抛物线的标准方程及其性质

合集下载

抛物线的标准方程和性质

抛物线的标准方程和性质

抛物线的标准方程和性质平面内与一个定点F 和一条定直线l 距离相等的点的轨迹叫做抛物线。

点F 叫做抛物线的焦点,直线为x 轴l 叫做抛物线的准线,其中F ∉l .这就是抛物线的标准方程,所以点M 的轨迹是双曲线。

它表示的抛物线的焦点在x 轴上,坐标为⎪⎭⎫ ⎝⎛0,2p ,准线方程为2p x -=。

一条抛物线,由于它在坐标平面的位置不同,方程也不同。

所以抛物线的标准方程还有如下几种形式:px y 22-=、py x 22=、py x 22-=.它们的焦点坐标,准线方程以及图我们根据抛物线的标准方程)0(22>=p px y ,来研究它的几何性质1、范围2、对称轴性3、顶点4、离心率例1、若正方形ABCD 的一条边在直线172-=x y 上,另外两个顶点在抛物线2x y =上.求该正方形面积的最小值例2、在直角坐标平面上,已知直线)11(<<-+=a a x y 与抛物线21x y -=相交于点B A ,,点C 的坐标为)0,1(,问:当a 为何值时,三角形ABC 的面积最大?并求三角形ABC 面积的最大值.例3、给定圆P:222x y x +=及抛物线S:24y x =,过圆心P 作直线l ,此直线与上述两曲线的四个交点,自上而下顺次记为,,,A B C D ,如果线段,,AB BC CD 的长按此顺序构成一个等差数列,求直线l 的方程.例4、在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.例5、已知抛物线22(0)y px p =>,其焦点为F ,一条过焦点F ,倾斜角为θ(0)θπ<<的直线交抛物线于A ,B 两点,连接AO (O 为坐标原点),交准线于点B ',连接BO ,交准线于点A ',求四边形ABB A ''的面积.能力提高1、如图,已知⊙C 的圆心C 在抛物线py x 22=上(p>0)运动,且⊙C 过定点()p A ,0,点M,N 为⊙C 与x 轴的交点.如果x AN AM =.试求函数()x x x f 1+=的值域2、已知抛物线)0(2:2>=p px y C 上横坐标为4的点到焦点的距离为5.(1)求抛物线C 的方程.(2)设直线)0(≠+=k b kx y 与抛物线C 交于两点),(,),(2211y x B y x A ,且 )0(||21>=-a a y y ,M 是弦AB 的中点,过M 作平行于x 轴的直线交抛物线C 于点D , 得到ABD ∆;再分别过弦AD 、BD 的中点作平行于x 轴的直线依次交抛物线C 于点F E ,, 得到ADE ∆和BDF ∆;按此方法继续下去.解决下列问题:1).求证:22)1(16k kb a -=; 2).计算ABD ∆的面积ABD S ∆;3).根据ABD ∆的面积ABD S ∆的计算结果,写出BDF ADE ∆∆,的面积;请设计一种求抛物线C 与线段AB 所围成封闭图形面积的方法,并求出此封闭图形的面积.。

抛物线及其标准方程

抛物线及其标准方程

抛物线1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不过F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.其数学表达式:|MF |=d (其中d 为点M 到准线的距离).2.抛物线的标准方程与几何性质1(1)定点不在定直线上.(2)当定点在定直线上时,轨迹为过定点F 与定直线l 垂直的一条直线.2.抛物线的方程特点方程y =ax 2(a ≠0)可化为x 2=1ay ,是焦点在y 轴上的抛物线.3.结论设AB 是过抛物线y 2=2px (p >0)焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),则:(1)x 1x 2=p 24,y 1y 2=-p 2;(2)|AF |=p 1-cos α,|BF |=p 1+cos α,弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角),S △OAB =p 22sin α;(3)1|FA |+1|FB |=2p;(4)以弦AB 为直径的圆与准线相切;(5)以AF 或BF 为直径的圆与y 轴相切;(6)过焦点弦的端点的切线互相垂直且交点在准线上.(7)过抛物线y 2=2px (p >0)的顶点O (0,0)作互相垂直的两条射线且都与抛物线相交,交点为A ,B (如图).则直线AB 过定点M (2p,0);反之,若过点M (2p,0)的直线l 与抛物线y 2=2px (p >0),交于两点A ,B ,则必有OA ⊥OB .1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎪⎭⎫⎝⎛0,4a,准线方程是x =-a 4.()(4)抛物线既是中心对称图形,又是轴对称图形.()2.抛物线y =14x 2的准线方程是()A .y =-1B .y =-2C .x =-1D .x =-23.若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p =()A .2B .3C .4D .84.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点.如果x 1+x 2=6,那么|AB |=()A .6B .8C .9D .105.已知抛物线C 1:x 2=2py (p >0)的准线与抛物线C 2:x 2=-2py (p >0)交于A ,B 两点,C 1的焦点为F ,若△FAB 的面积等于1,则C 1的方程是()A .x 2=2y B .x 2=2y C .x 2=yD .x 2=22y 6.(教材改编)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是________.7.焦点在直线2x +y +2=0上的抛物线的标准方程为_______________抛物线的定义及应用例:1.动圆与定圆A :(x +2)2+y 2=1外切,且和直线x =1相切,则动圆圆心的轨迹是()A .直线B .椭圆C .双曲线D .抛物线(2)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(3)若点P 到点F(0,2)的距离比它到直线y +4=0的距离小2,则P 的轨迹方程为()A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y(4)在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是()A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)(5).已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.(6).已知椭圆x 24+y 23=1的右焦点F 为抛物线y 2=2px (p >0)的焦点,点P 的坐标为(3,2).若点M 为该抛物线上的动点,则|MP |+|MF |的最小值为__________.(7).若点A 的坐标为(3,2),F 是抛物线y 2=2x 的焦点,点M 在抛物线上移动时,使|MF |+|MA |取得最小值的M 的坐标为()A .(0,0)B .⎪⎭⎫⎝⎛121C .(1,2)D .(2,2)(8).已知M 是抛物线x 2=4y 上一点,F 为其焦点,点A 在圆C :(x +1)2+(y -5)2=1上,则|MA |+|MF |的最小值是___________.(9).已知P 是抛物线y 2=4x 上一动点,则点P 到直线l :2x -y +3=0和y 轴的距离之和的最小值是()A .3B .5C .2D .5-1(10).已知抛物线y =12x 2的焦点为F ,准线为l ,M 在l 上,线段MF 与抛物线交于N 点,若|MN |=2|NF |,则|MF |=______.抛物线的标准方程例:(1)(2020·全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =()A .2B .3C .6D .9(2)(2021·山西吕梁二模)如图,过抛物线x 2=2py (p >0)的焦点F 的直线l 交抛物线于A ,B 两点,交其准线于点C ,若|BC |=2|BF |,且|AF |=2,则p =()A .1 B.2C .2D .2-2(3).顶点在原点,对称轴为坐标轴,且过点P (-4,-2)的抛物线的标准方程是()A .y 2=-xB .x 2=-8yC .y 2=-8x 或x 2=-yD .y 2=-x 或x 2=-8y(4).如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=6,则此抛物线方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x(5).已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线的方程为()A .x 2=32yB .x 2=6yC .x 2=-3yD .x 2=3y(6).抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为()A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=152x(7).抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为__________.抛物线的几何性质例:(1)(2020·全国卷Ⅲ)设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为()A .⎪⎭⎫⎝⎛041,B .⎪⎭⎫⎝⎛021,C .(1,0)D .(2,0)(2)已知抛物线y 2=2px (p >0),过其焦点且斜率为-1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .x =1B .x =2C .x =-1D .x =-2(3)已知直线l 过点(1,0)且垂直于x 轴.若l 被抛物线y 2=4ax 截得的线段长为4,则抛物线的焦点坐标为______________.(4).若双曲线C :2x 2-y 2=m (m >0)与抛物线y 2=16x 的准线交于A ,B 两点,且|AB |=43,则m 的值是____________.(5).在平面直角坐标系xOy 中有一定点A (4,2),若线段OA 的垂直平分线过抛物线y 2=2px (p >0)的焦点,则该抛物线的准线方程是_____________(6).已知抛物线y 2=4x 的焦点F ,准线l 与x 轴的交点为K ,P 是抛物线上一点,若|PF |=5,则△PKF 的面积为()A .4B .5C .8D .10(7)(2021·新高考Ⅰ卷)已知O 为坐标原点,抛物线C :y 2=2px (p >0)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ ⊥OP .若|FQ |=6,则C 的准线方程为__________________.(8).过抛物线:y 2=2px (p >0)的焦点F 作倾斜角为60°的直线l ,若直线l 与抛物线在第一象限的交点为A ,并且点A 也在双曲线:x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线上,则双曲线的离心率为()A.213B.13C.233D.5(9).如图,已知抛物线y 2=4x 的焦点为F ,过点F 且斜率为1的直线依次交抛物线及圆(x -1)2+y 2=14于A ,B ,C ,D 四点,则|AB |+|CD |的值是()A .6B .7C .8D .9直观想象、数学运算——抛物线中最值问题的求解方法与抛物线有关的最值问题是历年高考的一个热点,由于所涉及的知识面广,题目多变,一般需要通过数形结合或利用函数思想来求最值,因此相当一部分同学对这类问题感到束手无策.下面就抛物线最值问题的求法作一归纳.1.定义转换法【典例1】(2021·上海虹口区一模)已知点M(20,40),抛物线y2=2px(p>0)的焦点为F.若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于________.2.平移直线法【典例2】抛物线y=-x2上的点到直线4x+3y-8=0的距离的最小值是________.[切入点]解法一:求出与已知直线平行且与抛物线相切的直线方程,从而求两平行线间的距离.解法二:求出与已知直线平行且与抛物线相切的直线与抛物线的切点坐标,从而求切点到已知直线的距离.3.函数法【典例3】若点P在抛物线y2=x上,点Q在圆(x-3)2+y2=1上,则|PQ|的最小值为________.[切入点]P、Q都是动点,转化为圆心与点P的最值.1.(2021·东北三省四市二模)若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.12C.14D.182.(2021·云南省高三统一检测)设P,Q分别为圆x2+y2-8x+15=0和抛物线y2=4x上的点,则P,Q两点间的最小距离是________.直线与抛物线的位置关系1.直线与抛物线的位置关系2=2px,=kx+m,得k2x2+2(mk-p)x+m2=0.(1)相切:k2≠0,Δ=0.(2)相交:k2≠0,Δ>0.(3)相离:k2≠0,Δ<0.2.焦点弦的重要结论抛物线y2=2px(p>0)的焦点为F,过F的焦点弦AB的倾斜角为θ,则有下列性质:(1)y1y2=-p2,x1x2=p24.(2)|AF|=x1+p2=p1-cosθ;|BF|=x2+p2=p1+cosθ;|AB|=x1+x2+p=2psin2θ.(3)抛物线的通径长为2p,通径是最短的焦点弦.(4)S△AOB=p22sinθ.(5)1|AF|+1|BF|为定值2p.(6)以AB为直径的圆与抛物线的准线相切.(7)以AF(或BF)为直径的圆与y轴相切.(8)过焦点弦的端点的切线互相垂直且交点在准线上.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线与抛物线有且仅有1个公共点,则它们相切.()(2)所有的焦点弦中,以通径的长为最短.()(3)直线l过(2p,0),与抛物线y2=2px交于A、B两点,O为原点,则OA⊥OB.()(4)过准线上一点P作抛物线的切线,A、B为切点,则直线AB过抛物线焦点.() 2.过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有() A.1条B.2条C.3条D.4条3.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |=()A .9B .8C .7D .64.如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为()A .y 2=9xB .y 2=6xC .y 2=3xD .y 2=3x5.设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为__________.直线与抛物线的位置关系【例1】(1)过点(0,3)的直线l 与抛物线y 2=4x 只有一个公共点,则直线l 的方程为__________.(2)已知抛物线C :x 2=2py ,直线l :y =-p2,M 是l 上任意一点,过M 作C 的两条切线l 1,l 2,其斜率为k 1,k 2,则k 1k 2=________.焦点弦问题【例2】(1)(2021·石家庄市质检)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22)的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于()A .1∶2B .1∶3C .1∶2D .1∶3(2)(2021·湖南五市十校摸底)过抛物线C :y 2=2px (p >0)的焦点F 的直线l 与抛物线交于M 、N 两点(其中M 点在第一象限),若MN →=3FN →,则直线l 的斜率为________.(3)过抛物线y 2=4x 焦点F 的直线交抛物线于A 、B 两点,交其准线于点C ,且A 、C 位于x 轴同侧,若|AC |=2|AF |,则|BF |等于()A .2B .3C .4D .5(2020·山东卷)斜率为3的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则|AB |=________.直线与抛物线的综合问题例题1:已知以F 为焦点的抛物线C :y 2=2px (p >0)过点P (1,-2),直线l 与C 交于A ,B 两点,M 为AB 的中点,O 为坐标原点,且OM →+OP →=λOF →.(1)当λ=3,求点M 的坐标;(2)当OA →·OB →=12时,求直线l 的方程.例题2:设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程;(2)证明:∠ABM =∠ABN .例题3:已知抛物线P :y 2=2px (p >0)上的点⎪⎭⎫ ⎝⎛a ,43到其焦点的距离为1.(1)求p 和a 的值;(2)求直线l :y =x +m 交抛物线P 于A ,B 两点,线段AB 的垂直平分线交抛物线P 于C ,D 两点,求证:A ,B ,C ,D 四点共圆.例题4.如图所示,已知抛物线C :y 2=4x 的焦点为F ,直线l 经过点F 且与抛物线C 相交于A ,B 两点.(1)若线段AB 的中点在直线y =2上,求直线l 的方程;(2)若线段|AB |=20,求直线l 的方程.例题5:已知曲线C :y =x 22,D 为直线y =-12上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E ⎪⎭⎫ ⎝⎛250,为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.。

