基本不等式的变形与应用

合集下载

应用基本不等式的八种变形技巧

应用基本不等式的八种变形技巧

因为 a>0,b>0,a+b=2,所以 2≥2 ab,所以 ab≤1,所以
1 1 1 +11+ ≥4(当且仅当 a=b=1 时取等号),所 ≥ 1 . 所以 b ab a 1 1 以a+1b+1的最小值是
4.
变形后使用基本不等式 设 a>1,b>1,且 ab-(a+b)=1,那么( A.a+b 有最小值 2( 2+1) B.a+b 有最大值( 2+1)2 C.ab 有最大值 2+1 D.ab 有最小值 2( 2+1) )
应用基本不等式的八种变形技巧
基本不等式的一个主要功能就是求两个正变量和与积的 最值,即所谓“和定积最大,积定和最小”.但有的题目需 要利用基本不等式的变形式求最值,有的需要对待求式作适 当变形后才可求最值.常见的变形技巧有以下几种:
加上一个数或减去一个数使和或积为定值 4 函数 f(x)= +x(x<3)的最大值是( x-3 A.-4 C.5 B.1 D.-1 )
1 2 y 法二:因为 + =1,所以 x= . x y y- 2 因为 x>0,y>0,所以 y-2>0. y2-y (y-2)2+3(y-2)+2 y 所以 x+y= + y= = = y- 2 y- 2 y- 2
2 2 y-2+ +3≥3+2 2当y-2=y-2,即y=2+ 2 y- 2
已知 a>0,b>0 且
[点拨]
1 1 a+b=2,求a+1b+1的最小值.
由于待求式是一个积的形式,因此需将多项式展开
后将积的最小值转化为和的最小值.
【解】 3 ab+1,
1 1 1 1 1 1 a+b 由题得 a+1 b+1 =ab+a+b+1=ab+ ab +1=

基本不等式课件(共43张PPT)

基本不等式课件(共43张PPT)

02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。

基本不等式完整版

基本不等式完整版

基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。

2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。

3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。

2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。

总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

4.求最值的条件:“一正,二定,三相等”。

5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。

2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。

3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。

4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。

5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。

特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。

6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。

例谈利用基本不等式 求最值的变形技巧

例谈利用基本不等式 求最值的变形技巧

例谈利用基本不等式求最值的变形技巧不等式ab≤(a、b∈R+)在高中数学教材中被称作基本不等式,它在求最值的题目中有着广泛的应用,是历年高考中的热点内容。

但其取等号的条件相当苛刻,概括起来有三条:“一正,二定,三相等”。

“一正”即这两个数必须都是正的,“二定”即这两个数的和或积是定值,“三相等”即这两个数可以相等。

只有以上三条同时成立,才能取得最值。

当这些条件不能同时满足时,需要我们根据已知条件对所求式子进行适当变形,使其具备上述条件。

下面结合例题展示各种变形技巧,以期对大家有所启发。

一、加负号例1、已知x0,->0,∴(-x)+(-)≥2(-x)×(-)=2∴x+=-[(-x)+(-)] ≤-2(当且仅当x==-1时等号成立)。

小结:加负号是为了将负数变为正数,从而满足两个正数相加的条件,当然不能忘了在括号外再加一个负号。

二、加减常数例2、已知p=a+(a>2),求p的最小值。

分析:a>2,能保证a、都大于0,但它们的乘积不是定值,需将a减去常数2,变为a-2。

解:∵a>2,∴a-2>0,>0∴p=a+()=(a-2)+()+2≥2(a-2)×()+2=4,当且仅当a-2=即a=3时取等号。

∴p的最小值为4。

小结:加减常数,是为了使乘积不是定值的两个数变为乘积是定值的两个数,当然不要忘了后面要相应的减加同一个数。

三、变换系数例3、已知2a+b=30(a、b∈R+),求ab的最大值。

分析:ab是积的形式,其和的形式为a+b,不能确定是定值,而已知2a+b为定值,这里需变化ab的系数。

解:∵a、b>0,∴ab=(ab)2;又∵ab=×2a×b≤×=,当且仅当2a=b即b=2a=15时取等号,∴ab=(ab)2≤()2=小结:变换系数,其目的是通过变换使两者的和为定值。

四、变商为和例4、设x∈(1,∞),求函数y=的最小值。

专题03 均值不等式基础方法15类

专题03 均值不等式基础方法15类

专题3 均值不等式基础方法15类总结目录一、热点题型归纳【题型一】对勾型 (2)【题型二】添加常数构造“对勾型” (3)【题型三】“和定求积”型 (4)【题型四】“积定求和”型 (6)【题型五】单元(单变量)分离常数型 (7)【题型六】“常数”因子法: (8)【题型七】“单分母”构造因子法 (9)【题型八】“双分母”构造法 (11)【题型九】有和有积无常数型 (12)【题型十】有和有积有常数型:求“积”型 (14)【题型十一】有和有积有常数型:求“和”型 (15)【题型十二】多元分离型 (16)【题型十三】反解消元型 (18)【题型十四】换元型 (19)【题型十五】较简单的三元均值 (21)培优第一阶——基础过关练 (23)培优第二阶——能力提升练 (27)培优第三阶——培优拔尖练 (31)知识点综述:1.基本不等式::a2+b2≥ 2ab(a,b∈R);2.常用不等式:ab ≤a +b2; (1) 基本不等式成立的条件:a >0,b >0;(2)等号成立的条件:当且仅当a =b .简称为““一正”“二定”“三相等”,三个条件缺一不可. 3.基本不等式的变形:①a +b ≥2ab ,常用于求和的最小值;②ab ≤⎝⎛⎭⎫a +b 22,常用于求积的最大值;4.重要不等式链:a 2+b 22≥ a +b 2≥ab ≥2aba +b;【题型一】对勾型【典例分析】(2021·江苏·高一专题练习)不等式(x -2y )+12x y -≥2成立的前提条件为( ) A .x ≥2y B .x >2yC .x ≤2yD .x <2y【答案】B【分析】由均值不等式成立的前提条件是“一正、二定,三相等”,结合此条件即可得解. 【详解】解:由均值不等式的条件“一正、二定,三相等”,即均值不等式成立的前提条件是各项均为正数,所以不等式()1222x y x y-+≥-成立的前提条件为20x y ->,即2x y >. 故选:B.【提分秘籍】 基本规律对勾型:1t t +,bat t+ 容易出问题的地方,在于能否“取等”,如1.2sin sin θθθ+,其中锐角(第五章会学习到)2.221x 5x 5+++1.(2022·全国·高一专题练习)若0x >,0y >,则1122x y x y+++的最小值是( ) A .32B .42C .4D .2【答案】A【分析】利用基本不等式可求出12x x+和12y y +的最小值,相加可得出结果.【详解】由基本不等式得111122222223222x y x y x y x y +++≥⋅⋅ 当且仅当2x =,2y =时等号成立,因此,1122x y x y +++的最小值为32故选A.2.(2022·河南驻马店·高一期末)已知a >0,则当19a a+取得最小值时,a 的值为( )A .19B .16C .13 D .3【答案】C【分析】利用基本不等式求最值即可.【详解】∵a >0,∵19296a a +≥,当且仅当19a a =,即13a =时,等号成立,故选:C【题型二】 添加常数构造“对勾型”【典例分析】(2022·吉林延边·高一期末)已知2x >,则函数()1222y x x =+--的最小值是( )A .22B .222C .2D 2【答案】D【分析】应用基本不等式求函数的最小值,注意等号成立的条件. 【详解】由题设,20x ->, ∵()()11(2)2(2)22222y x x x x =-+≥-⋅=--22x =时等号成立,∵2故选:D.【提分秘籍】 基本规律 对于形如1cx+d ax b ++,则把cx+d 转化为分母的线性关系:c 1ax+b)ax b cd a a ++-+(可消去。

