++++++++b a b a b a ab16、已知210ab a +++=,求()()()()()()111...112219941994a b a b a b +++-+-+-+的值.七年级数学上册 绝对值 专项练习题型四3、数b a 、在数轴上的位置如图所示,则b a b a +--化简的结果为.1、有理数c b a 、、在数轴上的位置如图所示,化简c b a --+-0.2、已知b a 、为有理数,且00<<b a ,,b a >,则b a b a --、、、的大小关系为.4、数b a 、在数轴上的位置如图所示,化简a b a b b a -+-++.5、如果有理数c b a 、、在数轴上的位置如图所示,化简c c a b b a ------+11.6、若31<<a ,化简a a -+-13.7、化简100211003120021200312003120041-⋯⋯+-+- 放前8、化简:30229911181851521⨯-++⨯-+⨯-+⨯-9、已知有理数c b a 、、在数轴上的位置如图所示,化简:①23a b b c a c ++--+ ②c b c a b a 332+--+-10、设c b a 、、为非零有理数,且00=-==+c c ab ab a a ,,,化简c a b c b a b -+--+-11、如果有理数c b a 、、在数轴上的位置如图所示,且c b <,化简下式:b ac a c a c b c b +-+--++--12、若10<<a ,12-<<-b ,求ba b a b b a a +++++---2211的值.七年级数学上册 绝对值 专项练习题型五1、若0a >,则_____aa=;若0a <,则_____a a =.2、下列可能正确的是( ) A 、1a ba b += B 、2a b c a bc ++=C 、3c d a b a b c d+++= D 、4a b c d a b c dabcdabcd+++++++=3、若a ,b ,c 均不为零,求a b ca b c++的值.4、若a ,b ,c 均不为零,且0a b c ++=,求abca b c++的值.5、已知a ,b ,c 是有理数,且0a b c ++=,0>abc ,求||||||c ba b a c a c b +++++的值.6、若ccb b a a abc ++<,求0的值.7、a ,b ,c 为非零有理数,且0a b c ++=,求a b b c c a a bb cc a++的值.8、已知a b ca b cc cb ba ax +++=,且0均不等于、、c b a ,求x 的所有可能值.9、若10<<a ,12-<<-b ,求ba b a b b a a +++++---2211的值.10、已知a 是非零有理数,求3322aa a a a a ++的值.11、已知a b c ,,是非零整数,且0a b c ++=,求a b c abca b c abc+++的值.12、已知0abc ≠,求ab ac bc ab ac bc++的值.13、已知a bc 、、都是有理数,且满足a b c abc++=1,求代数式:6abcabc-的值.。
数轴去绝对值题目初一
数轴去绝对值题目初一一、知识点回顾1. 绝对值的定义- 绝对值表示一个数在数轴上所对应点到原点的距离。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
- 用数学符号表示为:| a|=a(a≥0) -a(a<0)2. 在数轴上确定数的绝对值大小- 例如,在数轴上表示数a,如果a在原点右侧,那么| a| = a;如果a在原点左侧,那么| a|=-a。
二、典型题目及解析1. 题目1- 已知a = - 3,b = 2,c = -1,求| a - b|+| b - c|的值。
- 解析:- 首先计算a - b的值:a - b=-3 - 2=-5。
- 根据绝对值的定义,| a - b|=| - 5| = 5。
- 然后计算b - c的值:b - c = 2-(-1)=2 + 1=3。
- 所以| b - c|=|3| = 3。
- 则| a - b|+| b - c|=5 + 3=8。
2. 题目2- 若| x| = 3,求x的值。
- 解析:- 因为| x| = 3,根据绝对值的定义,当x≥0时,x = 3;当x<0时,x=-3。
所以x=±3。
3. 题目3- 有理数a,b在数轴上的位置如图所示,化简| a|+| b - a|。
- (数轴上a在原点左侧,b在原点右侧,且b到原点的距离大于a到原点的距离)- 解析:- 因为a在原点左侧,所以a<0,根据绝对值的定义| a|=-a。
- 又因为b在原点右侧,a在原点左侧,所以b - a>0,那么| b - a|=b - a。
- 所以| a|+| b - a|=-a+(b - a)=-a + b - a=b - 2a。
4. 题目4- 化简| x - 1|+| x+3|(x为有理数)。
- 解析:- 要化简这个式子,需要根据x与1和- 3的大小关系进行讨论。
- 当x≥1时,x - 1≥0,x + 3>0,则| x - 1|+| x+3|=(x - 1)+(x + 3)=x - 1+x + 3 = 2x+2。
初一数学去绝对值经典题
初一数学去绝对值经典题在初一数学课堂上,绝对值这个概念就像那颗闪亮的星星,总是吸引着我们的目光。
