二次函数的图象和性质3(含答案)
二次函数的图象和性质(3)
二次函数的图象和性质(3)一、学习目标:1、经历探索二次函数y=ax2+k(a≠0)及y=a(x+m)2 (a≠0)的图象作法和性质的过程。
2、能够理解函数y=ax2+k(a≠0)及y=a(x+m)2 (a≠0)与y=ax2的图象的关系,理解a,m,k 对二次函数图象的影响。
3、能正确说出函数y=ax2+k, y=a(x+m)2的图象的开口方向,顶点坐标和对称轴。
二、学习重点:二次函数y=ax2+k, y=a(x-m)2的图象的性质三、学习难点:与y=ax2的关系的理解及应用。
四、教学过程:1、情境创设。
(1)提出问题,展示反映函数关系式y=ax2+k中,变量x、y的数量变化规律的表格,画二次函数y=ax2+k的图象。
(2)提出问题,展示函数关系式y=a(x+m)2中变量x、y的数量变化规律的表格,从而画出二次函数y=a(x+m)2的图象2、探索活动(1)操作:填表、描点,画出函数y=x2+1的图象,(2)观察:函数y=x2+1的图象与函数y=x2的图象的位置关系(3)思考:从表格中的数值看,相同自变量所对应的两个函数的函数值有何关系?从点的位置看,两个函数的图象的位置有何关系?(4)归纳结论结论如下:(1)函数y=ax2(a≠0)和函数y=ax2+c(a≠0)的图象形状相同,只是位置不同,把y=ax2的图象沿y轴向上(当c>0)或向下(c<0)平移|c|个单位就得到y=ax2+c的图象。
(2)抛物线y=ax2+c(a≠0)的性质①抛物线y=ax2+c(a≠0)的对称轴是y轴,顶点坐标是(0,c)②当a>0时,抛物线开口向上,并向上无限伸展当a<0时,抛物线开口向下,并向下无限伸展③当a>0时,在对称轴的左侧,y随x的增大而减小;在对称轴的右则,y随x的增大而增大,这时,当x=0时,y有最小值c当a<0时,在对称轴的左侧,y随x的增大而增大;在对称轴的右则,y随x的增大而减小,这时,当x=0时,y有最大值c3、例题精析例:在同一直角坐标系内,画出下列函数的图象,并归纳出相关结论(1)y=12(x+1)2(2) y=12(x-2)2解:列表:画图评注:(1)抛物线y=a(x+m)2(a≠0)与抛物线y=ax2(a≠0)的形状一样,只是位置不同,因此抛物线y=a(x+m)2可通过平移抛物线y=ax2(a≠0)得到。
二次函数的图象和性质(3)(九下)
§6.2二次函数的图象和性质(3)龙冈镇中数学教研组教学目标:知识与技能:经历探索二次函数y=ax2和2)y+a=和x(m +(图像的作法和性质的过程,进一步体验数形结合的思y+=2)akmx想方法。
过程与方法:会作出2)(ma+=2)(图像,理解a、xy+xay+=、kmm、k对二次函数图象的影响.能说出2)ay+x=2)(图+x(mmay+=、k像的开口方向、对称轴和顶点坐标.情感、态度与价值观:体会由具体到抽象、特殊到一般的研究方法。
教学重点:二次函数y=ax2、2)ay+x=2)+(图像和性质,教学x(mmay+=、k时结合图象分别从开口方向、对称轴、顶点坐标、最大(小值)、函数的增减性几个方面记忆分析.教学难点:由函数图象概括出y=ax2、2)y+ax=2)(的性质.根+y+(mxa=、km据函数图象联想函数性质,由性质来分析函数图象的形状和位置.教学方法:类比教学法。
教学过程:一、温故知新:二、操作、探究:操作一、在同一坐标系中画出函数图像2x y =,,)3(2+=x y 2)3(-=x y 的图像。
(1) 请比较这三个函数图像有什么共同特征? (2) 顶点和对称轴有什么关系?(3) 图像之间的位置能否通过适当的变换得到? (4) 由此,你发现了什么?探究:二次函数2ax y =和2)(m x a y +=图像之间的关系1、结合学生所画图像,引导学生观察2x y =,,)3(2+=x y 的图像位置关系,直观得出2x y =的图像−−−−−→−向左平移三个单位,)3(2+=x y 图像。
教师也可以把对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。
2、用同样的方法得出2x y =的图像−−−−−→−向右平移三个单位,)3(2-=x y 的图像。
3、请你总结二次函数2)(m x a y +=的图象和性质.2ax y =(0≠a )的图像个单位时向右平移当个单位向左平移时当m 0m m 0m −−−−−→−2)(m x a y +=的图像。
二次函数的图象与性质(三套带答案解析)
二次函数的图象与性质1一、选择题:1.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 62.如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0,③ 4a+b2<4ac,④ 3a+c<0.正确的个数是()A. 1B. 2C. 3D. 43.已知二次函数y=−x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是(1,3)C. 当x<1时,y随x的增大而增大D. 图象与x轴有唯一交点4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,点A坐标为(−1,0),点C在(0,2)与(0,3)之间(不包括这两点),抛物线的顶点为D,对称轴为直线x=2,有以下结论:① abc>0;②若点M(−12,y1),点N(72,y2)是函数图象上的两点,则y1<y2;③ −35<a<−25;④ ΔADB可以是等腰直角三形.其中正确的有()A. 1个B. 2个C. 3个D. 4个5.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. 154B. 4 C. ﹣154D. ﹣1746.已知二次函数y=x2−2ax+a2−2a−4(a为常数)的图象与x轴有交点,且当x>3时,y随x的增大而增大,则a的取值范围是()A. a≥−2B. a<3C. −2≤a<3D. −2≤a≤3二、填空题7.抛物线y=(k−1)x2−x+1与x轴有交点,则k的取值范围是________.8.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x.其中正确结论的序号是________.的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣1a9.下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.10.如果将抛物线y=x2向上平移3个单位,那么所得新抛物线的表达式是________.11.将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是________.三、解答题12.二次函数y=ax2+bx+c(a≠0)的图象过点A(﹣1,8)、B(2,﹣1),与y轴交于点C(0,3),求二次函数的表达式.13.已知二次函数y=ax2−2ax−3a的图象与x轴交于A、B两点,且经过C(1,-2),求点A、B的坐标和a的值.14.已知二次函数的顶点坐标为(2,−2),且其图象经过点(1,−1),求此二次函数的解析式.15.如图,抛物线y=-x2+bx+c与x轴负半轴交于点A,正半轴交于点B,OA=2OB=4.求抛物线的顶点坐标。
九年级数学下第1章二次函数1.2二次函数的图像与性质第3课时二次函数y=a2的图象与性质习题湘教
(2)求出该抛物线与坐标轴的交点坐标.
解:由(1)可知抛物线的表达式为 y=-(x-2)2. 当 y=0 时,-(x-2)2=0,解得 x1=x2=2, 所以抛物线与 x 轴的交点坐标为(2,0). 当 x=0 时,y=-4,所以抛物线与 y 轴的交点坐标为(0,-4).
17.如图,已知直线 l 经过 A(4,0)和 B(0,4)两点,抛物线 y= a(x-h)2 的顶点为 P(1,0),直线 l 与抛物线的交点为 M,连 接 PM.
3.(1)当 a__>____0 时,抛物线 y=a(x-h)2 开口向上,若 x<h(对 称轴左侧),则函数值 y 随 x 的增大而减小;若 x>h(对称轴 右侧),则函数值 y 随 x 的增大而增大.
(2)当 a__<____0 时,抛物线 y=a(x-h)2 开口向下,若 x<h(对称 轴左侧),则函数值 y 随 x 的增大而增大;若 x>h(对称轴右 侧),则函数值 y 随 x 的增大而减小.
【点拨】A.y=ax+c 中,a>0,c>0,y=a(x+c)2 中,a<0,c <0,故 A 错误;B.y=ax+c 中,a<0,c>0,y=a(x+c)2 中, a<0,c>0,故 B 正确;C.y=ax+c 中,a>0,c<0,y=a(x +c)2 中,a>0,c>0,故 C 错误;D.y=ax+c 中,a<0,c> 0,y=a(x+c)2 中,a>0,c<0,故 D 错误.
(2)将抛物线 y=(x-3)2 向上平移 1 个单位,再向左平移 t(t>0) 个单位得到新抛物线,若新抛物线的顶点 E 在△DAC 内, 求 t 的取值范围; 解:由题意可知:新抛物线的顶点坐标为(3-t,1), 设直线 AC 的表达式为 y=kx+b(k≠0). 将(1,4),(3,0)代入 y=kx+b 中, 得3kk++b= b=4, 0. 解得kb= =-6. 2,
第三章 函数 5.二次函数的图象和性质(含答案)
第三章函数 5.二次函数的图象和性质一、选择题1、(2019·衢州)二次函数y=(x-1)2+3图象的顶点坐标是()A. (1,3)B. (1,-3)C. (-1,3)D. (-1,-3)2、(2019·重庆)抛物线y=-3x2+6x+2的对称轴是()A. 直线x=2B. 直线x=-2C. 直线x=1D. 直线x=-13、(2019·河南)已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A. -2B. -4C. 2D. 44、(2019·兰州)已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是()A. 2>y1>y2B. 2>y2>y1C. y1>y2>2D. y2>y1>25、(2019·哈尔滨)将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线对应的函数解析式为()A. y=2(x+2)2+3B. y=2(x-2)2+3C. y=2(x-2)2-3D. y=2(x+2)2-36、(2019·西藏)要得到函数y=-12(x-1)2+1的图象,可以把函数y=-12x2的图象()A. 向左平移1个单位长度,再向下平移1个单位长度B. 向左平移1个单位长度,再向上平移1个单位长度C. 向右平移1个单位长度,再向上平移1个单位长度D. 向右平移1个单位长度,再向下平移1个单位长度7、(2019·百色)要得到抛物线y=x2+6x+7,可把抛物线y=x2()A. 先向左平移3个单位长度,再向下平移2个单位长度B. 先向左平移6个单位长度,再向上平移7个单位长度C. 先向左平移3个单位长度,再向上平移2个单位长度D. 先回右平移3个单位长度,再向上平移2个单位长度8、(2019·雅安)在平面直角坐标系中,对于二次函数y=(x-2)2+1,下列说法错误的是()A. y的最小值为1B. 图象顶点坐标为(2,1),对称轴为直线x=2C. 当x<2时,y的值随x值的增大而增大,当x≥2时,y的值随x值的增大而减小D. 它的图象可以由y=x2的图象先向右平移2个单位长度,再向上平移1个单位长度得到9、(2019·淄博)将二次函数y=x2-4x+a的图象向左平移1个单位长度,再向上平移1个单位长度,若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A. a>3B. a<3C. a>5D. a<510、(2019·河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A. ac<0B. b2-4ac>0C. 2a-b=0D. a-b+c=011、(2019·成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A. c<0B. b2-4ac<0C. a-b+c<0D. 图象的对称轴是直线x=312、(2019·沈阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A. abc<0B. b2-4ac<0C. a-b+c<0D. 2a+b=013、(2019·娄底)二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc<0;②b2-4ac<0;③2a>b;④(a+c)2<b2.其中正确的有()A. 1个B. 2个C. 3个D. 4个14、(2019·鄂州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc<0;②3a+c>0;③(a+c)2-b2<0;④a+b≤m(am+b)(m为实数).其中结论正确的个数为()A. 1B. 2C. 3D. 415、(2019·通辽)在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示.有下列结论:①abc<0;②c+2a<0;③9a-3b+c=0;④a-b≥m(am+b)(m为实数);⑤4ac-b2<0.