21.2二次根式的乘法导学提纲
21.2《二次根式的乘法》
(3) 200a b c
3 2
5
4
3
2 3
(4) 20 16 (5) 4m n 8m n
三、趁热打铁
4、(2012广东肇庆,11,3)计算 【解析】 1 1 20 20 4 2 5 5 5、(2012福州,13,4分,)若 20n 是整数,则正整数n的最 小值为 。 解析:先将化为最简二次根式,即,因此 要使是整数,正整数n的最小值为5. 答案:5
三、趁热打铁
3. 化简:
(1) 8 ____ 12 ____ 18 ____ 20 _____ 24 ____ 27 ____ 32 _____ 45 ____ 48 ____ 72 _____ 75 ____ 300 ____ (2) 14 112
1 6 2
35
3
(3)原式 9 27 92 3 9 3
(4)原式 3
一、温故知新
(二)、讲解新课
二次根式的乘法法则的逆用(积的算术平方根)
ab a b (a≥0,b≥0)
思考:该公式的作用是什么? 化简二次根式 拓展: 1.对于多个非负因数的积的算术平方根 ,则:
1 2
3
- 3 3 _____ 2 6 <
1 20 的结果是_____. 5
三、趁热打铁
明辨是非
6、判断下列各式是否正确,不正确的请予以改正:
(4) (9) (4) (9)
成立吗?为什么?
(4) (9) 36 6
积的算术平方根成立的条件
ab a b (a≥0,b≥0)
例 : 能使 x (2 x ) x 2 x 成立
6 20 60
《二次根式的乘法》教学设计教学提纲
《二次根式的乘法》教学设计学习者分析九年级学生刚学完二次根式的概念及性质,通过本节课的学习,引导学生明确积的算术平方根的意义,加深对非负数a的算术平方根的认识。
教学目标一、情感态度与价值观1.培养学生准确计算和化简的严谨的科学精神。
2.发展学生观察、分析、发现问题的能力。
二、过程与方法1.提出问题:问学生“二次根式有哪些性质?”学生回答。
2.引导学生分析二次根式的性质,得出结论:二次根式可以进行平方运算。
3.提问学生:二次根式是否可以进行乘除等计算和化简?4.引出二次根式的乘法。
5.例举实例,让学生观察二次根式的乘法,学生发现规律。
6.分析前面二次根式的计算和化简结果,总结出共同点,得出概念。
7.利用概念对相同的二次根式进行合并,得到对二次根式计算和化简的目的。
三、知识与技能1.二次根式的乘法法则,二次根式的乘法运算和二次根式的化简。
2.通过比较,猜想论证二次根式的乘法运算法则,通过计算和化简掌握二次根式的乘法运算法则。
3.通过二次的计算和化简,培养学生对根式的运算兴趣,并掌握计算的技巧。
教学重点、难点1.二次根式的乘法运算和化简。
0,0)a b=≥≥0,0)a b=≥≥的运用。
教学资源1.教师制作的多媒体课件2.上课环境为黑板、多媒体大屏幕等环境。
《二次根式的乘法》教学活动过程描述教学活动1[创设情境导入新课](一)创设情境,导入新课:二次根式有哪些性质?完成下列填空:0)a≥是一个数。
②2=(0)a≥=(0)a≥学生观察:学生举手回答……得到:二次根式可以进行平方运算。
提问:二次根式能否进行其他运算?比如:加减运算,乘除运算等等。
学生回答:精品文档精品文档 (2).教师例举:,的长方形,这个长方形的面积是多少? 叫学生到黑板上做,面积=长⨯宽从而引出二次根式的乘法..教学活动2[举例让学生从中发现规律,导出公式](二)问题启发,合作探究二次根式的乘法:(1).使用多媒体课件打出第一张幻灯片:屏幕上显示123412===⨯==Q7217722==⨯=Q 学生观察:教师提问:你们能发现什么规律?学生回答:用你们发现的规律用计算器验算,= (0,0)a b ≥≥,教师总结:一般地,0,0)a b =≥≥提问:你们发现什么了?(2).使用多媒体课件打出第二张幻灯片:屏幕上显示反之也成立注:积的算术平方根,等于积中各因式的算术平方根的积(备注:被开方的a,b 必须是非负数才有意义)(3).使用多媒体课件打出第三张幻灯片:屏幕上显示①这就是二次根式的乘法法则,两个二次根式相乘,结果仍是二次根式。
21.2二次根式的乘法 (1)
16ab c
3.已知一个直角三角形的斜边 c=21,一条直角边b=4.求另一 条直角边a.
1.本节课学习了积的算术平方根和算术平方 根的积。
a b ab
a≥0,b≥0
ab a b (a 0, b 0)
化简二次根式的步骤:
1.将被开方数尽可能分解成几个平方数. 2.应用
ab a b
积的算术平方根等于积中各因式的算术平方根.
例题1 计算: ( 1)
6
1 7 ( 2) 2
32
例题2 化简: (1) 16 81 ( 2)
4a b
2
3
思考:
( 4) ( 9) 4 9对吗?
例题3 计算:
1.
14 7
2.3
5 2 10
1 3. 3x xy 3
2 2
C
102 202 500 102 5 10 5 10 5 (cm)
答:AB长 10 5 cm.
练习:
1.化简: ( 1) ( 3)
49 121 18
27 15 3x
3
( 2) ( 4)
225 4y
2.化简:
( 1) ( 3) ( 2) ( 4)
8m n
2 2 2 3
a b ab
一般的:
a b ab
反过来:
(a≥0,b≥0)
(a≥0,b≥0) ab a b
在本章中, 如果没有特别说明,所有的字母都表示正数.
