2017年中考数学黄金知识点系列专题13平行线的证明
第一部分基础考过关-专题13几何图形初步-备战2024年中考数学真题解密(全国通用)(含解析)
专题13几何图形初步目录一览知识目标(新课程标准提炼)中考解密(分析考察方向,精准把握重难点)重点考向(以真题为例,探究中考命题方向)►考向一认识立体图形►考向二几何体的展开与折叠►考向三有关角的计算问题►考向四余角、补角与对顶角、邻补角►考向五平行线的性质与判定最新真题荟萃(精选最新典型真题,强化知识运用,优化解题技巧)1. 掌握五个基本事实;2. 会比较线段的长短,理解线段的和、差,以及线段中点的意义;3. 理解角的概念,能比较角的大小.认识度、分、秒,会对度、分、秒进行简单的换算,并会计算角的和、差;4. 理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等、同角(等角)的补角相等的性质;识别同位角、内错角、同旁内角;5. 理解垂线、垂线段的概念,能用三角尺或量角器过一点画已知直线的垂线;6. 理解平行线的概念;掌握平行线的性质定理;探索并证明平行线的判定定理和性质定理;7. 了解平行于同一条直线的两条直线平行;8. 通过具体实例,了解定义、命题、定理、推论的意义.结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立;9. 了解反例的作用,知道利用反例可以判断一个命题是错误的.通过实例体会反证法的含义.该版块内容是初中几何的基础,是非常基础也是非常重要的,年年都会考查,分值为8分左右,预计2023年各地中考还将出现,大部分地区在选填题中考察可能性较大,主要考察平行线的性质和判定、方位角、角度的大小等知识,这些知识点考查较容易,另外平行线的性质可能在综合题中出现,考查学生能力,比如:作平行的辅助线,构造特殊四边形,此类题目有一定难度,需要学生灵活掌握.►考向一 认识立体图形(2023•乐山)1.下面几何体中,是圆柱的是( )A .B .C .D . (2023•娄底)2.一个长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1,如果分别按A 、B 、C 面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为A P 、B P 、C P (压强的计算公式为F P S =),则::A B C P P P =( )A .2:3:6B .6:3:2C .1:2:3D .3:2:1(2023•巴中)3.下列图形中为圆柱的是( )A . B . C . D .►考向二 几何体的展开与折叠(2023•达州)4.下列图形中,是长方体表面展开图的是()A.B.C.D.(2023•威海)5.如图是一正方体的表面展开图.将其折叠成正方体后,与顶点K距离最远的顶点是( )A.A点B.B点C.C点D.D点(2023•青岛)6.一个不透明小立方块的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的小立方块搭成一个几何体,则该几何体能看得到的面上数字之和最小是( )A.31B.32C.33D.34►考向三有关角的计算问题(2022•烟台)7.如图,某海域中有A ,B ,C 三个小岛,其中A 在B 的南偏西40°方向,C 在B 的南偏东35°方向,且B ,C 到A 的距离相等,则小岛C 相对于小岛A 的方向是( )A .北偏东70°B .北偏东75°C .南偏西70°D .南偏西20°(2022•湘潭)8.如图,一束光沿CD 方向,先后经过平面镜OB 、OA 反射后,沿EF 方向射出,已知120AOB ∠=︒,20CDB ∠=︒,则∠=AEF .(2019•烟台)9.小明将一张正方形纸片按如图所示顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),AOB ∠的度数是 .►考向四 余角、补角与对顶角、邻补角解题技巧/易错易混1.识别对顶角时,要抓住两个关键要素:一是顶点,二是边.先看两个角是否有公共顶点,再看两个角的两边是否分别互为反向延长线.两条直线相交形成两对对顶角.2.互为邻补角的两个角一定互补,但互补的两个角不一定是邻补角;一个角的邻补角有两个,但一个角的补角可以有很多个(2023•北京)10.如图,90AOC BOD ∠=∠=︒,126AOD ∠=︒,则BOC ∠的大小为( )A .36︒B .44︒C .54︒D .63︒(2023•河南)11.如图,直线AB ,CD 相交于点O ,若180∠=︒,230∠=︒,则AOE ∠的度数为( )A .30︒B .50︒C .60︒D .80︒(2022•桂林)12.如图,直线l 1,l 2相交于点O ,∠1=70°,则∠2= °.►考向五 平行线的性质与判定(2023•绵阳)13.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为( )A .32︒B .58︒C .68︒D .78︒(2023•重庆)14.如图,,⊥∥AB CD AD AC ,若155∠=︒,则2∠的度数为( )A .35︒B .45︒C .50︒D .55︒(2023•金华)15.如图,已知12350∠=∠=∠=︒,则4∠的度数是( )A .120︒B .125︒C .130︒D .135︒(2022•自贡)16.如图,直线,AB CD 相交于点O ,若130∠= ,则2∠的度数是( )A .30°B .40°C .60°D .150°(2022•河北)17.①~④是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A .①③B .②③C .③④D .①④(2023•临沂)18.下图中用量角器测得ABC ∠的度数是( )A .50︒B .80︒C .130︒D .150︒(2023•河北)19.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的( )A .南偏西70︒方向B .南偏东20︒方向C .北偏西20︒方向D .北偏东70︒方向(2022•甘肃)20.若40A ∠=︒,则A ∠的余角的大小是( )A .50°B .60°C .140°D .160°(2023•金昌)21.如图1,汉代初期的《淮南万毕术》是中国古代有关物理、化学的重要文献,书中记载了我国古代学者在科学领域做过的一些探索及成就.其中所记载的“取大镜高悬,置水盆于其下,则见四邻矣”,是古人利用光的反射定律改变光路的方法,即“反射光线与入射光线、法线在同一平面上;反射光线和入射光线位于法线的两侧;反射角等于入射角”.为了探清一口深井的底部情况,运用此原理,如图在井口放置一面平面镜可改变光路,当太阳光线AB 与地面CD 所成夹角50ABC ∠=︒时,要使太阳光线经反射后刚好垂直于地面射入深井底部,则需要调整平面镜EF 与地面的夹角EBC ∠=( )A .60︒B .70︒C .80︒D .85︒(2023•临沂)22.在同一平面内,过直线l 外一点P 作l 的垂线m ,再过P 作m 的垂线n ,则直线l 与n 的位置关系是( )A .相交B .相交且垂直C .平行D .不能确定(2022•泸州)23.如图,直线a b ,直线c 分别交a ,b 于点A ,C ,点B 在直线b 上,AB AC ⊥,若1130∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .70︒(2022•贺州)24.如图,直线a ,b 被直线c 所截,下列各组角是同位角的是( )A .1∠与2∠B .1∠与3∠C .2∠与3∠D .3∠与4∠(2022•台州)25.如图,已知190∠=︒,为保证两条铁轨平行,添加的下列条件中,正确的是( )A .290∠=︒B .390∠=︒C .490∠=︒D .590∠=︒(2022•吉林)26.如图,如果12∠=∠,那么AB CD ∥,其依据可以简单说成( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .同位角相等,两直线平行(2021•铜仁市)27.直线AB 、BC 、CD 、EG 如图所示,1280∠=∠=︒,340∠=︒,则下列结论错误的是( )A .//AB CDB .40EBF ∠=︒C .32FCG ∠+∠=∠D .EF BE>(2023•内蒙古)28.将一副直角三角板按如图所示的方式摆放,点C 在FD 的延长线上,且AB FC ,则CBD ∠的度数为( )A .10︒B .15︒C .20︒D .25︒(2023•荆州)29.如图所示的“箭头”图形中,AB CD ∥,80B D ∠=∠= ,47E F ∠=∠= ,则图中G ∠的度数是( )A .80B .76C .66D .56(2023•常州)30.若圆柱的底面半径和高均为a ,则它的体积是 (用含a 的代数式表示).(2023•无锡)31.若直三棱柱的上下底面为正三角形,侧面展开图是边长为6的正方形,则该直三棱柱的表面积为 .(2022•百色)32.如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC 的大小为(2022•玉林)33.已知∠α=60°,则∠α的余角等于 度.(2022•连云港)34.已知∠A 的补角是60°,则A ∠= ︒.(2022•西藏)35.如图,依下列步骤尺规作图,并保留作图痕迹:(1)分别以点A,B为圆心,大于12AB的长为半径作弧,两弧相交于E,F两点,作直线EF;(2)以点A为圆心,适当长为半径画弧,分别交AB,AC于点G,H,再分别以点G,H为圆心,大于12GH的长为半径画弧,两弧在∠BAC的内部相交于点O,画射线AO,交直线EF于点M.已知线段AB=6,∠BAC=60°,则点M到射线AC的距离为.(2023•镇江)36.如图,一条公路经两次转弯后,方向未变.第一次的拐角ABC∠是140︒,第二次的拐角BCD∠是°.(2021•兰州)37.将一副三角板如图摆放,则∥,理由是.(2023•台州)38.用一张等宽的纸条折成如图所示的图案,若120∠=︒,则∠2的度数为.(2023•武汉)39.如图,在四边形ABCD 中,,AD BC B D ∠=∠∥,点E 在BA 的延长线上,连接CE .(1)求证:E ECD ∠=∠;(2)若60,∠=︒E CE 平分BCD ∠,直接写出BCE 的形状.(2022•武汉)40.如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.参考答案:1.B【分析】根据圆柱的特征,即可解答.【详解】解:A.是正方体,故不符合题意;B.是圆柱,故符合题意;C.是圆锥,故不符合题意;D.是球体,故不符合题意,故选:B.【点睛】本题考查了认识立体图形,熟练掌握每个几何体的特征是解题的关键.2.A【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A、B、C三个面的面积比是3:2:1,∴长方体物体的A、B、C三面所对的与水平地面接触的面积比也为3:2:1,∵FPS=,0F>,且F一定,∴P随S的增大而减小,∴111::::2:3:6321A B CP P P==.故选:A.【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.3.B【分析】圆柱是由上下两个平行且大小一样的圆面和一个侧面(曲面)组成的立体图形,直接根据圆柱体的几何特点解答即可.【详解】根据圆柱的特点可知选项B中的图形是圆柱.故选:B.【点睛】此题考查认识立体图形,熟记常见的立体图形的几何特点是解题的关键.4.C【分析】根据长方体有六个面,以及Z字型进行判断即可.【详解】解:A中展开图有7个面,不符合要求;B中展开图无法还原成长方体,不符合要求;C正确,故符合要求;D中展开图有5个面,不符合要求,故选:C.【点睛】本题考查了长方体的展开图.