基本不等式的变形及应用

基本不等式的变形及应用

基本不等式a 2 b 2 2ab 的变式及应用不等式a 2 b 2 2ab 是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种 常见的变式及应用1十种变式2、应用由于三个不等式中的等号不能同时成立,故■ a 1 .b 1 . c 1 4a 2b 2评论:本解法应用“ ab”观察其左右两端可以发现,对于某一字母左边是2一次式,而右边是二次式,显然,这个变式具有升幕与降幕功能,本解法应用的是升幕功①aba 2b 2 _ a b 2 ② ab ();2a b 、2 2a b 2③( );2 2⑤若b 0,2则a2a b ;b1⑦若a,b R ,(1)24a bab上述不等式中 等号成立的允要条件均为⑥a,bR ,则 1 14a b ab⑧若ab0 ,则 1 2 a 1 b 2a bb 2(a b)(当且仅当an m n⑩(a b c)23(a 2 b 2 c 2(当且仅当a b c 时等号成立)例 1、若 a,b,c R c 2,求证:.a 1. b 1 c 1 4证法一:由变式①得即..a 1HI 二理同b- 2VC- 2 a- 24C- 2b- 2 2④ a b . 2(a 2 b 2)a 2⑨若 m, n R ,a,b R ,则bm 时等号成立)1匕止 因证法二:由变式④得a 1 b 1 2(a 1 b 1)同理:..c 1 1 . 2(c_1一1).a 1 .b 1 、c 1 1 2(a b 2) . 2(c 2) .. 2(a b c 4) .12 5 故结论成立评论:本解法应用“ a b J2(a2b2) ”这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。

证法三:由变式⑩得( a 1 . b 1 、c 1)23(a 1 b 1 c 1) 15故.a 1 .. b 1 ... c 1 4 即得结论评论:由基本不等式a b 2ab易产生2a 2b 2c 2ab 2bc 2ca,两边同时加上a2 b2 c2即得3(a2 b2 c2) (a b c)2,于是便有了变式⑩,本变式的功能可以将平方进行“分拆”与“合并”。