二次根式的乘法:
a b ab(a 0, b 0)
算术平方根的积等于各个被开方数积的算术平方根
ab a ( b a 0,b 0)
21.2二次根式的乘除法
a a a a = (a≥0,b>0)和 = (a≥0,b>0) b b b b
难点:二次根式乘除法法则的运用。 知识点 1.二次根式的乘法 例 1.计算 (1) 4 × 9 =_______, 4 9 =______; (2) 16 × 25 =_______, 16 25 =________. 正运算:分析:直接利用 a · b = ab (a≥0,b≥0)计算即可. 解: 4 × 9 _=____ 4 9 , 16 × 25 __=___ 16 25 , 100 × 36 ____=____
25.若 x,y 是实数,且 y
x 1 1 x
|1 y | 1 ,求 的值。 2 y 1
九年级数学第二十一章二次根式测试题(B)
时间:45 分钟
一、选择题(每小题 2 分,共 20 分) 1. (2005·湖北襄樊)下列说法正确的是( ) A.若 a 2 a ,则 a<0 C. a 4 b 8 a 2 b 4 2.二次根式 A. 3 2
解:(1) 12xy ·
知识点 3 二次根式的除法 2.填空
9 16 16 9 (1) 16 =________, 16 =_________; (2) 36 =________, 36 =________; 4 36 36 4 (3) 16 =________, 16 =_________; (4) 81 =________, 81 =________. 9 16 4 36 16 36 9 4 规律: 16 ______ 16 ; 36 ______ 36 ; 16 _______ 16 ; 81 _______ 81 . a a a a = (a≥0,b>0)和 = (a≥0,b>0) b b b b
21.2 二次根式的乘法
(1) 24 27 (4) 0.4 3.6
) 6 ( 15) (2
(3) 18 20 75
梳理
a b ab (a≥0,b≥0)
ab a b (a≥0,b≥0)
最简二次根式.
填空:
25 16 ∵ 25 ___, 16 ___ 25 ___ 16
x=1
x为任意实数.
1 x 0 x0
2x 1 x
x 0且x 1
一个长方形的长为 6cm,宽为 3cm, 这个长方形的面积是多 少?
解 : 长方形的面积为 3 6
21.2 二次根式的乘法
探究
计算:
(1) 4 9 6 ) 4 9 6 (2 1 3 1 3 (3) 9 ) 9 (4 4 2 4 2 归纳
当a>0,b>0 时, 如果 a>b , 那么
a b
比较大小:
1) 7 6 与 6 7 2) 4 5 与 9 3) 2 3 与 3 2
化简 25 x y
3
4
解: 25 x y 0
3 4
y 0, x 0.
4
25 x y
3
4
5y x 2 5y x x
探究
把
a b ab 反过来,就
(a≥0,b≥0) ab a b
可以得到:
利用它可以进行二次根式的化简.
例题
化简:
(1) 16 81 16 81 4 9 36
(2) 4a b
2 3
(3) 12 (4) 1014
化简二次根式,就是要把被开方数中的 平方数(或平方式)从根号里开出来.
专题21.2 二次根式的乘除【九大题型】(举一反三)(华东师大版)(解析版)
专题21.2二次根式的乘除【九大题型】【华东师大版】【题型1求字母的取值范围】 (1)【题型2二次根式乘除的运算】 (2)【题型3二次根式的符号化简】 (3)【题型4最简二次根式的判断】 (5)【题型5化为最简二次根式】 (6)【题型6已知最简二次根式求参数】 (7)【题型7分母有理化】 (8)【题型8比较二次根式的大小】 (9)【题型9分母有理化的应用】 (10)【例1】(2022=x的取值范围是x>8.【分析】直接利用二次根式的性质进而得出关于x的不等式组求出答案.=∴≥0−8>0,则x的取值范围是:x>8.故答案为:x>8.【变式1-1】(2022秋•犍为县校级月考)已知(−3)⋅(−−2)=3−⋅+2,使等式成立的x的取值范围是﹣2≤x≤3.【分析】根据二次根式的性质得出关于x的不等式组,进而求出答案.【解答】解:∵(−3)⋅(−−2)=3−⋅+2,∴3−≥0+2≥0,解得:﹣2≤x≤3.故答案为:﹣2≤x≤3.【变式1-2】(2022=x的取值范围是()A.x>0B.x≥0C.x>2D.x≥2【分析】根据二次根式和分式有意义的条件进行解答即可.【解答】解:由题意得:−2≥0>0,解得:x≥2,故选:D.【变式1-3】(2022•宝山区校级月考)已知实数x满足22−3=x•2−,则x的取值范围是0≤x≤2.【分析】依据二次根式被开方数大于等于0和2=a(a≥0)列不等式组求解即可.【解答】解:∵原式=(2−p2=x•2−,∴x≥0且2﹣x≥0.解得:0≤x≤2.故答案为:0≤x≤2.【题型2二次根式乘除的运算】【例2】(2022•长宁区期中)计算:(1)354;(2)12.【分析】(1)利用二次根式的乘法法则计算即可.(2)根据二次根式的混合运算法则计算即可.【解答】解:(1)原式=5×8×36=(2)原式=2×15×=【变式2-1】(2022•长宁区期中)计算:83.【分析】直接利用二次根式的乘除运算法则化简求出答案.【解答】解:原式=2×=9=82.【变式2-2】(2022÷(⋅(−(x>0).【分析】根据二次根式的乘除法运算法则进行计算.【解答】解:∵x>0,xy3≥0,∴y≥0,∴原式=−=−46=−94xy•(−56x B)=1582B.【变式2-3】(2022−÷b<0).