大家好,今天咱们就来聊聊绝对值。
别看它字面上是个“绝对”的东西,其实它可有趣了。
想象一下,你在街上逛,看到一个小吃摊,那个小吃摊的老板问你:“你这次是想吃甜的还是咸的?”你很纠结,这就像数学里的负数和正数。
而绝对值的意思,就是无论你选择甜还是咸,结果都是那种“味道”的距离,给你一个清晰的答案。
绝对值到底是什么呢?简单来说,它就是一个数到零的距离。
比如说,绝对值|5|等于5,因为从零出发,走五步就到了5那里。
同样的,|5|也是5,走五步到5的地方。
这下是不是感觉简单多了?绝对值就像是把负数和正数都带到了同一个起跑线,让你可以轻松地比较。
想象一下,如果你和你的朋友比赛跑步,你在正向跑,而他在反向跑,谁跑得更快?绝对值告诉你,不管方向如何,咱们只看距离。
咱们看看一些例子。
比如说,|38|这个式子,你得先算出3和8之间的差距。
结果是5,但别担心,咱们只看绝对值,所以|38|等于5。
这就像生活中,大家都知道有时候总会有争吵,但只要把心放宽,就会发现其实彼此的距离并没有想象中那么远。
数学就是这样教会我们理解和包容的道理,绝对值也像是一个和解的桥梁,能让你们相互靠近。
哦,绝对值的运算规则也挺有趣。
比如说|a + b| ≤ |a| + |b|。
这意思就是,如果你把两个数加起来,然后取绝对值,结果一定小于等于你先把两个数的绝对值加起来。
这就好比,你和朋友一起去买零食,你们的预算有限,结果买了些便宜又好吃的。
合起来的价格不会超过你们俩各自预算的总和。
这种节俭的智慧,在生活中可是非常重要的,绝对值在这里给了我们一份数学上的启示。
绝对值的用法还不止于此。
在图像上,绝对值函数的图像是一条V字型的线。
这就像是一座桥,从下面慢慢向上升起,正负数在这条桥上无差别。
你走到左边是负数,走到右边是正数,无论你走哪边,最后都会回到零的那一刻。
苏科版七年级上册数学第2章《绝对值》解答题专练.docx
初中数学试卷桑水出品第2章《绝对值》解答题专练1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是______,(2)数轴上表示x与2的两点之间的距离可以表示为______.(3)如果|x﹣2|=5,则x=______.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是______.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______.(2)数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是______,最小值是______”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是______,最小值是______.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与2______;3与﹣2______;③﹣4与﹣4______;④﹣3与2______;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为______.(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=______;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=______③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为______和______,B,C两点间的距离是______;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为______;如果|AB|=3,那么x为______;(3)若点A表示的整数为x,则当x为______时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是______.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为______(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是______,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是______;当x的值取在______的范围时,|x|+|x﹣2|的最小值是______.材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是______,数轴上表示2和﹣5两点之间的距离是______.(2)数轴上表示x和2两点A和B之间的距离是______;如果|AB|=3,那么x______.(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是______.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为______.(2)不等式|x﹣3|+|x+4|≥9的解集为______.