解题的关键在于对知识的熟练掌握.5.D【分析】根据题意画出立体图形,即可求解.【详解】解:折叠之后如图所示,则K与点D的距离最远,故选D.【点睛】本题考查了正方体的展开与折叠,学生需要有一定的空间想象能力.6.B【分析】根据正方体展开图的特征,得出相对面上的数字,再结合正方体摆放方式,得出使该几何体能看得到的面上数字之和最小,则看不见的面数字之和要最大,即可解答.【详解】解:由图①可知:1的相对面是3,2的相对面是4,5的相对面是6,由图2可知:要使该几何体能看得到的面上数字之和最小,则看不见的面数字之和要最大,上面的正方体有一个面被遮住,则这个面数字为6,++++=;能看见的面数字之和为:1234515左下的正方体有3个面被遮住,其中两个为相对面,则这三个面数字分别为4,5,6,++=;能看见的面数字之和为:1236右下的正方体有2个面被遮住,这两个面不是相对面,则这两个面数字为4,6,+++=;能看见的面数字之和为:123511++=,∴能看得到的面上数字之和最小为:1561132故选:B.【点睛】本题主要考查了正方体的相对面,掌握正方体展开图中“相间一行是相对面”,是解题的关键.7.A【分析】根据题意可得∠ABC =75°,AD ∥BE ,AB =AC ,再根据等腰三角形的性质可得∠ABC =∠C =75°,从而求出∠BAC 的度数,然后利用平行线的性质可得∠DAB =∠ABE =40°,从而求出∠DAC 的度数,即可解答.【详解】解:如图:由题意得:∠ABC =∠ABE +∠CBE =40°+35°=75°,AD ∥BE ,AB =AC ,∴∠ABC =∠C =75°,∴∠BAC =180°﹣∠ABC ﹣∠C =30°,∵AD ∥BE ,∴∠DAB =∠ABE =40°,∴∠DAC =∠DAB +∠BAC =40°+30°=70°,∴小岛C 相对于小岛A 的方向是北偏东70°,故选:A ..【点睛】本题考查了方向角,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.8.40°##40度【分析】根据入射角等于反射角,可得,CDB EDO DEO AEF ∠=∠∠=∠,根据三角形内角和定理求得40OED ∠=︒,进而即可求解.【详解】解:依题意,,CDB EDO DEO AEF ∠=∠∠=∠,∵120AOB ∠=︒,20CDB ∠=︒,20CDB EDO ∴∠=∠=︒,∴18040OED ODE AOB ∠=-∠-∠=︒,∴40AEF DEO ∠=∠=︒.故答案为:40°.【点睛】本题考查了轴对称的性质,三角形内角和定理的应用,掌握轴对称的性质是解题的关键.9.45°【分析】根据折叠过程可知,在折叠过程中角一直是轴对称的折叠.【详解】在折叠过程中角一直是轴对称的折叠,22.5245AOB ︒︒∠=⨯=故答案为45°【点睛】考核知识点:轴对称.理解折叠的本质是关键.10.C【分析】由90AOC BOD ∠=∠=︒,126AOD ∠︒=,可求出COD ∠的度数,再根据角与角之间的关系求解.【详解】∵=90AOC ∠︒,126AOD ∠︒=,∴36COD AOD AOC ∠=∠-∠=︒,∵90BOD ∠=︒,∴903654BOC BOD COD ∠=∠-∠=︒-︒=︒.故选:C .【点睛】本题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和AOD ∠相比,多加了BOC ∠.11.B【分析】根据对顶角相等可得180AOD ∠=∠=︒,再根据角的和差关系可得答案.【详解】解:∵180∠=︒,∴180AOD ∠=∠=︒,∵230∠=︒,∴2803050AOE AOD ∠=∠-∠=︒-︒=︒,故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等.12.70【分析】根据对顶角的性质解答即可.【详解】解:∵∠1和∠2是对顶角,∴∠2=∠1=70°,故答案为:70.【点睛】本题主要考查了对顶角,熟练掌握对顶角相等是解答本题的关键.13.B【分析】本题主要考查了平行线的性质.根据平行线的性质解答,即可求解.【详解】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .14.A【分析】根据两直线平行,同旁内角互补可得CAB ∠的度数,根据垂直的定义可得90CAD ∠=︒,然后根据2CAB CAD Ð=Ð-Ð即可得出答案.【详解】解:∵AB CD ∥,155∠=︒,∴18055125CAB Ð=°-°=°,∵AD AC ⊥,∴90CAD ∠=︒,∴21259035CAB CAD Ð=Ð-Ð=°-°=°,故选:A .【点睛】本题考查了平行线的性质以及垂线的定义,熟知两直线平行同旁内角互补是解本题的关键.15.C【分析】由1350∠=∠=︒可得a b ∥,可得2550∠=∠=︒,再利用邻补角的含义可得答案.【详解】解:如图,标记角,∵1350∠=∠=︒,∴a b ∥,而250∠=︒,∴2550∠=∠=︒,∴41805130∠=︒-∠=︒;故选C【点睛】本题考查的是平行线的判定与性质,邻补角的含义,熟记平行线的判定与性质是解本题的关键.16.A【分析】根据对顶角相等可得2=1=30∠∠︒.【详解】解:∵130∠= ,1∠与2∠是对顶角,∴2=1=30∠∠︒.故选:A .【点睛】本题考查了对顶角,解题的关键是熟练掌握对顶角的性质:对顶角相等.17.D【分析】观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能 构成长方体,①④组合符合题意【详解】解:观察图形可知,①~④的小正方体的个数分别为4,3,3,2,其中②③组合不能构成长方体,①④组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.18.C【分析】由图形可直接得出.【详解】解:由题意,可得130ABC ∠=︒,故选:C .【点睛】本题考查角的度量,量角器的使用方法,正确使用量角器是解题的关键.19.D【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D .【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.20.A【分析】用90°减去40°即可求解.【详解】解:∵40A ∠=︒,∴A ∠的余角=904050︒-︒=︒,故选A【点睛】本题考查了求一个角的余角,掌握和为90° 的两角互为余角是解题的关键.21.B【分析】如图,过B 作BQ ⊥平面镜EF ,可得90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,再建立方程5090CBQ CBQ ︒+∠=︒-∠,可得20CBQ ∠=︒,从而可得答案.【详解】解:如图,过B 作BQ ⊥平面镜EF ,∴90QBE QBF ∠=∠=︒,ABC CBQ ABQ MBQ ∠+∠=∠=∠,而90CBQ QBM CBM ∠+∠=∠=︒,∴5090CBQ CBQ ︒+∠=︒-∠,∴20CBQ ∠=︒,∴902070EBC ∠=︒-︒=︒,故选B .【点睛】本题考查的是垂直的定义,角的和差运算,角平分线的含义,属于跨学科题,熟记基础概念是解本题的关键.22.C【分析】本题考查了垂线和平行线,熟练掌握同一平面内,垂直于同一条直线的两条直线平行是关键.根据同一平面内,垂直于同一条直线的两条直线平行,即可得出答案.【详解】解:∵l m ⊥,n m ⊥,∴l n ∥.故选:C .23.B【分析】本题考查平行线的性质,解答本题的关键是明确平行线的性质.首先利用平行线的性质得到1DAC ∠∠=,然后利用AB AC ⊥得到90BAC ∠=︒,最后利用角的和差关系求解.【详解】解:如图所示,∵直线a b ,∴1DAC ∠∠=,∵1130∠=︒,∴130DAC ∠=︒,又∵AB AC ⊥,∴90BAC ∠=︒,∴21309040DAC BAC ∠∠∠=-=︒-︒=︒.故选:B .24.B【分析】两条线a 、b 被第三条直线c 所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角,据此作答即可.【详解】解:∠1与∠2是对顶角,选项A 不符合题意;∠1与∠3是同位角,选项B 符合题意;∠2与∠3是内错角,选项C 不符合题意;∠3与∠4是邻补角,选项D 不符合题意;故选:B .【点睛】此题考查了同位角、内错角、同旁内角,熟记同位角、内错角、同旁内角的定义是解题的关键.25.C【分析】根据平行线的判定方法进行判断即可.【详解】解:A.∠1与∠2是邻补角,无法判断两条铁轨平行,故此选项不符合题意;B. ∠1与∠3与两条铁轨平行没有关系,故此选项不符合题意;C. ∠1与∠4是同位角,且∠1=∠4=90°,故两条铁轨平行,所以该选项正确;D. ∠1与∠5与两条铁轨平行没有关系,故此选项不符合题意;故选:C .【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定是解答本题的关键.26.D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为1∠与2∠是一对相等的同位角,得出结论是AB CD ,所以其依据可以简单说成同位角相等,两直线平行,故选:D .【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题关键.27.D【分析】根据平行线的判定定理、三角形的外角定理以及等腰三角形的等角对等边的性质依次判断.【详解】解:∵1280∠=∠=︒,∴//AB CD ,故A 选项正确;∵180∠=︒,∴80EBF EFB ∠+∠=︒,∵340EFB ∠=∠=︒,∴40EBF ∠=︒,故B 选项正确;32FCG ∠+∠=∠,故C 选项正确;∵40EFB EBF ∠=∠=︒,∴EF=BE ,故D 选项错误,故选:D .【点睛】此题考查平行线的判定定理、三角形的外角定理以及等腰三角形的等角对等边的性质,熟记各定理是解题的关键.28.B【分析】平行线的性质,得到ABD FDE ∠=∠,再利用CBD ABD ABC ∠=∠-∠,进行求解即可.【详解】解:由题意,得:4530EDF ABC ∠=︒∠=︒,,∵AB FC ,∴45ABD FDE ∠=∠=︒,∴15CBD ABD ABC ∠=∠-∠=︒;故选B .【点睛】本题考查平行线的性质,三角板中角度的计算.正确的识图,掌握平行线的性质,是解题的关键.29.C【分析】延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,根据平行线的性质即可解答.【详解】解:如图,延长AB 交EG 于点M ,延长CD 交GF 于点N ,过点G 作AB 的平行线GH ,4780,E F EBA FDC ∠=∠=∠=∠= ,33EMA EBA E ∴∠=∠-∠=︒,33FNC FDC F ∠=∠-∠=︒,,AB CD AB HG ∥∥ ,HG CD ∴∥,33MGH EMA ∴∠=∠=︒,33NGH FND ∠=∠=︒,333366EGF ∴∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的判定及性质,三角形外角的定义和性质,作出正确的辅助线是解题的关键.30.3πa 【详解】根据圆柱的体积=圆柱的底面积⨯圆柱的高,可得23ππV a a a == .故答案为:3πa .【点睛】本题主要考查代数式和整式的乘法运算,牢记整式乘法的运算性质是解题的关键.31.36+##36+【分析】根据题意得出正三角形的边长为2,进而根据表面积等于两个底面积加上侧面正方形的面积即可求解.【详解】解:∵侧面展开图是边长为6的正方形,∴底面周长为6,∵底面为正三角形,∴正三角形的边长为2作CD AB ⊥,ABC 是等边三角形,2AB BC AC ===,1AD ∴=,∴在直角ADC ∆中,CD ==,122ABC S ∴=⨯=∴该直三棱柱的表面积为6636⨯+=+故答案为:36+.