【分析】直接利用二次根式的性质化简进而得出答案.【解答】解:∵由二次根式的性质可得a<0,b<0,∴原式=2•(﹣b)B•(32a B)÷=﹣3a2b÷=﹣3a2b×(−=a2b2×=ab B.【题型3二次根式的符号化简】【例3】(2022•安达市校级月考)已知xy>0,将式子x移到根号内的正确结果为()A.B.−C.−D.−−【分析】根据被开方数大于等于0求出y<0,再根据同号得正判断出x<0,【解答】解:∵−2>0,∴y<0,∵xy>0,∴x<0,∴=−=−−.故选:D.【变式3-1】(2022•自贡期中)把二次根式)A B C.−D.−【分析】根据二次根式的性质先判断a的符号,然后再进行计算.【解答】解:由题意可知−13>0,∴a<0,∴=a=−故选:D.【变式3-2】(2022•张家港市校级期末)将(2﹣x()A.−2B.2−C.﹣22−D.−−2【分析】根据二次根式的性质得出x﹣2的符号,进而化简二次根式得出即可.【解答】解:由题意可得:x﹣2>0,则原式=−−2.故选:D.【变式3-3】(2022春•龙口市期中)把(a﹣b根号外的因式移到根号内结果为【分析】先根据二次根式成立的条件得到−1K>0,则a﹣b<0,所以原式变形为﹣(b﹣a−(−p2•法得到−⋅【解答】解:∵−1K>0,∵a﹣b<0,∴原式=﹣(b﹣a=−(−p2•=−=−−.故答案为−−.【知识点2最简二次根式】我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.【例4】(2022、18、2−1、0.6中,最简二次根【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.、2−1是最简二次根式,、2−1.【变式4-1】(2022春•曲靖期末)下列二次根式中属于最简二次根式的是()A.48B.14C D.4+4【分析】根据最简二次根式的定义:被开方数中不含能开得尽方的因数或因式,被开方数中不含分母,即可解答.【解答】解:A、48=43,故A不符合题意;B、14是最简二次根式,故B符合题意;C=C不符合题意;D、4+4=2+1,故D不符合题意;故选:B.【变式4-2】(2022②2+1③④0.1是最简二次根式的是②③(填序号).【分析】根据最简二次根式的被开方数不含分母;被开方数不含能开得尽方的因数或因式,可得答案.【解答】解:②2+1③是最简二次根式,故答案为:②③.【变式4-3】(2022、12、30、+2,402,2+2中,是最简二次根式的共有3个.【分析】结合选项根据最简二次根式的概念求解即可.2、12、30、+2,402,2+2中,是最简二次根式的是30、+2,2+2,故答案为:3【例5】(2022春•安阳期末)下列二次根式化成最简二次根式后,被开方数与另外三个不同的是()A.2B.58C.28D【分析】先把B、C、D化成最简二次根式,再找被开方数不同的项.【解答】解:∵2是最简二次根式,58=102,28=27,=∴化成最简二次根式后,被开方数相同的是A、B、D.故选:C.【变式5-1】(2022春•番禺区期末)把下列二次根式化成最简二次根式(1100(2)32(3【分析】(1)直接利用二次根式的除法运算法则性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的除法运算法则性质化简得出答案.【解答】解:(1=(2)32=42;(3==【变式5-2】(2022秋•合浦县月考)把下列各式化成最简二次根式:(1(2)−【分析】本题需先将二次根式分母有理化,分子的被开方数中,能开方的也要移到根号外.【解答】解:(1)原式==275×53×33;(2)当b,c同为正数时,原式=−B2×2×=−当b,c同为负数时,原式=−B2×(−2)×=−当c=0时,原式=0.【变式5-3】(2022化成最简二次根式是±or1).【分析】对被开方数的分母进行因式分解,然后约分;最后将二次根式的被开方数的分母有理化,化简求解.【解答】解:原式==①当y>0时,上式=②当y<0时,上式=−【题型6已知最简二次根式求参数】【例6】(2022春•浉河区校级期末)若二次根式5+3是最简二次根式,则最小的正整数a为2.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:若二次根式5+3是最简二次根式,则最小的正整数a为2,故答案为:2.【变式6-1】(2022春•武江区校级期末)若是最简二次根式,则a的值可能是()A.﹣4B.32C.2D.8【分析】根据二次根式有意义的条件判断A选项;根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式判断B,C,D选项.【解答】解:A选项,二次根式的被开方数不能是负数,故该选项不符合题意;B2=C选项,2是最简二次根式,故该选项符合题意;D选项,8=22,故该选项不符合题意;故选:C.【变式6-2】(2022秋•崇川区校级期末)若2rK2和33K2r2都是最简二次根式,则m =1,n=2.【分析】利用最简二次根式定义列出方程组,求出方程组的解即可得到m与n的值.【解答】解:∵若2rK2和33K2r2都是最简二次根式,∴+−2=13−2+2=1,解得:m=1,n=2,故答案为:1;2.【变式6-3】(2022春•宁都县期中)已知:最简二次根式4+与K23的被开方数相同,则a+b=8.【分析】已知两个最简二次根式的被开方数相同,因此它们是同类二次根式,即:它们的根指数和被开方数相同,列出方程组求解即可.【解答】解:由题意,得:−=24+=23解得:=5=3,∴a+b=8.