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是______,数轴上表示2和﹣10的两点之间的距离是______.(2)数轴上表示x和﹣2的两点之间的距离表示为______.(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=______.(2)若|x﹣2|=5,则x=______(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是______.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是______;数轴上表示数x和3的两点之间的距离表示为______;数轴上表示数______和______的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:______.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=______.13.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是______,数轴上表示﹣2和﹣5的两点之间的距离是______,数轴上表示1和﹣3的两点之间的距离是______;②数轴上表示x和﹣1的两点A和B之间的距离是______,如果|AB|=2,那么x为______;③当代数式|x+4|+|y﹣7|取最小值时,则x﹣y=______.参考答案与解析1.同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示5与﹣2两点之间的距离是7,(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2| .(3)如果|x﹣2|=5,则x=7或﹣3.(4)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.(5)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【分析】(1)根据距离公式即可解答;(2)利用距离公式求解即可;(3)利用绝对值求解即可;(4)利用绝对值及数轴求解即可;(5)根据数轴及绝对值,即可解答.【解答】解:(1)数轴上表示5与﹣2两点之间的距离是|5﹣(﹣2)|=|5+2|=7,故答案为:7;(2)数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;(3)∵|x﹣2|=5,∴x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;(4)∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;(5)有最小值是3.【点评】本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用.难度较大.去绝对的关键是确定绝对值里面的数的正负性.2.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a﹣b|;当A、B两点都不在原点时,如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(﹣b)=|a﹣b|;回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4.(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;(3)当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2.【分析】审题可知题中通过探索已经得出数轴上两点之间的距离求值方法:即两数之差的绝对值,(1)求两点距离,我们根据题意代入求值即可.(2)第一个问题只需把字母和数代入即可,第二个问题,根据题意列出方程求解即可.(3)将绝对值理解为两点之间的距离,再根据两点之间线段最短分析即可.【解答】解:(1)数轴上表示2和5的两点之间的距离是:|2﹣5|=3,数轴上表示﹣2和﹣5的两点之间的距离是:|﹣2﹣(﹣5)|=3,数轴上表示1和﹣3的两点之间的距离是:|1﹣(﹣3)|=4.故答案为:3,3,4(2)数轴上表示x和﹣1的两点A和B之间的距离是:|x﹣(﹣1)|=|x+1|,由|AB|=2得:|x+1|=2,所以有:x+1=2,或x+1=﹣2,解得x=1,或x=﹣3.故答案为:|x+1|,1或﹣3.(3)|x+1|+|x﹣2|可以看作:表示x的点到表示﹣1的点和到表示2的点的距离的和,根据两点之间线段最短,可知表示x的点在表示﹣1的点和到表示2的点的线段上,所以﹣1≤x≤2.故答案为:﹣1≤x≤2.【点评】此题主要考察数轴上两点之间的距离,准确把握题中距离公式并认真代入计算是解题的关键,解题中要注意:由距离求点时,要分类讨论避免漏解.3.小红和小明在研究绝对值的问题时,碰到了下面的问题:“当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是﹣1≤x≤2,最小值是3”.小红说:“如果去掉绝对值问题就变得简单了.”小明说:“利用数轴可以解决这个问题.”