考点24 基本不等式及其应用

考点24 基本不等式及其应用

考点二十四 基本不等式及其应用知识梳理1.重要不等式:a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.2.基本不等式:ab ≤a +b 2( a ≥0,b ≥0),当且仅当a =b 时取等号. 其中a +b 2称为a ,b 的算术平均数,ab 称为a ,b 的几何平均数.因此基本不等式可叙述为两个非负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们的等比中项.3.基本不等式的几个常见变形(1) a +b ≥2ab (a ,b >0).(2) x +1x ≥2(x >0),b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).4.利用基本不等式求最值的条件:一正二定三相等所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.5.利用基本不等式求最值问题已知x >0,y >0,则(1)和定积最大:若x +y =s (和为定值),则当x =y 时,积xy 取得最大值s 24; (2)积定和最小:若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p .典例剖析题型一 基本不等式成立条件问题例1 若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是________.①a 2+b 2>2ab ②a +b ≥2ab ③1a +1b ≥2ab④b a +a b ≥2 答案 ④解析 ∵a 与b 可能相等,∴a 2+b 2≥2ab ,故①不正确;对于②、③,当a <0,b <0时不等式不成立,故②、③不正确;对于④,由于ab >0,∴b a >0,a b >0,a b +b a≥2a b ·b a=2成立(当且仅当a =b 时等号成立).变式训练 下列不等式中一定成立的是________.①x +1x ≥2 ②b a +a b ≥2 ③sin x +1sin x≥2(x ≠k π,k ∈Z ) ④x +1x ≥2(x >0) 答案 ④解析 对于选项①,当x <0时显然不成立;对于选项②,当b a<0时显然不成立; 对选项③,当sin x <0时显然不成立;只有选项④正确.解题要点 在应用基本不等式时,“一正二定三相等”这三者缺一不可.题型二 利用基本不等式求最值例2 (1) 若x >0,则x +2x的最小值是________. (2) 当x >1时,函数y =x +1x -1的最小值是________. 答案 (1) 2 2 (2) 3解析 (1) 由基本不等式可得x +2x≥2x ·2x =22,当且仅当x =2x 即x =2时取等号,故最小值是2 2.(2)y =x +1x -1=x -1+1x -1+1≥2 (x -1)·1x -1+1=3 ⎝⎛⎭⎫当且仅当x -1=1x -1,即x =2时等号成立. 变式训练 (1)当x >1时,x +4x -1的最小值为________; (2)当x ≥4时,x +4x -1的最小值为________. 答案 (1)5 (2)163解析 (1)∵x >1,∴x -1>0.∴x +4x -1=x -1+4x -1+1≥24+1=5. (当且仅当x -1=4x -1.即x =3时“=”号成立)∴x +4x -1的最小值为5. (2)∵x ≥4,∴x -1≥3.∵函数y =x +4x在[3,+∞)上为增函数,∴当x -1=3时,y =(x -1)+4x -1+1有最小值163. 例3 设0<x <2,求函数y =x (4-2x )的最大值解析 ∵0<x <2,∴2-x >0,∴y =x (4-2x )=2·x (2-x )≤2·x +2-x 2=2, 当且仅当x =2-x ,即x =1时取等号,∴当x =1时,函数y =x (4-2x )的最大值为 2.变式训练 若a ,b 均为大于1的正数,且ab =100,则lg a ·lg b 的最大值是________.答案 1解析 ∵a >1,b >1,∴lg a >0,lg b >0.lg a ·lg b ≤(lg a +lg b )24=(lg ab )24=1. 当且仅当a =b =10时取等号.解题要点 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.题型三 利用1的代换求值例4 已知a >0,b >0,a +b =1,则1a +1b的最小值为________. 答案 4解析 ∵a >0,b >0,a +b =1,∴1a +1b =a +b a +a +b b =2+b a +a b ≥2+2b a ·a b =4, 即1a +1b 的最小值为4,当且仅当a =b =12时等号成立. 变式训练 已知x >0,y >0且x +y =1,则8x +2y的最小值为________. 答案 18解析 ∵x >0,y >0,且x +y =1, ∴8x +2y =(8x +2y )(x +y )=10+8y x +2x y≥10+28y x ·2x y=18. 当且仅当8y x =2x y,即x =2y 时等号成立, ∴当x =23,y =13时,8x +2y 有最小值18.解题要点 解决这类条件最值问题通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.当堂练习1.若0<x <32,则y =x (3-2x )的最大值是________. 答案 982.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意得1a +4b =12(1a +4b )(a +b )=12×[5+(b a +4a b )]≥12×(5+2b a ×4a b )=92,当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号,即1a +4b 的最小值是92. 3. 已知f (x )=x +1x-2(x <0),则f (x )有________. 答案 最大值为-4解析 ∵x <0,∴-x >0,∴x +1x -2=-(-x +1-x )-2≤-2(-x )·1-x-2=-4, 当且仅当-x =1-x,即x =-1时,等号成立. 4.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =______. 答案 36解析 ∵a >0,x >0,∴f (x )=4x +a x ≥2 4x ·a x=4a ⎝⎛⎭⎫当且仅当4x =a x 即a =4x 2时等号成立, 又x =3时函数取得最小值,∴a =4×9=36.5.若2x +2y =1,则x +y 的取值范围是________.答案 (-∞,-2]解析 ∵1=2x +2y ≥22x ·2y =22x +y ,∴2x +y ≤14,∴x +y ≤-2. 课后作业一、 填空题1.若0<x <1,则当f (x )=x (4-3x )取得最大值时,x 的值为________.答案 23解析 ∵0<x <1,∴f (x )=x (4-3x )=13·3x (4-3x )≤13×⎝ ⎛⎭⎪⎫3x +4-3x 22=43, 当且仅当3x =4-3x ,即x =23时,取得“=”. 2.已知a >0,b >0,ln(a +b )=0,则ab 的最大值为________.答案 14解析 ∵ln(a +b )=0,∴a +b =1,又a >0,b >0,∴a +b ≥2ab ,∴ab ≤14. 3.函数y =x 2+2x +2x +1(x >-1)的图象最低点的坐标为________. 答案 (0,2)解析 y =(x +1)2+1x +1=x +1+1x +1≥2, 当x +1=1x +1,即x =0时,y 最小值为2. 4.若x >54,则f (x )=4x +14x -5的最小值为________. 答案 7解析 f (x )=4x +14x -5=4x -5+14x -5+5. ∵x >54,∴4x -5>0,∴4x -5+14x -5≥2. 故f (x )≥2+5=7,等号成立的条件是x =32. 5.已知a ,b 为正实数且ab =1,若不等式(x +y )(a x +b y)>m 对任意正实数x ,y 恒成立,则实数m 的取值范围是________.答案 (-∞,4)解析 因为(x +y )(a x +b y )=a +b +ay x +bx y ≥a +b +2≥2ab +2=4,当且仅当a =b ,ay x =bx y时等号成立,即a =b ,x =y 时等号成立,故只要m <4即可.6.下列不等式:①a 2+1>2a ;②a +b ab≤2;③x 2+1x 2+1≥1,其中正确的个数是________. 答案 1解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2-1=1. 7.(2015湖南文)若实数a ,b 满足1a +2b=ab ,则ab 的最小值为________. 答案 2 2解析 由条件1a +2b=ab 知a ,b 均为正数.因而可利用基本不等式求解. 由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎨⎧ 1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.8.若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为________.答案 6解析 依题意得4(x -1)+2y =0,即2x +y =2,9x +3y =32x +3y ≥232x ×3y =232x +y =232=6,当且仅当2x =y =1时取等号,因此9x +3y 的最小值是6.9.已知函数f (x )=4x +a x(x >0,a >0)在x =3时取得最小值,则a =________. 答案 36解析 因为x >0,a >0,所以f (x )=4x +a x≥24a =4a , 当且仅当4x =a x,即a =4x 2时取等号.由题意可得a =4×32=36. 10. (2014年上海卷)若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.答案 2 2解析 x 2+2y 2≥2x 2·2y 2=22·xy =22,当且仅当x 2=2y 2时等号成立.11.已知x >0,y >0,且3x +4y =12,则xy 的最大值为______.答案 3解析 ∵12=3x +4y ≥23x ·4y ,∴xy ≤3.二、解答题12.已知a >0,b >0,a +b =1,求证:(1+1a )(1+1b)≥9. 证明 方法一 ∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a, 同理,1+1b =2+a b, ∴(1+1a )(1+1b )=(2+b a )(2+a b )=5+2(b a +a b)≥5+4=9. ∴(1+1a )(1+1b )≥9(当且仅当a =b =12时等号成立). 方法二 (1+1a )(1+1b )=1+1a +1b +1ab .由(1)知,1a +1b +1ab≥8, 故(1+1a )(1+1b )=1+1a +1b +1ab≥9. 13.(2015湖南理节选)设a >0,b >0,且a +b =1a +1b. 证明:a +b ≥2;证明 由a +b =1a +1b =a +b ab,a >0,b >0,得ab =1. 由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2.。

高中数学基础之基本不等式及应用

高中数学基础之基本不等式及应用

当acb取得最大值时,3a+1b-1c2的最大值为( C )
A.3
B.94
C.1
D.0
[思路引导] (1)2x-1>0,y-1>0→构建与2x-1,y-1相关的基本不等式. (2)三元变成二元→确定acb取得最大值时a,b,c的关系→求出结果.
[解析]
(1)依题意得2x-1>0,y-1>0,则
4x2 y-1
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多 少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范 围内?
[解]
(1)依题意得,y=
920v v2+3v+1600