【知识点3分母有理化】①分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;②两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【题型7分母有理化】【例7】(2022)A.4b B.2CD【解答】解:∵a>0,ab>0,即a>0,b>0;===【变式7-1】(2022•沂源县校级开学)分母有理化:=2;(2=3;(3=2.(1=【解答】解:(1==(2(3=【变式7-2】(2022春•海淀区校级期末)下列各式互为有理化因式的是()A.+和−B.−和C.5−2和−5+2D.+和+【分析】根据有理化因式定义:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式,结合各个选项中两个代数式特征作出判断即可.【解答】解:A.+•−=(+p(−p,因此+和−不是有理化因式,故选项A不符合题意;B.−•=−a,所以−和是有理化因式,因此选项B符合题意;C.(5−2)(−5+2)=﹣(5−2)2,所以5−2和−5+2)不是有理化因式,因此选项C不符合题意;D.(x+y)•(x+y)=(x+y)2,因此x+y和x+y不是有理化因式,所以选项D不符合题意;故选:B.【变式7-3】(2022【分析】根据二次根式的性质以及运算法则即可求出答案.【解答】解:原式======【题型8比较二次根式的大小】【例8】(2022春•海淀区校级期末)设a=22−3,b=1,则a、b大小关系是()A.a=b B.a>b C.a<b D.a>﹣b【分析】本题考查二次根式,先求出b的值,再与a比较得出结果.【解答】解:∵a=22−3==−(22+3)∴b=1故选:B.【变式8-1】(2022春•金乡县期中)已知a=b=2+5,则a,b的关系是()A.相等B.互为相反数C.互为倒数D.互为有理化因式【分析】求出a与b的值即可求出答案.=5+2,b=2+5,【解答】解:∵a=故选:A.)【变式8-2】(2022B C DA【解答】解:将三个二次根式化成同分母分数比较:==故选:C.【变式8-3】(2022秋•雨城区校级期中)利用作商法比较大小【分析】根据作商比较法,看最后的比值与1的大小关系,从而可以解答本题.=1,【题型9分母有理化的应用】【例9】(2022春•大连月考)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+3)(2−3)=1,(5+2)(5−2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法====7+43.像这样,通过分子、(1)4+7的有理化因式可以是4−分母有理化得2.(2)计算:+②已知:x =y =x 2+y 2的值.【分析】(1)找出各式的分母有理化因式即可;(2)①原式各项分母有理化,合并即可得到结果;②将x 与y 分母有理化后代入原式计算即可得到结果.【解答】解:(1)4+7的有理化因式可以是4−7,故答案为:4−7;(2)①原式=2−1+3−2+⋯+2000−1999=2000−1=205−1;②∵x ==2−3,y ==2+3,∴x 2+y 2=7﹣43+7+43=14.【变式9-1】(2022=3)=7+43;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简4+7−4−7,可以先设x =4+7−4−7,再两边平方得x 2=(4+7−4−7)2=4+7+4−7−2(4+7)(4−7)=2,又因为4+7>4−7,故x >0,解得x =2,4+7−4−7=2,根据以上方法,+8+43−8−43的结果是()A .3﹣22B .C .42D .3【分析】直接利用有理化因式以及二次根式的性质、完全平方公式分别化简得出答案.【解答】解:设x =8+43−8−43,两边平方得x 2=(8+43−8−43)2=8+43+8−43−2(8+43)(8−43)=8,∵8+43>8−43,∴x >0,∴x =22,原式=22=6−22=+22=3﹣22+22=3.故选:D.【变式9-2】(2022•普定县模拟)阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘以同一个适当的代数式,使分母不含根号.例==−1;(1(2)关于x的方程3x−12=++⋯+的解是11.【分析】(1)根据材料进行分母有理化即可;(2)先分母有理化,再根据式子的规律即可求解.==2−1【解答】解:(1(2)3x−13x−12=3x−12=(3+1)(+(5+3)(5−3)+(7+7−5)+⋯+(3x−12=12(3−1+5−3+7−5+⋯+99−97),6x﹣1=﹣1+99,6x=311,x=【变式9-3】.(2022春•九龙坡区校级月考)材料一:有这样一类题目:将±2化简,如果你能找到两个数m、n,使m2+n2=a且mm=,则将a±2将变成m2+n2±2n,即变成(m±n)2开方,从而使得±2化简.例如,5±26=3+2±26=(3)2+(2)2±22×3=(3±2)2,所以5±26= (3±2)2=3±2;=======3(三).以上这种化简的步骤叫做分母有理化.====3−1(四);请根据材料解答下列问题:(1)3−22−1;4+23+1.+⋯+(2【分析】(1)根据材料一和完全平方公式即可得出答案;(2)根据材料二将每一个式子分母有理化,并合并同类二次根式可得出答案.【解答】解:(1)∵3﹣22=2+1﹣22=(2−1)2,∴3−22=(2−1)2=2−1,∵4+23=3+1+23=(3+1)2,∴4+23=(3+1)2=3+1,故答案为:2−1,3+1;(2=(3+1)(3−1)+(5+3)(5−3)+•••2r1+2K1)(2r1−=3−1+5−3+7−5+•••+2+1−2−1=﹣1+2+1.。