【点睛】本题考查了三棱柱的侧面展开图的面积,等边三角形的性质,正方形的性质,熟练掌握以上知识是解题的关键.32.135°##135度【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒ ,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.33.30【详解】∵互余两角的和等于90°,∴α的余角为:90°-60°=30°.故答案为:3034.120【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.【详解】解:∵∠A 的补角是60°,∴∠A =180°-60°=120°,故答案为:120.【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.35【分析】根据线段的垂直平分线和角平分线的作法可知:EF 是线段AB 的垂直平分线,AO 是∠AOB 的平分线,利用线段的垂直平分线的性质和角平分线的性质的求解即可.【详解】解:如图所示:根据题意可知:EF 是线段AB 的垂直平分线,AO 是∠BAC 的平分线,∵AB =6,∠BAC =60°,∴∠BAO =∠CAO =12∠BAC =30°,AD =12AB =3,∴AM =2MD ,在Rt △ADM 中,222(2)MD MD AD =+,即22243MD MD =+,∴MD ∵AM 是∠AOB 的平分线,MD ⊥AB ,∴点M 到射线AC【点睛】本题考查作图-基本作图,线段的垂直平分线的性质,角平分线的性质等知识,解题的关键是理解题意灵活运用基本作图的知识解决问题.36.140【分析】根据两次转弯后方向不变得到AB CD ,即可得到140BCD ABC ∠=∠=︒.【详解】解:∵一条公路经两次转弯后,方向未变,∴转弯前后两条道路平行,即AB CD ,∴140BCD ABC ∠=∠=︒.故答案为:140.【点睛】此题考查了平行线的性质,由题意得到AB CD 是解题的关键.37. BC DE 内错角相等,两直线平行【分析】根据三角板的角度可知90BCA DEF ∠=∠=︒,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴90BCA DEF ∠=∠=︒,∴//BC DE (内错角相等,两直线平行),故答案为:BC ;DE ;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.38.140︒##140度【分析】如图,先标注点与角,由对折可得:1420∠=∠=︒,求解3180220140∠=︒-⨯︒=︒,利用AB CD ∥,从而可得答案.【详解】解:如图,先标注点与角,由对折可得:1420∠=∠=︒,∴3180220140∠=︒-⨯︒=︒,∵AB CD ∥,∴23140∠=∠=︒;故答案为:140︒【点睛】本题考查的是折叠的性质,平行线的性质,熟记两直线平行,同位角相等是解本题的关键.39.(1)见解析(2)等边三角形【分析】(1)由平行线的性质得到EAD B ∠=∠,已知,B D ∠=∠则EAD D ∠=∠,可判定,BE CD ∥即可得到E ECD ∠=∠;(2)由60E ∠=︒,E ECD ∠=∠得到60ECD E ∠=∠=︒,由CE 平分BCD ∠,得到60BCE ECD ∠=∠=︒,进一步可得BCE E BEC ∠=∠=∠,即可证明BCE 是等边三角形.【详解】(1)证明:AD BC ,∴EAD B ∠=∠,,B D ∠=∠ EAD D ∴∠=∠,,BE CD ∴∥E ECD ∴∠=∠.(2)∵60E ∠=︒,E ECD ∠=∠,∴60ECD E ∠=∠=︒,∵CE 平分BCD ∠,∴60BCE ECD ∠=∠=︒,∴60BCE E ∠=∠=︒,∴18060B BCE E ∠=︒-∠-∠=︒,∴BCE E B ∠=∠=∠,∴BCE 是等边三角形【点睛】此题考查了平行线的判定和性质、等边三角形的判定、三角形内角和定理、角平分线的定义等知识,熟练掌握平行线的判定和性质是解题的关键.40.(1)100BAD ∠=︒(2)证明见解析【分析】本题主要考查了平行线的判定和性质.(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.【详解】(1)解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠,∴1502DAE BAD ∠=∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.。
中考数学几何模型专题13平行线之猪脚模型(M模型)(老师版)知识点+例题
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题13平行线之猪脚模型【例1】(2022春•桐城市期末)【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC=70°.【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.【分析】(1)延长CE交AB于点F,利用平行线的性质可得∠AFC=28°,然后再利用三角形的外角可得∠AEC=∠A+∠C,进行计算即可解答;(2)利用猪蹄模型可得:∠AEC=∠A+∠C=90°,再利用对顶角相等可得∠BED=90°,然后利用角平分线的定义进行计算即可解答;(3)利用平行线的性质可求出∠CDF的度数,从而利用角平分线的定义求出∠CDG的度数,进而利用平行线的性质可求出∠BAD的度数,然后根据角平分线的定义求出∠BAE的度数,再利用平角定义求出∠EDH的度数,最后根据猪蹄模型可得∠AED=∠BAE+∠EDH,进行计算即可解答.【解答】解:(1)延长CE交AB于点F,∵AB∥CD,∴∠AFC=∠C=28°,∵∠AEC是△AEF的一个外角,∴∠AEC=∠A+∠AFC=∠A+∠C=70°,故答案为:70°;(2)利用(1)的结论可得:∠AEC=∠A+∠C=36°+54°=90°,∴∠AEC=∠BED=90°,∵EF平分∠BED,∴∠BEF=∠BED=45°,∴∠BEF的度数为45°;(3)∵BC∥DF,∴∠CDF=180°﹣∠BCD=124°,∵DG平分∠CDF,∴∠CDG=∠CDF=62°,∵AB∥CD,∴∠BAG=∠CDG=62°,∵AE平分∠BAD,∴∠BAE=∠BAD=31°,∵∠GDE=20°,∴∠EDH=180°﹣∠CDG﹣∠GDE=98°,利用(1)的结论可得:∠AED=∠BAE+∠EDH=31°+98°=129°,∴∠AED的度数为129°.【例2】(2022春•南京期中)已知直线AB∥CD,点E,F分别在AB,CD上,O是平面内一点(不在直线AB、CD、EF上),OG平分∠EOF,射线OH∥AB,交EF于点H.(1)如图①,若∠AEO=45°,∠CFO=75°,则∠HOG=15°,(2)如图②,若∠AEO=150°,∠HOG=20°,则∠CFO=110°;(3)直接写出点O在不同位置时∠AEO、∠CFO和∠HOG三个角之间满足的数量关系.【分析】(1)由AB∥CD,OH∥AB可得AB∥OH∥CD,利用平行线的性质可得∠AEO=∠EOH,∠CFO=∠FOH,由∠EOF=∠EOH+∠FOH,等量代换可得∠AEO+∠CFO=∠EOF,根据已知条件和角平分线的定义求出∠EOG=60°,即可得到∠HOG的度数;(2)同(1)类似,利用平行线的性质和角平分线的定义计算可以得出∠CFO的度数;(3)由(1)和(2)的计算方法可以得出结论.【解答】解:(1)∵AB∥CD,OH∥AB,∴AB∥OH∥CD,∴∠AEO=∠EOH,∠CFO=∠FOH,∴∠AEO+∠CFO=∠EOH+∠FOH,即∠AEO+∠CFO=∠EOF,∵∠AEO=45°,∠CFO=75°,∴∠EOF=120°,∵OG平分∠EOF,∴∠EOG=60°,∴∠HOG=∠EOG﹣∠EOH=15°,故答案为:15°;(2)∵AB∥CD,OH∥AB,∴AB∥OH∥CD,∴∠AEO+∠EOH=180°,∠CFO+∠FOH=180°,∴∠AEO+∠CFO+∠EOH+∠FOH=360°,即∠AEO+∠CFO+∠EOF=360°,∵AB∥OH,∴∠AEO+∠EOH=180°,∵∠AEO=150°,。
八年级数学平行线的证明知识点
八年级数学平行线的证明知识点八年级数学平行线的证明知识点在日复一日的学习、工作或生活中,大家最不陌生的就是证明了吧,证明是我们经常用到的应用文体。
写证明的注意事项有许多,你确定会写吗?以下是店铺帮大家整理的八年级数学平行线的证明知识点,希望对大家有所帮助。
八年级数学平行线的证明知识点 11、平行线的性质一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补.也可以简单的说成:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。
2、判定平行线两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.也可以简单说成:同位角相等两直线平行两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.其他两条可以简单说成:内错角相等两直线平行同旁内角相等两直线平行初中数学常见公式常见的初中数学公式1.过两点有且只有一条直线2.两点之间线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.三角形内角和定理三角形三个内角的和等于180°6.多边形内角和定理 n边形的内角的和等于(n-2)×180°7.定理1 关于某条直线对称的两个图形是全等形初中5种数学提分方法1.细心地发掘概念和公式2.总结相似类型的题目3.收集自己的典型错误和不会的题目4.就不懂的问题,积极提问、讨论5.注重实践(考试)经验的培养初中数学有理数的运算加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。
平行线的证明知识点总结(共10篇)
平行线的证明知识点总结(共10篇) :知识点平行线证明平行线的证明知识树平行线证明定义平行线的证明思维导图篇一:命题与证明的知识点总结命题与证明的知识点总结一、知识结构梳理二、知识点归类知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。
如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。
注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。
知识点二命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是华东师大版的”等。
注意:(1)命题必须是一个完整的句子。
(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。
知识点三命题的结构每个命题都有条件和结论两部分组成。
条件是已知的事项,结论是由已知事项推断出的事项。
一般地,命题都可以写出“如果------,那么-------”的形式。
有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。
如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。
例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。
1、同角的余角相等2、两点确定一条直线知识点四真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。
知识点五证明及互逆命题的定义1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。