1、抛物线的定义、标准方程、几何性质

1、抛物线的定义、标准方程、几何性质

1、抛物线的定义、几何性质学习目标:理解掌握抛物线的定义、几何性质,并能解决有关问题 重点: 抛物线的定义、几何性质难点:利用抛物线的定义、几何性质解决有关问题 知识梳理:抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线(点F 不在直线l 上). 注意:点F 在直线l 上时,轨迹是过点F 且垂直于直线l 的一条直线 2.抛物线四种标准方程的几何性质:轴)轴轴)轴3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧,当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸. (2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦半径:抛物线 )0(22>-=p px y 上一点),(00y x P 到焦点(,0)2p F 的距离2||||0px PF += 抛物线 )0(22>±=p py x 上一点),(00y x P 到焦点(,0)2p F 的距离 2||||0py PF +=(5) 焦点弦长:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||.4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B , 焦点(,0)2p F (1)以抛物线的焦点弦为直径的圆和抛物线的准线相切(2) 221p y y -=,4221p x x =(3)pBF AF 211=+ (4)通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.抛物线的通径长:2p . 5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则221212()()AB x x y y =-+-||11||1212212y y kx x k -+=-+= 分类例析: 一、 抛物线的定义、几何性质及应用 例1(1)过抛物线x y 82=的焦点F 作倾斜角是π43的直线,交抛物线于A,B 两点,则||AB = A .8B .28C .216D .16(2)(2020新课标1理4)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =A .2B .3C .6D .9(3)经过抛物线)0(22>=p px y 的焦点作一直线l 交抛物线 于),(11y x A ,),(22y x B ,则2121x x y y 的值为__________。