920 3+v+16v00

920 83
,当且仅当v=
16v00,即v=40时,等号成立,
3-
k m+1
(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知
2021年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,
厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定
投入和再投入两部分资金).
(1)将2021年该产品的利润y万元表示为年促销费用m万元的函数;

y2 2x-1

[2x-1+1]2 y-1

[y-1+1]2 2x-1

42x-1 y-1

4y-1 2x-1
≥4×2
2yx--11×2yx--11
=8,即
4x2 y-1

y2 2x-1
2x-1=1,
≥8,当且仅当
y-1=1, 2yx--11=2yx--11,

基本不等式的几种应用技巧

基本不等式的几种应用技巧

(1)各项必须为正值
(2)含变量的各项和或积必须为定值 (3)必须有自变量值能使函数值取到“=”号
“一正,二定,三相等”
Company Logo
基本不等式的几种应用技巧
题型一:基本不等式的直接应用
例1已知 x, y R xy的最大值为 ________。

x y ,且满足 =1,则 3 4
Company Logo
基本不等式的几种应用技巧
6 6 2 解 : y 3x 2 =3 x 1 2 3 二定 x 1 x 1 6 2 x 1 x 2 1 3=6 23 2 3 6 2 当且仅当3 x 1 2 时,等号成立 x 1
2


ห้องสมุดไป่ตู้


即ymin 6 23
2
成立,故原函数的值域 为2 55,
Company Logo


基本不等式的几种应用技巧
题型四:“1”的整体代换
1 1 例4.已知 x, y R , 若2 x y 1,求 的最小值 x y 解 x 0,y 0 错因:解答中两次 : 1 2 x y 2 2 xy
当且仅当sin 等号成立.
2 2
2时,
2 时,即sin sin
Company Logo
基本不等式的几种应用技巧
又0 sin 1,原函数不能取最小值 2 2.
2 的单调性么? y t 在0,1上单调递减, t
当 t 1 时,即sin 1, y有最小值 .
1 1 1 1 正解: 2x y x y x y
y 2x 3 3 2 2 x y
“1”代 换法

基本不等式及其应用

基本不等式及其应用

基本不等式及其应用基本不等式及其应用一、知识结构二、重点叙述1. 基本不等式模型一般地,如果a>0,b>0,则立。

我们常把叫做正数a、b的算术平均数,把ab叫做正数a、b的几何平均数, ,或,当且仅当a=b时等号成即两个正数的算术平均数不小于它们的几何平均数,当且仅当两个正数相等时等号成立。

拓展:若a、b∈R,则2. 基本不等式证明方法,当且仅当a=b时等号成立。

3.基本不等式的应用①利用基本不等式证明不等式或比较大小; ②利用基本不等式求最值或求范围; ③利用基本不等式解决实际问题。

三、案例分析案例1:(1)(xx天津·理)设的最小值为A 8B 4C 1D (2) (xx海南、宁夏·理7)已知,,成等差数列,若成等比数列,则A.B.的最小值是()C.D.分析:(1)由是与的等比中项,得。

用“1代换法”,把看成,进而利用基本不等式求得最小值。

(2)可用直接法解之。

根据等差、等比数列的“等距离”性质,把多元函数转化为x、y的二元函数,由二元的基本不等式求其最小值。

也可以用特殊值法解决。

解:(1)∵是与的等比中项,∴,得。

∴,当且仅当即时,“=”成立。

故选择C。

成等差数列,成等比数列,(2)(直接法)∵∴∴,∵,,∴,∴,当且仅当时,等号成立。

∴。

故选D。

成等差数列,成等比数列分别都为另解:(特殊值法)令,则,故选D。

案例2:(1) (xx重庆·文)已知A.2B.,则C.4的最小值是() D.5(2)(xx山东·理16)函数y=loga (x+3)-1(a>0,a1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n>0,则的最小值为________________.分析:(1)用基本不等式解之,由于两次使用基本不等式,两次的“等号”成立应该“同时”。

(2)抓住函数图象过定点,求得定点A的坐标,建立m、n的线性关系,两次应用基本不等式求得最小值,同样注意两次的“等号”成立是否“同时”?只有“同时”,最小值才存在。

基本不等式的综合应用

基本不等式的综合应用
1、利用基本不等式求最值、代数式最 值、参数范围、及不等式证明。 2、理解基本不等式注意的条件。
作业布置: 课时作业(二十九)
最大值和最小值。此方法在应用中一定要注意满足 三个条件:一正---各项为正数;二定-----“和”或 “积”为定值;三相等------等号一定能取到。三条 件缺一不可。
题型二:利用基本不等式求代数式的最值
知识归纳:知分式求整式最值或知整式求分式最值 都是巧妙代换,保证式子定值,以便基本不等式应 用的成立。
复习回顾
1.基本不等式的内容是什么?
若a>0,b>0,则
ab≤ a b (a 0,b 0) 2
当且仅当a=b时取等号
2.基本不等式应用应注意什么?
求最值时注意把握 “一正,二定,三相等”
题型一:利用基本不等式求最值
知识归纳:利用基本不等式,通过恒等变形,以及
配凑,造就“和”或“积”为定值,进而求得函数
题型三:利用均值不等式求参数的取值范围
知识归纳:利用基本不等式,构造关于某个变量的 不等式,解此不等式便可求出该变量的取值范围, 再验证等号是否成立,便可确定该变量的最值。
题型四:利用基本不等式证明不等式
知识归纳:把数、式合理地分拆小结回顾:

基本不等式完整版(非常全面)

基本不等式完整版(非常全面)