华师大版数学九年级上册 第21章21.2 二次根式的乘除(3)二次根式的乘法教案
华师大版数学九年级上册第21章21.2 二次根式的乘除(3)二次根式的乘法教案课题二次根式的乘法1.掌握二次根式的乘法法则和积的算术平方根的性质.2.熟练进行二次根式的乘法运算及化简.掌握和应用二次根式的乘法法则和积的算术平方根的性质.正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简.一、情景导入感受新知问题情境:你能解决下面的问题吗?如图,设长方形的面积为S,相邻两边长分别为a,b,已知a=2,b =,求S.二、自学互研生成新知【自主探究】自学课本P5-7的内容,完成下面问题:1.计算下列各式,观察计算结果,你发现什么规律?(1)×=__15__,=__15__.(2)×=__12__,=__12__.(3)×=__20__,=__20__.2.用计算器填空:(1)×__=__(2)×__=__(3)×__=__(4)×__=__【合作探究】探究1:二次根式乘法1.参考上面的结果,用“>”“<”或“=”填空.×__=__.×__=__.×__=__.2.总结归纳:你找出二次根式进行乘法运算的规律了吗?含字母的二次根式呢?结论:·=(a≥0,b≥0).探究2:积的算术平方根问题:把·=(a≥0,b≥0)反过来,仍然成立吗?积的算术平方根的性质:=·(a≥0,b≥0).思考:(1)a,b的取值范围有什么特点?(2)这个公式与二次根式乘法在用法上有什么区别和联系?【师生活动】①明了学情:关注学生对二次根式乘法和积的算术平方根的理解与掌握.②差异指导:巡视中发现个性问题及时点拨,共性问题及时引导.③生生互助:学生小组内交流讨论,相互释疑.三、典例剖析运用新知【合作探究】【例1】计算:(1)×;(2)×.分析:运用公式计算后,结果要进行化简.解:(1)×==;(2)×===4.【例2】化简,使被开方数不含完全平方的因数.分析:被开方数12=22×3,含有完全平方因数22,利用=a(a≥0)将这个因数开出来.解:==×=2.【变式迁移】计算:(1);(2)·.解:(1)原式=3;(2)原式=5.四、课堂小结回顾新知通过本节课的学习,你有哪些收获?还存在哪些疑惑?请谈谈你的想法和同学们分享。
华师大版-数学-九年级上册-21.2 二次根式的乘法 教案
二次根式的乘法 教学目标1.掌握二次根式乘法法则;(重点)2.会进行二次根式的乘法运算.(重点、难点) 教学过程一、情境导入小颖家有一块长方形菜地,长6m ,宽3m ,那么这个长方形菜地的面积是多少?二、合作探究探究点:二次根式的乘法【类型一】 二次根式的乘法法则成立的条件式子x +1·2-x =(x +1)(2-x )成立的条件是( )A .x≤2 B.x≥-1C .-1≤x≤2 D.-1<x <2解析:根据题意得⎩⎪⎨⎪⎧x +1≥0,2-x≥0,解得 -1≤x≤2.故选C.方法总结:运用二次根式的乘法法则:a ·b =ab (a≥0,b≥0),必须注意被开方数均是非负数这一条件.【类型二】 二次根式的乘法运算计算:(1)3×5;(2)14×64; (3)627×(-33);(4)3418ab ·⎝ ⎛⎭⎪⎫-2a 6b2a . 解析:有理式的乘法运算律及乘法公式对二次根式同样适用,计算时注意最后结果要化为最简形式. 解:(1)3×5=3×5=15;(2)14×64=14×64=16=4; (3)627×(-33)=-1827×3=-1881=-18×9=-162;3418ab ·⎝ ⎛⎭⎪⎫-2a6b2a = -34·2a ·18ab ·6b2a =-32a·36×3b3= -32a ·6b 3b =-9b a3b. 方法总结:在运算过程中要注意根号前的因数是带分数时,必须化成假分数,如果被开方数有能开得尽方的因数或因式,可先将二次根式化简后再相乘.三、板书设计教学反思在教学安排上,体现由具体到抽象的认识过程.对于二次根式的乘法法则的推导,先利用几个二次根式的具体计算,归纳出二次根式的乘法运算法则.在具体计算时,可以通过小组合作交流,放手让学生去思考、讨论,这样安排有助于学生缜密思考和严谨表达,更有助于学生合作精神的培养.。
212二次根式乘除法(第一课时)教案设计
如果两个电视塔的高分别是h1km, h2km,那么它们的传播半径的比是
最后教师给出最 简二次根式的概 念。
.
这个式子是最简二次根式吗?如果
不是说出为什么?
学生分组讨论
并化为最简二次根式.
教师点评:不是
最后由3-4个
人到黑板板书化
简过程。
进一步理解 最简二次根 式的概念
例4:.如图,在Rt△ABC中, ∠C=90°,AC=2.5cm,BC=6cm,求AB 的长.
利用这个简单问题树 立学生知识运用的信 心,更激励了学困生 的学习兴趣。
这条性质用法: 对二次根式进行 化简。
找同学板演,其 他同学独立完 成。
对=· (a0,b0)进行熟练应用。
(5) 例题3 计算:
练习: 化简:
师生共同对板演 问题进行评价。 最后由学生总结 归纳化简二次根 式的要求(以小 组讨论的形 式)。 1、 被开方数进
2007-
二次根式乘除法(第一课时)教案设计绥棱县第六中学克音
=________;(4)
=______.
活动4: 小结:由学生总结收获.
在小结时教师关 注: 1、学生对知识 的归纳、总结整 理能力。 2、数学语言表 达能力。
运用知识使 问题化难为 简,培养学 生类比分析 能力
作业:教材P15 习题21.2 2. 7. 8. 9.