注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。
2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2.如图,在矩形ABCD中,E是BC边上的点,AE=BC ,DF⊥AE,垂足为F,连接DE。
(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长。
3.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE,连接AE.(1)求证:△ABC≌△DCE.(2)当BC=5,AC=12时,求AE的长.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使SΔDCF=SΔFDE,请直接写出相应的BF的长.5.如图, ∠1+∠2=180° , ∠DEF=∠A , ∠BED=70° .(1)求证: EF//AB :(2)求∠ACB的度数.6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.7.在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF.(1)当点E在BC的延长线上,D为AB的中点时,如图1所示.①求证:∠EGC=∠AEC;②若DF=3,求BE的长度;(2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.8.如图1,在Rt△ABC中,∠C=90°,AC=BC=2√2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE .将△ADE绕点A顺时针方向旋转,记旋转角为θ .(1)(问题发现)①当θ=0°时,BECD =;②当θ=180°时,BECD=;(2)(拓展研究)试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)(问题解决)在旋转过程中,求出BE的最大值.9.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,的值;①求BCAEEG最小值.②若点G为AE上一点,求OG+ 1210.如图,已知在菱形ABCD中,AB=5,cosB=3,点E、F分别在边BC、CD上,AF的延长5∠BAD.线交BC的延长线于点G,且∠EAF=12(1)求证:AE2=EC⋅EG;(2)如果点F是边CD的中点,求S△ABE的值;(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE的长.11.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⌢=CE⌢,连接OA、OF.⊙O交BD于E,交AD于F,且AE(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.,过点C作CD∥AB,点E在边AC上,AE=CD,联结12.在△ABC中,AB=AC=10,sin∠BAC= 35AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.13.在ΔABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s 的速度向点C运动(点M不与A,B重合,点N不与A,C重合),设运动时间为xs .(1)求证:ΔAMN∽ΔABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把ΔAMN沿直线MN折叠得到ΔMNP,若ΔMNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?14.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB .连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45∘ .(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求EF的值.FG15.小东在做九上课本123页习题:“1:√2也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:√2.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.16.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.参考答案与解析1.【答案】(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF= 12∠BCD,∴∠ECF=90°,∴四边形AECF是矩形2.【答案】(1)证明:在矩形ABCD中∴BC=AD AD∥BC,∠B=∠C=90°∴∠DAF=∠AEB∵DF⊥AE,AE=BC,∴∠AFD=90°=∠B,AE=AD∴△ABE≌△DFA,∴AB=DF(2)解:由(1)可得△ABE≌△DFA,∴AF=BE=3,DF=AB=CD∴∠DFE=∠DCE∴△DFE≌△DCE,∴CE=EF=1,AE=4在Rt△ABE中,AB= √42−32 = √73.【答案】(1)证明:∵AB∥DE,∴∠BAC=∠D.在△ABC和△DCE中,{∠B=∠DCE∠BAC=∠DAC=DE∴△ABC≌△DCE(AAS)(2)解:由(1)可得△ABC≌△DCE,∴CE=BC=5,在Rt△ACE中,AE=√AC2+CE2=√122+52=13.4.【答案】(1)DE∥AC;S1=S2(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,{∠ACN=∠DCM∠CMD=∠N=90°AC=CD,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD= 12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB= 12×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,{DF1=DF2∠CDF1=∠CDF2CD=CD,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD= 12×60°=30°,又∵BD=4,∴BE= 12×4÷cos30°=2÷√32= 4√33,∴BF1= 4√33,BF2=BF1+F1F2= 4√33+ 4√33= 8√33,故BF的长为4√33或8√33.5.【答案】(1)解:∵∠1+∠DFE=180°,∴∠1+∠2=180°.∴∠DFE=∠2,∴EF//AB;(2)解:∵EF//AB , ∴∠DEF=∠BDE. 又∵∠DEF=∠A , ∴∠BDE=∠A , ∴DE//AC , ∴∠ACB=∠DEB. 又∵∠DEB=70°, ∴∠ACB=70°.6.【答案】(1)解:连接OF ;根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ; ∵AB ∥CD ,∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°(2)解:由(1)知,∠BOC=90°.∵OB=6cm ,OC=8cm ,∴由勾股定理得到:BC= √OB 2+OC 2 =10cm ,∴BE+CG=BC=10cm(3)解:∵OF ⊥BC ,∴∠BFO=∠OFC=90°∵∠BOC=90°∴∠BOF+∠COF=90°,∠COF+∠FCO=90°。
初中数学之平行线知识点总结
初中数学之平行线知识点总结平行线知识要点梳理知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做平行线。
通常用“∥”表示平行,如图1中,直线AB与CD平行,记作AB∥CD,如果用l,m表示这两条直线,那么直线l与直线m平行,记作l∥m。
要点诠释:(1)平行线必须满足两个条件:①同一平面内,②不相交,但要注意直线的特点是可以向两方无限延长,在平面内只能画出有限长,例如图2中直线a,b看上去不相交,但当把它们看作是无限长时,发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①相交,②平行。
(2)今后遇到线段、射线平行时,特指线段、射线所在的直线平行。
知识点二:平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
知识点三:平行线判定方法1、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称:同位角相等,两直线平行。
即,如图3。
∵∠1=∠2(已知)∴l1∥l2(同位角相等,两直线平行)2、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。
简称:内错角相等,两直线平行。
即如图3,∵∠2=∠3(已知)∴l1∥l2(内错角相等,两直线平行) 证明:∵∠1=∠3(对顶角相等)又∵∠2=∠3,∴∠1=∠2。
∴l1∥l2(同位角相等,两直线平行)3、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
简称:同旁内角互补,两直线平行。
即如图3,∵∠2+∠4=180°(已知),∴l1∥l2(同旁内角互补,两直线平行)证明:∵∠1+∠4=180°(邻补角定义)又∵∠2+∠4=180°∴∠1=∠2。
∴l1∥l2(同位角相等,两直线平行)要点诠释:判定两直线平行的方法一般有五种:①平行线的定义。
北师大版八年级数学上册《平行线的性质》平行线的证明
,
∴AD∥BE(
).
,即∠
栏目索引
=∠
,
答案 BAE;两直线平行,同位角相等;BAE;等量代换;∠1;∠2;BAE; DAC;DAC;内错角相等,两直线平行
4 平行线的性质
栏目索引
6.如图7-4-6,已知∠1+∠2=180° ,∠A=∠C,DA平分∠FDB,试证明∠3= ∠4.
图7-4-6
4 平行线的性质
栏目索引
解析 (1)∵四边形ABCD为长方形,∴AD∥BC, ∴∠1+∠2=180° , ∵∠1=110° ,∴∠2=70° . (2)由折叠的性质得∠D'=90° , 若D'C'∥BC,则有∠EGF=∠D'=90° , ∵AD∥BC, ∴∠2=∠EGF=90° , 则当∠2等于90度时,D'C'∥BC.
图7-4-8
4 平行线的性质
证明 ∵AD⊥BC,EF⊥BC(已知), ∴∠ADC=∠EFD=90° (垂直的定义), ∴AD∥EF(同位角相等,两直线平行), ∴∠3=∠BAD(两直线平行,内错角相等), ∠DAC=∠E(两直线平行,同位角相等), ∵AD平分∠BAC(已知), ∴∠BAD=∠DAC(角平分线的定义), ∴∠E=∠3(等量代换).
4 平行线的性质
栏目索引
3.(2016四川资阳安岳期末) 是大众汽车的标志图案,其中蕴涵着许多 几何知识.如图,已知BC∥AD,BE∥AF.
(1)∠A与∠B相等吗?请说明理由; (2)若∠DOB=135° ,求∠A的度数.
4 平行线的性质
栏目索引
解析 (1)相等.理由:因为BC∥AD(已知),所以∠B=∠DOE(两直线平行, 同位角相等).因为BE∥AF(已知),所以∠A=∠DOE(两直线平行,同位角 相等),所以∠A=∠B(等量代换). (2)因为BC∥AD(已知),所以∠B+∠DOB=180° (两直线平行,同旁内角互 补),又因为∠DOB=135° ,所以∠B=180° -135° =45° ,又∠A=∠B,所以 ∠A=45° .