其中错误结论的个数是()A. 1B. 2C. 3D. 416、(2019·葫芦岛)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A. B. C. D.17、(2019·呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A. B. C. D.18、(2019·湖州)已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx 与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.19、(2019·陕西)在同一平面直角坐标系中,若抛物线y=x2+(2m-1)x+2m-4与y=x2-(3m+n)x+n关于y轴对称,则符合条件的m,n的值为()A. 57,-187B. 5,-6C. -1,6D. 1,-220、(2019·贵阳)如图,在平面直角坐标系中,已知点A(-1,0),点B(1,1)都在直线y=12x+12上,若抛物线y=ax2-x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A. a≤-2B. a<9 8C. 1≤a<98或a≤-2 D. -2≤a<9821、(2019·玉林)如图,抛物线C:y=12(x-1)2-1,顶点为D,将C沿水平方向向右(或向左)平移m个单位长度,得到抛物线C1,顶点为D1,C与C1相交于点Q,若∠DQD1=60°,则m的值为()A. B. C. -2或 D. -4或22、(2019·宜宾)已知抛物线y=x2-1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A. 存在实数k,使得△ABC为等腰三角形B. 存在实数k,使得△ABC的内角中有两角分别为30°和60°C. 任意实数k,使得△ABC都为直角三角形D. 存在实数k,使得△ABC为等边三角形23、(2019·福建)若二次函数y=|a|x2+bx+c的图象经过不同的五点A(m,n),B(0,y1),C(3-m,n),D(2,y2),E(2,y3),则y1,y2,y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y3<y2<y1D. y2<y3<y124、(2019·资阳)如图是函数y=x2-2x-3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A. m≥1B. m≤0C. 0≤m≤1D. m≥1或m≤025、(2019·岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1,x2,且x1<1<x2,那么c的取值范围是()A. c<-3B. c<-2C. c<14D. c<1二、填空题26、(2019·哈尔滨)二次函数y=-(x-6)2+8的最大值是______.27、(2019·荆州)二次函数y=-2x2-4x+5的最大值是______.28、(2019·白银)将二次函数y=x2-4x+5化成y=a(x-h)2+k的形式为______.29、(2019·凉山州)将抛物线y=(x-3)2-2向左平移______个单位长度后经过点A(2,2).30、(2019·宜宾)将抛物线y=2x2的图象,向左平移1个单位长度,再向下平移2个单位长度,所得图象对应的函数解析式为______.31、(2019·广元)如图,抛物线y=ax2+bx+c(a≠0)过点(-1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是______.32、(2019·天水)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a-b.则M,N的大小关系为M______N(填“>”“<”或“=”).33、(2019·荆门)抛物线y=ax2+bx+c(a,b,c为常数)的顶点为P,且抛物线经过点A(-1,0),B(m,0),C(-2,n)(1<m<3,n<0).下列结论:①abc>0;②3a+c<0;③a (m-1)+2b>0;④当a=-1时,存在点P使△P AB为直角三角形.其中正确的为______(填序号).34、(2019·镇江)已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是______.35、(2019·内江)若x,y,z为实数,且2421x y zx y z+-=⎧⎨-+=⎩则代数式x2-3y2+z2的最大值是______.36、(2019·雅安)函数y=()()220x x xx x-+>⎧⎪⎨-≤⎪⎩的图象如图所示.若直线y=x+m与该图象恰有三个不同的交点,则m的取值范围为______.37、(2019·大庆)如图,抛物线y=14px2(p>0),点F(0,p),直线l:y=-p,已知抛物线上的点到点F的距离与到直线l的距离相等,过点F的直线与抛物线交于A,B两点,AA1⊥l,BB1⊥l,垂足分别为A1,B1,连接A1F,B1F,A1O,B1O.若A1F=a,B1F=b,则△A1OB1的面积为______(只用a,b表示).38、(2019·衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2019的坐标为______.三、解答题39、(2019·宁波)如图,二次函数y=x2+ax+3的图象经过点P(-2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.40、(2019·永州)如图,抛物线经过两点A(-3,0),B(0,3),且其对称轴为直线x=-1.(1)求此抛物线对应的函数解析式;(2)若P是抛物线上点A与点B之间的动点(不包括点A,B),求△P AB面积的最大值,并求出此时点P的坐标.41、(2019·安徽)一次函数y=kx+4与二次函数y=ax2+c的图象的一个交点坐标为(1,2),另一个交点是该二次函数图象的顶点.(1)求k,a,c的值;(2)过点A(0,m)(0<m<4)且垂直于y轴的直线与二次函数y=ax2+c的图象相交于B,C两点,点O为坐标原点,记W=OA2+BC2,求W关于m的函数解析式,并求W的最小值.42、(2019·台州)已知函数y=x2+bx+c(b,c为常数)的图象经过点(-2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当-5≤x≤1时,函数的最大值与最小值之差为16,求b的值.43、(2019·南通)已知二次函数y=x2-4x+3a+2(a为常数).(1)请写出该二次函数的三条性质;(2)在同一直角坐标系中,若该二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.44、(2019·北京)在平面直角坐标系xOy中,抛物线y=ax2+bx-1a与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P112a⎛⎫-⎪⎝⎭,,Q(2,2).若抛物线与线段PQ恰有一个公共点,结合图象,求a的取值范围.45、(2019·天门)在平面直角坐标系中,已知抛物线C:y=ax2+2x-1(a≠0)和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.(1)若抛物线C与直线l有交点,求a的取值范围;(2)当a=-1,二次函数y=ax2+2x-1的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.46、(2019·上海)如图,在平面直角坐标系xOy中,抛物线y=x2-2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2-2x的“不动点”的坐标;①平移抛物线y=x2-2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线对应的函数解析式.47、(2019·河北)如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x轴的右交点为D.(1)若AB=8,求b的值,并求此时抛物线L的对称轴与直线a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.第三章 函数 5.二次函数的图象和性质一、选择题1、A2、C3、B4、A5、B6、C7、A8、C9、D 10、C 11、D 12、D 13、A 14、C 15、A 16、D 17、D 18、D 19、D 20、C 21、A 22、D 23、D 24、C 25、B二、填空题26、8 27、7 28、y =(x -2)2+1 29、3 30、y =2(x +1)2-2 31、-6<M <6 32、< 33、②③ 34、74 35、26 36、0<m <14 37、4ab 38、(-1010,10102) 三、解答题39、(1)把点P (-2,3)代入y =x 2+ax +3中,得3=4-2a +3,解得a =2.∴二次函数的解析式为y =x 2+2x +3=(x +1)2+2.∴顶点坐标为(-1,2)(2)①当m =2时,n =(2+1)2+2=11②∵点Q 到y 轴的距离小于2,∴|m |<2.∴-2<m <2.∴结合图象可知,n 的取值范围为2≤n <1140、(1)∵抛物线的对称轴是直线x =-1,且经过点A (-3,0),∴由抛物线的对称性可知,抛物线还经过点(1,0).设抛物线对应的函数解析式为y =a (x -1)(x +3),把B (0,3)代入,得3=-3a ,解得a =-1.∴抛物线对应的函数解析式为y =-x 2-2x +3(2)设直线AB 对应的函数解析式为y =kx +b ,∵点A (-3,0),B (0,3)在直线y =kx +b 上,∴33k b b -+=0⎧⎨=⎩解得13.k b =⎧⎨=⎩∴直线AB 对应的函数解析式为y =x +3.过点P 作PQ ⊥x 轴于点Q ,交直线AB 于点M ,设P (x ,-x 2-2x +3),则M (x ,x +3),∴PM =-x 2-2x +3-(x +3)=-x 2-3x .∴S △P AB =12(-x 2-3x )×3=-32(x +32)2+278.当x =-32时,S △P AB 有最大值,为278,此时点P 的纵坐标为-232⎛⎫- ⎪⎝⎭-2×32⎛⎫- ⎪⎝⎭+3=154,∴△P AB 面积的最大值为278,此时点P 的坐标为31524⎛⎫- ⎪⎝⎭, 41、(1)根据题意,得二次函数y =ax 2+c 的图象的顶点坐标为(0,c ).将点(0,c ),(1,2)代入一次函数的解析式,得424c k =⎧⎨=+⎩解得42.c k =⎧⎨=-⎩将点(1,2)代入y =ax 2+4,得2=a +4,解得a =-2.∴k 的值为-2,a 的值为-2,c 的值为4(2)由(1)可知,二次函数的解析式为y =-2x 2+4.令y =m ,得2x 2+m -4=0,解得x设B ,C 两点的坐标分别为(x 1,m ),(x 2,m ),则BC =|x 1-x 2|=2∴W =OA 2+BC 2=m 2+4×42m -=m 2-2m +8=(m -1)2+7.∵0<m <4,∴当m =1时,W 有最小值,为7 42、(1)将点(-2,4)代入y =x 2+bx +c ,得4=4-2b +c ,即-2b +c =0,∴c =2b(2)根据题意,得m =-2b ,n =244c b -.∴b =-2m .又由(1)知,c =2b ,∴c =-4m .∴n =244c b -=21644m m --=-m 2-4m (3)如图,由(2)的结论,画出函数y =x 2+bx +c 和函数y =-x 2-4x 的图象.∵函数y =x 2+bx +c 的图象不经过第三象限,∴-4≤-2b ≤0.①当-4≤-2b ≤-2,即4≤b ≤8时,如图①.当x =1时,函数取到最大值,为1+3b ;当x =-2b 时,函数取到最小值,为284b b -.∴1+3b -284b b -=16,即b 2+4b -60=0,解得b 1=6,b 2=-10(不合题意,舍去).②当-2<-2b ≤0,即0≤b <4时,如图②.当x =-5时,函数取到最大值,为25-3b ;当x =-2b 时,函数取到最小值,为284b b -,∴25-3b -284b b -=16,即b 2-20b +36=0,解得b 1=2,b 2=18(不合题意,舍去).综上所述,b 的值为2或643、(1)答案不唯一,如①图象开口向上;②图象的对称轴为直线x =2;③当x >2时,y 随x 的增大而增大(2)∵二次函数的图象与一次函数y=2x-1的图象有两个交点,∴x2-4x+3a+2=2x-1,即x2-6x+3a+3=0.∴Δ=36-4(3a+3)=-12a+24>0,解得a<2.∵二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,∴二次函数y=x2-6x+3a+3的图象与x轴x≤4的部分有两个交点.结合图象(图略)可知,当x=4时,x2-6x+3a+3≥0.∴当x=4时,x2-6x+3a+3=3a-5≥0,解得a≥53.∴当二次函数的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点时,a的取值范围为53≤a<244、(1)由题意,得A1a⎛⎫-⎪⎝⎭,,又∵将点A向右平移2个单位长度,得到点B,∴B12a⎛⎫-⎪⎝⎭,(2)∵点A1a⎛⎫-⎪⎝⎭,与点B12a⎛⎫-⎪⎝⎭,关于直线x=1对称,点A,B均在抛物线上,∴抛物线的对称轴为直线x=1(3)①当a>0时,则-1a<0.