抛物线的标准方程及性质

抛物线的标准方程及性质

知识梳理第十八讲抛物线的方程及性质热身练习1.抛物线y =-x2的焦点坐标为.2.顶点在原点,坐标轴为对称轴的抛物线过点(-2, 3) ,则它的方程是.3.已知方程为x2 =-2 py( p > 0) 的抛物线上有一点M (m, -3) ,点M 到焦点F 的距离为5,则m 的值为.4.AB 是抛物线y 2 = 2 px( p > 0) 的动弦,且| AB |=a(a > 2 p) ,则AB 的中点M 到y 轴的最近距离为.1.抛物线的概念平面内与一个定点F 和一条定直线l(l 不经过点F)距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2标准方程y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0)p 的几何意义:焦点F 到准线l 的距离图形顶点O(0,0)对称轴y=0 x=0焦点F⎛p, 0⎫2 ⎪⎝⎭F⎛-p, 0⎫2 ⎪⎝⎭F⎛0,p ⎫2 ⎪⎝⎭F⎛0, -p ⎫2 ⎪⎝⎭ 准线方程x=-p2x=p2y=-p2y=p2范围x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向向右向左向上向下3.抛物线一些常用结论(1)抛物线y2=2px(p>0)上一点P(x0,y0)到焦点F⎛p,0⎫的距离|PF|=x0+p,也称为抛物线的焦半径.2 ⎪2⎝⎭2 ,k 2 ⎝ ⎭ ⎝ ⎭ ⎪ +(2)y 2=ax 的焦点坐标为⎛ p , 0⎫,准线方程为 x =-a . 4 ⎪ 4 ⎝ ⎭(3)通径长度为 2p (过抛物线焦点的弦中通径最短);(4) 设抛物线方程: y 2 = 2 px ,过焦点的直线l : y = k ⎛ x -p ⎫(斜率存在且 k ≠ 0),对应倾斜角2 ⎪⎝⎭为θ,与抛物线交于A (x 1, y 1 ),B (x 2 , y 2 ).⎧ y 2 = 2 px ⎪ 联立方程: ⇒ k 2 ⎛ x - p ⎫ = 2 px ,整理可得: k 2 x 2 - ( 2 + ) + k 2 p 2 = ⎨ y = ⎛ p ⎫ 2 ⎪k p 2p x 0 k x - ⎪⎝ ⎭4⎩⎝⎭ 2(1) x x =p y y= - p 2 ;1 241 2(2) ∠A 1FB 1 = 90︒ , ∠ANB = 90︒, FN ⊥ AB ;1 12(3)= 为定值; | FA | | FB | p(4)以 AB 为直径的圆和抛物线的准线相切于 N ,以 A 1B 1 为直径的圆与 AB 相切于 F ;k 2 p + 2 p 2k 2 p + 2 p ⎛ 1 ⎫(5) AB = x 1 + x 2 + p = k 2 + p = k 2= 2 p 1 + ⎪ ⎝ ⎭=⎛ 1 ⎫⎛ cos 2θ⎫ 2 p2 p 1 +tan 2θ⎪ = 2 p 1 + sin 2θ⎪ =sin 2θ;1 1 1 p2 p p 2(6) S AOB = ⋅ d O -l ⋅ AB = ⋅ (OF ⋅ sin θ)⋅ AB = ⋅ ⋅ sin θ⋅ =; 2 2 2 2 sin 2θ(7) A , O , B 1 三点共线; (8) MN 被抛物线平分.2sin θ一、求抛物线方程的问题【例 1】动圆 M 与定直线 y = 2 相切,且与定圆C : x 2 + ( y + 3)2= 1相外切,求动圆圆心 M 的轨迹方程.例题解析2【例 2】抛物线的焦点在直线 y = 2x + 2 上,且对称轴垂直于 y 轴,则其标准方程是.【例 3】已知抛物线顶点在原点,焦点在 y 轴上,抛物线上一点(m ,-3),到焦点距离为 5,求 m 的值并写抛物线方程.【例 4】如图,直线 l 1 和 l 2 相交于点 M ,l 1 ⊥ l 2 ,点N ∈l 1.以 A 、B 为端点的曲线段 C 上的任一点到 l 2 的距离与到点 N 的距离相等.若△AMN 为锐角三角形,|AM |= =3,且|BN |=6.建立适当的坐标系,求曲线段 C 的方程.【巩固训练】1.抛物线 y = ax 2(a > 0)的准线方程.,|AN |2.已知抛物线 x 2+ 2 py = 0( p > 0) 上的点到它的准线的距离的最小值为 1,求抛物线的焦点坐标2.3.已知点 F (- 1 , 0) ,直线l :x = 1,点 B 是直线l 上的动点,若过 B 垂直于 y 轴的直线与线段 BF4 4的垂直平分线交于点 M ,则点 M 所在曲线是()( A ) 圆(B ) 椭圆 (C ) 双曲线 (D ) 抛物线4.方程 =| x - y + 3 | 表示的曲线是 ( )( A ) 圆 (B ) 椭圆 (C ) 双曲线 (D ) 抛物线17 2(x + 3)2 + 2( y -1)229 5.求到点 A (-2, 0) 的距离比到直线l : x = 3 的距离小 1 的点 P 的轨迹方程.6.过抛物线 x 2= ay 的焦点 F 作 y 轴的垂线,交抛物线与 A 、B 两点,若| AB |= 6 ,求抛物线的方程.7.已知圆 x 2 + y 2- 6x - 7 = 0 与抛物线的准线相切,求抛物线的标准方程.8.设抛物线 C :y 2=2px (p >0)的焦点为 F ,点 M 在 C 上,|MF |=5.若以 MF 为直径的圆过点(0,2), 则 C 的方程为( )A .y 2=4x 或 y 2=8xB .y 2=2x 或 y 2=8xC .y 2=4x 或 y 2=16xD .y 2=2x 或 y 2=16x二、抛物线的定义的运用及性质【例 5】设 F 为抛物线 y 2= 4x 的焦点(1)点 A ( 2 ,2 ),若点 P 在抛物线上移动,则 PA + PF的最小值是(2)点B ( 2 ,3 ),若点 P (x 0 , y 0 )在抛物线上移动,则 x 0 + PB 的最小值是 .(3)直线l 1 : 4x - 3y + 6 = 0 、直线l 2 : x = -1 ,若点 P 在抛物线上移动,则 P 到l 1 和l 2 的距离之和的最小值是.(4)A ,B ,C 为该抛物线上三点,若 FA + FB + FC = 0 ,则| FA | + | FB | + | FC |= .【例 6】设抛物线 y 2= 2x 的焦点为 F ,以 P ( , 0) 为圆心, PF 长为半径作一圆,与抛物线在 x 轴2上方交于 M , N ,则| MF | + | NF | 的值为()( A ) 8(B ) 18(C ) 2 (D ) 4【例 7】如图所示点 F 是抛物线 y 2= 8x 的焦点,点 A 、 B 分别在抛物线 y 2 = 8x 及圆(x - 2)2+ y 2= 16 的实线部分上运动,且AB 总是平行于 x 轴,则∆FAB 的周长的取值范围是( )A . (6,10)B . (8,12)C . [6,8]D . [8,12]【例 8】AB 为过抛物线 y 2=2px (p >0)焦点 F 的弦,点 A ,B 在抛物线准线上的射影为 A 1,B 1,且 A (x 1,y 1),B (x 2,y 2).求证: (1)|AB |=x 1+x 2+p ;(2)x xp 2 y y =-p 2;1 2= , 1 24(3)以 AB 为直径的圆与抛物线的准线相切; 1 1 2 (4) + = . |AF | |BF | p【例 9】(1)经过抛物线 y 2= 4x 的焦点 F 作倾角为 π的弦AB ,则|AB|= .3(2)已知抛物线 x 2= 4 y ,求过抛物线焦点,且长等于 8 的弦所在的直线方程.【例 10】过抛物线 y 2= 4x 的焦点作一条直线与抛物线相交于 A 、B 两点,它们的横坐标之和等于5,则这样的直线()A 、有且仅有一条B 、有且仅有两条C 、有无穷多条D 、不存在【例 11】已知过抛物线 y 2= 4x 的焦点 F 的弦与抛物线交于 A , B 两点,过 A , B 分别作 y 轴的垂线,垂足分别为C , D ,则 AC + BD 的最小值为.【例 12】设抛物线 y 2=2x 的焦点为 F ,过 F 的直线交该抛物线于 A ,B 两点,则|AF|+4|BF|的最小值为.【例13】抛物线y2= 2px(p> 0) 的焦点为F,点A、B在此抛物线上,且∠AFB=90°,弦A B的中点M在其准线上的射影为M′,则|M M′|的最大值为.|AB|【例14】点P 是抛物线y2 = 2x的任意一点,点A(a, 0) .(1)若a= 2 ,求PA 的最小值,以及此时的点P 的坐标;(2)若PA 取最小值时,点P 与顶点重合,求a 的范围.【巩固训练】1 .抛物线y2 = 2 px( p > 0) 上有A(x , y ) ,B(x , y ) ,C(x , y ) 三点, F 是它的焦点,若1 12 23 3AF , BF , CF 成等差数列,则()A.x1, x2 , x3 成等差数列B.x1, x3 , x2 成等差数列C.y1 , y2 , y3 成等差数列D.y1 , y3 , y2 成等差数2.若点A 的坐标为(3,1) ,F 为抛物线y2 = 2x 的焦点,点P 是抛物线上的一动点,则| PA | + | PF |取得最小值时点P 的坐标是.3.已知过抛物线y2=2p x(p>0)的焦点的弦AB的两端点为A(x,y),B(x,y),则关系式y1y2的值一定等于.1 1 2 2x1x24.已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则MA + MF 的最小值为.5.点M (20, 40) ,抛物线y2 = 2 px (p > 0 )的焦点为F ,若对于抛物线上的任意点P ,| PM | + | PF | 的最小值为41,则p 的值等于-.6.如图,过抛物线y2=2px(p>0)的焦点F 的直线l 交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为.7.如图,过抛物线y2 = 2px(p> 0) 的焦点F 作直线交抛物线于A、B 两点,M 为准线l 上任意一点,记∠AMF=α,∠BMF=β,∠MFO=θ,若AM⊥BM,则|α—β|与θ的大小关系为()30A . |α- β|> θB . |α- β|= θC . |α- β|< θD .不确定8.设 A (x , y ), B (x , y ) 两点在抛物线y = 2x 2上, l 是 AB 的垂直平分线.1 12 2(1) 当且仅当 x 1 + x 2 取何值时,直线l 经过抛物线的焦点 F ?证明你的结论; (2) 当直线l 的斜率为 2 时,求l 在 y 轴上的截距的取值范围.三、抛物线的应用【例 15】一个酒杯的轴截面为抛物线的一部分,它的方程为 x 2= 2 y (0 ≤ y ≤ 20) ,在杯内放一个玻璃球,要使球触及到杯的底部,则玻璃球的半径 r 的范围为.【例 16】由于洪峰来临,某抛物线形拱桥下游 8 千米处有一救援船只接到命令,要求立即到桥上执行任务,并告知:此时水流速度为 100 米/分钟,拱桥水面跨度为 米,水面以上拱高 10 米,且1 桥下水面上涨的高度与时间 t (分钟)的平方成正比,比例系数为 10,已知救援船只浮出水面部分的宽、高各为 3 米,问该船至少以多大的速度前进,才能顺利通过?(桥宽忽略不计,水速视为匀速)1 2 3 n【例17】设点F是抛物线L:y2=2px(p>0)的焦点,P、P、P、 、P是抛物线L上的n 个不同的点(n≥3,n∈N*).(1)当p = 2 时,试写出抛物线L 上的三个定点P1 、P2、P3的坐标,从而使得| FP1 | + | FP2| + | FP3|= 6;(2)当n > 3时,若FP1 +FP2 +FP3 + +FP n = 0 ,求证:| FP1| + | FP2 | + | FP3| + + | FP n |=np ;(3)当n > 3时,某同学对(2)的逆命题,即:“若| FP1 | + | FP2 | + | FP3 | + + | FP n |=np ,则FP1 +FP2 +FP3 + +FP n = 0 .”开展了研究并发现其为假命题.请你就此从以下三个研究方向中任选一个开展研究:①试构造一个说明该逆命题确实是假命题的反例(本研究方向最高得4分);② 对任意给定的大于3 的正整数n ,试构造该假命题反例的一般形式,并说明你的理由(本研究方向最高得8分);③ 如果补充一个条件后能使该逆命题为真,请写出你认为需要补充的一个条件,并说明加上该条件后,能使该逆命题为真命题的理由(本研究方向最高得10分).2【例 18】给定抛物线C : y 2= 4x ,F 是C 的焦点,过点 F 的直线l 与C 相交于 A 、B 两点.(1)设l 的斜率为 1,求OA 与OB 得夹角的大小.(2)设 FB = λAF ,若λ∈[4, a ],求l 在 y 轴上的截距的变化范围.【巩固训练】1.某抛物线形拱桥的跨度为20米,拱高为 4米,在修建桥时,每隔4米需要一支柱支撑,其中最长的支柱长为 米.2.经过抛物线 y 2=2px 的焦点 F 作倾角为θ的直线,若该直线与抛物线交于 P 1、P 2 两点, (1)求|P 1P 2|; (2)当θ变化时,求|P 1P 2|的最小值.3.已知两个动点 A 、B 和一个定点 M (x 0 , y 0 )均在抛物线 y = 2 px ( p > 0)上,设 F 为抛物线的焦2⎛ 1 ⎫点,Q 为对称轴上一点,若 QA + AB ⎪ ⋅ AB = 0且 FA , FM ⎝⎭ , FB 成等差数列.(1)求OQ 的坐标;(2)若 OQ = 3, FM= 2 ,求 AB 的取值范围.-1.注重抛物线定义的运用.一般的,如果涉及到抛物线上的点与焦点的连线都要根据定义进行 转化. 2.抛物线与椭圆和双曲线之间既有统一又有区别.在解题时经常采取设而不求的方法,计算量 很大,多练习才能熟练应用.1.已知抛物线 x 2+ my = 0 上的点到定点(0, 4) 和到定直线 y = -4的距离相等,则 m =( )1 1 A .;B . 1616;C . 16 ;D . -16.2.若点 P 到点 F (4, 0) 的距离比它到直线 x + 5 = 0 的距离小 1,则 P 点的轨迹方程是().A 、 y 2= -16xB 、 y 2= -32xC 、 y 2= 16xx 2 + y 2 =D 、 y 2= 32x3.已知抛物线的顶点在原点,焦点和椭圆.16 81的右焦点重合,则抛物线的标准方程为4.抛物线 y 2= x 上到其准线和顶点距离相等的点的坐标为.5.直线 y = (a + 1)x - 1与抛物线 y 2= 8x 有且只有一个公共点,则 a 的值是.6.过抛物线 y 2= 4x 的焦点 F 作倾斜角为 3π的直线交抛物线于 A 、B 两点,则 AB 的长是()4反思总结课后练习2PF PAAB 4C 8D 2 7.若抛物线 y 2 = 2 px ( p > 0)上一点到准线和抛物线的对称轴的距离分别为 10 和 6,则该点横坐标可能为( )A 10B 9C 8D 68.抛物线 y 2 = 4mx (m > 0) 的焦点为 F ,点 P 为该抛物线上的动点,又点 A (-m , 0) ,则的最 小值为 .9. 若 F 是抛物线 y 2= 4x 的焦点,点 P (i = 1, 2, 3,...,10) 在抛物线上,且 + + ... + = , i 则| P 1F | + | P 2 F | +... + | P 100 F |= . P 1 F P 2 F P 100 F 010.斜率为1的直线过抛物线 y 2= 4x 的焦点,且与抛物线交于两点 A 、 B .(1)求 AB 的值;(2)将直线 AB 按向量 a = (-2, 0) 平移得直线 m , N 是 m 上的动点,求 NA ⋅ NB 的最小值.11.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F的两条弦,且其焦点F ( 0,1) ,AC ⋅BD = 0,点E 为y 轴上一点,记∠EFA =α,其中α为锐角.(1)求抛物线Γ方程;(2)如果使“蝴蝶形图案”的面积最小,求α的大小?。