10-15 二次根式乘除法 第一课时 教案设计
行因数或因 式分解。 2、 分解后把能 开尽方的开 出来。
进一步巩固对二次根 式的化简方法。
教师巡视 学生完成后交 流 教师点评
问题与情境
活动4:
三、应用拓展:(大显身 手)
1:判断下列各式是否正确并说明 理由。 (1)=
华师大版-数学-九年级上册-21.2二次根式的乘除法(3)教案
教学内容21.2二次根式的乘除法(3)序号教学时间教具知识技能:理解最简二次根式的概念,并运用它把不是最简二次根式的化最简二次根式.过程方法:学生自主学习,小组合作,交流,探究,教师指导情感态度:培养良好的解题习惯。
重点难点重点:最简二次根式的运用.难点:会判断这个二次根式是否是最简二次根式.教学流程教学内容教法学法设计复检导入预习1.计算(1)35,(2)3227,(3)82a本节课我们来学习有关最简二次根式的知识。
观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含();2.被开方数中不含能开得尽方的()我们把满足上述两个条件的二次根式,叫做最简二次根式.例1.判断下列二次根式是否是最简二次根式?1.32.12 3.ab4.ba2 5.53例1.(1)5312; (2) 2442x y x y; (3) 238x y学生回答教师指导。
教师直接引入,引起学生注意学生自主预习小组讨论教师指导、并做点拨。
教学目标内容要求教学流程教学内容教法学法设计展示巩固总结反馈作业学生展示预习问题将下列二次根式化成最简二次根式1.24 2. 32 3.214.ba2 5.ba3本节课应掌握:最简二次根式的概念及其运用.化简:1.36 2.12 3.ba2 4.53完成练习册小组长展示,其他组长补充。
教师指导。
教师结合例题引导学生完成。
学生独立完成教师巡视指导,小组长评价。
教学反思。
华东师大版九年级数学上册《21章 二次根式 21.2 二次根式的乘除 二次根式的乘法》教学案例_3
21.2二次根式的乘法教学内容:21.2二次根式的乘法教学目标:1、 理解二次根式的乘法法则,会用二次根式的乘法法则进行二次根式的乘法运算;2、 理解积的算术平方根的法则,会用积的算术平方根的法则化简二次根式;3、 经过探索和发现的过程,培养学生创新能力。
教学重点:二次根式的乘法法则;教学难点:积的算术平方根法则;教学方法:探究学习教学准备:课件教学过程:一、复习与练习1、当x 为何值时,代数式xx 3652-+有意义。
2、已知y=633+-+-x x ,求的值. 3、若011=-++a a ,求20162016b a +的值.4、计算:22)7()53(--二、探究学习(一)二次根式的乘法1、 计算:(1)=⨯94 ;=36 ; (2)=⨯254 ; =100 ;(3)=⨯941 ; =49 ; (4)=⨯64149 ; =6449 ; (5)=⨯8101.0 ;=81.0 ; x y2、探索与发现(1)=⨯9436 (2)=⨯254100(3)=⨯94149 (4)=⨯641496449 (5)=⨯8101.081.0 3、总结规律(1)符号表述:)0,0(,≥≥=⨯b a ab b a(2)文字表述:二次根式乘法法则:二次根式相乘,把它们的被开方数相乘。
4、应用例1、计算:(1)812⨯ (2)4551⨯ 练习:课后练习第1题(二)积的算术平方根1、积的算术平方根的法则:(1)符号表述:)0,0(,≥≥⨯=b a b a ab(2)文字表述:积的算术平方根,等于每个因式的算术平方根的积。
2、积的算术平方根的应用例2、化简(1)12 (2)18解:(1)12=32323434=⨯=⨯=⨯ (2)18=23232929=⨯=⨯=⨯练习:课后练习第2题。
三、小结1、学生小结2、教师小结本节课学习了二次根式的乘法和积的算术平方根,重点是运用法则进行计算和化简。
四、作业设计习题21.2第1、2题。
《二次根式的乘法》 导学案
《二次根式的乘法》导学案一、学习目标1、理解二次根式乘法法则。
2、会运用二次根式乘法法则进行计算。
3、经历探索二次根式乘法法则的过程,发展学生的归纳、猜想能力。
二、学习重难点1、重点(1)掌握二次根式的乘法法则。
(2)能熟练运用二次根式乘法法则进行计算。
2、难点二次根式乘法法则的灵活运用。
三、学习过程(一)知识回顾1、什么是二次根式?形如\(\sqrt{a}\)(\(a\geq 0\))的式子叫做二次根式。
2、二次根式有哪些性质?(1)\(\sqrt{a}\geq 0\)(\(a\geq 0\))(2)\((\sqrt{a})^2 = a\)(\(a\geq 0\))(二)探索新知计算下列式子:\(\sqrt{4}\times\sqrt{9}\),\(\sqrt{25}\times\sqrt{1}\),\(\sqrt{16}\times\sqrt{25}\)观察上述计算结果,你能发现什么规律?通过计算可得:\(\sqrt{4}\times\sqrt{9} = 2\times 3 = 6\),而\(\sqrt{4\times 9} =\sqrt{36} = 6\)\(\sqrt{25}\times\sqrt{1} = 5\times 1 = 5\),而\(\sqrt{25\times 1} =\sqrt{25} = 5\)\(\sqrt{16}\times\sqrt{25} = 4\times 5 = 20\),而\(\sqrt{16\times 25} =\sqrt{400} = 20\)可以发现:\(\sqrt{a}\times\sqrt{b} =\sqrt{ab}\)(\(a\geq 0\),\(b\geq 0\))这就是二次根式的乘法法则。