结合图象(图略)可知,此时线段PQ与抛物线没有交点.②当a<0时,则-1a>0.结合图象(图略)可知,此时-1a≤2,解得a≤-12.综上所述,当a≤-12时,抛物线与线段PQ恰有一个公共点45、(1)将点A(-3,-3),B(1,-1)代入y=kx+b,得133k bk b+=-⎧⎨-+=-⎩解得123.2kb⎧=⎪⎪⎨⎪=-⎪⎩∴直线l对应的函数解析式为y=12x-32.联立y=ax2+2x-1与y=12x-32,得2ax2+3x+1=0.∵抛物线C与直线l有交点,∴Δ=9-8a≥0,解得a≤98.又∵a≠0,∴a的取值范围为a≤98且a≠0(2)根据题意,得二次函数的解析式为y=-x2+2x-1=-(x-1)2.∵-1<0,∴二次函数的图象开口向下,对称轴为直线x=1.∵当m≤x≤m+2时,y有最大值-4,∴当y=-4时,有-(x-1)2=-4,解得x=-1或x=3.①当x<1时,y随x的增大而增大,∴当x=m+2=-1时,y有最大值-4,此时m=-3;②当x>1时,y随x的增大而减小,∴当x=m=3时,y有最大值-4.综上所述,m的值为-3或3(3)49≤a<98或a≤-246、(1)对于抛物线y=x2-2x=(x-1)2-1,其开口向上,顶点A的坐标为(1,-1);当x>1时,y随x的增大而增大;当x<1时,y随x的增大而减小(2)①设抛物线“不动点”坐标为(t ,t ),则t =t 2-2t .解得t =0或3.∴“不动点”的坐标为(0,0)或(3,3)①∵新抛物线顶点B 为“不动点”,则设点B (m ,m ),∴新抛物线的对称轴为直线x =m ,与x 轴的交点C 的坐标为(m ,0).∵四边形OABC 是梯形,∴直线x =m 在y 轴左侧.∵BC 与OA 不平行,∴OC ∥AB. 又∵点A 的坐标为(1,-1),点B 的坐标为(m ,m ),∴m =-1.∴新抛物线是由抛物线y =x 2-2x 向左平移2个单位长度得到的.∴新抛物线对应的函数表达式为y =(x +1)2-147、(1)当x =0时,y =x -b =-b ,∴点B 的坐标为(0,-b ).∵AB =8,而点A 的坐标为(0,b ),∴b -(-b )=8.解得b =4.∴抛物线L 对应的函数解析式为y =-x 2+4x .∴抛物线L 的对称轴为直线x =2.当x =2时,y =x -4=-2.∴抛物线L 的对称轴与直线a 的交点坐标为(2,-2)(2)∵y =-x 2+bx =-22b x ⎛⎫- ⎪⎝⎭+24b ,∴抛物线L 的顶点C 的坐标为224b b ⎛⎫ ⎪⎝⎭,.∵点C 在l 下方,∴C 与l 的距离为b -24b =-14(b -2)2+1≤1.∴点C 与l 距离的最大值为1 (3)由题意,得y 3=122y y +,即y 1+y 2=2y 3,得b +x 0-b =2(-x 20+bx 0).解得x 0=0或x 0=b -12.但x 0≠0,取x 0=b -12.对于L ,当y =0时,得0=-x 2+bx ,即0=-x (x -b ).解得x 1=0,x 2=b .∵b >0,∴右交点D 的坐标为(b ,0).∴点(x 0,0)与点D 间的距离为b -12b ⎛⎫- ⎪⎝⎭=12(4)①当b =2019时,抛物线L 对应的函数解析式为y =-x 2+2019x ,直线a 对应的函数解析式为y =x -2019.联立上述两个解析式,可得x 1=-1,x 2=2019.∴可知每一个整数x 的值都对应的一个整数y 值,且-1和2019之间(包括-1和-2019)共有2021个整数.∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点.∴总计4042个整数点.∵这两段图象交点有2个点重复,∴美点”的个数为4042-2=4040;①当b =2019.5时,抛物线L 对应的函数解析式为y =-x 2+2019.5x ,直线a 对应的函数解析式为y =x -2019.5.联立上述两个解析式,可得x 1=-1,x 2=2019.5,∴当x 取整数时,在一次函数y =x -2019.5上,y 取不到整数值.∴在该图象上“美点”的个数为0.∵在二次函数y =x 2+2019.5x 的图象上,当x 为偶数时,函数值y 可取整数,可知-1到2019.5之间有1010个偶数,∴“美点”共有1010个.综上所述,当b =2019时,“美点”的个数为4040;当b =2019.5时,“美点”的个数为1010。
专题2-4二次函数的图象与性质(3)-(解析版)
2020-2021学年九年级数学下册尖子生同步培优题典【北师大版】专题2.4二次函数的图象与性质(3)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•岳麓区校级期末)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣5C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣5【分析】先把抛物线y=x2﹣4x﹣4化为顶点式的形式,再由二次函数平移的法则即可得出结论.【解答】解:∵y=x2﹣4x﹣4=(x﹣2)2﹣8,∴将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移3个单位,得到抛物线的表达式为y=(x﹣2+3)2﹣8+3,即y=(x+1)2﹣5.故选:D.2.(2020•南岗区校级三模)对二次函数y=2(x﹣3)2﹣4的图象,下列叙述正确的是()A.顶点坐标为(﹣3,﹣4)B.与y轴的交点坐标为(0,﹣4)C.当x≥3时,y随x增大而减小D.最小值是y=﹣4【分析】根据二次函数的性质对各选项分析判断后利用排除法求解.【解答】解:由二次函数y=2(x﹣3)2﹣4可知,开口向上.对称轴为直线x=3,顶点坐标为(3,﹣4),抛物线有最小值﹣4,当x≥3时,y随x增大而增大,故A、C错误,D正确;令x=0,则y=14,抛物线与y轴的交点为(0,14),故B错误;故选:D.3.(2019秋•思明区校级期中)对于二次函数y=x2﹣2x+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣1C.当x<1时,y随x的增大而减小D.函数最大值为4【分析】将解析式配方成顶点式,再根据二次函数的性质可得抛物线开口方向、对称轴方程和顶点坐标及最值情况,据此求解可得.【解答】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴由a=1>0知抛物线开口向上,顶点坐标是(1,2),对称轴是直线x=1,当x<1时,y随x的增大而减小,函数有最小值为2,无最大值,∴C选项正确;故选:C.4.(2019春•西湖区校级月考)二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,则下列结论一定正确的是()A.m=k B.m>k C.m≥k D.m<k【分析】根据题意,可以得到该函数开口向上有最小值,再根据二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,即可得到k和m的关系,本题得以解决.【解答】解:∵二次函数y=a2x2+bx+c(a≠0),∴a2>0,∴该函数开口向上,函数有最小值,∵二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,∴m≥k,故选:C.5.(2020•宝应县一模)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=1,下列结论不正确的是()A.a=2B.顶点的坐标为(1,﹣4)C.当﹣1<x<3时,y>0D.当x>3时,y随着x的增大而增大【分析】根据题意和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:∵二次函数y=x2﹣ax+b对称轴为直线x=1,∴1,得a=2,故选项A正确;∵该函数图象过点(﹣1,0),∴0=1﹣2×(﹣1)+b,得b=﹣3,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴该抛物线的顶点坐标为(1,﹣4),故选项B正确;∵二次函数y=x2﹣ax+b对称轴为直线x=1,过点(﹣1,0),∴该函数过点(3,0),∴当﹣1<x<3时,y<0,故选项C不正确;∴当x>1时,y随x的增大而增大,故选项D正确;故选:C.6.(2019•温岭市一模)将抛物线y=x2﹣2x﹣3沿x轴折得到的新抛物线的解析式为()A.y=﹣x2+2x+3 B.y=﹣x2﹣2x﹣3 C.y=x2+2x﹣3 D.y=x2﹣2x+3【分析】抛物线线上的点沿x轴折得到的新抛物线的坐标与原坐标的横坐标相同,纵坐标互为相反数.【解答】解:将抛物线y=x2﹣2x﹣3沿x轴折得到的新抛物线的解析式为:﹣y=x2﹣2x﹣3,即y=﹣x2+2x+3.故选:A.7.(2019秋•工业园区期末)下列对于二次函数y=﹣x2+x图象的描述中,正确的是()A.开口向上B.对称轴是y轴C.有最低点D.在对称轴右侧的部分从左往右是下降的【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵二次函数y=﹣x2+x=﹣(x)2,∴a=﹣1,该函数的图象开口向下,故选项A错误;对称轴是直线x,故选项B错误;当x时取得最大值,该函数有最高点,故选项C错误;在对称轴右侧的部分从左往右是下降的,故选项D正确;故选:D.8.(2019秋•海安市期末)已知抛物线过点A(﹣1,m)、B(1,m)和C(2,m﹣1),则其大致图象为()A.B.C.D.【分析】先根据抛物线过点A(﹣1,m)、B(1,m)可求出其对称轴为y轴,故可排除A、C,再由m >m﹣1可得出在y轴右侧y随x的增大而减小,得出抛物线开口向下,由此可得出结论.【解答】解:∵抛物线过点A(﹣1,m)、B(1,m),∴抛物线的对称轴为y轴,∴可排除A、C.∵1<2,m>m﹣1,∴在y轴右侧y随x的增大而减小,∴抛物线开口向下,∴B错误,D正确.故选:D.9.(2020•岐山县二模)若抛物线y=x2+mx+n的顶点在x轴上,且过点A(a,b),B(a+6,b),则b的值为()A.9 B.6 C.3 D.0【分析】根据抛物线y=x2+mx+n的顶点在x轴上,可知△=0,从而可以得到m与n的关系,再根据抛物线y=x2+mx+n过点A(a,b),B(a﹣4,b),可以得到a和m的关系,从而可以求得b的值.【解答】解:法一:∵抛物线y=x2+mx+n顶点在x轴上,∴△=m2﹣4×1×n=m2﹣4n=0,∴n m2,∵抛物线y=x2+mx+n过点A(a,b),B(a+6,b),∴b=a2+ma+n,b=(a+6)2+m(a+6)+n,∴a2+ma+n=(a+6)2+m(a+6)+n,化简,得a,∴b=a2+ma+n=()2+m m2=9,法二:∵抛物线y=x2+mx+n过点A(a,b),B(a+6,b),∴对称轴是x a+3,∵抛物线y=x2+mx+n顶点在x轴上,∴y=x2+mx+n=[x﹣(a+3)]2,把(a+6,b)代入得:b=[(a+6)﹣(a+3)]2=32=9,故选:A.10.(2020•镇江)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A.B.4 C.D.【分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m﹣n的最大值,本题得以解决.【解答】解:∵点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上,∴a=0,∴n=m2+4,∴m﹣n=m﹣(m2+4)=﹣m2+m﹣4=﹣(m)2,∴当m时,m﹣n取得最大值,此时m﹣n,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020•立山区二模)若二次函数y=mx2+(m﹣2)x+m的顶点在x轴上,则m=﹣2或.【分析】根据二次函数的顶点坐标列出方程求解即可.【解答】解:∵二次函数y=mx2+(m﹣2)x+m的顶点在x轴上,∴0,解得m=﹣2或.故答案为:﹣2或.12.(2020•海珠区一模)抛物线y=x2+bx+c经过点A(﹣2,0)、B(1,0)两点,则该抛物线的顶点坐标是(,).【分析】利用待定系数法确定b、c的值,然后求得顶点坐标即可.【解答】解:∵抛物线y=x2+bx+c经过点A(﹣2,0)、B(1,0)两点,∴,解得:,∴y=x2+x﹣2=(x)2,∴顶点坐标为(,),故答案为:(,).13.(2018秋•顺庆区校级月考)某同学用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格由于粗心他算错了其中一个y的值,则这个错误的数值是﹣5.x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故这个错误的数值是﹣5,故答案为﹣5.14.(2020•梁园区一模)点P1(﹣2,y1),P2(0,y2),P3(1,y3)均在二次函数y=﹣x2﹣2x+c的图象上,则y1,y2,y3的大小关系是y1=y2>y3.【分析】先根据二次项系数为负,得出函数图象开口向下;再求出其对称轴,根据横坐标离对称轴的远近即可作出判断.