抛物线性质

抛物线性质

抛物线性质抛物线是一种二次函数,其方程为y=ax²+bx+c,其中a、b、c都是实数,且a≠0。

抛物线有以下几个性质:1. 对称性抛物线有一条对称轴,对称轴垂直于x轴,过抛物线的顶点。

对称轴的方程为x=-b/2a。

抛物线对称于其对称轴。

对于每个点(x,y),如果它在抛物线上,则它关于对称轴的对称点也在抛物线上。

2. 正负性当a>0时,抛物线开口向上,形状像一个U形。

当a<0时,抛物线开口向下,形状像一个倒U形。

3. 零点抛物线与x轴的交点称为抛物线的零点或根。

当抛物线与x轴有两个交点时,抛物线有两个零点。

当抛物线与x轴只有一个交点时,抛物线只有一个零点。

4. 额定值抛物线最高点的y坐标称为抛物线的额定值。

抛物线的额定值等于其顶点的纵坐标。

5. 最大值/最小值如果a<0,则抛物线的最大值等于其额定值,最小值为负无穷。

如果a>0,则抛物线的最小值等于其额定值,最大值为正无穷。

6. 焦点抛物线有一点称为焦点,它是抛物线与其对称轴的交点的一半距离处。

焦点的x坐标为-b/2a,y坐标为(c-b²/4a)。

7. 直线的切线如果抛物线在某一点处存在一条斜率,则这条斜率对应于该点处的切线。

对于抛物线y=ax²+bx+c,其导数为dy/dx=2ax+b。

因此,在x处的切线斜率为2ax+b。

8. 拐点抛物线的拐点是曲线从凸部到凹部或从凹部到凸部的点。

拐点的位置为(-b/2a,c-b²/4a)。

9. 化简抛物线的标准形式抛物线方程y=ax²+bx+c可以化简为y=a(x-h)²+k的标准形式,其中(h,k)为抛物线的顶点。

要将抛物线方程转换为标准形式,可以首先通过完成平方的方法来消除x的一次项:y=a(x²+(b/a)x)+c。

然后,将完全平方的形式应用于括号内的表达式:y=a(x²+(b/a)x+(b/2a)²-(b/2a)²)+c。

抛物线及其标准方程

抛物线及其标准方程

抛物线及其标准方程抛物线是一个经典的二次曲线,其形状类似于一个弧线。

抛物线有许多有用的应用,如天文学中的行星轨道、物理学中的抛体运动以及工程学中的桥梁设计等。

一、抛物线的基本定义和性质:1.定义:抛物线是一个平面曲线,其定义是到一个定点(焦点)和到一条定直线(准线)的距离之比为常数的所有点的集合。

2.构成:抛物线由对称轴、焦点、准线和顶点组成。

对称轴是通过焦点和顶点的直线。

焦点和准线等距离于顶点,且准线位于焦点下方(准线可能为X轴)。

3.性质:(1)抛物线关于对称轴对称;(2)焦点到定点的距离等于焦点到准线的距离,且为该抛物线的常数比率;(3)抛物线没有最大值或最小值,是一条开口向上或向下的曲线;(4)抛物线的顶点即为对称轴与抛物线的交点,是抛物线的最高点(或最低点);(5)抛物线方程通常由顶点和准线方程确定。