专题 平行线四大模型(知识解读)-中考数学(全国通用)
专题03 平行线四大模型(知识解读)【专题说明】历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。
【方法技巧】模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论1:若AB∥CD,则∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP;结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.【典例分析】【模型1 “铅笔”模型】【典例1】如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【变式1-1】把一块等腰直角三角尺和直尺按如图所示的方式放置,若∠1=32°,则∠2的度数为()A.20°B.18°C.15°D.13°【典例2】问题情境:(1)如图1,AB∥CD,∠BAP=120°,∠PCD=130°,求∠APC的度数.(提示:如图2,过P作PE∥AB)问题迁移:(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=α,∠PCB=β,α、β、∠DPC之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出α、β、∠DPC之间的数量关系.(提示:三角形内角和为180°)【变式2-1】已知,AB∥CD,试解决下列问题:(1)如图1,∠1+∠2=;(2)如图2,∠1+∠2+∠3=;(3)如图3,∠1+∠2+∠3+∠4=;(4)如图4,试探究∠1+∠2+∠3+∠4+…+∠n=.【变式2-2】如图,已知BQ∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠F AC,交BC于点Q,且∠Q=15°,求∠ACB的度数.【模型2 “猪蹄”模型(M模型)】【典例3】【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC=.【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C =54°,EF平分∠BED,求∠BEF的度数.【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.【变式3-1】如图所示是汽车灯的剖面图,从位于O点灯发出光照射到凹面镜上反射出的光线BA,CD都是水平线,若∠ABO=α,∠DCO=60°,则∠BOC的度数为()A.180°﹣αB.120°﹣αC.60°+αD.60°﹣α【变式3-2】学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1,l2内部,探究∠A,∠APB,∠B的关系,小明过点P作l1的平行线,可得∠APB,∠A,∠B之间的数量关系是:∠APB=.(2)如图2,若AC∥BD,点P在AC,BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请写出证明过程.【变式3-3】平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.【模型3“锯齿”模型】【典例4】如图,点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.【变式4-1】2022北京冬奥会掀起了滑雪的热潮,很多同学纷纷来到滑雪场,想亲身感受一下奥运健儿在赛场上风驰电掣的感觉,但是第一次走进滑雪场的你,学会正确的滑雪姿势是最重要的,正确的滑雪姿势是上身挺直略前倾,与小腿平行,使脚的根部处于微微受力的状态,如图所示,AB∥CD,如果人的小腿CD与地面的夹角∠CDE=60°,你能求出身体BA与水平线的夹角∠BAF的度数吗?若能,请你用两种不同的方法求出∠BAF 的度数.【变式4-2】如图已知:∠1=∠2,请再添加一个条件,使AB∥CD成立,并写出证明过程.【变式4-3】如图(a),已知∠BAG+∠AGD=180°,AF、EF、EG是三条折线段.(1)若∠E=∠F,如图(b)所示,求证:∠1=∠2;(2)根据图(a),写出∠1+∠E与∠2+∠F之间的关系,不需证明.专题03 平行线四大模型(知识解读)【专题说明】历年中考考试中,有不少题目都考查了平行线的性质及应用,现汲取四大模型,供同学们赏析,希望能到达指导学习之目的。
初中数学:平行线知识点归纳总结
初中数学:平行线知识点归纳总结初中数学:平行线知识点归纳总结
一、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线. 如:AB平行于CD,写作AB∥CD
二、平行公理:过直线外一点有且只有一条直线与已知直线平行.
推论(平行线的'传递性):平行同一直线的两直线平行.
∵a∥c,c∥b
∴a∥b.
三、平行线的判定
1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.
2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.
3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行.
4.在同一平面内,垂直于同一直线的两条直线互相平行.
5、平行线间的距离,处处相等.
6、如果两个角的两边分别平行,那么这两个角相等或互补.
四、平行线的性质
1.两条平行被第三条直线所截,同位角相等.
简单说成:两直线平行,同位角相等.
2.两条平行线被第三条直线所截,内错角相等.
简单说成:两直线平行,内错角相等.
3.两条平行线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
今天的内容就介绍到这里了。
中考数学几何模型专题13平行线之猪脚模型(M模型)(学生版)知识点+例题
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题13平行线之猪脚模型(M模型)【例1】(2022春•桐城市期末)【问题背景】同学们,观察小猪的猪蹄,你会发现一个熟悉的几何图形,我们就把这个图形的形象称为“猪蹄模型”,猪蹄模型中蕴含着角的数量关系.【问题解决】(1)如图1,AB∥CD,E为AB、CD之间一点,连接AE、CE.若∠A=42°,∠C=28°.则∠AEC=.【问题探究】(2)如图2,AB∥CD,线段AD与线段BC交于点E,∠A=36°,∠C=54°,EF平分∠BED,求∠BEF的度数.【问题拓展】(3)如图3.AB∥CD,线段AD与线段BC相交于点G,∠BCD=56°,∠GDE=20°,过点D作DF∥CB交直线AB于点F,AE平分∠BAD,DG平分∠CDF,求∠AED的度数.【例2】(2022春•南京期中)已知直线AB∥CD,点E,F分别在AB,CD上,O是平面内一点(不在直线AB、CD、EF上),OG平分∠EOF,射线OH∥AB,交EF于点H.(1)如图①,若∠AEO=45°,∠CFO=75°,则∠HOG=,(2)如图②,若∠AEO=150°,∠HOG=20°,则∠CFO=;(3)直接写出点O在不同位置时∠AEO、∠CFO和∠HOG三个角之间满足的数量关系.【例3】(2022春•上城区校级期中)如图,一副三角板,其中∠EDF=∠ACB=90°,∠E=45°,∠A=30°.(1)若这副三角板如图摆放,EF∥CD,求∠ABF的度数.(2)将一副三角板如图1所示摆放,直线GH∥MN,保持三角板ABC不动,现将三角板DEF绕点D 以每秒2°的速度顺时针旋转,如图2,设旋转时间为t秒,且0≤t≤180,若边BC与三角板的一条直角边(边DE,DF)平行时,求所有满足条件的t的值.(3)将一副三角板如图3所示摆放,直线GH∥MN,现将三角板ABC绕点A以每秒1°的速度顺时针旋转,同时三角板DEF绕点D以每秒2°的速度顺时针旋转.设旋转时何为t秒,如图4,∠BAH=t°,∠FDM=2t°,且0≤t≤150,若边BC与三角板的一条直角边(边DE,DF)平行时,请直接写出满足条件的t的值.【例4】(2021春•梅江区期末)如图(1),AB∥CD,点E在AB、CD之间,连接EA、EC;如图(2),AB ∥CD.点M、N分别在AB、CD上,连接MN.(1)在图(1)中,若∠A=30°,∠C=50°,则∠AEC=;若∠A=25°,∠C=40°,则∠AEC=.(2)图(1)的条件下,猜想∠EAB、∠ECD、∠AEC的关系,并说明你的结论.(3)如图(2),点E是四边形ACDB内(不含边界和MN)任意一点,请说明∠EMB、∠END、∠MEN 的关系.一.选择题1.(2022•黔东南州)一块直角三角板按如图所示方式放置在一张长方形纸条上,若∠1=28°,则∠2的度数为()A.28°B.56°C.36°D.62°2.(2022•临清市二模)如图,若AB∥CD,CD∥EF,那么∠BCE=()A.180°﹣∠2+∠1B.180°﹣∠1﹣∠2C.∠2=2∠1D.∠1+∠23.(2021春•硚口区月考)如图,AB与HN交于点E,点G在直线CD上,GF交AB于点M,∠FMA=∠FGC,∠FEN=2∠NEB,∠FGH=2∠HGC,下列四个结论:①AB∥CD;②∠EHG=2∠EFM;③∠EHG+∠EFM=90°;④3∠EHG﹣∠EFM=180°.其中正确的结论是()A.①②③B.②④C.①②④D.①④4.(2018春•南昌期中)如图,AB∥CD,∠1=30°,∠2=90°,则∠3的度数是()A.30°B.45°C.50°D.60°5.(2018春•沂源县期末)如图,AB∥CD,∠ABF=∠ABE,∠CDF=∠CDE,则∠E:∠F=()。
专题训练中考数学总复习《平行线的证明》专题复习练习及答案
中考数学复习平行线的证明专题复习练习1. 下列说法正确的是( D )A.经验、观察或试验完全可以判断一个数学结论的正确与否B.推理是科学家的事,与我们没有多大的关系C.对于自然数n,n2+n+37一定是质数D.有10个苹果,将它放进9个筐中,则至少有一个筐中的苹果不少于2个2. “两条平行直线被第三条直线所截,同位角相等”这句话是( C )A.定义 B.假命题 C.公理 D.定理3. 下列语句中,是命题的是( C )A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点4.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是( A ) A.25°B.35°C.50°D.65°5.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于( B )A.90°B.100°C.130°D.180°6.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是( A )A .∠DCE>∠ADB B .∠ADB>∠DBCC .∠ADB>∠ACBD .∠ADB>∠DEC7.如图,AB ∥CD ,直线EF 交AB 于点E ,交CD 于点F ,EG 平分∠BEF ,交CD 于点G ,∠1=50°,则∠2等于( C )A .50°B .60°C .65°D .90°8.如图,已知直线AB ∥CD ,BE 平分∠ABC ,且BE 交CD 于点D ,∠CDE =150°,则∠C 的度数为( C )A .150°B .130°C .120°D .100°9.如图,直线a ∥b ,∠A =38°,∠1=46°,则∠ACB 的度数是( C )A .84°B .106°C .96°D .104°10.适合条件∠A =12∠B =13∠C 的三角形ABC 是( B )A .锐角三角形 B. 直角三角形 C .钝角三角形 D .都有可能11.如图,在折纸活动中,小明制作了一张△ABC 纸片,点D ,E 分别在边AB ,AC 上,将△ABC 沿着DE 折叠压平,A 与A ′重合.若∠A =75°,则∠1+∠2等于( A )A.150° B. 210°C.105°D.75°12.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于( B )A.30° B. 35°C.40°D.45°13.如图,DAE是一条直线,DE∥BC,则x=__64°__.14.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.15.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.16.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC =100°,则∠BAC=__120°__.17.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.18.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.19.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.20.如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD=90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD21.一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°。
八年级数学平行线的证明知识点
八年级数学平行线的证明知识点
在八年级数学中,平行线的证明是一个重要的知识点。
以下是关于平行线证明的几个
主要知识点:
1. 平行线的定义:平行线是指在同一个平面上,永不相交的两条直线。
2. 平行线的判定定理:
a.同位角定理:如果两条直线被一条横截线所切,那么同位角相等的话,这两条直
线就是平行线。
b.内错角定理:如果两条直线被一条横截线所切,那么内错角相等的话,这两条直
线就是平行线。
c.同向外错角定理:如果两条直线被两条平行线所切,那么同向外错角相等的话,这两条直线就是平行线。
3. 平行线的性质:
a.同位角性质:同位角相等。
b.内错角性质:内错角互补,即相加等于180°。
c.同向外错角性质:同向外错角互补。
4. 平行线的证明方法:
a.通过含有平行线的图形进行证明,可以利用同位角、内错角或同向外错角的性质。
b.利用其他已知的线段长度或角度的关系来推导出平行线的存在。
这些知识点是八年级数学中关于平行线证明的基本内容,通过理解和掌握这些知识点,可以帮助你进行平行线的证明问题。