(三)法则证明为什么\(\sqrt{a}\times\sqrt{b} =\sqrt{ab}\)(\(a\geq0\),\(b\geq 0\))呢?因为\(\sqrt{a}\)表示非负数\(a\)的算术平方根,所以\(\sqrt{a}\geq 0\);同理\(\sqrt{b}\geq 0\)。
精英中学二次根式导学提纲
精英中学二次根式导学提纲一、知识网络梳理1. 二次根式的定义:形如√a(a ≥ 0)的式子叫做二次根式。
2. 二次根式的性质:√a(a ≥ 0)是一个非负数。
√a² = a。
3. 二次根式的运算:加减运算:合并同类二次根式。
乘除运算:利用根式的性质进行化简。
4. 二次根式的化简:通过因式分解、配方法等手段,将二次根式化为最简形式。
二、重点难点解析1. 重点:理解二次根式的定义,掌握二次根式的性质和运算规则,能够进行二次根式的化简。
2. 难点:正确运用二次根式的性质进行化简,解决实际问题。
三、典型例题解析1. 例1:化简√(25/81)。
分析:将分母进行因式分解,再开方。
解答:√(25/81) = √(5²/9²) = 5/9。
2. 例2:求√(3 + 2√2)的值。
分析:通过配方法,将原式转化为完全平方形式。
解答:√(3 + 2√2) = √(1 + 2√2 + 2) = √((√2 + 1)²) = √2 + 1。
3. 例3:解方程:√(x - 3) + x = 5。
分析:先求出x的取值范围,再解方程。
解答:由题意得,x - 3 ≥ 0,所以x ≥ 3。
将方程转化为√(x - 3) = 5 - x,两边平方得 x - 3 = (5 - x)²,解得 x = 4。
经检验,x = 4是原方程的解。
四、巩固练习1. 化简下列二次根式:√(12/49) (答案:2/7)√((3x)/(x² + 4)) (答案:3/(x + 2))2. 解方程:x + √(x - 2) = 4 (答案:x = 5)(y - 5)² = (2y - 1) × √(y - 3) (答案:y = 9)。
二次根式的乘法导学案
第二十一章 二次根式 21.2二次根式的乘除(1)课程要求学习目标:(1) 掌握并能运用二次根式的乘法法则b a ab ∙==b a ab ∙=(0,0)a b ≥≥进行相关计算。
(2) 掌握并能运用积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥。
(3) 通过本课时的学习,进一步理解从特殊到一般的归纳思想方法。
学习重点: 积的算术平方根的性质及二次根式的乘法法则学习难点:积的算术平方根的性质及二次根式的乘法法则的理解与运用预习导学——不看不讲我自学知识点一、二次根式的乘法运算学一学:1阅读教材P 10的探究,你发现什么规律了吗? 指出你发现的规律。
规律:两个二次根式相乘,将它们的被开方数相乘,根指数不变.用式子表示为:=≥≥0,0)a b2自学教材P 10例1,自学后你能做对P11练习1吗?解:105252=⨯=⋅; 636123123==⨯=⋅;y xxy x xy 21212=⋅=⋅; 24721288721288==⨯=⋅知识点二:积的算术平方根的性质学一学:1.阅读教材P10例1下面的内容及例2(包括警示框),说说积的算术平方根的性质,并通过自学例2做对练习2。
两个非负数的积的算术平方根,等于这两个非负数的算术平方根的积.用式子表示为:=≥≥0,0)a b .771171214912149=⨯=⨯=⨯;15152252==;y y y 244=⋅=;ac bc ac c b c ab 416162232=⋅⋅⨯=2.自学教材P11例3,说说例3的计算过程中哪些地方运用了二次根式的乘法法则,哪些地方用到了积的算术平方根的性质,你还学到了哪些运算技巧?在化简时一般先将被开方数进行因数分解或因式分解.练一练:教材P11练习3矩形的面积S=54522210222102=⨯=⨯=⨯cm 2.我求助合作探究——不议不讲我讨论(我展示)互动探究一:计算下列各题:(1)((-⨯;(2)1(2.解:(1) ((-⨯1(8)()41(8)()4=-⨯-⨯=-⨯-⨯222225=====⨯=(2)1(2)42(2212mnmm+⨯-=)2(2221nmmm+⋅⨯-=)2()2(212nmm+-=nmm2)2(212+⨯-=nmmnmm22221+-=+⨯-=互动探究二:化简下列各式::解:=0.90.70.63. ==⨯==38=⨯==(1)(b c b c=⋅+=+【方法归纳交流】①在被开方数已经分解为几个因数的积的时候,不必把几个因数的积计算出来再进行化简,直接化简即可.;②对二次根式的被开方数可以利用“短除法”分解因数;如果需化简的二次根式的被开方数是一个多项式,可以考虑对其分解因式我收获学习笔记【知识链接】【学法指导】【个性备课】【教学反思】达标测评基础题―――初显身手1.下列计算正确的是( B )6==6==1==1==2. 对于所有实数,a b,下列等式总能成立的是(C)A.2=+a b=+a b22=+a b=+ab3.__________=.;18.4.=成立的条件是_________.4x ≥.5.,面积为为.6计算:解:215===x .能力题―――挑战自我7.答案:24. 8._______.=答案:2x y=10计算:(114π-⎛⎫+ ⎪⎝⎭解:(114π-⎛⎫+ ⎪⎝⎭415549.=++=+=+=11.解:24=⨯=12.解:221010ab c ab c =====拓展题―――勇攀高峰(1结果是有理数?A ..D. E . 0问题的答案是(只需填字母): ; (2)则这个数的一般形式是什么(用代数式表示)。