二、抛物线的标准方程:抛物线的标准方程可写为y = ax² + bx + c,其中a、b和c是实数且 a ≠ 0。

抛物线的准线一般为X轴,顶点坐标为(-b/2a, c - b²/4a)。

为了找到抛物线的标准方程,需要知道抛物线的焦点和准线方程,或者通过其他已知条件进行推导。

以下是两种常见的情况:1.抛物线顶点在原点的情况:当抛物线的顶点在原点(0,0)时,可以通过给定的焦点坐标(x₁,y₁)求得a的值。

根据焦点的定义,焦点到原点的距离等于焦点到准线的距离,可以得到:√(x₁²+y₁²)=y₁/(2a)。

解方程可得:a=1/(4y₁)。

然后将a的值代入抛物线方程,即可得到标准方程。

2.抛物线顶点不在原点的情况:其他情况下,可以通过给定的焦点和抛物线上的一点来确定标准方程。

假设焦点为F(x₁,y₁)、准线为L(y=d)以及抛物线上一点P(x,y)。

根据焦点的定义,我们可以得到:PF=PL,即√((x-x₁)²+(y-y₁)²)=,y-d。

抛物线的定义及其标准方程

抛物线的定义及其标准方程

抛物线的定义及其标准方程抛物线是一种常见的二次曲线,其形状与开口向上或开口向下的弓形极为相似。

抛物线有着广泛的应用,例如在物理学、工程学、建筑学等领域中都有着重要的地位。

一、抛物线的定义抛物线可以定义为:过定点且不垂直于定直线的所有点到定点距离与该点到定直线距离之差相等的点的集合。

简单来说,就是抛物线上任何点到它的焦点距离减去它到抛物线的准线(即过抛物线的焦点且垂直于直线)距离的差值为常数,成为焦距。

抛物线的准线垂直于抛物线的轴线。

二、抛物线的标准方程一般来说,抛物线的标准方程为y = ax² + bx + c,其中a不等于0。

如果我们规定焦点位于y轴上,且顶点为原点,那么这个抛物线的标准方程将为y = ax²。

这个标准方程中的a值决定了抛物线的形状。

如果a大于0,则抛物线开口向上,如果a小于0,则抛物线开口向下。

当a = 0时,标准方程变为y = bx + c,这是一条线性函数。

可以通过把上述标准方程与完美的抛物线的三个关键点联系起来,以确定它的形状。

这些基本关键点包括:焦点、顶点和准线交点。

三、抛物线的性质1. 抛物线对称性: 由于抛物线具有对称性,因此任何垂直于抛物线轴线的直线与抛物线的交点都会沿着轴线形成一个对称点。

2. 抛物线焦点: 抛物线的焦点是距离准线的焦距相等的所有点的集合。

抛物线的焦点与准线相等的距离通常被称为焦距,通常用字母f表示。

3. 抛物线顶点: 抛物线的顶点是抛物线开口处的点。

如果抛物线开口向上,则顶点的y坐标为抛物线函数的最小值。

如果抛物线的开口向下,则顶点的y坐标为抛物线函数的最大值。

4. 抛物线的交点: 如果直线y = mx + b与抛物线相交,那么它将与抛物线在两个位置相交。

交点公式为x = (-b +√(b² - 4ac))/ (2a)和x = (-b -√(b² - 4ac))/ (2a)。

五、总结抛物线是一种非常基础的二次曲线,在工程数学中经常被使用。

抛物线及其性质

抛物线及其性质

抛物线及其性质 ☆知识梳理☆一、抛物线的定义的点的轨迹叫抛物线,点F 叫 ,直线l 叫做 。

二、抛物线的标准方程及简单几何性质三、抛物线的常见结论(1)()220y px p =≠的焦半径 ;()220x py p =≠的焦半径 ;(2) 过焦点的所有弦中最短的弦,也被称做通径.其长度为 ; (3)AB 为抛物线()220y px p =≠的焦点弦,则A B x x = ,A B y y = ,AB = 。

☆释疑解惑☆1、对抛物线定义的认识(1)在抛物线的定义中,若定点F 在定直线l 上,则动点的轨迹为直线 (2)抛物线28y x =的焦点到准线的距离是8(3)抛物线26x y =-的焦点坐标是30,2⎛⎫ ⎪⎝⎭(4)抛物线28y x =上点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是6 (5)抛物线()20x ay a =≠的准线方程是4a y =- 2、对抛物线的标准方程和性质的理解(1)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线()220x ay a =->的通径长为2a(2)以原点为顶点,坐标轴为对称轴,并且经过()2,4P --的抛物线方程是28y x =-☆典例精析☆例1:F 是抛物线22y x =的焦点,,A B 是抛物线上的两点,6AF BF +=,则线段AB的中点到y 轴的距离是 .变1:已知点P 在抛物线24y x =上,那么点P 到点()2,1Q -的距离与点P 到抛物线焦点距离之和的最小值为 .变2:点()5,3M 到抛物线()20x ay a =>的准线的距离为6,那么抛物线的方程是 .变3:已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,,,P x y P x y P xy ,在抛物线上,且123PF P F PF 、、成等差数列, 则有 ( ) A .123+=x x xB .123+=y y yC .132+=2x x x D. 132+=2y y y变4:一动圆圆心在抛物线28x y =-上,且动圆恒与直线20y -=相切,则动圆必过点 .例2:已知抛物线C 的顶点为原点,焦点在x 轴上,直线y x =与抛物线C 交于,A B 两点,若()2,2P 为AB 的中点,则抛物线C 的方程为 ( )A . 24y x =B . 24y x =-C . 24x y =D . 28y x =变1:如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽为 米.变2:已知斜率为2的直线l 过抛物线2y ax =的焦点F ,且与y 轴相交于点A ,若OA F ∆ (O 为坐标原点)的面积为4,则抛物线方程为 ( ) A . 24y x =B . 28y x =C . 24y x =或24y x =-D . 28y x =或28y x =-例3:过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,若3AF =,则BF = .变1:已知抛物线()220y px p =>,F 为焦点,l 为准线,过F 任做一条直线交抛物线于A B 、,11A B 、分别为A B 、在l 上的投影,M 为11A B 的中点,给出下列命题: ①11A F B F ⊥;②AM BM ⊥;③1A M 平行于BM ; ④1A F 与AM 的交点在y 轴上;⑤1AB 与1A B 交于原点 其中真命题为 .变2:设A B 、为抛物线()220y px p =>上的点,且090AOB ∠= (O 为原点),则直线AB必过的定点坐标为 .变3:双曲线()2210x y mn m n-=≠的离心率为2,有一个焦点与抛物线24y x =的焦点重合,则mn 的值为 ( ) A .316 B . 3 C . 163D . 83变4:正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线()220y px p =->上,则它的边长为 ( )A . 2pB . 4pC .D .变5:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切.例4:已知抛物线()2:20C x py p =>的焦点为F ,准线为l ,A 为抛物线C 上一点,已知以F 为圆心,FA 为半径的圆F 交于,B D 两点.(1)若90BFD ∠=︒,且△BFD 的面积为4,求p 的值及圆F 的方程; (2)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到,m n 距离的比值.变1:如图过抛物线()220y px p =>的焦点F 的直线依次交抛物线及准线于点,,A B C ,若2BC BF =,且3AF =,求抛物线的方程.例5:已知焦点在x 轴上的抛物线C 过点(2,E .(1)求抛物线C 的方程;(2)过抛物线C 的焦点F 的直线与抛物线相交于,A B 两点,点M 在线段AB 上运动,原点O 关于点M 的对称点为D ,求四边形OADB 的面积的最小值.变1:已知点F 是抛物线22y px =的焦点,其中p 是正常数,,AB CD 都是抛物线经过点F 的弦,且AB CD ⊥,AB 的斜率为k ,且0k >,,C A 两点在x 轴上方.(1)求11AB CD+; (2)①当243AF BF p =时,求k ; ②设△AFC 与△BFD 的面积之和为S , 求当k 变化时S 的最小值.例6:如图所示,已知点(),3M a 是抛物线24y x =上一定点,直线,AM BM 的斜率互为相反数,且与抛物线另交于,A B 两个不同的点. (1)求点M 到其准线的距离; (2)求证:直线AB 的斜率为定值.变1:已知抛物线()220y px p =>上一点()3,P t 到其焦点的距离为4.(1)求p 的值;(2)过点()1,Q t 作两条直线12,l l 与抛物线分别交于点,A B 和,C D ,点,M N 分别是线段AB 和CD 的中点,设直线12,l l 的斜率分别为12,k k ,若123k k +=,求证:直线MN 过定点.变2:已知点F 为抛物线2:4C y x =的焦点,点P 是准线l 上的动点,直线PF 交抛物线C于,A B 两点,若点P 的纵坐标为()0m m ≠,点D 为准线l 与x 轴的交点. (1)求直线PF 的方程; (2)求△DAB 的面积S 范围;(3)设,AF FB AP PB λμ==,求证λμ+为定值.☆优化热身☆1、抛物线2x y =的准线方程是 ( )A . 410x +=B . 410y +=C . 210x +=D . 210y += 2、动点P 到点F 的距离比到x 轴的距离大1,则动点P 的轨迹是 ( ) A . 圆 B . 椭圆 C . 双曲线 D . 抛物线3、若抛物线()220y px p =>的焦点到双曲线221x y -=的渐近线的距离为2,则p 的值为( )A .B . 6C .D . 34、两个正数,a b 的等差中项是92,一个等比中项是且a b >,则抛物线2b y x a=-的焦点坐标是 ( ) A . 5,016⎛⎫-⎪⎝⎭ B . 2,05⎛⎫- ⎪⎝⎭ C . 1,05⎛⎫ ⎪⎝⎭ D . 1,05⎛⎫- ⎪⎝⎭5、抛物线()2:20C y px p =>的焦点为,F M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切(O 为坐标原点),且外接圆的面积为9π,则p = ( ) A . 2 B . 4 C . 6 D .86、已知直线10ax y ++=经过抛物线24y x =的焦点,则直线与抛物线相交弦弦长为( )A . 6B . 7C . 8D . 97、过抛物线24y x =的焦点F 的直线交该抛物线于,A B 两点,O 为坐标原点,若3AF =,则△AOB 的面积为 ( )A .B .C D . 8、过抛物线()2:20C y px p =>的焦点F 且倾斜角为60︒的直线l 与抛物线在第一、四象限分别交于,A B 两点,则AF BF 的值等于 ( )A . 5B . 4C . 3D . 29、已知抛物线28y x =的焦点为F ,直线()2y k x =+与抛物线交于,A B 两点,则直线FA 与直线FB 的斜率之和为 ( )A . 0B . 4C . -2D . -410、抛物线22y x =上两点()()1122,,,A x y B x y 关于直线y x m =+对称,若1212x x =-,则2m 的值是 ( )A . 3B . 4C . 5D . 6 11、抛物线()240y axa =≠的焦点坐标是 .12、过抛物线22y px =上一点()00,M x y 的切线方程是 .13、已知P 为抛物线24y x =上一点,设P 到准线的距离为1d ,P 到点()1,4A 的距离为2d ,则12d d +的最小值为 .14、设抛物线2y x =的焦点为F ,点M 在抛物线上,线段MF 的延长线与直线14x =-交于点N ,则11MF NF+的值为 . 15、已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QO = .16、抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是 . 17、已知抛物线()220y px p =>的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA FB FC +=- ,则111AB BC CAk k k ++= .18、抛物线24y x =的焦点为F ,点P 为抛物线上的动点,若()1,0A -,则PF PA的最小值为 .19、如果抛物线128,,,P P P ⋅⋅⋅是抛物线24y x =上的点,它们的横坐标依次为128,,,x x x ⋅⋅⋅,F 为抛物线的焦点,若12810x x x ++⋅⋅⋅+=,则128P F PF PF ++⋅⋅⋅+=.20、如图所示点F 是抛物线28y x =的焦点,点,A B 分别在抛物线28y x =及圆()22216x y -+=的实线部分上运动,且AB 总是平行于x 轴,则△FAB 的周长的取值范围是 .21、是否存在同时满足下列两条件的直线l :(1)l 与抛物线x y 82=有两个不同的交点A 和B ;(2)线段AB 被直线1l :550x y +-=垂直平分.若不存在,说明理由,若存在,求出直线l 的方程.22、已知抛物线y x 42=的焦点为F ,A ,B 是抛物线上的两动点,且FB AF λ=(λ>0),过A ,B 两点分别作抛物线的切线,设其交点为M ,(1)证明:FM AB ⋅的值;(2)设ABM ∆的面积为S ,写出()λf S =的表达式,并求S 的最小值.23、已知抛物线Γ: ()220y px p =>的焦点到准线的距离为2.(1)求p 的值;(2)如图所示,直线1l 与抛物线Γ相交于,A B 两点,C 为抛物线Γ上异于,A B 的一点,且AC x ⊥轴,过B 作AC 的垂线,垂足为M ,过C 作直线2l 交直线BM 于点N ,设12,l l 的斜率分别为12,k k ,且121k k =.(i )线段MN 的长是否为定值?若是定值,请求出定值;若不是定值,请说明理由;(ii )求证:,,,A B C N 四点共圆.。