2017年中考数学知识点系列专题13平行线的证明20170309113
专题13 平行线的证明聚焦考点☆温习理解一.命题1.命题:判断一件事情的语句,叫做命题.2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行.名师点睛☆典例分类考点典例一、推理论证【例1】小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B 两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是选手答案题1 2 3 4 5 得分号小聪 B A A B A 40小玲 B A B A A 40小红 A B B B A 30【答案】BABBA【解析】考点:推理与论证.【点睛】解答推理问题,要先从已知条件出发,通过类比、分类讨论等方法找出矛盾点,得出结论,解题时容易出错的地方是不能根据得分推导小聪、小玲有可能做错的题目而导致结论错误.【举一反三】如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2 B.3 C.6 D.x+3【答案】B.【解析】考点:整式的加减.考点典例二、命题的真假【例2】(2016年福建龙岩第4题)下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根【答案】A.【解析】试题分析:选项A:若a=1,b=-1,则|a|=|b|,但a≠b,此命题为假命题;选项B:两直线平行,同位角相等是真命题;选项C:对顶角相等是真命题;选项D:若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根是真命题.故选A.考点:命题与定理.【点睛】本题考查了命题与定理的知识,解题的关键是掌握有关的知识..【举一反三】(2016内蒙古包头第10题)已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【答案】D.【解析】考点:命题与定理.考点典例三、平行线的判定【例3】如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D.【解析】试题分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.试题解析:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.考点:平行线的判定.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【举一反三】1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A .【解析】考点:作图—基本作图;平行线的判定.2.如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).A. 55°B. 60°C.70°D. 75°【答案】A.【解析】试题分析:∵∠1=∠2,∴a ∥b,∴∠3的对顶角+∠4=180º,∠3的对顶角=∠3=125°,∴∠4=180º-125º=55º,故选A.考点:平行线的性质与判定.考点典例四、平行线的性质dc ba第4题【例3】(2016内蒙古呼伦贝尔市、兴安盟第7题)如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°【答案】A.【解析】考点:等腰三角形的性质;平行线的性质.【点睛】利用平行线的性质求角的大小的方法有两种:一是先根据平行线的性质求得与已知角互补或相等的角,再利用互补或相等关系得到答案;二是先求得与已知角互补或相等的角,再利用平行线的性质求得所求的角的大小.【举一反三】1.(2016贵州遵义第4题)如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【答案】A.【解析】考点:平行线的性质.2.(2016广西来宾第2题)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C.【解析】试题分析:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a ∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.考点:平行线的判定.课时作业☆能力提升一、选择题1.(2016湖南永州第7题)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B.【解析】考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.2. (2016湖南娄底第4题)下列命题中,错误的是( )A .两组对边分别平行的四边形是平行四边形B .有一个角是直角的平行四边形是矩形C .有一组邻边相等的平行四边形是菱形D .内错角相等【答案】D .【解析】试题分析:选项A ,根据平行四边形的判定可知,两组对边分别平行的四边形是平行四边形,正确.选项B ,根据矩形的判定可知,有一个角是直角的平行四边形是矩形,正确.选项C ,根据菱形的判定可知,有一组邻边相等的平行四边形是菱形,正确.选项D ,内错角相等,错误,缺少条件两直线平行,内错角相等.故答案选D .考点:命题.3.下列命题中,真命题的个数是( )①若112x -<<- ,则121x -<<-; ②若12x -≤≤,则214x ≤≤;③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sinA =cosB .A .4B .3C .2D .1【答案】B .【解析】考点:命题与定理.4. (2016广西河池第2题)如图,AB∥CD,∠1=50°,则∠2的大小是()A.50°B.120°C.130°D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.5.(2016贵州贵阳第3题)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【答案】B.【解析】考点:平行线的性质.6.(2016青海第6题)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC= .【答案】38°.【解析】试题分析:用平行线求性质可得∠EAD=∠B=71°,再用角平分线求出∠EAC=2∠EAD=2×71°=142°,最后用邻补角求出∠BAC=38°.考点:三角形的外角性质;平行线的性质.7.(2016辽宁营口第4题)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【答案】C.【解析】试题分析:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选C.考点:平行线的性质.8.(2016江苏盐城第6题)如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于()A.50°B.70°C.90°D.110°【答案】B.【解析】考点:平行线的性质.二、填空题9.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】考点:平行线的性质.10.如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.【答案】29°【解析】试题分析:因为AB ∥CD ,∠A =56°所以∠DFE =∠A =56°,又因为∠DFE =∠C+∠E ,∠C =27°所以∠E=∠DFE-∠C=56°-27°=29°,故答案为29°.考点:1.平行线的性质;2.三角形的外角性质.11.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.【答案】110.【解析】试题分析:∵∠1=∠2= 40°,∴∠1=MEN=40°,∴AB ∥CD,∴∠EMB=180-40=140°,∵MN 平分∠EMB,∴∠BMN=140÷2=70°,∴∠3=180-70=110°.考点:平行线的判定与性质的应用.12.如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是________.【答案】30°【解析】DC BA 312N ME 第10题图考点:三角形的内角和及其推论.13.(2016山东淄博第18题)(5分)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【答案】OA∥BC,OB∥AC,理由详见解析.【解析】试题分析:根据已知可得∠1=∠2,∠2+∠3=180°,由同位角相等,两直线平行即可得OB∥AC,由同旁内角互补,两直线平行可得OA∥BC.试题解析:OA∥BC,OB∥AC,理由如下:∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.考点:平行线的判定.三、解答题14.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].【答案】至少7分才能保证一定出线.【解析】若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.考点:推理与论证.15.(2015·湖南益阳)(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°【解析】考点:平行线的性质16.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.【答案】35°.【解析】试题分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.试题解析:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.考点:平行线的性质.。
初中数学平行线知识点
初中数学平行线知识点平行线是初中数学中的重要概念之一,它在几何学中具有广泛的应用。
通过学习平行线的相关知识,我们可以更好地理解和解决与平行线相关的问题。
本文将就初中数学中的平行线知识点进行详细介绍。
一、平行线的定义平行线是指在同一个平面内,永不相交的两条直线。
简单地说,如果两条直线在同一个平面内,且不交于任何一点,我们就说这两条直线是平行线。
二、判定平行线的条件1. 同位角相等定理:如果两条平行线被一条横切线所截,那么同位角相等。
2. 内错角相等定理:如果两条平行线被一条横切线所截,那么内错角相等。
3. 首尾内角相等定理:如果两条平行线被一条横切线所截,那么首尾内角相等。
4. 平行线的性质:两条平行线分别与第三条平行线相交,那么这两个相交角相等。
5. 逆命题:如果两条线上的任意一对同位角或内错角或首尾内角相等,那么这两条线是平行线。
三、平行线的性质1. 平行线之间的距离始终相等,即两条平行线上的任意一对对应的线段之间的距离相等。
2. 平行线上的对应角相等,即两条平行线之间的任意一对对应角相等。
3. 平行线与横切线之间的夹角称为同位角。
同位角等于180度减去对应角。
4. 平行线与横切线之间的夹角称为内错角。
内错角相等。
5. 平行线与横切线之间的夹角称为首尾内角。
首尾内角相等。
四、平行线的应用1. 平行线的应用之一是在平面几何中的图形相似性判定中。
如果两个图形中的各对应边平行,则这两个图形是相似的。
2. 平行线的应用之二是在解决与直角三角形或等边三角形相关的问题时,可以通过构造平行线来辅助解题。
3. 平行线的应用之三是在解决与平移、旋转、缩放等几何变换相关的问题时,平行线起到了重要的作用。
五、实例分析例1:已知直线AB∥CD,角ABC=60度,求角CBD的大小。
解析:由于AB∥CD,所以∠ABC和∠CBD是同位角,因此∠CBD=∠ABC=60度。
例2:如图所示,AB∥DC,AD为横切线,∠BAC=40度,求∠CDA的大小。
【2019最新】中考数学黄金知识点系列专题13平行线的证明
【2019最新】中考数学黄金知识点系列专题13平行线的证明聚焦考点☆温习理解一.命题1.命题:判断一件事情的语句,叫做命题.2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行.名师点睛☆典例分类考点典例一、推理论证【例1】小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是【答案】BABBA【解析】考点:推理与论证.【点睛】解答推理问题,要先从已知条件出发,通过类比、分类讨论等方法找出矛盾点,得出结论,解题时容易出错的地方是不能根据得分推导小聪、小玲有可能做错的题目而导致结论错误.【举一反三】如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2 B.3 C.6 D.x+3【答案】B.【解析】考点:整式的加减.考点典例二、命题的真假【例2】(2016年福建龙岩第4题)下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根【答案】A.【解析】试题分析:选项A:若a=1,b=-1,则|a|=|b|,但a≠b,此命题为假命题;选项B:两直线平行,同位角相等是真命题;选项C:对顶角相等是真命题;选项D:若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根是真命题.故选A.考点:命题与定理.【点睛】本题考查了命题与定理的知识,解题的关键是掌握有关的知识..【举一反三】(2016内蒙古包头第10题)已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【答案】D.【解析】考点:命题与定理.考点典例三、平行线的判定【例3】如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D.【解析】试题分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.试题解析:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.考点:平行线的判定.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【举一反三】1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D .两直线平行,内错角相等【答案】A .