二次根式乘法导学稿
八年级数学下册第导学稿执笔人:课题二次根式的乘法课型新授课第周第课时教师寄语每一个成功者都有一个开始。
勇于开始,才能找到成功的路。
学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。
2、熟练进行二次根式的乘法运算及化简。
重点:掌握和应用二次根式的乘法法则和积的算术平方根的性质。
难点:正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简学生自主活动材料一.前置自学(自学)阅读课本P6 ~7 页,思考并完成下列问题:(15分钟)1、计算:(1)4×9=______ 94⨯=_______(2)16×25 =_______ 2516⨯=_______(3)100×36 =_______ 36100⨯=_______2、根据上题计算结果,用“>”、“<”或“=”填空:(1)4×9_____94⨯(2)16×25____2516⨯(3)100×36__36100⨯3、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?二.合作探究(交流)4、思考下列问题(1)、二次根式的乘法法则是什么?如何归纳出这一法则的?(2)、如何二次根式的乘法法则进行计算?(3)、积的算术平方根有什么性质?(4)、如何运用积的算术平方根的性质进行二次根式的化简。
5、依照例题进行计算:(1)9×27(2)25×32(3)a 5·ab 51 (4)5·a 3·b 31 三.拓展提升(展示)6、化简:①54 ②2212b a③4925⨯ ④64100⨯四.当堂达标(达标)7、等式1112-=-∙+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-18、下列各等式成立的是( ).A .45×25=85B .53×42=205C .43×32=75D .53×42=2069、二次根式6)2(2⨯-的计算结果是( )A .26B .-26C .6D .1210、化简:(1)360; (2)432x ;11、计算:(1)3018⨯; (2)7523⨯自我评价专栏(分优良中差四个等级)自主学习: 合作与交流: 书写: 综合:。
二次根式知识点总结教学提纲
二次根式知识点总结教学提纲
一、基础知识概述:
1.什么是二次根式
2.二次根式的表达形式
二、两个重要的概念:
1.平方根:定义、性质
2.二次根式的合并:同类项合并、非同类项的二次根式如何合并
三、二次根式的化简:
1.化简含有同类项的二次根式
a.同类项的二次根式如何相加、相减
b.相同底数的平方根,底数相同时如何运算
c.求和公式的应用
2.化简含有非同类项的二次根式
a.二次根式如何合并
b.分子、分母中都含有二次根式时如何化简
四、二次根式的四则运算:
1.二次根式的加法和减法
a.合并同类项
b.化简结果
2.二次根式的乘法和除法
a.二次根式的乘法原理
b.二次根式的除法原理
c.运用乘法、除法原理进行计算
五、二次根式的应用问题:
1.求解二次根式的值
a.通过化简得到简化的二次根式
b.计算二次根式的值
2.应用问题求解
a.利用二次根式进行实际问题求解
六、二次根式的估算:
1.估算二次根式的整数部分
a.平方根的大小估算
b.二次根式整数部分的估算
2.估算二次根式的大小
a.判断二次根式的大小关系
b.利用估算确定二次根式的取值范围
七、二次根式的图像表示:
1.平方根函数的图像
2.二次根式在坐标轴上的图像表示
八、辅助工具与技巧:
1.计算器的使用
2.化简过程的记录与整理技巧
九、拓展知识与练习:
1.自然数的算术平方根
2.分式中的二次根式
3.练习题的解答技巧与思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
呼兰区利民二中“352课堂教学模式”导学提纲
学科:数学我的学习课题:21.2二次根式的乘法八年班:学习人:小组:职务:时间年月日我
的
学
习
目
标
二次根式的乘法法则的归纳与应用
学习重点二次根式的乘法法则。
学习难点二次根式的乘法法则的应用。
学
习流程学习导航
学法提
示
自主学习复习回顾
当x为怎样的实数时,下列各式有意义?
思考:
讨论
计算:
你发现了什么?用你发现的规律填空:
探究
一般情况下,a≥0,b≥0时,与
有什么关系?
一般地,对于二次根式的乘法,有:
例题讲解
计算:
()x
x-
+
-6
3
1()1
1
2-
+
-x
x
()2
32+
x()1
4+
x
少?
这个长方形的面积是多
,
,宽为
、一个长方形的长为cm
cm3
6
1
=
⨯
=
⨯
=
⨯
=
⨯
4
1
9
)4(
4
1
9
)3(
25
4
)2(
25
4
)1(
35
7
5
)2(
3
2
)1(
6
⨯
⨯
成立吗?
9
4
)9
(
)4
(-
⨯
-
=
-
⨯
-
b
a⨯ab
3
1
27
)4(
3
2)3(
)2(
12
3
)1(3
⨯
-
∙
∙
⨯
a
b
ab
x
x
交
流
展
示
教师分配展示任务,各小组派代表分组展示。
反馈提高练习
计算:
例题讲解
化简:
知识
梳理
21.2二次根式的乘法
学习
感悟
27
4
12
5)1(⨯
10
15
6
)2(⨯
⨯
3
4
)3(
15
27
)2(
12
)1(
a
⨯
4
3
25y
x
-
化简。