【解答】解:二次函数y=﹣x2﹣2x+c的二次项系数a=﹣1,∴函数图象开口向下又∵对称轴为x=﹣1,∴y1=y2>y3点故答案为:y1=y2>y3.15.(2020•仓山区校级模拟)若抛物线y=ax2+bx+c的开口向上,对称轴是直线x,点A(﹣2,y1)、B(1,y2)、C(2,y3)都在该抛物线上,则y1、y2、y3的大小关系是y2<y3<y1.【分析】根据二次函数的性质比较即可.【解答】解:抛物线y=ax2+bx+c的开口向上,对称轴是直线x,当x时,y随x的增大而增大,∵点A(﹣2,y1)、B(1,y2)、C(2,y3)都在该抛物线上,∴点A关于对称轴x的对称点是(3,y1),∴y2<y3<y1,故答案为y2<y3<y1.16.(2019秋•南充期末)将抛物线y=﹣x2﹣4x(﹣4≤x≤0)沿y轴折叠后得另一条抛物线,若直线y=x+b 与这两条抛物线共有3个公共点,则b的取值范围为0<b.【分析】画出图象,利用图象法解决即可.【解答】解:将抛物线y=﹣x2﹣4x(﹣4≤x≤0)沿y轴折叠后得另一条抛物线为y=﹣x2+4x(0≤x≤4)画出函数如图,由图象可知,当直线y=x+b经过原点时有两个公共点,此时b=0,解,整理得x2﹣3x+b=0,若直线y=x+b与这两条抛物线共有3个公共点,则△=9﹣4b>0,解得b所以,当0<b时,直线y=x+b与这两条抛物线共有3个公共点,故答案为0<b.17.(2020春•崇川区期末)抛物线y=x2+bx+c经过点A(﹣2,m),B(4,m),C(5,n)给出下列结论:①b=2;②函数最小值为c﹣1;③当x=2时,y=c;④c>n.其中正确的有②③.(填序号)【分析】由点A、B的坐标利用二次函数的对称性可求出b的值即可判断①,利用二次函数图象上点的坐标特征即可判断②③④.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(﹣2,m)、B(4,m),∴1,∴b=﹣2,故①错误;∴y=x2﹣2x+c,把x=1代入得,y=c﹣1,∴函数最小值为c﹣1,故②正确;把x=2代入得,y=4﹣4+c=c,故③正确;∵点C(5,n)在二次函数y=x2﹣2x+c的图象上,∴n=25﹣10+c,∴n﹣c=15,∴c<n,故④错误;故答案为②③.18.(2020•长春一模)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,点P的坐标为(0,).【分析】首先确定点A和点B的坐标,然后根据轴对称,可以求得使得△P AB的周长最小时点P的坐标.【解答】解:,解得,或,∴点A的坐标为(1,2),点B的坐标为(4,5),∴AB3,作点A关于y轴的对称点A′,连接A′B与y轴的交于P,则此时△P AB的周长最小,点A′的坐标为(﹣1,2),点B的坐标为(4,5),设直线A′B的函数解析式为y=kx+b,,得,∴直线A′B的函数解析式为y x,当x=0时,y,即点P的坐标为(0,),故答案为:(0,).三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•江岸区校级月考)已知二次函数C2:y=ax2+2x+c图象经过点A(2,3)和点C(0,3).(1)求该二次函数的解析式;(2)填空:抛物线C1:y=ax2的顶点坐标为(0,0),而抛物线C2:y=ax2+2x+c的顶点坐标为(1,4).将抛物线C1经过适当平移,得到抛物线C2:应该先向右(填:左或右)平移1个单位长度,再向上(填:上或下)平移4个单位长度.【分析】(1)根据待定系数法,可得函数解析式;(2)直接利用二次函数的性质以及二次函数平移规律得出答案.【解答】解:(1)将点A和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)∵抛物线C2:y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线C1:y=﹣x2的顶点坐标为(0,0),而抛物线C2:y=ax2+2x+c的顶点坐标为(1,4).将抛物线C1经过适当平移,得到抛物线C2:应该先向右(填:左或右)平移1个单位长度,再向上(填:上或下)平移4个单位长度.故答案为:0、0,1、4,右,1,上,4.20.设抛物线为y=x2﹣kx+k﹣1,根据下列各条件,求k的值.(1)抛物线的顶点在x轴上;(2)抛物线的顶点在y轴上;(3)抛物线的顶点(﹣1,﹣4);(4)抛物线经过原点;(5)当x=1时,y有最小值;(6)y的最小值为﹣1.【分析】根据二次函数的顶点坐标公式解答即可.(1)抛物线的顶点在x轴上,即0,解之即可得出答案;(2)抛物线的顶点在y轴上,即x0,解之即可;(3)抛物线的顶点(﹣1,﹣4),即x1,4,解之即可;(4)抛物线经过原点,即k﹣1=0,解之即可;(5)当x=1时,y有最小值,即x1,解之即可;(6)y的最小值为﹣1,即k﹣11,解之即可;【解答】解:(1)抛物线的顶点在x轴上,即0,∴k=2;(2)抛物线的顶点在y轴上,即x0,∴k=0;(3)抛物线的顶点(﹣1,﹣4),即x1,4,∴k=1;(4)抛物线经过原点,即k﹣1=0,∴k=1;(5)当x=1时,y有最小值,即1,k=2;(6)y的最小值为﹣1,y k﹣1,即k﹣11,解得:k=0或k=4.21.(2020•海门市一模)已知平面直角坐标系xOy中,抛物线y═x2﹣mx m2+m.(1)若该抛物线经过原点,求m的值;(2)求证该抛物线的顶点在直线y=x上;(3)若点A(﹣4,0),B(0,2),当该抛物线与线段AB只有一个公共点时,结合函数图象,直接写出m的取值范围.【分析】(1)把(0,0)代入解析式,得到关于m的方程,解方程即可;(2)化成顶点式,求得顶点坐标,即可得到结论;(3)求得抛物线就A、B时的m的值,根据图象即可求得.【解答】解:(1)∵抛物线经过原点,∴m2+m=0,解得m1=0,m2=﹣2;(2)∵y═x2﹣mx m2+m(x﹣m)2+m,∴该抛物线的顶点坐标为(m,m),∴抛物线的顶点直线直线y=x上;(3)设直线AB的解析式为y=kx+b,把点A(﹣4,0),B(0,2)代入得,解得,∴直线AB的解析式为y2,令x+2x2﹣mx m2+m,整理得x2﹣(m)x m2+m﹣2=0,△=(m)2﹣4(m2+m﹣2)=0,解得m,∵此时对称轴为x0,故舍去;把A(﹣4,0)代入y x2﹣mx m2+m得,m2+5m+8=0,解得m=﹣2或﹣8;把B(0,2)代入y x2﹣mx m2+m得,m2+m+﹣2=0,解得m=﹣1,由图象可知,该抛物线与线段AB只有一个公共点时,﹣8≤m≤﹣1或﹣2≤m≤﹣1.22.(2020•建水县模拟)如图所示,已知抛物线y x2+bx+c经过点A(﹣1,0),B(5,0).(1)求抛物线的解析式并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积.【分析】(1)列出交式即可求得;(2)根据S四边形AMBC=S△ABM+S△ABC即可求解.【解答】解:(1)∵抛物线y x2+bx+c经过点A(﹣1,0),B(5,0).∴函数的表达式为:y(x+1)(x﹣5)(x2﹣4x﹣5)x2x,点M坐标为(2,﹣3);(2)当x=8时,y(x+1)(x﹣5)=9,即点C(8,9),因为AB=5+1=6,且△ABM、△ABC的高分别是点M、点C纵坐标的绝对值,所以S四边形AMBC=S△ABM+S△ABC36.23.(2020秋•津南区期中)二次函数y=ax2+bx+c(a≠0)的自变量x与对应的函数y的值(部分)如表所示:x……﹣3 ﹣2 ﹣1 0 1 2 ……y……m7 1 ﹣1 1 7 ……解答下列问题:(Ⅰ)求这个二次函数的解析式;(Ⅱ)表格中m的值等于17;(Ⅲ)在直角坐标系中,画出这个函数的图象;(Ⅳ)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.【分析】(Ⅰ)根据表格中的数据和二次函数的性质,可以得到该二次函数顶点坐标,设出顶点式,利用待定系数法即可求得;(Ⅱ)把x=﹣3代入求得的解析式即可求得m的值;(Ⅲ)描点、连线画出图象即可;(Ⅳ)根据平移的规律即可求得.【解答】解:(Ⅰ)由表格可知,该函数有最小值,当x=0时,y=﹣1,当x=﹣1和x=1时的函数值相等,即该二次函数图象的开口方向向上,对称轴是直线x=0,顶点坐标为(0,﹣1),设二次函数为y=ax2﹣1,把x=1,y=1代入得,1=a﹣1,解得a=2,∴二次函数的解析式为y=2x2﹣1;(Ⅱ)把x=﹣3代入y=2x2﹣1得,y=17;∴m=17,故答案为17;(Ⅲ)在直角坐标系中,画出这个函数的图象如图:(Ⅳ)将这个函数的图象向右平移2个单位长,向上平移1个单位长,则平移后的二次函数解析式为y =2(x﹣2)2.24.(2020•湖北)把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2.(1)直接写出抛物线C2的函数关系式;(2)动点P(a,﹣6)能否在抛物线C2上?请说明理由;(3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1,y2的大小,并说明理由.【分析】(1)根据二次函数图象左加右减,上加下减的平移规律进行求解;(2)根据二次函数的最小值即可判断;(3)根据二次函数的性质可以求得y1与y2的大小.【解答】解:(1)∵y=x2+2x+3=(x+1)2+2,∴把抛物线C1:y=x2+2x+3先向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2:y=(x+1﹣4)2+2﹣5,即y=(x﹣3)2﹣3,∴抛物线C2的函数关系式为:y=(x﹣3)2﹣3.(2)动点P(a,﹣6)不在抛物线C2上,理由如下:∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴函数的最小值为﹣3,∵﹣6<﹣3,∴动点P(a,﹣6)不在抛物线C2上;(3)∵抛物线C2的函数关系式为:y=(x﹣3)2﹣3,∴抛物线的开口向上,对称轴为x=3,∴当x<3时,y随x的增大而减小,∵点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0<3,∴y1>y2.。
二次函数的图象和性质(含详细参考答案10页)
2013年中考数学专题复习 二次函数的图象和性质【基础知识回顾】一、 二次函数的定义:一般地如果y= (a 、b 、c 是常数a ≠0)那么y 叫做x 的二次函数名师提醒: 二次函数y=kx 2+bx+c(a ≠0)的结构特征是:1、等号左边是函数,右边是 关 于 自 变 量x 的 二 次 式,x 的 最 高 次 数 是 , 按 一次排列2、强调二次项系数a 0二、二次函数的同象和性质:1、二次函数y=kx 2+bx+c(a ≠0)的同象是一条 ,其定点坐标为 对称轴式2、在抛物y=kx 2+bx+c(a ≠0)中:(1)当a>0时,y 口向 ,当x<-2ba 时,y 随x 的增大而 ,当x 时,y 随x 的增大而增大,(2)当a<0时,开口向 当x<-2ba时,y 随x 增大而增大,当x 时,y 随x 增大而减小.名师提醒:注意几个特殊形式的抛物线的特点1、y=ax 2 ,对称轴 定点坐标2、y= ax 2+k ,对称轴 定点坐标 3、y=a(x-h) 2对称轴 定点坐标4、y=a(x-h) 2 +k 对称轴 定点坐标三、二次函数同象的平移名师提醒:二次函数的平移本质可看作是定点问题的平移,固然要掌握整抛物线的平移,只要关键的顶点平移即可四、二次函数y= ax 2+bx+c 的同象与字母系数之间的关系:a:开口方向 向上则a 0,向下则a 0 |a |越大,开口越 b:对称轴位置,与a 联系一起,用 判断b=0时,对称轴是 c:与y 轴的交点:交点在y 轴正半轴上,则c 0负半轴上则c 0,当c=0时,抛物点过 点名师提醒:在抛物线y= ax 2+bx+c 中,当x=1时,y= 当x=-1时y= ,经常根据对应的函数值判考a+b+c 和a-b+c 的符号【重点考点例析】考点一:二次函数图象上点的坐标特点例1 (2012•常州)已知二次函数y=a (x-2)2+c (a >0),当自变量x3、0时,对应的函数值分别:y1,y2,y3,,则y1,y2,y3的大小关系正确的是()A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2对应训练1.(2012•衢州)已知二次函数y=12-x2-7x+152,若自变量x分别取x1,x2,x 3,且0<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系正确的是()A.y1>y2>y3B.y1<y2<y3C.y2>y3>y1D.y2<y3<y1考点二:二次函数的图象和性质例2 (2012•咸宁)对于二次函数y=x2-2mx-3,有下列说法:①它的图象与x轴有两个公共点;②如果当x≤1时y随x的增大而减小,则m=1;③如果将它的图象向左平移3个单位后过原点,则m=-1;④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为-3.其中正确的说法是.(把你认为正确说法的序号都填上)考点:二次函数的性质;二次函数图象与几何变换;抛物线与x轴的交点.对应训练2.(2012•河北)如图,抛物线y1=a(x+2)2-3与y2=12(x-3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2-y1=4;④2AB=3AC;其中正确结论是()A.