【解析】考点:作图—基本作图;平行线的判定.2.如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).A. 55°B. 60°C.70°D. 75°【答案】A.【解析】试题分析:∵∠1=∠2,∴a ∥b,∴∠3的对顶角+∠4=180º,∠3的对顶角=∠3=125°,∴∠4=180º-125º=55º,故选A.考点:平行线的性质与判定.考点典例四、平行线的性质dc ba第4题【例3】(2016内蒙古、第7题)如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°【答案】A.【解析】考点:等腰三角形的性质;平行线的性质.【点睛】利用平行线的性质求角的大小的方法有两种:一是先根据平行线的性质求得与已知角互补或相等的角,再利用互补或相等关系得到答案;二是先求得与已知角互补或相等的角,再利用平行线的性质求得所求的角的大小.【举一反三】1.(2016贵州遵义第4题)如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【答案】A.【解析】考点:平行线的性质.2.(2016广西来宾第2题)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C.【解析】试题分析:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.考点:平行线的判定.课时作业☆能力提升一、选择题1.(2016湖南永州第7题)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B .【解析】考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.2. (2016湖南娄底第4题)下列命题中,错误的是( )A .两组对边分别平行的四边形是平行四边形B .有一个角是直角的平行四边形是矩形C .有一组邻边相等的平行四边形是菱形D .内错角相等【答案】D .【解析】试题分析:选项A ,根据平行四边形的判定可知,两组对边分别平行的四边形是平行四边形,正确.选项B ,根据矩形的判定可知,有一个角是直角的平行四边形是矩形,正确.选项C ,根据菱形的判定可知,有一组邻边相等的平行四边形是菱形,正确.选项D ,内错角相等,错误,缺少条件两直线平行,内错角相等.故答案选D .考点:命题.3.下列命题中,真命题的个数是( ) ①若112x -<<- ,则121x -<<-; ②若12x -≤≤,则214x ≤≤;③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sinA =cosB .A .4B .3C .2D .1【答案】B .【解析】考点:命题与定理.4. (2016广西河池第2题)如图,AB∥CD,∠1=50°,则∠2的大小是()A.50°B.120°C.130°D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.5.(2016贵州贵阳第3题)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【答案】B.【解析】考点:平行线的性质.6.(2016青海第6题)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC= .【答案】38°.【解析】试题分析:用平行线求性质可得∠EAD=∠B=71°,再用角平分线求出∠EAC=2∠EAD=2×71°=142°,最后用邻补角求出∠BAC=38°.考点:三角形的外角性质;平行线的性质.7.(2016辽宁营口第4题)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【答案】C.【解析】试题分析:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选C.考点:平行线的性质.8.(2016江苏盐城第6题)如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于()A.50°B.70°C.90°D.110°【答案】B.【解析】考点:平行线的性质.二、填空题9.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】考点:平行线的性质.10.如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.【答案】29°【解析】试题分析:因为AB ∥CD ,∠A =56°所以∠DFE =∠A =56°,又因为∠DFE =∠C+∠E ,∠C =27°所以∠E=∠DFE-∠C=56°-27°=29°,故答案为29°.考点:1.平行线的性质;2.三角形的外角性质.11.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.【答案】110.【解析】试题分析:∵∠1=∠2= 40°,∴∠1=MEN=40°,∴AB ∥CD,∴∠EMB=180-40=140°,∵MN 平分∠EMB,∴∠BMN=140÷2=70°,∴∠3=180-70=110°.考点:平行线的判定与性质的应用.12.如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是________.【答案】30°【解析】第10题图考点:三角形的内角和及其推论.13.(2016山东淄博第18题)(5分)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【答案】OA∥BC,OB∥AC,理由详见解析.【解析】试题分析:根据已知可得∠1=∠2,∠2+∠3=180°,由同位角相等,两直线平行即可得OB∥AC,由同旁内角互补,两直线平行可得OA∥BC.试题解析:OA∥BC,OB∥AC,理由如下:∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.考点:平行线的判定.三、解答题14.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A 队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].【答案】至少7分才能保证一定出线.【解析】若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.考点:推理与论证.15.(2015·湖南益阳)(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°【解析】考点:平行线的性质16.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.【答案】35°.【解析】试题分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.试题解析:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.考点:平行线的性质.。
初中数学平行线的证明
初中数学平行线的证明(总6页) -本页仅作为预览文档封面,使用时请删除本页-平行线的证明一、学习内容1、掌握平行线概念;2、平面内两条直线位置的关系,空间两条直线的位置关系;3、理解掌握平行公里及推论,并能运用.二、要点指津1、在同一平面内,两条直线只有两种位置关系—相交和平行,掌握平行线的概念,要注意两点:①平行线是在同一平面内的前提下定义的。
②这个概念是用否定的方式定义的。
2、平行公理要注意“经过直线外一点”这一前提。
3、平行公理的推论是证明两条直线平行常用的判定方法。
平行线具有性质:性质1 两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
性质2 两条平行线被第三条直线所截,内错角相等。
简单说成:两直线平行,内错角相等。
性质3 两条平行线被第三条直线所截,同旁内角互补。
简单说成:两直线平行,同旁内角互补。
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。
判断一件事情的语句叫做命题。
平行线的性质证明题合集1)、如图。
a∥b,∠1=120°求∠2 的度数2)、如图,已知:AB∥CD. 试说明∠1+∠2=180°图212a b3c13A BEDCBA213)、如图,如果AB ∥CD 平行,试说明∠1=∠4。
4)、如图所示,已知DC ∥AB,AC 平分∠DAB,试说明∠1=∠2.5)、如图,已知:EF ∥GH ,∠1+∠3=180°,试说明∠2=∠3.6)、已知:如图AE ⊥BC 于点E ,∠DCA=∠CAE ,试说明CD ⊥BC7)、如图,已知DE ∥AB ,∠EAD =∠ADE ,试问AD 是∠BAC 的平分线吗为什么8)、如图:已知:,求 ∠4的度数123A BCD4E 231A B CDFGHEDCB Aba34129)、如图,已知AB ∥CD ,∠A =1000,CB 平分∠ACD .回答下列问题: (1)∠ACD 等于多少度为什么(2)∠ACB 、∠BCD 各等于多少度为什么 (3)∠ABC 等于多少度为什么10)、如图,∠A=∠F,∠C=∠D,试说明∠BMN 与∠CNM 互补吗为什么11)、如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.12、)如图,AB ⊥BD ,CD ⊥MN ,垂足分别是B 、D 点,∠FDC =∠EBA .(1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗为什么NMFE DCBA2 ABECFDH G113、)如图,AB ∥EF ,∠B =1350,∠C=670 ,则求∠1的度数.14)、如图,已知:E 、F 分别是AB 和CD 上的点,DE 、AF 分别交BC 于G 、H ,∠A =∠D ,∠1=∠2,求证:∠B =∠C .15、如图已知AB、BE、ED、CD依次相交于B、E、D,∠E=∠B+∠D。
中考数学黄金知识点系列专题:一元一次不等式组、平行线的证明
C.当 c=0 时,若 a b ,则不等式 ac2 bc2 不成立,故本选项正确;
D.在不等式 ac2 bc2 的两边同时除以不为 0 的 c2 ,该不等式仍成立,即 a b ,故本选项错误.
2
故选 C.
考点:不等式的性质.
2.写出一个解为 x 1 的一元一次不等式
.
【答案】 x 1 0 (答案不唯一).
1
(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
名师点睛☆典例分类
考点典例一、不等式的性质
【例 1】(2016 江苏常州第 6 题)若 x>y,则下列不等式中不一定成立的是( )
A.x+1>y+1 【答案】D.
B.2x>2y
xy
C. >
22
D. x2 y2
【解析】
考点:不等式的性质.
5
整理得:100n+mn≤100m,
故 n≤ 100m . 100 m
故选:B. 【点睛】根据最大的降价率即是保证售价大于等于成本价,可得:a(1+m%)(1﹣n%)﹣a≥0,通过解不等 式,进而得出 n 的取值.本题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键. 【举一反三】 1.(2016 内蒙古巴彦淖尔第 18 题)我市为全面推进“十个全覆盖”工作,绿化提质改造工程如火如荼地进 行,某施工队计划购买甲、乙两种树苗共 600 棵对某标段道路进行绿化改造,已知甲种树苗每棵 100 元, 乙种树苗每棵 200 元. (1)若购买两种树苗的总金额为 70000 元,求需购买甲、乙两种树苗各多少棵? (2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵? 【答案】(1)购买甲种树苗 500 棵,购买乙种树苗 100 棵;(2)400. 【解析】
证明两条线平行的定理
证明两条线平行的定理全文共四篇示例,供读者参考第一篇示例:证明两条线平行的定理是在几何学中非常重要的概念之一,它在解决各种几何问题中起着至关重要的作用。
在数学中,两条线平行意味着它们永远不会相交,无论延长到哪里。
而证明两条线平行的定理则是指出了在何种条件下,我们可以确定两条线是平行的。
要证明两条线平行,一般来说我们可以利用几何学中的几条定理和公理。
下面我们将介绍几种常见的证明两条线平行的定理,帮助大家更好地理解这一概念。
我们来看一下平行线的定义:在同一个平面上,如果两条直线的方向完全相同,那么这两条直线就被称为平行线。
平行线永远不会相交,无论延长到何处。
一、同位角定理同位角定理是证明两条直线平行的一个重要定理。
在这个定理中,我们可以通过同位角的大小关系来判断两条线是否平行。
同位角定理是这样说的:在同一平面内,如果直线l和m被一条第三线n相交,且直线l与直线m的某两条交叉线平行,那么直线l与直线m上的对应同位角相等,则直线l和直线m平行。
证明过程如下图所示:(图1)在图中,直线l和直线m被直线n相交,交叉线AB和CD平行。
由于同位角的性质,∠A与∠C相等,∠D与∠B相等。
根据同位角定理,我们可以得出直线l与直线m是平行的。
二、平行线的性质除了同位角定理外,平行线还有许多其他重要性质可以帮助我们证明两条线平行。
1. 夹角相等性质:如果两条直线被一条第三线截断,使得同一边的内角之和等于180度,那么这两条直线是平行的。
这是因为内角之和等于180度意味着两条直线之间的夹角为180度,即形成一条直线,所以这两条直线是平行的。
2. 同位角性质:如果两条直线被一条第三线截断,同位角相等,则这两条直线是平行的。
3. 基本角关系:当两条直线被一条第三线截断形成两组同序内角、同序外角和对同位角,这些角的关系可以帮助我们证明两条线平行。
通过以上几种方法,我们可以证明两条线平行的定理。
平行线的概念在几何学中起着重要的作用,它不仅帮助我们理解空间中的关系,还能够应用到各种实际问题中。
中考数学考前知识点归纳:平行线
2019中考数学考前知识点归纳:平行线
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2019中考中取得理想的成绩,下文为大家准备了2019中考数学考前知识点归纳:平行线。
1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:
(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.