他们把数轴分为三段:x<﹣1,﹣1≤x≤2和x>2,经研究发现,当﹣1≤x≤2时,值最小为3.请你根据他们的解题解决下面的问题:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8.(2)已知y=|2x+8|﹣4|x+2|,求相应的x的取值范围及y的最大值.写出解答过程.【分析】(1)根据线段上的点与线段的端点的距离最小,可得答案;(2)根据两个绝对值,可得分类的标准,根据每一段的范围,可得到答案.【解答】解:(1)当式子|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|取最小值时,相应的x的取值范围是4≤x≤6,最小值是8;(2)当x≥﹣2,时y=﹣2x,当x=﹣2时,y最大=4;当﹣4≤x≤﹣2时,y=6x+16,当x﹣2时,y最大=4;当x≤﹣4,时y=2x,当x=﹣4时,y最大=﹣8,所以x=﹣2时,y有最大值y=4.【点评】本题考查了绝对值,线段上的点与线段的端点的距离最小,(2)分类讨论是解题关键.4.请把下列每对数在数轴上所对应的两点的距离写在横线上:(1)①3与21;3与﹣25;③﹣4与﹣4;④﹣3与26;你能发现求出距离与这两个数的差有什么关系吗?如果有一对数为a,b,则a,b两数所对应的两点之间的距离可表示为|a﹣b| .(2)如图所示,点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点(并表上相应的字母)(3)由以上探索解答下列问题:①当|x+1|+|x﹣2|=7时,x=4;②|x﹣3|+|x﹣4|+|x﹣5|的和的最小值=2③求|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|的最小值.【分析】(1)利用数轴分别得出,进而得出a,b两数所对应的两点之间的距离;(2)根据点A、B所代表的数分别为1,﹣2,在数轴上画出与A、B两点的距离之和为5的点,结合数轴得出即可;(3)①利用x的取值范围分析得出即可;②利用x=4时,求出原式的最值即可;③可以用数形结合来解题:x为数轴上的一点,|x﹣1|+|x﹣2|+|x﹣3|+…|x﹣21|表示:点x到数轴上的21个点(1、2、3、…、21)的距离之和,由于原式的绝对值共有21项,最中间的那一项是|x﹣11|,所以只需取x=11,它们的和就可以获得最小值.【解答】解:(1)①1;②5;③;④6;a,b两数所对应的两点之间的距离可表示为|a﹣b|;(2)C、D是与A、B两点的距离之和为5的点;(3)①当x≥﹣1时,|x+1|+|x﹣2|=7为x+1+x﹣2=7或x+1+2﹣x=7(舍去),解得:x=4,当x<﹣1时,|x+1|+|x﹣2|=7为﹣x﹣1﹣x+2=7,解得:x=﹣3,故答案为:4或﹣3;②当|x﹣3|+|x﹣4|+|x﹣5|的和最小,则x=4,∴原式=1+0+1=2;故答案为:2;③当x=11时,|x﹣1|+|x﹣2|+|x﹣3|…|x﹣21|=10+9+8+7+…+9+10=10×11=110.【点评】此题主要考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=11时,|x﹣1|+|x ﹣2|+|x﹣3|+…|x﹣21|能够取到最小值是解题关键.5.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看做|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为﹣2.5和1,B,C两点间的距离是 3.5;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2.【分析】(1)根据数先在数轴上描出点,再根据点得出两点间的距离;(2)根据数轴上两点间的距离公式,可得到一点距离相等的点有两个;(3)根据到两点距离相等的点是这两个点的中点,可得答案;(4)根据线段上的点到这两点的距离最小,可得范围.【解答】解:(1)B点表示的数﹣2.5,C点表示的数1,BC的距离是1﹣(﹣2.5)=3;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为,如果|AB|=3,那么x为﹣4,2;(3)若点A表示的整数为x,则当x为﹣1,时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是﹣5≤x≤2,故答案为:﹣2.5,1;,﹣4,2;﹣1;﹣5≤x≤2.【点评】本题考查了绝对值,由数轴上点的关系,得出到一点距离相等的点有两个,到两点相等的点是这两点的中点,到两点距离和最小的点是这条线段上的点.6.认真阅读下面的材料,完成有关问题.材料1:在学习绝对值时,老师教过我们绝对值的几何含义,如|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离;|5|=|5﹣0|,所以|5|表示5在数轴上对应的点到原点的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.问题(1):点A、B、C在数轴上分别表示有理数x、﹣2、1,那么A到B的距离与A到C的距离之和可表示为+(用含绝对值的式子表示).