①② B.②③ C.③④ D.①④考点三:抛物线的特征与a、b、c的关系例3 (2012•玉林)二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,有如下结论:①c<1;②2a+b=0;③b2<4ac;④若方程ax2+bx+c=0的两根为x1,x2,则x1+x2=2,则正确的结论是()A.①② B.①③ C.②④ D.③④对应训练3.(2012•重庆)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=12-.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b考点四:抛物线的平移例4 (2012•桂林)如图,把抛物线y=x2沿直线y=x平移2个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是()A.y=(x+1)2-1 B.y=(x+1)2+1C.y=(x-1)2+1 D.y=(x-1)2-1对应训练4.(2012•南京)已知下列函数①y=x2;②y=-x2;③y=(x-1)2+2.其中,图象通过平移可以得到函数y=x2+2x-3的图象的有(填写所有正确选项的序号).【聚焦中考】1.(2012•泰安)二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限2.(2012•济南)如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是()A.y的最大值小于0 B.当x=0时,y的值大于1C.当x=-1时,y的值大于1 D.当x=-3时,y的值小于03.(2012•菏泽)已知二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=bx+c和反比例函数ayx在同一平面直角坐标系中的图象大致是A. B. C. D.4.(2012•泰安)设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y25.(2012•烟台)已知二次函数y=2(x-3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=-3;③其图象顶点坐标为(3,-1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个 B.2个 C.3个 D.4个6.(2012•日照)二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a:b:c=-1:2:3.其中正确的是()A.①② B.②③ C.③④ D.①④7.(2012•泰安)将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.y=3(x+2)2+3 B.y=3(x-2)2+3 C.y=3(x+2)2-3 D.y=3(x-2)2-38.(2012•潍坊)许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋转位置从0度到90度(如图),燃气关闭时,燃气灶旋转的位置为0度,旋转角度越大,燃气流量越大,燃气开到最大时,旋转角度为90度.为测试燃气灶旋转在不同位置上的燃气用量,在相同条件下,选择燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故选择旋钮角度x度的范围是18≤x≤90),记录相关数据得到下表:旋钮角度(度)20 50 70 80 90所用燃气量(升)73 67 83 97 115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量y 升与旋钮角度x度的变化规律?说明确定是这种函数而不是其它函数的理由,并求出它的解析式;(2)当旋钮角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋钮角度,每月平均能节约燃气10立方米,求该家庭以前每月的平均燃气量.【备考真题过关】一、选择题1.(2012•白银)二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>32.(2012•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是()A.k<-3 B.k>-3 C.k<3 D.k>33.(2012•德阳)设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是()A.c=3 B.c≥3 C.1≤c≤3 D.c≤34.(2012•北海)已知二次函数y=x2-4x+5的顶点坐标为()A.(-2,-1) B.(2,1)C.(2,-1) D.(-2,1)5.(2012•广元)若二次函数y=ax2+bx+a2-2(a、b为常数)的图象如图,则a的值为()A.1 B.2 C.-2 D.-26.(2012•西宁)如同,二次函数y=ax2+bx+c的图象过(﹣1,1)、(2,﹣1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1B.当x=3时,y的值小于0C.当x=1时,y的值大于1D.y的最大值小于06.(2012•巴中)对于二次函数y=2(x+1)(x-3),下列说法正确的是()A.图象的开口向下 B.当x>1时,y随x的增大而减小C.当x<1时,y随x的增大而减小 D.图象的对称轴是直线x=-17.(2012•天门)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c <0;④8a+c>0.其中正确的有()A.3个 B.2个 C.1个 D.0个8.(2012•乐山)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(-1,0).设t=a+b+1,则t值的变化范围是()A.0<t<1 B.0<t<2 C.1<t<2 D.-1<t<19.(2012•扬州)将抛物线y=x2+1先向左平移2个单位,再向下平移3个单位,那么所得抛物线的函数关系式是()A.y=(x+2)2+2 B.y=(x+2)2-2C.y=(x-2)2+2 D.y=(x-2)2-210.(2012•宿迁)在平面直角坐标系中,若将抛物线y=2x2-4x+3先向右平移3个单位长度,再向上平移2个单位长度,则经过这两次平移后所得抛物线的顶点坐标是()A.(-2,3) B.(-1,4) C.(1,4) D.(4,3)11.(2012•陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1 B.2 C.3 D.6二、填空题12.(2012•玉林)二次函数y=-(x-2)2+94的图象与x轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有个(提示:必要时可利用下面的备用图画出图象来分析).13.(2012•长春)在平面直角坐标系中,点A是抛物线y=a(x-3)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.14.(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.其中正确的是(把正确的序号都填上).15.(2012•苏州)已知点A(x1,y1)、B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1y2(填“>”、“<”或“=”).16.(2012•成都)有七张正面分别标有数字-3,-2,-1,0,l,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2-2(a-1)x+a (a-3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2-(a2+1)x-a+2的图象不经过点(1,0)的概率是.17.(2012•上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是.18.(2012•宁波)把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的解析式为.19.(2012•贵港)若直线y=m (m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.19.(2012•广安)如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为.三、解答题20.(2012•柳州)已知:抛物线y=34(x-1)2-3.(1)写出抛物线的开口方向、对称轴;(2)函数y有最大值还是最小值?并求出这个最大(小)值;(3)设抛物线与y轴的交点为P,与x轴的交点为Q,求直线PQ的函数解析式.21.(2012•佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面.请你解决以下与数的表示和运算相关的问题:(1)写出奇数a用整数n表示的式子;(2)写出有理数b用整数m和整数n表示的式子;(3)函数的研究中,应关注y随x变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y=x2的某种数值变化规律进行初步研究:xi0 1 2 3 4 5 …yi0 1 4 9 16 25 …y i+1﹣yi1 3 5 7 9 11 …由表看出,当x的取值从0开始每增加1个单位时,y的值依次增加1,3,5…请回答:①当x的取值从0开始每增加个单位时,y的值变化规律是什么?②当x的取值从0开始每增加个单位时,y的值变化规律是什么?【重点考点例析】考点一:二次函数图象上点的坐标特点例1 解:∵二次函数y=a(x-2)2+c(a>0),∴该抛物线的开口向上,且对称轴是x=2.∴抛物线上的点离对称轴越远,对应的函数值就越大,∵x取0时所对应的点离对称轴最远,x取2时所对应的点离对称轴最近,∴y3>y2>y1.故选B.1.(2012•衢州)解:∵二次函数y=12-x2-7x+152,∴此函数的对称轴为:x=2ba-=7712()2--=-⨯-,∵0<x1<x2<x3,三点都在对称轴右侧,a<0,∴对称轴右侧y随x的增大而减小,∴y1>y2>y3.故选:A.考点二:二次函数的图象和性质例2 (2012•咸宁)解:①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故本选项正确;②∵当x≤1时y随x 的增大而减小,∴函数的对称轴x=-22m --≥1在直线x=1的右侧(包括与直线x=1重合),则22m--≥1,即m ≥1,故本选项错误;③将m=-1代入解析式,得y=x 2+2x-3,当y=0时,得x 2+2x-3=0,即(x-1)(x+3)=0,解得,x 1=1,x 2=-3,将图象向左平移3个单位后不过原点,故本选项错误;④∵当x=4时的函数值与x=2008时的函数值相等,∴对称轴为x=420082+=1006,则22m--=1006,m=1006,原函数可化为y=x 2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故本选项正确.故答案为①④(多填、少填或错填均不给分). 对应训练2.(2012•河北)解:①∵抛物线y 2=12(x-3)2+1开口向上,顶点坐标在x 轴的上方,∴无论x 取何值,y 2的值总是正数,故本小题正确;②把A (1,3)代入,抛物线y 1=a (x+2)2-3得,3=a (1+2)2-3,解得a=23,故本小题错误;③由两函数图象可知,抛物线y 1=a (x+2)2-3过原点,当x=0时,y 2=12(0-3)2+1=112,故y 2-y 1=112,故本小题错误;④∵物线y 1=a (x+2)2-3与y 2=12(x-3)2+1交于点A (1,3),∴y 1的对称轴为x=-2,y 2的对称轴为x=3,∴B (-5,3),C (5,3)∴AB=6,AC=4,∴2AB=3AC ,故本小题正确.故选D . 考点三:抛物线的特征与a 、b 、c 的关系例3 (2012•玉林)解:由抛物线与y 轴的交点位置得到:c >1,选项①错误;∵抛物线的对称轴为x=2ba-=1,∴2a+b=0,选项②正确;由抛物线与x 轴有两个交点,得到b 2-4ac >0,即b2>4ac ,选项③错误;令抛物线解析式中y=0,得到ax 2+bx+c=0,∵方程的两根为x 1,x 2,且2b a -=1,及b a -=2,∴x 1+x 2=ba-=2,选项④正确,综上,正确的结论有②④.故选C 对应训练3.(2012•重庆)解:A 、∵开口向上,∴a >0,∵与y 轴交与负半轴,∴c <0,∵对称轴在y 轴左侧,∴2ba-<0,∴b >0,∴abc <0,故本选项错误;B 、∵对称轴:x=2b a -=12-,∴a=b ,故本选项错误;C 、当x=1时,a+b+c=2b+c <0,故本选项错误;D 、∵对称轴为x=12-,与x 轴的一个交点的取值范围为x1>1,∴与x 轴的另一个交点的取值范围为x 2<-2,∴当x=-2时,4a-2b+c <0,即4a+c <2b ,故本选项正确.故选D . 