5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.
以上就是查字典数学网为大家整理的2019中考数学考前知识点归纳:平行线,怎么样,大家还满意吗?希望对大家有所帮助,同时也祝大家学习进步,考试顺利!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题13 平行线的证明聚焦考点☆温习理解一.命题1.命题:判断一件事情的语句,叫做命题.2.真命题:如果题设成立,那么结论一定成立,这样的命题叫真命题.3.假命题:如果题设成立时,不能保证结论一定成立,这样的命题叫假命题.4.互逆命题:在两个命题中,如果第一个命题的题设是另一个命题的结论,而第一个命题的结论是另一个命题的题设,那么这两个命题叫做互逆命题.二、平行线的判定与性质(1)平行线的性质如果两直线平行,那么同位角相等;如果两直线平行,那么内错角相等;如果两直线平行,那么同旁内角互补.(2)平行线的判定同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.平行线的基本事实(即平行公理)经过直线外一点,有且只有一条直线与这条直线平行.名师点睛☆典例分类考点典例一、推理论证【例1】小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是【答案】BABBA【解析】考点:推理与论证.【点睛】解答推理问题,要先从已知条件出发,通过类比、分类讨论等方法找出矛盾点,得出结论,解题时容易出错的地方是不能根据得分推导小聪、小玲有可能做错的题目而导致结论错误.【举一反三】如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y=()A.2 B.3 C.6 D.x+3【答案】B.【解析】考点:整式的加减.考点典例二、命题的真假【例2】(2016年福建龙岩第4题)下列命题是假命题的是()A.若|a|=|b|,则a=bB.两直线平行,同位角相等C.对顶角相等D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根【答案】A.【解析】试题分析:选项A:若a=1,b=-1,则|a|=|b|,但a≠b,此命题为假命题;选项B:两直线平行,同位角相等是真命题;选项C:对顶角相等是真命题;选项D:若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根是真命题.故选A.考点:命题与定理.【点睛】本题考查了命题与定理的知识,解题的关键是掌握有关的知识..【举一反三】(2016内蒙古包头第10题)已知下列命题:①若a>b,则a2>b2;②若a>1,则(a﹣1)0=1;③两个全等的三角形的面积相等;④四条边相等的四边形是菱形.其中原命题与逆命题均为真命题的个数是()A.4个 B.3个 C.2个 D.1个【答案】D.【解析】考点:命题与定理.考点典例三、平行线的判定【例3】如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【答案】D.【解析】试题分析:在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.试题解析:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.考点:平行线的判定.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.【举一反三】1.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D .两直线平行,内错角相等【答案】A .【解析】考点:作图—基本作图;平行线的判定.2.如图,直线a ,b 被直线e ,d 所截,若∠1=∠2,∠3=125°,则∠4的度数为( ).A. 55°B. 60°C.70°D. 75°【答案】A.【解析】试题分析:∵∠1=∠2,∴a ∥b,∴∠3的对顶角+∠4=180º,∠3的对顶角=∠3=125°,∴∠4=180º-125º=55º,故选A.考点:平行线的性质与判定.考点典例四、平行线的性质dc ba第4题【例3】(2016内蒙古呼伦贝尔市、兴安盟第7题)如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为()A.40° B.30° C.70° D.50°【答案】A.【解析】考点:等腰三角形的性质;平行线的性质.【点睛】利用平行线的性质求角的大小的方法有两种:一是先根据平行线的性质求得与已知角互补或相等的角,再利用互补或相等关系得到答案;二是先求得与已知角互补或相等的角,再利用平行线的性质求得所求的角的大小.【举一反三】1.(2016贵州遵义第4题)如图,在平行线a,b之间放置一块直角三角板,三角板的顶点A,B分别在直线a,b上,则∠1+∠2的值为()A.90°B.85°C.80°D.60°【答案】A.【解析】考点:平行线的性质.2.(2016广西来宾第2题)如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C.【解析】试题分析:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意,B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.考点:平行线的判定.课时作业☆能力提升一、选择题1.(2016湖南永州第7题)对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【答案】B .【解析】考点:线段的性质;垂线段最短;圆的认识;三角形的稳定性.2. (2016湖南娄底第4题)下列命题中,错误的是( )A .两组对边分别平行的四边形是平行四边形B .有一个角是直角的平行四边形是矩形C .有一组邻边相等的平行四边形是菱形D .内错角相等【答案】D .【解析】试题分析:选项A ,根据平行四边形的判定可知,两组对边分别平行的四边形是平行四边形,正确.选项B ,根据矩形的判定可知,有一个角是直角的平行四边形是矩形,正确.选项C ,根据菱形的判定可知,有一组邻边相等的平行四边形是菱形,正确.选项D ,内错角相等,错误,缺少条件两直线平行,内错角相等.故答案选D .考点:命题.3.下列命题中,真命题的个数是( ) ①若112x -<<- ,则121x -<<-; ②若12x -≤≤,则214x ≤≤;③凸多边形的外角和为360°;④三角形中,若∠A +∠B =90°,则sinA =cosB .A .4B .3C .2D .1【答案】B .【解析】考点:命题与定理.4. (2016广西河池第2题)如图,AB∥CD,∠1=50°,则∠2的大小是()A.50°B.120°C.130°D.150°【答案】C.【解析】试题分析:如图,∵AB∥CD,∴∠A+∠3=180°,∴∠3=130°,∴∠1=∠3=130°.故选C.考点:平行线的性质.5.(2016贵州贵阳第3题)如图,直线a∥b,点B在直线a上,AB⊥BC,若∠1=38°,则∠2的度数为()A.38°B.52°C.76°D.142°【答案】B.【解析】考点:平行线的性质.6.(2016青海第6题)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC= .【答案】38°.【解析】试题分析:用平行线求性质可得∠EAD=∠B=71°,再用角平分线求出∠EAC=2∠EAD=2×71°=142°,最后用邻补角求出∠BAC=38°.考点:三角形的外角性质;平行线的性质.7.(2016辽宁营口第4题)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB 交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【答案】C.【解析】试题分析:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选C.考点:平行线的性质.8.(2016江苏盐城第6题)如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于()A.50°B.70°C.90°D.110°【答案】B.【解析】考点:平行线的性质.二、填空题9.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】考点:平行线的性质.10.如图,已知AB∥CD,∠A=56°,∠C=27°则∠E的度数为__________.【答案】29°【解析】试题分析:因为AB ∥CD ,∠A =56°所以∠DFE =∠A =56°,又因为∠DFE =∠C+∠E ,∠C =27°所以∠E=∠DFE-∠C=56°-27°=29°,故答案为29°.考点:1.平行线的性质;2.三角形的外角性质.11.如图,∠1=∠2=40°,MN 平分∠EMB ,则∠3= °.【答案】110.【解析】试题分析:∵∠1=∠2= 40°,∴∠1=MEN=40°,∴AB ∥CD,∴∠EMB=180-40=140°,∵MN 平分∠EMB,∴∠BMN=140÷2=70°,∴∠3=180-70=110°.考点:平行线的判定与性质的应用.12.如图,平面上直线a ,b 分别过线段OK 两端点(数据如图),则a ,b 相交所成的锐角是________.【答案】30°【解析】第10题图考点:三角形的内角和及其推论.13.(2016山东淄博第18题)(5分)如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【答案】OA∥BC,OB∥AC,理由详见解析.【解析】试题分析:根据已知可得∠1=∠2,∠2+∠3=180°,由同位角相等,两直线平行即可得OB∥AC,由同旁内角互补,两直线平行可得OA∥BC.试题解析:OA∥BC,OB∥AC,理由如下:∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.考点:平行线的判定.三、解答题14.A,B,C,D四支足球队分在同一小组进行单循环足球比赛,争夺出线权,比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中积分最高的两个队(有且只有两个队)出线,小组赛结束后,如果A 队没有全胜,那么A队的积分至少要几分才能保证一定出线?请说明理由.[注:单循环比赛就是小组内的每一个队都要和其他队赛一场].【答案】至少7分才能保证一定出线.【解析】若A队两胜一负,积6分.如表格所示,根据规则,这种情况下,A队不一定出线.同理,当A队积分是5分、4分、3分、2分时不一定出线.总之,至少7分才能保证一定出线.考点:推理与论证.15.(2015·湖南益阳)(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【答案】50°【解析】考点:平行线的性质16.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.【答案】35°.【解析】试题分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.试题解析:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.考点:平行线的性质.。