高三数学第一轮复习:抛物线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:抛物线的定义、性质及标准方程 知识精讲

高三数学第一轮复习:抛物线的定义、性质及标准方程【本讲主要内容】抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质【知识掌握】 【知识点精析】1. 抛物线定义:平面内与一个定点F 和一条直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点F 不在定直线l 上。

它与椭圆、双曲线的第二定义相仿,仅比值(离心率e )不同,当e =1时为抛物线,当0<e<1时为椭圆,当e>1时为双曲线。

2. 抛物线的标准方程有四种形式,参数p 的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):标准方程y px p 220=>() y px p 220=->() x py p 220=>() x py p 220=->()图形xy l PO Fx y lPOFy x F O P lyx FO P l范围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对称轴 x 轴y 轴顶点坐标 原点O (0,0)焦点坐标 ,02p ⎛⎫ ⎪⎝⎭,02p ⎛⎫- ⎪⎝⎭0,2p ⎛⎫ ⎪⎝⎭0,2p ⎛⎫- ⎪⎝⎭准线方程 2p x =-2p x =2p y =-2p y =离心率 e=1焦半径02p PF x =+02p PF x =-+02p PF y =+02p PF y =-+其中()00,P x y 为抛物线上任一点。

3. 对于抛物线()220y px p =≠上的点的坐标可设为200,2y y p ⎛⎫⎪⎝⎭,以简化运算。

4. 抛物线的焦点弦:设过抛物线y px p 220=>()的焦点F 的直线与抛物线交于()()1122,A x y B x y 、,,直线OA 与OB 的斜率分别为12k k 、,直线l 的倾斜角为α,则有212y y p =-,2124p x x =,124k k =-,1cos pOA α=-,1cos p OB α=+,22sin pAB α=,12AB x x p =++。

抛物线的标准方程及性质

抛物线的标准方程及性质

抛物线的标准方程及性质一、抛物线定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。

其中定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 想一想: 定义中的定点与定直线有何位置关系?点F 不在直线L 上,即过点F 做直线垂直于l 于F ,|FK|=P 则P 〉0 求抛物线的方程解:设取过焦点F 且垂直于准线l 的直线为x 轴,线段KF 的中垂线y 轴 设︱KF ︱= p 则F (0,2p ),l :x = —2p 。

设抛物线上任意一点M (X ,Y )定义可知 |MF|=|MN| 即:2)2(22px y P x +=+-化简得 y 2 = 2px (p >0) 二、标准方程把方程 y 2 = 2px (p >0)叫做抛物线的标准方程,其中F (2P ,0),l :x = — 2P而p 的几何意义是: 焦 点 到 准 线 的 距 离|FK|一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其它形式。

1.四种抛物线的标准方程对比图形 标准方程焦点坐标准线方程)0(22>=p px y⎪⎭⎫ ⎝⎛0,2p 2p x -=)0(22>-=p px y⎪⎭⎫⎝⎛-0,2p 2px =)0(22>=p py x⎪⎭⎫ ⎝⎛2,0p2py -=)0(22>-=p py x⎪⎭⎫ ⎝⎛-2,0p2py =2、怎样把抛物线位置特征(标准位置)和方程的特点(标准方程)统一起来? 顶点在原点三、抛物线的性质设抛物线的标准方程y 2=2px (p >0),则(1)范围:抛物线上的点(x ,y )的横坐标x 的取值范围是x ≥0。

,在轴右侧抛物线向右上方和右下方无限延伸。

(2)对称性:这个抛物线关于轴对称,抛物线的对称轴叫做抛物线的轴。

抛物线和它的轴的交点叫做抛物线的顶点.(3)顶点:抛物线和它的交点叫做抛物线的顶点,这个抛物线的顶点是坐标原点。

抛物线的定义、标准方程 几何性质

抛物线的定义、标准方程 几何性质

第三讲 抛物线定义、标准方程和几何意义抛物线的定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 抛物线的准线方程(1))0(22>=p px y , 焦点:)0,2(p ,准线l :2p x -= (2))0(22>=p py x , 焦点:)2,0(p ,准线l :2py -= (3))0(22>-=p px y , 焦点:)0,2(p-,准线l :2p x =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2p y =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p p =不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x(2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 抛物线的几何性质(1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸.(2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.(3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 17抛物线的焦半径公式:抛物线)0(22>=p px y ,0022x p p x PF +=+=抛物线)0(22>-=p px y ,0022x p p x PF -=-=抛物线)0(22>=p py x ,0022y p p y PF +=+=抛物线)0(22>-=p py x ,0022y p p y PF -=-=18.直线与抛物线: (1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx CyAx C ,消去y ,得到关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得:联立⎩⎨⎧=+=pxyb kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点)当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点) 0<∆,无公共点 (相离) (2)相交弦长:弦长公式:21kad +∆=,(3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-=(4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y θsin 24422221p pkp y y =+=-⇒θθ221sin2sin 1p y y AB =-=⇒(6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421p x x =。

抛物线的标准方程与几何性质

抛物线的标准方程与几何性质

y2 =4x、 y2 = -4x、
x2 =4y 或 x2 = -4y
A
19
练习1
2、已知抛物线的标准方程是(1)y2 =12x、(2)y= 12x2 求它们的焦点坐标和准线方程;
解(:1)p=6,焦点坐标是(3,0)准线方程是
x=-3.
(2)先化为标准方程 x2 1 y ,p 1 ,
12
24
1
=
9
2
A
y或y2 =
4
x。
3 21
练习2
已知抛物线经过点P(4,-2),求抛物线的标 准方程。
提示:注意到P为第四象限的点,所以可以设抛物线
的标准方程为y2=2px或x2=-2py
解: 点P(4,2)位于第四象限,设方所程求为
y2 2p1x或x2 2p2y,将x4, y 2代入,
可得p1
1, 2
抛物线的标准方程还有
几种不同的形式?它们是 如何建系的?
A
10
三. 四种抛物线及其它们的标准方程
y

OF
x

l
y
y
FO x
F
O
l
l
y l
O
x
F
x
焦点位置
x轴的 正半轴上
x轴的 负半轴上
y轴的 正半轴上
y轴的 负半轴上
标准方程 y2=2px y2=-2px
x2=2py x2=-2py
焦点坐标 准线方程
O
x l
O F
x
x≥0 y∈R x≤0 y∈R x∈R y≥0 x∈R y≤0
对称性 关于x轴对称 关于x轴对称 关于y轴对称 关于y轴对称
顶点 (0,0) (0,0) (0,0) (0,0)