问题(2):利用数轴探究:①找出满足|x﹣3|+|x+1|=6的x的所有值是﹣2,4,②设|x﹣3|+|x+1|=p,当x的值取在不小于﹣1且不大于3的范围时,p的值是不变的,而且是p的最小值,这个最小值是4;当x的值取在0≤x≤2的范围时,|x|+|x﹣2|的最小值是2.材料2:求|x﹣3|+|x﹣2|+|x+1|的最小值.分析:|x﹣3|+|x﹣2|+|x+1|=(|x﹣3|+|x+1|)+|x﹣2|根据问题(2)中的探究②可知,要使|x﹣3|+|x+1|的值最小,x的值只要取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|的值最小,x应取2,显然当x=2时能同时满足要求,把x=2代入原式计算即可.问题(3):利用材料2的方法求出|x﹣3|+|x﹣2|+|x|+|x+1|的最小值.【分析】(1)根据两点间的距离公式,可得答案;(2)根据两点间的距离公式,点在线段上,可得最小值;(3)根据两点间的距离公式,点在线段上,可得答案.【解答】解:(1)|x+2|+;(2)①﹣2、4,②4;不小于0且不大于2,2;(3)|x﹣3|+|x﹣2|+|x|+|x+1|=(|x﹣3|+|x+1|)+(|x﹣2|+|x|)要使|x﹣3|+|x+1|的值最小,x的值取﹣1到3之间(包括﹣1、3)的任意一个数,要使|x﹣2|+|x1|的值最小,x取0到2之间(包括0、2)的任意一个数,显然当x取0到2之间(包括0、2)的任意一个数能同时满足要求,不妨取x=0代入原式,得|x﹣3|+|x﹣2|+|x|+|x+1|=3+2+0+1=6方法二:当x取在0到2之间(包括0、2)时,|x﹣3|+|x﹣2|+|x|+|x+1|=﹣(x﹣3)﹣(x﹣2)+x+(x+1)=﹣x+3﹣x+2+x+x+1=6.【点评】本题考查了绝对值,注意到线段两端点距离最小的点在线段上(端点除外).7.阅读下面的材料,然后回答问题.点A,B在数轴上分别表示实数a,b,A,B两点之间的距离用|AB|表示.当A,B两点中有一点在原点时,不妨设点A在原点,如图1所示,|AB|=|OB|=|b|=|a﹣b|.当A,B两点都不在原点时,①如图2所示,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3所示,点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图4所示,点A,B分别在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|.综上可知,数轴上任意两点A,B之间的距离可表示为:|AB|=|a﹣b|.(1)数轴上表示﹣2和﹣5两点之间的距离是3,数轴上表示2和﹣5两点之间的距离是7.(2)数轴上表示x和2两点A和B之间的距离是|x﹣2| ;如果|AB|=3,那么x=5或﹣1.(3)当代数式|x+2|+|x﹣3|取最小值时,x的取值范围是﹣2<x<3.【分析】(1)依据两点间的距离公式计算即可;(2)依据两点间的距离公式以及绝对值的定义回答即可;(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和.【解答】解:(1)﹣2和﹣5两点之间的距离=|﹣2﹣(﹣5)|=3;2和﹣5两点之间的距离=|﹣5﹣2|=|﹣7|=7;(2)x和2两点A和B之间的距离=|x﹣2|,|x﹣2|=3,则x﹣2=3或x﹣2=﹣3.解得:x=5或x=﹣1.(3)|x+2|+|x﹣3|表示数轴上表示数字x的点到3与﹣2的距离之和,∴当﹣2≤x≤3时,|x+2|+|x﹣3|有最小值.故答案为:(1)3;7;(2)|x﹣2|;5或﹣1;(3)﹣2≤x≤3.【点评】本题主要考查的是数轴、绝对值,掌握绝对值的几何意义是解题的关键.8.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x﹣0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1﹣x2|表示在数轴上x1,x2对应点之间的距离.例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或﹣2,即该方程的解为x=2或x=﹣2例2:解不等式|x﹣1|>2,如图1,在数轴上找出|x﹣1|=2的解,即到1的距离为2的点对应的数为﹣1和3,则|x﹣1|>2的解集为x<﹣1或x>3.例3:解方程|x﹣1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和﹣2的距离之和为5的点对应的x的值在数轴上,1和﹣2的距离为3,满足方程的x对应点在1的右边或﹣2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在﹣2的左边,可得x=﹣3,故原方程的解是x=2或x=﹣3.参考阅读材料,解答下列问题:(1)方程|x+3|=4的解为x=1或x=﹣7.(2)不等式|x﹣3|+|x+4|≥9的解集为x≥4或x≤﹣5.【分析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x﹣3|+|x+4|≥9表示到3与﹣4两点距离的和,大于或等于9个单位长度的点所表示的数.