基本不等式专题辅导之阿布丰王创作一、知识点总结1、基本不等式原始形式(1(22、基本不等式一般形式(均值不等式)3、基本不等式的两个重要变形(1(2总结:当两个正数的积为定植时,它们的和有最小值;当两个正数的和为定植时,它们的积有最小4、求最值的条件:“一正,二定,三相等”5、经常使用结论(1当且仅那时=”)(2当且仅那时=”)(3当且仅那=”)(4(5)若,则6、柯西不等式 (1)若,则(2则有:(3两组实数,则有题型一:利用基本不等式证明不等式1、,2,求证3、已知,求证:45、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭6、(2013年新课标Ⅱ卷数学(理)选修4—5:不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.7、(2013年江苏卷(数学)选修4—5:不等式选讲 已知>≥b a ,求证:b a ab b a 223322-≥-题型二:利用不等式求函数值域1、求下列函数的值域(1)22213x x y +=(2))4(x x y -= (3))0(1>+=x x x y(4))0(1<+=x x x y题型三:利用不等式求最值 (一)(凑项)1、已知2>x ,求函数42442-+-=x x y 的最小值;变式1:已知2>x ,求函数4242-+=x x y 的最小值;变式2:已知2<x ,求函数4242-+=x x y 的最年夜值;练习:1、已知54x >,求函数14245y x x =-+-的最小值;2、已知54x <,求函数14245y x x =-+-的最年夜值;题型四:利用不等式求最值 (二)(凑系数)1、那时,求(82)y x x =-的最年夜值;变式14(82)y x x =-的最年夜值;变式2:设230<<x ,求函数)23(4x x y -=的最年夜值.202<<x ,y x x =-()63的最年夜值;变式40<<x ,)28(x x y -=的最年夜值;3、求函数)2521(2512<<-+-=x x x y 的最年夜值;(提示:平方,利用基本不等式) 数)41143(41134<<-+-=x x x y 的最年夜值;题型五:巧用“1”的代换求最值问题1最小值;法一: 法二:变式1:已知,求变式2最小值;变式3:已求.变式4:值;变式5: (1)值;(2)若且,求变式6:使得题型六:分离换元法求最值(了解)1、求函数的值域;变式:2、示:换元法)变式:题型七:基本不等式的综合应用1小值2、(2009天津)已知,求变式1:(2010求关值;变式2:(2012湖北武汉诊断)已知,那时像恒过定点,若点在直线,3、已知,,求变式1:变式2:(2010山东)已知值;(提示:通分或三角换元)变式3:(2011浙江)已知年夜值;4、(2013年山东(理))取得最年夜值时值为()()A(提示:代入换元,利用基本不等式以及函数求最值)变式:设是正数,满足题型八:利用基本不等式求参数范围1、(2012且,最小值;2、已知且,4)(提示:分离参数,换元法)变式:已若,题型九:利用柯西不等式求最值1、二维柯西不等式若,则2、二维形式的柯西不等式的变式3、二维形式的柯西不等式的向量形式4、三维柯西不等式则有:5,。

基本不等式的变形及其应用

基本不等式的变形及其应用

基本不等式的变形及其应用基本不等式公式:当a>0,b>0,则,(当a=b时,等号成立)基本不等式公式的变形:上述7式中,当a=b时,等号成立备注:1.求最值的条件:一正,二定,三相等一正:a,b的范围为正数二定:“a·b”之积为定值或者“a+b”之和为定值三相等:等号成立时,a=b2.当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”。

这就是上面所说的“二定”,和为定值或者积为定值。

3.均值不等式:(a>0,b>0),即“调和平均数”≤“几何平均数”≤“算术平均数”≤“平方平均数”,当a=b时,等号成立。

4.a3+b3+c3≥3abc (a+b+c>0即可,当a=b=c或者a+b+c=0时,等号成立)常见题型一、凑系数(乘除变量系数)例题:当0<x<4时,求函数y=x(8-2x)的最大值解析:如果把x前面的系数变成2,那么2x+(8-2x)=8,为常数(和为定值),这样就可以用基本不等式了。

原式变为,根据公式:,即,当且仅当2x=8-2x,即x=2时等号成立。

备注:1.这题也可以用一元二次函数求最值的方法来做,但是如果基本不等式运用的熟练的话解题速度更快一些2.运用基本不等式或者其变形的核心观念就是两个数的积或者和是定值。

3.运用基本不等式或者其变形,最后一定要确认等号是否成立变式:当0<x<4时,求函数的最大值二、凑项(加减常数)例题:已知,求的最大值解析:备注:1.当a<0,b<0,那么2.再此强调,运用基本不等式及其变形时,一定要确保最值的条件“一正,二定,三相等”变式:已知x>-1,求的最大值三、分离“分子”或“分母”例题:x>-1,求函数de de dd的最小值解析:变式:当x>0,求的最大值四、公式变形例题:求函数,求最大值解析:备注:当题目中所求式子带有根号的,通常要想到和这两个基本不等式的变形。

不等式的基本性质和解题方法

不等式的基本性质和解题方法

不等式的基本性质和解题方法不等式是数学中非常重要的概念,它在我们的日常生活中也有很多应用。

比如,我们可以用不等式来描述一些数值之间的关系,例如大小、大小关系等。

不等式的基本性质和解题方法对我们的数学学习和应用都有着重要的影响。

一、不等式的基本性质不等式有很多基本性质,这些基本性质对于我们的不等式运算和解题都是非常重要的。

下面我们来介绍一下不等式的基本性质。

1. 如果a>b,则a+c>b+c (加法性质)。

2. 如果a>b,且c>0,则ac>bc(乘法性质)。

3. 如果a>b,且c<0,则ac<bc(乘法性质)。

4. 对于一个正数a,a^2>0。

5. 如果a>b,那么a^3>b^3。

6. 如果a>b,且c>d,则a+c>b+d。

7. 对于任意的实数a,-a≤a≤|a|。

8. 如果a>0,则1/a>0。

这些基本性质是不等式运算和解题的基础,学好这些基本性质,才能更好的掌握不等式的解法。

二、不等式的解法不等式的解法也是非常重要的,因为只有掌握了不等式的解法,我们才能更好地运用不等式去解决问题。

下面我们来介绍一些基本的解不等式方法。

1. 两边同时加、减同一个数:如果a>b,则a+c>b+c;如果a<b,则a+c<b+c。

2. 两边同时乘、除同一个正数:如果a>b,且c>0,则ac>bc;如果a<b,且c>0,则ac<bc。

如果a>b,且c<0,则ac<bc;如果a<b,且c<0,则ac>bc。

3. 公式法:a^2-b^2=(a+b)(a-b),a^3-b^3=(a-b)(a^2+ab+b^2)。

4. 合并同类项:如2x+3>4x-1,可变形为-x<4,即x>-4。

5. 分类讨论法:将待解的不等式根据条件分成各个区间,分别讨论。

基本不等式使用技巧

基本不等式使用技巧

基本不等式使用技巧基本不等式有个使用口诀:一正,二定,三相等,和定积大,积定和小。

和定积大:两个正数的和为定值,则它们的乘积小于等于它们相等时的乘积积定和小:两个正数的积为定值,则它们的和大于等于它们相等时的和。

基本不等式简单推导:由a -b 2≥0⇒a 2+b 2-2ab ≥0即a 2+b 2≥2ab (当且仅当a =b 时等号成立),令a =a ,b =b 得a +b ≥2ab 即a +b 2 ≥ab (a >0,b >0,此不等式称为基本不等式,反映了两个正数的算术平均数不小于几何平均数)。

重要变形:a 2+b 2≥2ab ⇒a 2+b 2≥2ab (a ,b 同号)a 2+b 2≥-2ab (a ,b 异号) ;ab ≤a 2+b 22 ;ab ≤a +b 24 (即ab ≤a +b 2 2);a +b ≥2ab (a >0,b >0);a +b ≤-2ab (a <0,b <0);2(a 2+b 2)≥(a +b )2(即a 2+b 22 ≥a +b 2 2),以上各式均是当且仅当a =b 时等号成立。