抛物线标准方程

抛物线标准方程

抛物线标准方程抛物线是平面上一类非常重要的曲线,它在物理学、几何学和工程学中都有着广泛的应用。

在数学中,抛物线通常以标准方程的形式进行研究和描述。

本文将介绍抛物线的标准方程及其相关性质。

首先,我们来看一下抛物线的定义。

抛物线是平面上一类曲线,它的定义可以有多种方式,其中一种常见的定义是:所有到定点(焦点)的距离与到定直线(准线)的距离相等的点的轨迹。

抛物线通常可以用标准方程来表示,其标准方程的一般形式为:y = ax^2 + bx + c。

其中a、b、c为常数,且a不等于0。

这个方程描述了抛物线上所有点的坐标,通过这个方程我们可以推导出抛物线的各种性质。

接下来,我们来看一下如何通过已知的抛物线上的点来确定抛物线的标准方程。

假设我们已知抛物线上的三个点(x1, y1)、(x2, y2)、(x3, y3),我们可以通过这些点来确定抛物线的标准方程。

我们可以将这三个点代入抛物线的一般方程y = ax^2 + bx + c中,得到三个方程:y1 = ax1^2 + bx1 + c。

y2 = ax2^2 + bx2 + c。

y3 = ax3^2 + bx3 + c。

通过解这个方程组,我们可以求解出a、b、c的值,从而确定抛物线的标准方程。

除了通过已知点来确定抛物线的标准方程外,我们还可以通过抛物线的焦点和准线来确定抛物线的标准方程。

抛物线的焦点和准线的位置关系可以帮助我们确定抛物线的标准方程,这是抛物线研究中一个非常重要的方法。

在确定了抛物线的标准方程后,我们可以进一步研究抛物线的各种性质。

例如,我们可以通过标准方程来求解抛物线的焦点、准线、顶点等重要的点和线。

这些性质的研究对于抛物线的应用具有非常重要的意义。

总之,抛物线的标准方程是研究抛物线的重要工具,通过标准方程我们可以确定抛物线的位置、形状和各种性质。

在实际应用中,抛物线的标准方程有着广泛的应用,对于理解和解决实际问题具有重要的意义。

希望本文对抛物线的标准方程有所帮助,谢谢阅读!。

抛物线及其性质知识点大全

抛物线及其性质知识点大全

抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。

4.焦点弦的相关性质:焦点弦AB ,),(11y x A ,),(22y x B ,焦点(,0)2pF (1) 若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。

(2) 若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。

(3) 已知直线AB 是过抛物线22(0)y px p =>焦点F ,112AF BF AB AF BF AF BF AF BF p++===∙∙ (4) 焦点弦中通径最短长为2p 。

通径:过焦点垂直于焦点所在的轴的焦点弦叫做通径.(5) 两个相切:○1以抛物线焦点弦为直径的圆与准线相切.○2过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

5.弦长公式:),(11y x A ,),(22y x B 是抛物线上两点,则AB =||11||1212212y y k x x k -+=-+=6.直线与抛物线的位置关系 直线,抛物线,,消y 得:(1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时,Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。

抛物线的四种标准方程公式

抛物线的四种标准方程公式

抛物线的四种标准方程公式
抛物线,即参数方程,在建筑中体现的非常明显,著名的几何体之声,也就是
抛物线的发展,系几何学的一种抽象化的发展,一般有三种形式存在。

其中,四种标准抛物线的公式是:
第一种:y= ax^2 +bx+c,其中a可以大于0也可以小于0,如果a>0,该抛物
线是翻出,如果a<0,该抛物线是翻入;
第二种:y= a(x-h)^2+k,其中a可以大于0也可以小于0,如果a>0,该抛物
线是翻出,如果a<0,该抛物线是翻入;
第三种:x= ay^2+by+c,其中a可以大于0也可以小于0,如果a>0,该抛物
线是翻出,如果a<0,该抛物线是翻入;
最后一种:x= a(y-h)^2 +K,其中a可以大于0也可以小于0,如果a>0,该
抛物线是翻出,如果a<0,该抛物线是翻入。

以上四种抛物线,是建筑中最基本的几何体,它们经常在建筑物中呈现,而一
些拥有非常令人惊叹的建筑作品便是基于这些抛物线原理才能营造出如此震撼的空间感。

举个例子,早期的拱顶,当时人们通过抛物线的参数公式,将多边形表面张开,就形成了一个完美的拱顶,而它的几何体也就凝结成了抛物线的形式。

因此,抛物线参数方程的高级应用,使建筑领域有了一定的蓬勃发展,可以运
用到多边形,穹顶,立体几何,甚至到三维空间中都是被做到的,它是建筑发展过程中最重要的几何加工机制。

在建筑专业中,抛物线参数方程被广泛用于建筑设计,艺术形象分析等方面,使建筑设计更加精致独特,更加丰富多彩。

抛物线标准方程及其几何性质

抛物线标准方程及其几何性质

教学内容知识梳理1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。

②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。

④顶点平分焦点到准线的垂线段:2p OF OK ==。

⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。

所有这样的圆过定点F 、准线是公切线。

⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。

所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。

⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。

所有这样的圆的公切线是准线。

3抛物线标准方程的四种形式:,,px y px y 2222-==。

,py x py x 2222-== 4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p , ②准线方程是:2px -=。

③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线C NM 1QM 2K FPoM 1QM 2KF Poyx的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py或2(2,2)P pt pt 或P px y y x 2),(2=其中5一般情况归纳:方程 图象 焦点 准线 定义特征 y 2=kxk>0时开口向右 (k/4,0)x=─k/4到焦点(k/4,0)的距离等于到准线x= ─k/4的距离k<0时开口向左 x 2=kyk>0时开口向上 (0,k/4)y=─k/4到焦点(0,k/4)的距离等于到准线y=─k/4的距离k<0时开口向下例题讲解例1设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y2=-8x B .y2=8x C .y2=-4xD .y2=4x例2坐标平面内到定点F(-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( ) A .y2=2xB .y2=-2xC .y2=4xD .y2=-4x例3已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54 D.74例4拋物线y2=4x 上一点M 到焦点的距离为2,则M 到y 轴的距离为________. 例5已知过抛物线y2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF|=2,则|BF|=________.例6根据下列条件求拋物线的标准方程.(1)拋物线的焦点是双曲线16x2-9y2=144的左顶点;(2)拋物线焦点在x 轴上,直线y =-3与拋物线交于点A ,|AF|=5.例7已知抛物线y2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P 点的坐标. 变式练习.(1)将本例中A (3,2)改为A ⎝ ⎛⎭⎪⎫3,103,试求|P A |+|PF |的最小值及此时P 点的坐标.(2)本例条件不变,求点P 到点B ⎝⎛⎭⎪⎫-12,1的距离与点P 到直线x =-12的距离之和的最小值.例7.已知探照灯的轴截面是抛物线y 2=x ,如图所示,平行于对称轴y=0的光线于此抛物线上入射点,反射点分别为P 、Q ,设点P 的纵坐标为a(a>0),当a 取何值时,从入射光线P 到反射点Q 的光线路径最短?例8已知拋物线C :y 2=2px (p >0)过点A (1,-2).(1)求拋物线C 的方程,并求其准线方程;y oFPQ(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与拋物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.课内练习1.以抛物线)0(22>=p px y 的焦半径PF 为直径的圆与y 轴位置关系为( )A、 相交 B、 相离 C、 相切 D、 不确定 2.抛物线方程为7x +8y 2=0,则焦点坐标为( ) A .(716 ,0) B .(-732 ,0) C .(0,- 732 ) D .(0,- 716 )3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是 ( ) A .43 B .75 C .85 D .34.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA → ·AF → =-4,则A 点坐标为 ( ) A .(2,±2 2 ) B .(1,±2) C .(1,2) D .(2,2 2 )5.抛物线y 2=-2px(p >0)上一点横坐标为-9,它到焦点的距离为10,这点的坐标为 . 6.过抛物线x y =2的焦点F 的直线m 的倾斜角m ,4πθ≥交抛物线于A 、B 两点,且A 点在x 轴上方,则|FA|的取值范围是 .7.一动圆M和直线:4l x =-相切,并且经过点(4,0)F ,则圆心M的轨迹方程是 . 8.直线l 过抛物线)0(22>=p px y 的焦点且与x 轴垂直,若l 被抛物线截得的线段长为6,求p 的值.9.已知直线l :y= 3 x +4被抛物线x 2=2p y(p >0)截得的弦长为4 3 . (1)求抛物线的方程;(2)在该抛物线上位于直线l 下方的部分中,求一点M ,使M 到l 的距离最远.10.已知抛物线y 2=4ax(a >0)的焦点为A ,以B (a+4,0)为圆心,|AB|长为半径画圆,在x 轴上方交抛物线于M 、N 不同的两点,若P 为MN 的中点.(1)求a 的取值范围; (2)求|AM|+|AN|的值;(3)问是否存在这样的a 值,使|AM|、|AP|、|AN|成等差数列?课后作业1.顶点为原点,抛物线对称轴为y轴,且过点(-4,5),则抛物线的准线方程为()A.y=-45B.y=45C.x=-45D.x=452.已知点P是抛物线22y x=上的动点,点P在y轴上的射影是M,点A的坐标是7(,4)2A,则||||PA PM+的最小值是()A.112B.4 C.92D.53.过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x-y+3=0 C.x+y+1=0 D.x-y+1=04.抛物线型拱桥的顶点距水面2m时,水面宽8m,若水面升1m,此时水面宽为.5.过抛物线y2=4x焦点的直线交抛物线于A,B两点,已知|AB|=10,O为坐标原点,则△OAB的重心的坐标为.6.求以原点为顶点,坐标轴为对称轴,且过点P(2,-4)的抛物线的方程.7.已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线方程.8.已知抛物线x y 22=及定点),0,1(),1,1(-B A M 是抛物线上的点,设直线BM AM ,与抛物线的另一交点分别为21,M M .求证:当点M 在抛物线上变动时(只要21,M M 存在且1M 与2M 是不同两点),直线21M M 恒过一定点,并求出定点的坐标B 组1.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1716B .1516C .78D .02.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN → |·|MP → |+MN → ·NP → =0,则动点P (x,y )的轨迹方程是 ( ) A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x3.已知P 是抛物线y=2x 2+1上的动点,定点A (0,―1),点M 分P A → 所成的比为2,则点M 的轨迹方程是( )A 、y=6x 2―31B 、x=6y 2-31 C 、y=3x 2+31 D 、y=―3x 2―14.有一个正三角形的两个顶点在抛物线y 2=2 3 x 上,另一个顶点在原点,则这个三角形的边长是 .5.对正整数n ,设抛物线x n y )12(22+=,过)0,2(n P 任作直线l 交抛物线于n n B A ,两点,则数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⋅)1(2n OB OA n n 的前n 项和公式是 .6.焦点在x 轴上的抛物线被直线y=2x +1截得的弦长为15 ,求抛物线的标准方程.7.定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,AB 的中点为M ,求点M 到y 轴的最短距离,并求出点M 的坐标.8.在直角坐标系中,已知点⎪⎭⎫⎝⎛0,2p F (p>0), 设点F 关于原点的对称点为B ,以线段FA为直径的圆与y 轴相切.(1)点A 的轨迹C 的方程;(2)PQ 为过F 点且平行于y 轴的曲线C 的弦,试判断PB 与QB 与曲线C 的位置关系.21M M 是曲线C 的平行于y 轴的任意一条弦,若直线FM1与BM2的交点为M ,试证明点M 在曲线C 上.。