考点四:抛物线的平移例4 (2012•桂林)解:∵A 在直线y=x 上,∴设A (m ,m ),∵OA=2,∴m 2+m 2=(2)2,解得:m=±1(m=-1舍去),m=1,∴A (1,1),∴抛物线解析式为:y=(x-1)2+1,故选:C . 对应训练4.(2012•南京)解:原式可化为:y=(x+1)2-4,由函数图象平移的法则可知,将函数y=x 2的图象先向左平移1个单位,再向下平移4个单位即可得到函数y=(x+1)2-4,的图象,故①正确;函数y=(x+1)2-4的图象开口向上,函数y=-x 2;的图象开口向下,故不能通过平移得到,故②错误;将y=(x-1)2+2的图象向左平移2个单位,再向下平移6个单位即可得到函数y=(x+1)2-4的图象,故③正确.故答案为:①③.【聚焦中考】1.解:∵抛物线的顶点在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y=mx+n 的图象经过二、三、四象限,故选C . 2.解:A 、由图象知,点(1,1)在图象的对称轴的左边,所以y 的最大值大于1,不小于0;故本选项错误;B 、由图象知,当x=0时,y 的值就是函数图象与y 轴的交点,而图象与y 轴的交点在(1,1)点的左边,故y <1;故本选项错误;C 、对称轴在(1,1)的右边,在对称轴的左边y 随x 的增大而增大,∵-1<1,∴x=-1时,y 的值小于x=-1时,y 的值1,即当x=-1时,y 的值小于1;故本选项错误;D 、当x=-3时,函数图象上的点在点(-2,-1)的左边,所以y 的值小于0;故本选项正确.故选D . 3.解:∵二次函数图象开口向下,∴a <0,∵对称轴x=2ba-<0,∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数ay x=位于第二四象限,纵观各选项,只有C 选项符合.故选C . 4.解:∵函数的解析式是y=-(x+1)2+a ,如右图,∴对称轴是x=-1,∴点A 关于对称轴的点A ′是(0,y 1),那么点A ′、B 、C 都在对称轴的右边,而对称轴右边y 随x 的增大而减小,于是y 1>y 2>y 3.故选A .5.解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A . 6.解:由二次函数图象与x 轴有两个交点,∴b 2-4ac >0,选项①正确;又对称轴为直线x=1,即2ba-=1,可得2a+b=0(i ),选项②错误;∵-2对应的函数值为负数,∴当x=-2时,y=4a-2b+c <0,选项③错误;∵-1对应的函数值为0,∴当x=-1时,y=a-b+c=0(ii ),联立(i )(ii )可得:b=-2a ,c=-3a ,∴a :b :c=a :(-2a ):(-3a )=-1:2:3,选项④正确,则正确的选项有:①④.故选D . 7.A8.解:(1)若设y=kx+b (k ≠0),由7320 6750k b k b =+⎧⎨=+⎩,解得1577k b ⎧=-⎪⎨⎪=⎩,所以y=15-x+77,把x=70代入得y=65≠83,所以不符合;若设k y x =(k ≠0),由73=20k ,解得k=1460,所以y=1460x,把x=50代入得y=29.2≠67,所以不符合;若设y=ax 2+bx+c , 则由7340020 67250050 83490070a b c a b c a b c =++⎧⎪=++⎨⎪=++⎩,解得1 508 597a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,所以y=150x 2-85x+97(18≤x ≤90),把x=80代入得y=97,把x=90代入得y=115,符合题意.所以二次函数能表示所用燃气量y 升与旋钮角度x 度的变化规律; (2)由(1)得:y=150x 2-85x+97=150(x-40)2+65,所以当x=40时,y 取得最小值65.即当旋钮角度为40°时,烧开一壶水所用燃气量最少,最少为65升;(3)由(2)及表格知,采用最节省燃气的旋钮角度40度比把燃气开到最大时烧开一壶水节约用气115-65=50(升) 设该家庭以前每月平均用气量为a 立方米,则由题意得:50115a=10,解得a=23(立方米),即该家庭以前每月平均用气量为23立方米.【备考真题过关】1.C 2.D 解:根据题意得:y=|ax 2+bx+c|的图象如右图:所以若|ax 2+bx+c|=k (k ≠0)有两个不相等的实数根,则k >3,故选D .3.B 解:∵当x ≤1时,总有y ≥0,当1≤x ≤3时,总有y ≤0,∴函数图象过(1,0)点,即1+b+c=0①,∵当1≤x ≤3时,总有y ≤0,∴当x=3时,y=9+3b+c ≤0②,①②联立解得:c ≥3,故选B . 4.B 5.C6.解:由图可知,当x >﹣1时,函数值y 随x 的增大而减小,A 、当x=0时,y 的值小于1,故本选项错误;B 、当x=3时,y 的值小于0,故本选项正确;C 、当x=1时,y 的值小于1,故本选项错误;D 、y 的最大值不小于1,故本选项错误.6.C 解:二次函数y=2(x+1)(x-3)可化为y=2(x-1)2-8的形式,A 、∵此二次函数中a=2>0,∴抛物线开口向上,故本选项错误;B 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x >1时,y 随x 的增大而增大,故本选项错误;C 、∵由二次函数的解析式可知,此抛物线开口向上,对称轴为x=1,∴当x <1时,y 随x 的增大而减小,故本选项正确; D 、由二次函数的解析式可知抛物线对称轴为x=1,故本选项错误.故选C . 7.B 解:根据图象可得:a >0,c <0,对称轴:2bx a=->0,①∵它与x 轴的两个交点分别为(-1,0),(3,0),∴对称轴是x=1,∴2ba-=1,∴b+2a=0,故①错误;②∵a >0,∴b <0,∵c <0,∴abc >0,故②错误;③∵a-b+c=0,∴c=b-a ,∴a-2b+4c=a-2b+4(b-a )=2b-3a ,又由①得b=-2a ,∴a-2b+4c=-7a <0,故此选项正确;④根据图示知,当x=4时,y >0,∴16a+4b+c >0,由①知,b=-2a ,∴8a+c >0;故④正确;故正确为:③④两个.8.B 解:∵二次函数y=ax 2+bx+1的顶点在第一象限,且经过点(-1,0),∴易得:a-b+1=0,a <0,b >0,由a=b-1<0得到b <1,结合上面b >0,所以0<b <1①,由b=a+1>0得到a >-1,结合上面a <0,所以-1<a <0②,∴由①②得:-1<a+b <1,且c=1,得到0<a+b+1<2,∴0<t <2.故选:B . 9.B 10.D 11.B 解:当x=0时,y=-6,故函数与y 轴交于C (0,-6),当y=0时,x 2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A (-2,0),B (3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2. 二、填空题12.7 解:∵二次项系数为-1,∴函数图象开口向下,顶点坐标为(2,94),当y=0时,-(x-2)2+94=0,解得x 1=12,得x 2=72.可画出草图为:(右图)图象与x 轴围成的封闭区域内(包括边界),横、纵坐标都是整数的点有7个,为(2,0),(2,1),(2,2),(1,0),(1,1),(3,0),(3,1).13.解:∵抛物线y=a (x-3)2+k 的对称轴为x=3,且AB ∥x 轴,∴AB=2×3=6,∴等边△ABC 的周长=3×6=18.故答案为:18. 14.①②③ 解:根据图象可得:a <0,c >0,对称轴:x=2b a -=1,2b a=-1,b=-2a ,∵a <0, ∴b >0,∴abc <0,故①正确;把x=-1代入函数关系式y=ax 2+bx+c 中得:y=a-b+c ,由图象可以看出当x=-1时,y <0,∴a-b+c <0,故②正确;∵b=-2a ,∴a-(-2a )+c <0,即:3a+c <0,故③正确;由图形可以直接看出④错误.故答案为:①②③. 15.y 1>y 2 解:由二次函数y=(x-1)2+1可,其对称轴为x=1,∵x1>x2>1,∴两点均在对称轴的右侧,∵此函数图象开口向上,∴在对称轴的右侧y 随x 的增大而增大∵x1>x2>1,∴y1>y2.故答案为:>. 16.37解:∵x 2-2(a-1)x+a (a-3)=0有两个不相等的实数根,∴△>0,∴[-2(a-1)]2-4a (a-3)>0,∴a >-1,将(1,0)代入y=x 2-(a 2+1)x-a+2得,a 2+a-2=0,解得(a-1)(a+2)=0,a 1=1,a 2=-2.可见,符合要求的点为0,2,3.∴P=3 7 .故答案为37. 17.y=x 2+x-2 18.y=-(x+1)2-2 解:二次函数y=(x-1)2+2顶点坐标为(1,2),绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),所以,旋转后的新函数图象的解析式为y=-(x+1)2-2.故答案为:y=-(x+1)2-2.18 解:分段函数y=的图象如图:故要使直线y=m (m 为常数)与函数y=的图象恒有三个不同的交点,常数m 的取值范围为0<m <2,故答案为:0<m <2.19.272解:如图,过点P 作PM ⊥y 轴于点M ,∵抛物线平移后经过原点O 和点A (-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=12(x+3)2+h ,将(-6,0)代入得出:0=12(-6+3)2+h ,解得:h=92-,∴点P 的坐标是(-3,92-),根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=|-3|×|92-|=272.故答案为:272.三、解答题20.解:(1)抛物线y=34(x-1)2-3,∵a=34>0,∴抛物线的开口向上,对称轴为x=1; (2)∵a=34>0,∴函数y 有最小值,最小值为-3; (3)令x=0,则y=34(0-1)2-3=94-,所以,点P 的坐标为(0,94-),令y=0,则34(x-1)2-3=0,解得x 1=-1,x 2=3,所以,点Q 的坐标为(-1,0)或(3,0),当点P (0,94-),Q (-1,0)时,设直线PQ 的解析式为y=kx+b ,则940b k b ⎧=-⎪⎨⎪-+=⎩,解得9494kb⎧=-⎪⎪⎨⎪=-⎪⎩,所以直线PQ的解析式为y=94-x94-,当P(0,94-),Q(3,0)时,设直线PQ的解析式为y=mx+n ,则9430nm n⎧=-⎪⎨⎪+=⎩,解得3494mn⎧=⎪⎪⎨⎪=-⎪⎩,所以,直线PQ的解析式为y=34x94-,综上所述,直线PQ的解析式为y=94-x94-或y=34x94-.3.(2012•佛山)解:(1)n是任意整数,则表示任意一个奇数的式子是:2n+1;(2)有理数b=(n≠0);(3)①当x=0时,y=0,当x=时,y=,当x=1时,y=1,当x=时,y=.故当x的取值从0开始每增加个单位时,y的值依次增加、、…②当x=0时,y=0,当x=时,y=,当x=时,y=,当x=时,y=,故当x的取值从0开始每增加个单位时,y的值依次增加、、…。
初中数学二次函数的图象与性质基础过关测试题3(附答案详解)
初中数学二次函数的图象与性质基础过关测试题3(附答案详解)1.将抛物线24y x =+先向左平移2个单位,再向下平移1个单位,那么所得抛物线的函数关系式是( ) A .2(2)3y x =-- B .2(2)3y x =+- C .2(2)3y x =-+D .2(2)3y x =++2.如图,已知抛物线y =x 2+bx +c 与直线y =x 交于(1,1)和(3,3)两点,现有以下结论:①b 2﹣4c >0;②3b +c +6=0;③当x 2+bx +c >2x时,x >2;④当1<x <3时,x 2+(b ﹣1)x +c <0,其中正确的序号是( )A .①②④B .②③④C .②④D .③④3.二次函数y =2x 2-8x +9的图象可由y =2x 2的图象怎样平移得到( ) A .先向右平移2个单位再向上平移1个单位 B .先向右平移2个单位再向下平移1个单位 C .先向左平移2个单位再向上平移1个单位 D .先向左平移2个单位再向下平移1个单位4.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在二次函数y =﹣x 2+x ﹣3的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 3=y 1<y 2B .y 3≤y 2≤y 1C .y 2<y 1=y 3D .y 1<y 2<y 35.对于每个自然数n ,抛物线()()221111n y x x n n n n +=-+++与x 轴交于n A 、n B ,两点,以n n A B 表示该两点间的距离,则1122A B A B ++⋅⋅⋅20152015A B +值为( ). A .20142015B .20162015C .20152014D .201520166.已知点A(-3,y 1),B(-1,y 2),C(2,y 3)在函数y=-x 2的图象上,则y 1,y 2,y 3的大小关系为( ) A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 2<y 1D .y 2<y 1<y 37.抛物线y=﹣x 2经过平移得到抛物线y=﹣(x+2)2﹣3,平移的方法是( ) A .