典型例题:已知x ,y 为实数,4x 2-5xy +4y 2=5,求x 2+y 2的最大值和最小值。

解:∵4x 2-5xy +4y 2=5∴x 2+y 2=54(xy +1)≥2xy (x ,y 同号时)⇒xy ≤53∴x 2+y 2=54 (xy +1)≤54 (53 +1)=103又∵x 2+y 2=54(xy +1)≥2xy (x ,y 异号时)⇒xy ≥-513∴x 2+y 2=54 (xy +1)≥54 (-513 +1)=1013∴x 2+y 2最大值为103 ,x 2+y 2最小值为1013使用技巧:(一).凑项与凑系数例1:已知x >0,y >0且x 2+y 22=1,则x y 2+1 的最小值为_____。

解:方法一:凑项:∵x 2+y 22=1∴x 2+y 2+12 =32∴x 2∙y 2+12 ≤34 ×34(和为定值乘积小于等于相等时的乘积)∴x 2∙(y 2+1)≤98 ∴x y 2+1 ≤32 4 ∴x y 2+1 的最小值为32 4方法二:凑系数:∵x 2+y 22=1∴2x 2+y 2=2∴x y 2+1 =2 2 ×2 x ×y 2+1 ≤2 2 ×(2 x )2+y 2+1 22 (ab ≤a 2+b 22 )=2 2 ×2x 2+y 2+12 =2 2 ×32 =32 4 ∴x y 2+1 的最小值为32 4例2:椭圆E :x 23+y 2=1的上顶点为A ,过点A 的直线l 与E 交于另一点B ,求AB 的最大值?解:①当l 斜率不存在时,易知AB =2②当l 斜率存在时,设l 斜率为k ,则l 方程为:y =kx +1,设A (x 1,y 1),B (x 2,y 2).联立x 23 +y 2=1y =kx +1 ⇒3k 2+1 x 2+6kx =0∴x 1+x 2=-6k 3k 2+1x 1x 2=0 由弦长公式知:AB =1+k 2 ×(x 1+x 2)2-4x 1x 2=1+k 2 ×6k 3k 2+1 =63k 2+1 ×k ×1+k 2 =2 2 ×63k 2+1 ×2 k ×1+k 2 ≤2 2 ×63k 2+1 ×2 k 2+1+k 2 22 (ab ≤a 2+b 22 )=2 2 ×63k 2+1 ×2k 2+1+k 22 =32 2 ∵32 2 >2∴AB 的最大值为32 2.(二).活用常数(活用“1”)例1:已知m >0,n >0且m +n =1,则1m +4n的最小值为?解:∵1m +4n =1m +4n m +n =5+n m +4m n ≥5+2n m ×4m n =9∴1m +4n的最小值为9例2:已知x >-1,y >0且x +2y =1,则1x +1 +2y的最小值为?解:∵x +2y =1∴(x +1)+2y ⋅12=1∴1x +1 +2y =1x +1 +2y∙(x +1)+2y ⋅12 =5+2y x +1 +2(x +1)y ⋅12 ≥5+22y x +1 ×2(x +1)y ⋅12=92 ∴1x +1 +2y 的最小值为92例3:已知a >0,b >0且a -2ab +b =0,则a +4b 的最小值为?解:∵a -2ab +b =0∴a +b =2ab ⇒a +b 2ab =1即(1a +1b)⋅12 =1∴a +4b =a +4b ∙(1a +1b )⋅12 =(5+4b a +a b )⋅12 ≥5+24b a ×a b ⋅12=92 ∴a +4b 的最小值为92例4:已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +9n的最小值为()A.83 B.114 C.145 D.176解:由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 5q 2=a 5q +2a 5,所以q 2-q -2=0,解得q =2或q =-1(舍去).因为a m a n =4a 1,所以q m +n -2=16,所以2m +n -2=24,所以m +n =6.∴1m +9n =(1m +9n )×m +n 16 =16 (10+n m +9m n)≥16 (10+6)=83 当且仅当n m =9m n,即n =3m ,即m =32 ,n =92时等号成立,不合题意(∵m ,n ∈N +)由m +n =6,m ,n ∈N +则m =1n =5 或m =2n =4 或m =3n =3 或m =4n =2 或m =5n =1代入式子1m +9n 知最小值为114,故选B 例5:已知x >0,y >0且x +y =1,(1)求x 2x +1 +y 2y +1的最小值,(2)求12x +y +1x +3y的最小值。

基本不等式的八种变形技巧

基本不等式的八种变形技巧

基本不等式的八种变形技巧基本不等式是用来求两个正变量和与积的最值的,但有些题目需要用到基本不等式的变形形式才能求最值,或者需要对待求式作适当变形后才能求最值。

下面介绍几种常见的变形技巧。

1.加上一个数或减去一个数使和或积为定值例如,对于函数$f(x)=\frac{x}{3-x}$,当$x<3$时,求$f(x)$的最大值。

因为$x0$,所以$f(x)=\frac{-3+x}{3-x}+3\leq \frac{4}{3-x}\leq -2+\frac{4}{3-x}=2+\frac{2}{3-x}$。

当且仅当$3-x=2$时等号成立,即$x=1$时,$f(x)$的最大值为$-1$。

2.平方后再使用基本不等式一般地,含有根式的最值问题,首先考虑平方后求最值。

例如,若$x>0$,$y>0$,且$2x^2+y^2=8$,求$x^6+2y^2$的最大值。

由于已知条件式中有关$x$,$y$的式子均为平方式,而所求式中$x$是一次的,且$\sqrt{y}$是二次的,因此考虑平方后求其最值。

设$a=x^2$,则$2a+y^2=8$,所以$y^2=8-2a$,代入$x^6+2y^2=x^6+16-4a$,即要求$a$的最小值。

由于$x>0$,所以$a>0$,所以$2a+y^2>0$,即$8-2a>0$,所以$a<4$。

由基本不等式,$(1+1+1+1+1+1)(a+a+a+y^2+y^2+y^2)\geq (x^6+2y^2)^2$,即$6(6a+3y^2)\geq (x^6+2y^2)^2$。

代入$y^2=8-2a$,整理得$x^6+2y^2\leq 29$,当且仅当$x^2=2$,$y^2=2$时等号成立,所以$x^6+2y^2$的最大值为$29$。