抛物线的标准方程及其几何性质

抛物线的标准方程及其几何性质

抛物线的标准方程及其几何性质主讲教师:刘杨【知识概述】一、抛物线的概念平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.二、抛物线的标准方程与几何性质【学前诊断】1. [难度] 易抛物线y 2=8x 的焦点坐标是______.2.[难度] 易动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.3.[难度] 中设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8 D .12【经典例题】例1.根据下列条件求抛物线的标准方程.(1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线焦点在x 轴上,直线y =-3与抛物线交于点A ,|AF |=5.例2.已知抛物线y 2=2x 的焦点是F ,点P 与抛物线上的动点,又有点A (3,2),求|P A |+|PF |的最小值,并求出取最小值时P 点的坐标.例3.定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,AB 的中点为M ,则当点M 的坐标为_____时,到y 轴的距离最短,最短距离为________.例4.设直线2ay x =-与抛物线22y x =交于相异两点A 、B ,以线段AB 为直径作圆H (H 为圆心),试证明抛物线的顶点在圆H 的圆周上;并求a 的值,使圆H 的面积最小.例 5.如图所示,已知点A (2,8),B (x 1,y 1),C (x 2,y 2)均在抛物线y 2=2px (p >0)上,△ABC 的重心与此抛物线的焦点F 重合.(1)写出该抛物线的方程及焦点F 的坐标; (2)求线段BC 的中点M 的坐标; (3)求BC 所在直线的方程.【本课总结】一、解题技巧1.抛物线没有中心,只有一个顶点,一个焦点,一条准线,一条对称轴且离心率为e =1,所以与椭圆、双曲线相比,它有许多特殊性质,可以借助几何知识来解决.2.抛物线的定义实质上给出一个重要的内容:可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简.3.抛物线方程中,字母p 的几何意义是抛物线的焦点F 到准线的距离,p2等于焦点到抛物线顶点的距离.牢记它对解题非常有益.4.抛物线的标准方程有四种,在求解过程中,首先要根据题目描述的几何性质判断方程形式,若只能判断对称轴,而不能判断开口方向,可设为x 2=ay (a ≠0)或y 2=ax (a ≠0),然后利用待定系数法和已知条件求解.5.抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;(3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p. 二、易错防范1.求抛物线的标准方程时一般要用待定系数法求p 值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程. 2.注意应用抛物线定义中的距离相等解决问题.【活学活用】1.[难度] 易已知抛物线的焦点在直线x -2y -4=0上,则此抛物线的标准方程是 ( ) A .y 2=16x B .x 2=-8y C .y 2=16x ,或x 2=-8y D .y 2=16x ,或x 2=8y2. [难度] 中设F 为抛物线y 2=4x 的焦点,A ,B ,C 为该抛物线上三点,若0FA FB FC ++=,则||||||FA FB FC ++等于 ( )A .9B .6C .4D .33. [难度] 中设P 是曲线y 2=4x 上的一个动点,则点P 到点(-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.。

抛物线的性质

抛物线的性质

• 补充例题 • (1)抛物线y2=2px(p>0)以过焦点 的弦为直径的圆与准线—— • (2)F为抛物线y2=2px的焦点,M为 其上一点,若定点(a,b)(b2<2pa) 使lAMl+lFMl最小,求M • (3)过y2=-x焦点F的直线与抛物线交 于A,B 且AB在x=1/4上的射影为 MN,则∠MFN=
2 MN AD BC , MN
1 AD BC 2( y0 ) 4
p 1 y0 y0 , 2 4
A D
y
M F
B
o
N C
x
AD AF , BC BF
1 AF BF 2( y0 ) 4
ABF中, AF BF AB 2
(| AF | | BF |) min 2 即y0 min
2
p 0 的焦点, 是抛物线上的一点, 与 x A FA
3)抛物线 y x 上的点到直线 4x 3 y 8 0
4 A. 3
21 p 2
;
的距离的最小值是(
7 B. 5
) A
8 C. 5
D .3
下面是最近两年几个省份的高考试题,请同学 们做一下看看你的实力吧.
1.(2009年山东卷(文)10)设斜率为2的直线 l
y 2 px p 0,
因为点M在抛物线上,所以
p2 即 因此,所求抛物线的标准方程是:
2 2
2
2 p 2,
y 4x
2
例 2. 斜率为 1 的直线 l 经过抛物线 y 2 4 x 的焦 点,且与抛物线相交于 A 、B 两点,求线段 AB 的长.
想 一 想
这是一道简单,但解法 丰富的典型的抛物线问题, 你能给出它的几种解法吗?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抛物线的标准方程及其性质
1.抛物线的标准方程、类型及其几何性质 (0>p ):
①)0(22≠=p px y 的焦半径=PF 2P x +;)0(22≠=p py x 的焦半径=PF 2P y +;
② 过焦点的所有弦中最短的弦,也被称做通径.其长度为2p.
③ AB 为抛物线px y 22=的焦点弦,则 =B A x x 4
2
p
,=B A y y 2p -,||AB =p x x B A ++
1.要有用定义的意识
问题1:抛物线y=42
x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( )
2.求标准方程要注意焦点位置和开口方向
问题2:顶点在原点、焦点在坐标轴上且经过点(3,2)的抛物线的条数有
3.研究几何性质,要具备数形结合思想,“两条腿走路” 问题3:证明:以抛物线焦点弦为直径的圆与抛物线的准线相切
考点1 抛物线的定义
题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换
[例1 ]已知点P 在抛物线y 2
= 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为
练习:已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )
考点2 抛物线的标准方程 题型:求抛物线的标准方程
[例2 ] 求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程: (1)过点(-3,2) (2)焦点在直线240x y --=上
练习:1.若抛物线2
2y px =的焦点与双曲线2
213
x y -=的右焦点重合,则p 的值
2. 对于顶点在原点的抛物线,给出下列条件:
①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1). 能使这抛物线方程为y 2
=10x 的条件是____________.(要求填写合适条件的序号)
3. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程
考点3 抛物线的几何性质
题型:有关焦半径和焦点弦的计算与论证 [例3 ]设A 、B 为抛物线px y 22
=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点
坐标为__________.
练习: 若直线10ax y -+=经过抛物线24y x =的焦点,则实数a =
抛物线的几个常见结论及其应用
结论一:若AB 是抛物线2
2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:
2
124
p x x =,212y y p =-。

例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF
BF
+为定值。

结论二:(1)若AB 是抛物线2
2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则
22sin P AB α
=
(α≠0)。

(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。

例:已知过抛物线2
9y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。

结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。

(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,
求证:(1)以AB 为直径的圆与抛物线的准线相切。

(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相切。

结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。

反之也成立。

例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB
长为P 的值.。

相关文档
最新文档