【解答】解:(1)方程|x+3|=4的解就是在数轴上到﹣3这一点,距离是4个单位长度的点所表示的数,是1和﹣7.故解是x=1或x=﹣7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和﹣4的距离之和为大于或等于9的点对应的x 的值.在数轴上,即可求得:x≥4或x≤﹣5.故答案为:(1)x=1或x=﹣7;(2)x≥4或x≤﹣5.【点评】本题主要考查了绝对值的意义,就是表示距离,正确理解题中叙述的题目的意义是解决本题的关键.9.阅读下面材料并解决有关问题:我们知道:|x|=.现在我们可以用这一结论来化简含有绝对值的代数式,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别为|x+1|与|x﹣2|的零点值).在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:①x<﹣1;②﹣1≤x<2;③x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:①当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;②当﹣1≤x<2时,原式=x+1﹣(x﹣2)=3;③当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:(1)化简代数式|x+2|+|x﹣4|.(2)求|x﹣1|﹣4|x+1|的最大值.【分析】(1)分为x<﹣2、﹣2≤x<4、x≥4三种情况化简即可;(2)分x<﹣1、﹣1≤x≤1、x>1分别化简,结合x的取值范围确定代数式值的范围,从而求出代数式的最大值.【解答】解:(1)当x<﹣2时,|x+2|+|x﹣4|=﹣x﹣2+4﹣x=﹣2x+2;当﹣2≤x<4时,|x+2|+|x﹣4|=x+2+4﹣x=6;当x≥4时,|x+2|+|x﹣4|=x+2+x﹣4=2x﹣2;(2)当x<﹣1时,原式=3x+5<2,当﹣1≤x≤1时,原式=﹣5x﹣3,﹣8≤﹣5x﹣3≤2,当x>1时,原式=﹣3x﹣5<﹣8,则|x﹣1|﹣4|x+1|的最大值为2.【点评】本题主要考查了绝对值,解题的关键是能根据材料所给信息,找到合适的方法解答.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示2和10两点之间的距离是8,数轴上表示2和﹣10的两点之间的距离是12.(2)数轴上表示x和﹣2的两点之间的距离表示为|x+2| .(3)若x表示一个有理数,|x﹣1|+|x+2|有最小值吗?若有,请求出最小值,若没有,写出理由.(4)若x表示一个有理数,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+…+|x﹣2014|+|x﹣2015|的最小值.【分析】(1)(2)依据在数轴上A、B两点之间的距离AB=|a﹣b|求解即可;(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和;(4)依据绝对值的几何意义回答即可.【解答】解:(1)|10﹣2|=8;|2﹣(﹣10)|=12;故答案为:8;12.(2)|x﹣(﹣2)|=|x+2|;故答案为:|x+2|.(3)|x﹣1|+|x+2|表示数轴上x和1的两点之间与x和﹣2的两点之间距离和,利用数轴可以发现当﹣2≤x≤1时有最小值,这个最小值就是1到﹣2的距离,故|x﹣1|+|x+2|最小值是3;(4)当x=1008时有最小值,此时,原式=1007+1006+1005+…+2+1+0+1+2+…1006+1007=1015056.【点评】本题主要考查的是数轴、绝对值,理解绝对值的几何意义是解题的关键.11.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=6.(2)若|x﹣2|=5,则x=﹣3或7(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,这样的整数是﹣2、﹣1、0、1、2、3、4.【分析】(1)根据4与﹣2两数在数轴上所对应的两点之间的距离是6,可得|4﹣(﹣2)|=6.(2)根据|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,可得x=﹣3或7.(3)因为4与﹣2两数在数轴上所对应的两点之间的距离是6,所以使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),据此求出这样的整数有哪些即可.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.故答案为:6;﹣3或7;﹣2、﹣1、0、1、2、3、4.【点评】(1)此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(2)解答此题的关键是要明确:|x﹣a|既可以理解为x与a的差的绝对值,也可理解为x与a两数在数轴上所对应的两点之间的距离.12.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是3;数轴上表示数x和3的两点之间的距离表示为|x﹣3| ;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|,;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:5.