3.展开后求最值对于求多项式积的形式的最值,可以考虑展开后求其最值。

例如,已知$a>0$,$b>0$且$a+b=2$,求$(a+1)(b+1)$的最小值。

基本不等式的常见变形技巧

基本不等式的常见变形技巧

基本不等式的常见变形技巧
基本不等式的常见变形技巧
不等式是数学中最基本也是最重要的思想,在实际生活中应用广泛,而对基本不等式的变形是其重要的技能,重要的技能之一就是求解的过程中,能够从繁杂的不等式中把握着关键因素,做出合理的变形处理。

首先,在变形不等式的时候要注意不改变它原有的等式形式的优势,即不会使原有的不等式的内容有太大变化,要采取合理的手段使不等式变形,而不是破坏不等式的原有形式。

其次,在不等式中要学会分步骤处理,即结果可能过于复杂,可以根据不同方面,将复杂的不等式分解成相对简单的一些不等式,用加减乘除法来变形,最后使它们可以组合在一起形成原有的不等式的形式。

最后,要学会把握变形的方向,在实际中,常常会有变形不等式的限定条件,我们可以借助前后变形比较,把握好变形不等式的方向,从而快速正确的得到最终结论。

变形不等式是基本不等式的重要技巧,只有具备了此技能,才能在正确解答问题时发挥出最大效率,使用此技巧也可以处理一些比较复杂的不等式,从而获得一个正确的答案。

不等式性质的应用

不等式性质的应用

不等式性质的应用灵活运用不等式的性质,对快速、准确地解题至关重要,下面通过几个例子看看不等式的性质在解题中的应用.一、不等式变形例1 根据不等式的性质,把下列不等式化成“x>a ”或“x<a ”的形式:(1)4x>3x+6;(2)﹣2x<4;(3)5x>10;(4)x ﹣3<7.分析:根据不等式的特点适当地选用不等式的性质对所给不等式进行变形,对于不等式(1)、(4)运用性质1进行变形;对于不等式(2)运用性质3进行变形;对于不等式(3)运用性质2进行变形.解:(1)由不等式的基本性质1可知,不等式的两边都减去3x ,不等号的方向不变,所以4x ﹣3x>3x+6﹣3x ,即x>6;(2)由不等式的基本性质3可知,不等式的两边都除以﹣2,不等号的方向改变,所以-2x -2 >4-2 ,即x>﹣2;(3)由不等式的基本性质2可知,不等式的两边都除以5,不等号的方向不变,所以5x 5 >105 ,即x>2;(4)由不等式的基本性质1可知,不等式的两边都加上3,不等号的方向不变,所以x ﹣3+3<7+3,即x<10.点评:解决这类问题,要观察题中不等式与所要得到的不等式在形式上的差别,从而适当选用不等式的性质进行变形,在运用中一定要注意不等式的基本性质3,不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.二、判断正误例2 判断正误:(1)若m>n ,则mz>nz ;(2)若m>n ,则mz 2>nz 2;(3)若m+z>n+z ,则m>n ;(4)若mz 2>nz 2,则m>n.分析:解这类题的关键是对照不等式的基本性质,观察和分析从条件到结论到底运用了哪一个性质,运用不等式的基本性质的条件是否具备.解:(1)是在m>n 两边同乘以z ,而z 是什么数并没有确定,若z>0,由不等式的基本性质2知,mz>nz ;若z<0,由不等式的基本性质3知,mz<nz ;若z=0,mz=nz ,故(1)是错误的;(2)当z=0时,mz 2=nz 2,故(2)是错误的;(3)由不等式的基本性质1知,不等式的两边同减去z,不等号方向不变,知(3)正确;(4)是在mz2>nz2两边同除以z2,而z2>0,由不等式的基本性质2知(4)是正确的.点评:不等式两边同乘以一个字母或代数式时,要分三种情况讨论,即大于0或小于0或等于0三种情况.三、确定不等式成立的条件例3 根据不等式的基本性质,写出下列不等式成立时m应满足的条件:(1)由a>b,得到am<bm;(2)由a>b,得到am≥bm;(3)由a<b,得到am2<bm2.分析:本题是不等式的基本性质的逆用,即根据结论,补充已知,由于所给出的不等式中均为字母,更要注意字母的正负与不等号方向之间的关系.解:(1)由a>b得到am<bm,是在不等式两边同乘以m得来的,而不等号方向改变了,根据不等式的基本性质3知m<0.(2)由a>b得到am≥bm,是在不等式两边同乘以m得来的,而不等号方向没改变,根据不等式的基本性质2知m≥0.(3)由a<b得到am2<bm2,是在不等式两边同乘以m2得来的,而不等号方向没变,根据不等式的基本性质2知m2>0,但因任意一非零数的平方一定是正数,所以只需m≠0.点评:对于给出的不等式,逆用不等式的基本性质进行推理,判断一组新不等式是否成立,也是中考中常考题型之一.在解题过程中一定要注意“≥”“≤”号中不要忘记取“=”.四、比较大小例4 数a、b、c在数轴上对应点的位置如图所示,试比较bc,ab,ac,a+b 的大小.分析:由数轴上对应点的位置,可以确定a、b、c之间的大小关系及正负性,再根据不等式的基本性质逐一进行比较.解:由图知﹣2<c<﹣1<0<b<1<a.所以|b|<|c|.因为b>0,a>0,根据不等式的基本性质1,得a+b>a.因为0<b<1,a>1,所以ab<a.因为c<a,根据不等式的基本性质2,得bc<ab.因为a>b,c<0,根据不等式的基本性质3,得ac<bc.所以ac<bc<ab<a+b.点评:此题的难点是既要能从数轴上看出a、b、c的大小关系及正负性,还要考虑运用不等式的基本性质,另外本题还运用了不等式的另一重要性质——传递性,即若a>b,b>c,则a>c.。