向左平移2个,再向下平移3个单位 B .向右平移2个,再向下平移3个单位 C .向左平移2个,再向上平移3个单位D .向右平移2个,再向上平移3个单位9.把抛物线y =ax 2+bx+c 图象先向左平移2个单位长度,再向下平移3个单位长度,所得的图象的解析式是y =x 2+5x+6,则a ﹣b+c 的值为( ) A .2B .3C .5D .1210.已知二次函数y =ax 2+bx +c +2的图象如图所示,顶点为(﹣1,0),下列结论:①abc >0;②b 2﹣4ac =0;③a >2;④ax 2+bx +c =﹣2的根为x 1=x 2=﹣1;⑤若点B (﹣14,y 1)、C (﹣12,y 2)为函数图象上的两点,则y 1>y 2.其中正确的个数是( )A .2B .3C .4D .511.将抛物线y =x 2﹣6x +5化成y =a (x ﹣h )2﹣k 的形式,则hk =_____. 12.如图,ABC ∆的顶点坐标分别为()()()0,4,2,0,4,2A B C ,若二次函数22y x bx =++的图象与阴影部分(含边界)一定有公共点,则实数b 的取值范围是__________.13.若抛物线y=x 2+bx(b>2)上存在关于直线y=x 成轴对称的两个点,则b 的取值范围是______.14.已知抛物线的顶点坐标为(1,8)--,且过点(0,6)-,则该抛物线的表达式为________.15.二次函数22(1)4y x =-+-图象的顶点坐标是______.16.抛物线2(0)y ax a =≠沿某条直线平移一段距离,我们把平移后得到的新抛物线叫做原抛物线的“同簇抛物线”.如果把抛物线2yx 沿直线y x =向上平移,平移距离2时,那么它的“同簇抛物线”的表达式是_____.17.在平面直角坐标系 xOy 中,函数 y = x 2 的图象经过点M (x 1 , y 1 ) ,N (x 2 , y 2 ) 两点,若- 4< x 1< -2, 0< x 2 <2 ,则 y 1 ____ y 2 . (用“ < ”,“=”或“>”号连接) 18.对于二次函数y=5x 2+bx+c ,甲、乙、丙、丁四位同学给出四个说法,甲:图象对称轴是x=1;乙:函数最小值为3;丙:当x=﹣1时,y=0;丁:点(2,8)在函数图象上.其中有且仅有一个说法是错误的,则哪位同学的说法是错误的_____. 19.已知抛物线y=2x 2-bx+3的对称轴经过点(2,—1),则b 的值为______.20.某同学利用描点法画二次函数y =ax 2+bx+c (a≠0)的图象时,列出的部分数据如下表:经检查,发现表格中恰好有一组数据计算错误,请你根据上述信息写出该二次函数的解析式:_____ x 0 1 2 3 4 y3﹣2321.已知二次函数y =﹣x 2﹣2x+3.(1)把函数关系式配成顶点式并求出图象的顶点坐标和对称轴.(2)若图象与x 轴交点为A .B ,与y 轴交点为C ,求A 、B 、C 三点的坐标; (3)在图中画出图象.并求出△ABC 面积.22.已知抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-.()1求此抛物线的顶点D 的坐标;()2将此图象沿x 轴向左平移2个单位长度,直接写出当y 0<时x 的取值范围.23.已知二次函数y =x 2﹣6mx+9m 2+n (m ,n 为常数)(1)若n =﹣4,这个函数图象与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,试求△ABC 面积的最大值;(2)若n =4m+4,当x 轴上的动点Q 到抛物线的顶点P 的距离最小值为4时,求点Q 的坐标.24.在平面直角坐标系xOy 中,抛物线2:23c y ax ax =-+与直线:l y kx b =+交于A ,B 两点,且点A 在y 轴上,点B 在x 轴的正半轴上.(1)直接写出点A 的坐标; (2)若1a =-,求直线l 的解析式; (3)若31k -≤≤-,求a 的取值范围.25.如图,是一块三角形材料,∠A =30°,∠C =90°,AB =6.用这块材料剪出一个矩形DECF ,点D ,E ,F 分别在AB ,BC ,AC 上,要使剪出的矩形DECF 面积最大,点D 应该选在何处?26.如图,已知二次函数21:22(0)L y ax ax a a =++->和二次函数22:(2)2(0)=--+>L y a x a 图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1))函数222(0)y ax ax a a =++->的顶点坐标为 ;当二次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围是 ;(2)当AD=MN 时,求a 的值,并判断四边形AMDN 的形状(直接写出,不必证明); (3)当B ,C 是线段AD 的三等分点时,求a 的值.27.在如图的平面直角坐标系中,抛物线y =ax 2﹣2amx +am 2+1(a <0)与x 轴交于点A 和点B ,点A 在点B 的左侧,与y 轴交于点C ,顶点是D ,且∠DAB =45°. (1)填空:点C 的纵坐标是 (用含a 、m 的式子表示); (2)求a 的值;(3)点C 绕O 逆时针旋转90°得到点C ′,当﹣12≤m ≤52时,求BC ′的长度范围.28.如图,直线y =-x +4与x 轴,y 轴分别交于点B ,C ,点A 在x 轴负半轴上,且OA =12OB , 抛物线y =ax 2+bx +4经过A ,B ,C 三点.(1)求抛物线的解析式;(2)点P是第一象限内抛物线上的动点,设点P的横坐标为m,过点P作PD⊥BC,垂足为D,用含m的代数式表示线段PD的长,并求出线段PD的最大值;(3)设点E为抛物线对称轴与直线BC的交点,若A,B,E三点到同一直线的距离分别是d1,d2,d3,问是否存在直线l,使得d1= d2=12d3? 若存在,请直接写出d3的值,若不存在,请说明理由.参考答案1.D 【解析】 【分析】根据抛物线的平移规律“左加右减,上加下减”进行判断即可. 【详解】解:抛物线24y x =+先向左平移2个单位,再向下平移1个单位,所得抛物线的函数关系式是:2(2)3y x =++. 故选D. 【点睛】本题考查了抛物线的平移,属于基础题型,熟知抛物线的平移规律是解题的关键. 2.C 【解析】 【分析】由函数y =x 2+bx +c 与x 轴无交点,可得b 2﹣4c <0;当x =3时,y =9+3b +c =3,3b +c +6=0;利用抛物线和双曲线交点(2,1)得出x 的范围;当1<x <3时,二次函数值小于一次函数值,可得x 2+bx +c <x ,继而可求得答案. 【详解】∵函数y =x 2+bx +c 与x 轴无交点, ∴b 2﹣4ac <0; ∴b 2﹣4c <0 故①不正确;当x =3时,y =9+3b +c =3, 即3b +c +6=0; 故②正确;把(1,1)(3,3)代入y =x 2+bx +c ,得抛物线的解析式为y =x 2﹣3x +3, 当x =2时,y =x 2﹣3x +3=1,y =2x=1, 抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.【点睛】本题考查了图象与二次函数系数之间的关系,此题难度适中,注意掌握数形结合思想的应用.3.A【解析】【分析】先将二次函数y=2x2-8x+9变形为顶点式,再利用函数平移规则:上加下减,左加右减,即可解答.【详解】y=2x2-8x+9=2(x-2)2+1所以由y=2x2的图象先向右平移2个单位再向上平移1个单位得到二次函数y=2x2-8x+9的图象.故选A【点睛】本题考查二次函数平移,熟练掌握二次函数平移规律“上加下减,左加右减”是解题关键. 4.A【解析】【分析】首先根据二次函数解析式确定抛物线的对称轴为x=12,再根据抛物线的增减性以及对称性可得y1,y2,y3的大小关系.【详解】解:∵二次函数y =﹣x 2+x ﹣3=﹣(x ﹣12)2﹣114,∴对称轴为x =12, ∵a <0, ∴x <12时,y 随x 增大而增大, ∵(3,y 3)关于对称轴的对称点为(﹣2,y 3) ∴y 3=y 1<y 2. 故选:A . 【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,关键是掌握二次函数的增减性. 5.D 【解析】 【分析】首先求出抛物线与x 轴两个交点坐标,然后由题意得到n n A B 111n n =-+,进而求出1122A B A B ++⋅⋅⋅20152015A B +的值.【详解】 令y =x 2()211n n n +-+x ()11n n +=+0, 即x 2()211n n n +-+x()11n n +=+0, 解得:x 1n =或x 11n =+, 故抛物线y =x 2()211n n n +-+x ()11n n ++与x 轴的交点为(1n ,0),(11n +,0),由题意得:n n A B 111n n =-+,则1122A B A B ++⋅⋅⋅20152015A B +=11111122320152016-+-++-=11201520162016-=. 故选D . 【点睛】本题考查了抛物线与x 轴交点的知识,解答本题的关键是求出n n A B . 6.B 【解析】 【分析】根据二次函数图象上点的坐标特征,把三个点的坐标分别代入二次函数解析式,计算出y 1、y 2、y 3的值,然后比较它们的大小. 【详解】当x=-3时,y 1=-x 2=-9;当x=-1时,y 2=-x 2=-1;当x=2时,y 3=-x 2=-4, 所以y 1<y 3<y 2. 故选B . 【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式. 7.A 【解析】 【分析】先确定两个抛物线的顶点坐标,再利用点平移的规律确定抛物线平移的情况. 【详解】解:抛物线y=-x 2的顶点坐标为(0,0),抛物线y=﹣(x+2)2﹣3的顶点坐标为(-2,-3),而点(0,0)向左平移2个,再向下平移3个单位可得到(-2,-3),所以抛物线y=-x 2向左平移2个,再向下平移3个单位得到抛物线y=﹣(x+2)2﹣3. 故选A . 【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 8.C【解析】【分析】 根据图上给出的条件是与x 轴交于(1,0),叫我们加个条件使对称轴是x=2,意思就是抛物线的对称轴是x=2是题目的已知条件,这样可以求出a 、b 的值,然后即可判断题目给出四个人的判断是否正确.【详解】解:∵抛物线过(1,0),对称轴是x=2,3022a b b a++=⎧⎪∴⎨-=⎪⎩ 解得a=1,b=-4,∴y=x 2-4x+3,当x=3时,y=0,所以小华正确;当x=4时,y=3,小彬也正确,小明也正确;抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x=2,此时答案不唯一,所以小颖错误.故选:C .【点睛】本题是开放性题目,要把题目的结论作为题目的条件,再推理出四个人说的结论的正误.难度较大.9.B【解析】【分析】求得平移后抛物线的顶点坐标,根据平移规律求得原抛物线的顶点坐标,写出原抛物线解析式,即可取得a 、b 、c 的值.【详解】y =x 2+5x+6=(x+)2﹣.则其顶点坐标是(﹣,﹣),将其右左平移2个单位长度,再向上平移3个单位长度后得到(﹣,).故原抛物线的解析式是:y =(x+)2+=x 2+x+3.所以a =b =1,c =3.所以a ﹣b+c =1﹣1+3=3.故选B .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.10.D【解析】【分析】根据二次函数的图象与性质即可求出答案.【详解】 解:①由抛物线的对称轴可知:02b a -<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;②抛物线与x 轴只有一个交点,∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确; ⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.11.﹣12.【解析】【分析】将抛物线化成顶点式,可得h ,k 的值,代入计算即可.【详解】解:∵y =x 2﹣6x +5=x 2﹣6x +9﹣4=(x ﹣3)2﹣4,∴h =3,k =﹣4,∴hk =3×(﹣4)=﹣12.故答案是:﹣12.【点睛】本题考查了抛物线的顶点式,熟练掌握顶点式的转化是解题关键.12.b≥-4【解析】【分析】因为a=1>0,根据左同右异可知,对称轴在y 轴的左侧时,b >0,对称轴在y 轴右侧时,b <0,对称轴x=-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点. 【详解】抛物线y=x 2+bx+2与y 轴的交点为(0,2),∵C (4,2),当对称轴在y 轴的右侧时当C 与(0,2)是对称点时,抛物线的对称轴的位置在最右边,∴对称轴0<-2b ≤2时,二次函数y=x 2+bx+2的图象与阴影部分(含边界)一定有公共点, ∴-4≤b <0.当对称轴在y 轴或y 轴的右侧时,都满足条件则有-02b ≤ 解得:b ≥0, 故有b≥-4故答案为b≥-4.