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=﹣3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<﹣2两种情况讨论.【解答】解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3;数轴上表示数x和3的两点之间的距离=|x﹣3|;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|;(2)①当﹣2≤x≤3时,|x+2|+|x﹣3|=x+2+3﹣x=5;②当x>3时,x﹣3+x+2=7,解得:x=4,当x<﹣2时,3﹣x﹣x﹣2=7.解得x=﹣3.∴x=﹣3或x=4.故答案为:(1)3;|x﹣3|;x;﹣2;(2)5;﹣3或4.【点评】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.13.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|=|a﹣b|当A、B两点都不在原点时,①如图2,点A、B都在原点的右边|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|;③如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=﹣b+a=|a﹣b|;综上,数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:①数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;②数轴上表示x和﹣1的两点A和B之间的距离是|x+1| ,如果|AB|=2,那么x为1或﹣3;③当代数式|x+4|+|y﹣7|取最小值时,则x﹣y=﹣11.。
绝对值 练习题
绝对值练习题绝对值练习题绝对值是数学中一个重要的概念,它代表一个数与零的距离。
在解决实际问题时,我们经常会遇到需要计算绝对值的情况。
本文将通过一些练习题来帮助读者更好地理解和应用绝对值。
1. 求解下列绝对值表达式的值:a) |3|b) |-5|c) |0|解析:a) |3| = 3,因为3与0的距离是3。
b) |-5| = 5,因为-5与0的距离是5。
c) |0| = 0,因为0与0的距离是0。
2. 计算下列表达式的值:a) |5 - 8|b) |7 - (-3)|c) |-4 + 6|解析:a) |5 - 8| = |-3| = 3,因为5与8的距离是3。
b) |7 - (-3)| = |7 + 3| = |10| = 10,因为7与-3的距离是10。
c) |-4 + 6| = |2| = 2,因为-4与6的距离是2。
3. 解决实际问题:一辆汽车以每小时60公里的速度行驶,从A地到B地的距离是120公里。
如果汽车从B地返回A地,行驶的速度变为每小时40公里,那么整个往返的时间是多久?解析:汽车从A地到B地的行驶时间为120公里÷ 60公里/小时 = 2小时。
汽车从B地返回A地的行驶时间为120公里÷ 40公里/小时 = 3小时。
整个往返的时间为2小时 + 3小时 = 5小时。
4. 解决实际问题:一根绳子的长度为8米,其中的一段被剪下来,剩下的部分的长度是这段被剪下来部分的3倍。
被剪下来的部分有多长?解析:设被剪下来的部分长度为x米,则剩下的部分长度为8米 - x米。
根据题意,8米 - x米 = 3x米。
解方程可得4x米 = 8米,因此x = 2米。
被剪下来的部分长度为2米。
通过以上练习题,我们可以看到绝对值的应用范围很广。
它不仅仅是一个数学概念,更是在解决实际问题中的一个重要工具。
在处理距离、温度差、误差等方面,绝对值可以帮助我们更准确地计算和理解。
在日常生活中,我们也经常会遇到需要计算绝对值的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.理解绝对值的意义.
2.会根据绝对值的大小,判断两个数的大小.
一、课前导学:
在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,,-4
观察以上各数在数轴上的位置,回答:
距原点一个单位长度的数是_______________距原点2个单位长度的数是____________和__________距原点个单位长度.________和________距原点4个单位长度距原点最近的是__________.
像1,2,,4,0分别是±1,±2,±,±4,0的绝对值.在数轴上,一个数所对应的点与原点的距离叫该数的绝对值.
如:+2的绝对值是2,记作|+2|=2
-2的绝对值是2,记作|-2|=2
因此绝对值是2的数有_____个,它们是_____,绝对值是的数有_____个,它们是_____,那么0的绝对值记作| |=_____,-100的绝对值是_____,记作| |=_____.
思考:一个数的绝对值能是负数吗?
二、基础训练:
一、填空题
1.一个数a与原点的距离叫做该数的_______.