不等式与绝对值不等式的变形

不等式与绝对值不等式的变形

不等式与绝对值不等式的变形不等式在数学中起到了重要的作用,它是比较大小关系的一种数学表示形式。

在解决实际问题中,我们经常会遇到需要将不等式进行变形的情况,以便更好地进行分析和求解。

而绝对值不等式是一类特殊的不等式,其中包含绝对值运算,对于这类不等式的变形也需要一定的技巧和方法。

本文将对不等式与绝对值不等式的变形进行详细介绍。

一、不等式的基本变形方法不等式的基本变形方法包括合并同类项、移项与交换,以下将对其进行详细介绍。

1. 合并同类项在解决不等式问题时,常常需要将具有相同变量的项进行合并以简化计算过程。

例如,对于不等式2x + 3 > 5x - 2,我们可以将2x和5x合并为7x,于是不等式可以变形为7x + 3 > -2。

2. 移项在不等式中,我们可以将含有变量的项从一侧移动到另一侧,从而改变不等式的形式。

例如,对于不等式2x + 3 > 5,我们可以将3移到不等号的另一侧,于是不等式变为2x > 5 - 3,即2x > 2。

3. 交换在不等式问题中,我们可以通过交换不等式两侧的表达式来改变不等式的形式。

例如,对于不等式3x < 7,我们可以将式子两侧的3x和7交换位置,得到7 > 3x。

以上是不等式的基本变形方法,在解决问题时可以根据实际情况选择合适的变形方法进行变形。

下面将介绍绝对值不等式的变形方法。

二、绝对值不等式的变形方法绝对值不等式是含有绝对值运算的不等式,为了求解这类不等式,我们需要将绝对值不等式进行适当的变形。

下面将分别介绍绝对值不等式的两种基本变形方法。

1. 分类讨论法对于含有绝对值的不等式,我们可以根据绝对值内部的表达式的符号进行分类讨论。

例如,对于不等式|3x - 7| < 5,我们可以将3x - 7分别大于0和小于0的情况进行讨论。

当3x - 7 > 0时,不等式可以变形为3x - 7 < 5,解得x < 4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本不等式
ab b a 222≥+的变式及应用 不等式ab b a 22
2
≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及
它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用
1、十种变式
①222b a ab +≤; ②2
)2(b a ab +≤;
③2
)2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22; ⑥ ,,+∈R b a 则b
a b a +≥+4
11 ⑦若ab b a R b a 4)11(
,,2≥
+∈+
⑧若0≠ab ,则2
22)11(2111b a b
a +≥+ 上述不等式中等号成立的充要条件均为:
b a =
⑨若R b a R n m ∈∈+
,,,,则n
m b a n b m a ++≥+2
22)((当且仅当bm an =时等号成立) ⑩)(3)(2
2
2
2
c b a c b a ++≤++(当且仅当c b a ==时等号成立)
2、应用
例1、若+
∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a
证法一:由变式①得21111++≤
+⋅a a 即12
1+≤+a
a 同理:121+≤+
b b ,12
1+≤+c
c
因此12111+≤+++++a c b a 412
12≤++++c
b
由于三个不等式中的等号不能同时成立,故4111<+++++c b a
评论:本解法应用“2
2
2b a ab +≤”观察其左右两端可以发现,对于某一字母左边是一
次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。

证法二:由变式④得)11(211+++≤+++b a b a
同理:)11(211++≤
++c c
∴≤
++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a
512<= 故结论成立
评论:本解法应用“)(222b a b a +≤
+”,这个变式的功能是将“根式合并”,将“离散
型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。

证法三:由变式⑩得
1(3)111(2+≤+++++a c b a 15)11=++++c b
故4111<+++++c b a 即得结论
评论:由基本不等式ab b a 22
2
≥+易产生2
2
2
222222a b c ab bc ca ++≥++,两边
同时加上222
a b c ++即得2
2
2
2
3()()a b c a b c ++≥++,于是便有了变式⑩,本变式的功
能可以将平方进行“分拆”与“合并”。

本解法是将平方进行分拆,即由整体平方转化为个整平方,从而有效的去掉了根号。

例2、设+
∈R c b a ,,,求证:
c b a a
c c
b b
a ++≥+
+
证明:由变式⑤得
b a b a -≥2,
c b c
b -≥2,
a c a
c -≥2
三式相加即得:
c b a a
c c
b b
a ++≥+
+
评论:本解法来至于“若0>b ,则b a b
a -≥22
”,这个变式将基本不等式转化成更为灵活的形式,当分式的分子与分母出现平方与一次的关系时,立即可以使用,方便快捷。

例3、实数b a ,满足
23)3(4)4(2
2=-+-b a ,求b a +的最大值与最小值 解析:结合变式⑨得=23
4)7(3)3(4)4(2
22+-+≥-+-b a b a 因此14714≤-+≤-b a 即147147+≤+≤-b a
当且仅当)3(4)4(3-=-b a 、再结合条件得⎪⎪⎩⎪⎪⎨⎧+=+=7144471433b a 及⎪⎪⎩
⎪⎪⎨⎧-=-=714447
14
33b a 时,
分别获得最小值与最大值;
评论:由2
2
2
2
2
2
2()()a m b n mnab n m n a m m n b +≥⇒+++≥2
()mn a b +再结合
,m n R +∈即得变式⑨,这可是一个很特别的公式,它沟通了两分式和与由两分式产生的
一个特殊分式的关系,它的灵活应用不仅可以为我们解决基本不等式的最值问题,也为我们处理圆锥曲线问题中的最值问题开辟了新的途径。

例4、已知)2,2(,-∈y x ,且1-=xy ,求2
299
44y
x u -+-=
的最小值
解析:由变式⑥2
299
44y x u -+-=
=-+-≥-+-=)
9
1()41(4
9114112222y x y x 5
123
1
24)
9
4(242
2=
-≥
+-y x 上述两不等式当且仅当3||2||y x =
、再结合1-=xy 得⎪⎪⎩⎪⎪⎨⎧-==3626y x 或⎪⎪⎩
⎪⎪⎨⎧=-=36
2
6y x 时,取得最小值;
评论:由2
2
2()()4a b ab b a b a a b ab +≥⇒+++≥结合,,+
∈R b a 两边同除以
()ab a b +即得变式⑥,本题两次使用基本不等式,第一次应用变式⑥,第二次应用基本
不等式。

值得注意的是两次等号成立的条件必须一致,否则,最值是取不到的。

例5、当a x <<0时,不等式
2)
(1122≥-+x a x 恒成立,求a 的最大值; 解:由变式⑧、⑦、②得
⋅≥-+≥-+21)11(21)(11222x a x x a x 2
2
8
)2
(421)(4a x a x x a x =-+⋅≥- 上述三个不等式中等号均在同一时刻x a x -=时成立 由
2028
2
≤<⇒≥a a 故a 的最大值为2;
评论:由2
()4a b ab +≥再结合,a b R +
∈即得变式⑦;又由ab b a 22
2≥+得
2222221
2()()()2
a b a b b a a b +≥+⇒+≥+结合0≠ab ,两边同除22a b 即得变式⑧。


题的求解,虽然“廖廖几步”,但来之实在不易。

首先这两个变式不一定大家都熟悉,其次,三次使用变式进行转化,必须保证等号在同一时刻取得,可谓步履维艰。

可以看出:不等式ab b a 22
2
≥+的各种变式及其灵活运用给予我们带来了不仅仅是
一个又一个的难题被“攻克”了,而是一次又一次的体验数学的真谛,一次又一次地充分享受数学解题的乐趣。

相关文档
最新文档