2.-|-|=_______,-(-)=_______,-|+ |=_______,-(+ )=_______,+|-()|=_______,+(-)=_______.
3._______的倒数是它本身,_______的绝对值是它本身.
4.a+b=0,则a与b_______.
5.若|x|= ,则x的相反数是_______.
6.若|m-1|=m-1,则m_______1.
若|m-1|>m-1,则m_______1.
若|x|=|-4|,则x=_______.
若|-x|=| |,则x=_______.
二、选择题
1.|x|=2,则这个数是()
A.2
B.2和-2
C.-2
D.以上都错
2.| a|=-a,则a一定是()
A.负数
B.正数
C.非正数
D.非负数
3.一个数在数轴上对应点到原点的距离为m,则这个数为()
A.-m
B.m
C.±m
D.2m
4.如果一个数的绝对值等于这个数的相反数,那么这个数是()
A.正数
B.负数
C.正数、零
D.负数、零
5.下列说法中,正确的是()
A.一个有理数的绝对值不小于它自身
B.若两个有理数的绝对值相等,则这两个数相等
C.若两个有理数的绝对值相等,则这两个数互为相反数
D.-a的绝对值等于a
三、判断题
1.若两个数的绝对值相等,则这两个数也相等. ()
2.若两个数相等,则这两个数的绝对值也相等. ()
3.若x<y<0,则|x|<|y|. ()
四、解答题
1.若|x-2|+|y+3|+|z-5|=0计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值.
2.若2<a<4,化简|2-a|+|a-4|.
3.(1)若=1,求x. (2)若=-1,求x.
三、能力提升:
一、填空题
1.互为相反数的两个数的绝对值_____.
2.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.
3.-的绝对值是_____.
4.绝对值最小的数是_____.
5.绝对值等于5的数是_____,它们互为_____.
6.若b<0且a=|b|,则a与b的关系是______.
7.一个数大于另一个数的绝对值,则这两个数的和一定_____0(填“>”或“<”).
8.如果|a|>a,那么a是_____.
9.绝对值大于2.5小于7.2的所有负整数为_____.
10.将下列各数由小到大排列顺序是_____.
-,,|-|,0,|-5.1|
11.如果-|a|=|a|,那么a=_____.
12.已知|a|+|b|+|c|=0,则a=_____,b=_____,c=_____.
13.比较大小(填写“>”或“<”号)
(1)-_____|-| (2)|-|_____0
(3)|-|_____|-| (4)-_____-
14.计算
(1)|-2|×(-2)=_____ (2)|-|×5.2=_____
(3)|-|-=_____ (4)-3-|-5.3|=_____
二、选择题
15.任何一个有理数的绝对值一定()
A.大于0
B.小于0
C.不大于0
D.不小于0
16.若a>0,b<0,且|a|<|b|,则a+b一定是()
A.正数
B.负数
C.非负数
D.非正数
17.下列说法正确的是()
A.一个有理数的绝对值一定大于它本身
B.只有正数的绝对值等于它本身
C.负数的绝对值是它的相反数
D.一个数的绝对值是它的相反数,则这个数一定是负数
18.下列结论正确的是()
A.若|x|=|y|,则x=-y
B.若x=-y,则|x|=|y|
C.若|a|<|b|,则a<b
D.若a<b,则|a|<|b|
三、解答题
19.“南辕北辙” 这个成语讲的是我国古代某人要去南方,却向北走了起来,有人预言他无法到达目的地,他却说:“我的马很快,车的质量也很好”,请问他能到达目的地吗?“马很快,车质量好”会出现什么结果,用绝对值的知识加以说明.
20.某班举办“迎七一”知识竞赛,规定答对一题得10分,不答得0分,答错一题扣10分,今有甲、乙、丙、丁四名同学所得分数,分别为+50,+20,0,-30,请问哪个同学分数最高,哪个最低,为什么?最高分高出最低分多少?
21.把-3.5、|-2|、-1.5、|0|、3 、|-3.5|记在数轴上,并按从小到大的顺序排列出来.。