【点睛】本题考查了二次函数图象与系数的关系,解题时,利用了二次函数对称轴的位置列不等式来求b 的取值范围,并利用数形结合的思想.13.b>3【解析】【分析】可设出对称的两个点P ,Q 的坐标,利用两点关于直线y=x 成轴对称,可以设直线PQ 的方程为y=-x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx =-+⎧⎨=+⎩有两组不同的实数解,利用中点在直线上消去b ,建立关于a 的函数关系,求出变量a 的范围.【详解】解:设抛物线上关于直线l 对称的两相异点为P (x 1,y 1)、Q (x 2,y 2),线段PQ 的中点为M (x 0,y 0),设直线PQ 的方程为y=x+a ,由于P 、Q 两点存在,所以方程组2y x a y x bx=-+⎧⎨=+⎩有两组不同的实数解, 即得方程x 2+(1+b )x -a=0.①判别式△=21b ()+-41a ⨯⨯-()>0.② 由①得x 0=x1x22+=-1b 2+,y 0=-x 0+a=1b 2++a ∵M (x 0,y 0)在y=x 上,x 0=y 0∴-1b 1b 22++=+a ∴a=-b-1代入②解得b >3或b <-1 ∵b>2,∴b >3故答案为b >3【点睛】本题考查了直线与抛物线的位置关系,以及对称问题,属于难题,有一定的计算量. 14.22(1)8y x =+-【解析】【分析】利用顶点式求解即可,设y=a (x+1)2-8,把(0,6)-代入求解.【详解】设y=a (x+1)2-8,把(0,6)-代入,得-6=a ×(0+1)2-8,∴a=2,∴22(1)8y x =+-.故答案为:22(1)8y x =+-.【点睛】本题考查了用待定系数法求二次函数解析式的方法,关键是根据条件确定抛物线解析式的形式,再求其中的待定系数.一般式:y=ax 2+bx+c (a≠0);顶点式y=a (x-h )2+k ,其中顶点坐标为(h ,k );交点式y=a (x-x 1)(x-x 2),抛物线与x 轴两交点为(x 1,0),(x 2,0).15.(-1,-4)【解析】【分析】根据抛物线的顶点式直接得到答案.【详解】二次函数22(1)4y x =-+-图象的顶点坐标是(1,4)--.【点睛】本题考查二次函数的顶点式,二次函数的顶点式为y=a (x-h )2+k ,顶点坐标是(h ,k ),解决此题需注意坐标的符号问题.16.()211y x =-+【解析】【分析】沿直线y=x y=ax 2 (a≠0)向右平移1个单位,向上平移1个单位,即可得到平移后抛物线的表达式.【详解】解:∵抛物线2y x =沿直线y x =向上平移,相当于抛物线()2y ax a 0=≠向右平移1个单位,向上平移1个单位,∴根据平移的规律得到:“同簇抛物线”的表达式是()2y x 11=-+.故答案为:()2y x 11=-+.【点睛】本题考查了二次函数的几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式只考虑平移后的顶点坐标,即可求出解析式.17.>【解析】【分析】通过比较点M 和点N 到y 轴的距离的远近判断y 1与y 2的大小.【详解】解:抛物线y=x 2的对称轴为y 轴,而M (x 1,y 1)到y 轴的距离比N (x 2,y 2)点到y 轴的距离要远,所以y 1>y 2.故答案为:>.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.利用二次函数的图象比较二次函数值的大小比较简便.18.丙【解析】【分析】设甲乙正确,利用顶点时写出抛物线的解析式为y=5(x-1)2+3,然后计算自变量为-1和2对应的函数值,从而判断丙错误.【详解】若甲乙对,则抛物线的解析式为y=5(x-1)2+3,当x=-1时,y=23,此时丙错误;当x=2时,y=8,此时丁正确.而其中有且仅有一个说法是错误的,所以只有丙错误.故答案为丙.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.19.8【解析】【分析】根据公式法可求对称轴,可得关于b 的一元一次方程,解方程即可.【详解】∵抛物线y=2x 2-bx+3的对称轴经过点(2,-1),∴对称轴x=-22b =2, 解得:b=8.故答案为8.【点睛】此题考查二次函数的性质,掌握利用公式法求对称轴是解决问题的关键.20.y=x2﹣4x+3.【解析】【分析】由图表的信息知:第一、二、四、五个点的坐标都关于x=2对称,所以错误的一组数据应该是(2,-2);可选取其他四组数据中的任意三组,用待定系数法求出抛物线的解析式.【详解】解:选取(0,3)、(1,0)、(3,0);设抛物线的解析式为y=a(x﹣1)(x﹣3),则有:a(0﹣1)(0﹣3)=3,a=1;∴y=(x﹣1)(x﹣3)=x2﹣4x+3.故答案为y=x2﹣4x+3【点睛】本题考查了用待定系数法求函数解析式的方法,能够正确的判断出错误的一组数据是解答此题的关键.21.(1)y=﹣(x+1)2+4(2)抛物线与 y 轴的交点 C(0,3)(3)6【解析】【分析】(1)根据配方法步骤将解析式配成顶点式可得;(2)求出y=0时x的轴可得点A、B的坐标,求出x=0时y的值可得点C的坐标;(3)根据抛物线的顶点坐标及其与坐标轴的交点可画出抛物线的图象,再由三角形的面积公式可得答案.【详解】(1)∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴抛物线的顶点坐标为(﹣1,4),对称轴为直线 x =﹣1; (2)当 y =0 时,﹣x 2﹣2x+3=0,解得:x =1 或 x =﹣3,∴抛物线与 x 轴的交点 A (﹣3,0)、B (1,0),当 x =0 时,y =3,∴抛物线与 y 轴的交点 C (0,3);(3)其函数图象如下图所示:S △ABC = AB•y C = ×4×3=6.【点睛】本题考查的知识点是抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式,解题的关键是熟练的掌握抛物线与x 轴的交点,二次函数的性质,二次函数的三种形式.22.(1) D 的坐标为125,24⎛⎫-⎪⎝⎭;(2) 4x 1-<<. 【解析】【分析】 ()1根据抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-,可以求得该抛物线的解析式,然后将解析式化为顶点式,即可求得点D 的坐标;()2根据平移的特点,可以得到平移后抛物线的解析式,从而可以写出当y 0<时x 的取值范围.【详解】解:()1抛物线2y x bx c =++与y 轴交于点()C 0,6-与x 轴的一个交点坐标是()A 2,0-, {c 642b c 0=-∴-+=,得{b 1c 6=-=-, ∴抛物线的解析式为22125y x x 6(x )24=--=--, ∴此抛物线的顶点D 的坐标为125,24⎛⎫- ⎪⎝⎭; ()2抛物线的解析式为2125y (x )24=--, ∴此图象沿x 轴向左平移2个单位长度后对应的函数解析式为:22125325y (x 2)(x )2424=-+-=+-, ∴平移后抛物线的对称轴为直线3x 2=-,当y 0=时,1x 4=-,2x 1=, ∴当y 0<时x 的取值范围是4x 1-<<.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.23.(1)当m =0时,△ABC 的面积最大为8;(2)Q 点的坐标为(﹣6,0)或(0,0).【解析】【分析】(1)把n =﹣4代入得到带有m 的解析式解析式y =x 2﹣6mx+9m 2﹣4,再用带有m 的值表示出A 、B 、C 的坐标,然后得出三角形面积判断最大值;(2)把n =4m+4代入原解析式得到y =(x ﹣3m )2+4m+4,得出顶点P 的坐标,再根据动点Q 到抛物线的顶点P 的距离最小时为PQ 的横坐标相同,即可得出Q 的坐标.【详解】解:(1)若n =﹣4,则y =x 2﹣6mx+9m 2﹣4,当x =0时,y =9m 2﹣4,∴C (0,9m 2﹣4),∵这个函数图象开口向上,与x 轴交于A ,B 两点(点A ,B 分别在x 轴的正、负半轴),与y 轴交于点C ,∴9m 2﹣4<0,当y =0时,x 2﹣6mx+9m 2﹣4=0,x 1=3m+2,x 2=3m ﹣2,∴A (3m+2,0),B (3m ﹣2,0),∵3m+2﹣(3m ﹣2)=4,∴AB =4,∴S △ABC =1•2C AB y =12×4•(﹣9m 2+4)=﹣2m 2+8, ∵﹣2<0,∴当m =0时,△ABC 的面积最大为8;(2)若n =4m+4,则y =x 2﹣6mx+9m 2+4m+4=(x ﹣3m )2+4m+4,∴P (3m ,4m+4),当动点Q 到抛物线的顶点P 的距离最小值为4时,则Q 为(3m ,0)且4m+4=±4, 解得m =﹣2或m =0,∴Q 点的坐标为(﹣6,0)或(0,0).【点睛】本题是二次函数的动点题型,此题综合性较强,难度较大,解题的关键是注意数形结合与方程思想的应用.24.(1)()0,3A ;(2)3y x =-+;(3)a<−1或a>3【解析】【分析】(1)抛物线C :y=ax 2-2ax+3与y 轴交于点A ,令x=0,即可求得A 的坐标;(2)令y=0,解方程即可求得B 的坐标,然后根据待定系数法即可求得直线l 的解析式; (3)当a=3时,抛物线C 过点B (1,0),此时k=-3.当a=-1时,抛物线C 过点B (3,0),此时k=-1.结合图象即可求得.【详解】(1)∵抛物线C:y=ax 2−2ax+3与y 轴交于点A ,∴点A 的坐标为(0,3).(2)当a=−1时,抛物线C 为y=−x 2+2x+3.∵抛物线C与x轴交于点B,且点B在x轴的正半轴上,∴点B的坐标为(3,0).∵直线l:y=kx+b过A,B两点,∴330bk b=⎧⎨+=⎩.解得13kb=-⎧⎨=⎩.∴直线l的解析式为y=−x+3.(3)如图,当a>0时,当a=3时,抛物线C过点B(1,0),此时k=−3.结合函数图象可得a>3.当a<0时,当a=−1时,抛物线C过点B(3,0),此时k=−1.结合函数图象可得a<−1.综上所述,a的取值范围是a<−1或a>3.【点睛】本题考查一次函数和二次函数综合,解题的关键是掌握待定系数法求解析式.25.使剪出的矩形DECF面积最大,点D应该选在AB的中点.【解析】【分析】根据直角三角形的性质求出BC,根据勾股定理求出AC,根据矩形的面积公式列出函数解析式,根据二次函数的性质解答即可.【详解】解:∵∠C=90°,∠A=30°,∴BC =12AB =3,由勾股定理得,AC ==在Rt △ADF 中,∠A =30°,∴AD =2DF ,AF DF ,∴CF =AC ﹣AF =,则矩形DECF 面积=DF ×()2=23)24DF -+当DF =32时,剪出的矩形DECF 面积最大, 则AD =2DF =3,∴使剪出的矩形DECF 面积最大,点D 应该选在AB 的中点.【点睛】本题考查的是勾股定理、二次函数的性质、矩形的性质,根据勾股定理、矩形的面积公式列出二次函数解析式是解题的关键.26.(1)顶点坐标为M (-1,-2),12x -<<;(2)四边形AMDN 是矩形,理由见解析;(3)a =329 【解析】【分析】(1)把222(0)y ax ax a a =++->化为顶点式()212y a x =+-,即可求出顶点坐标;根据图像即可求出次函数L 1 ,L 2 的y 值同时随着x 的增大而增大时,x 的取值范围; (2)由两点间的距离公式求出MN 的长,用含a 的代数式表示出AD 的长,根据AD =MN列方程即可求出a 的值;由两点间的距离公式可求AN =MD ,AM =DN ,从而可证四边形AMDN是平行四边形,又AD =MN ,所以可证四边形AMDN 是矩形;(3)当B ,C 是线段AD 的三等分点时,分两种情况,根据两点间的距离公式求解:①点C 在点B 的左边,②点B 在点C 的左边.【详解】(1)∵222(0)y ax ax a a =++->∴()212y a x =+-,∴顶点坐标为M (-1,-2);∵M (-1,-2),N (2,2),∴当1x >-时, L 1 的y 值随着x 的增大而增大,当2x <时,L 2的y 值随着x 的增大而增大. ∴x 的取值范围是12x -<< .(2)如图1,MN =,当y=0时,即()2120a x +-=,解得1A x =--1B x =-+当y=0时,即()2220a x --+=,2C x =-2D x =+∴AD=(2+-(1--=3+当AD=MN 时,即3+,解得a =2. 当 a =2时,1A x =--2,2D x =3,∵==∴AN=DM,∵==,∴AM=DN,∴四边形AMDN 是平行四边形,∵AD=3-(-2)=5,MN=5,∴AD=MN,∴四边形AMDN 是矩形 ;(3)当B,C是线段AD的三等分点时,存在以下两种情况:①点C在点B的左边,如图2,BC=(21a-+-(22a-=232a-+AC=BD=3 ,即232a-+,解得29a=;②点B在点C的左边,如图3,CB=(22a--(21a-+=23a-AB=CD=22a,即22a23a-329a= .【点睛】本题考查了二次函数一般式与顶点式的互化,二次函数的图像与性质,两点间的距离公式,矩形的判定,数形结合及分类讨论的数学思想.掌握一般式化顶点式的方法是解(1)的关键;灵活运用两点间的距离公式是解(2)的关键;分两种情况求解是解(3)的关键.27.(1)am2+1;(2)a=﹣1;(3)0≤BC′≤94.【解析】【分析】(1)代入0x =求出y 值,此问得解;(2)设抛物线对称轴与x 轴交于点E ,由二次函数的对称性可得出ABD 为等腰直角三角形,进而可得出2AB DE =,利用二次函数图象上点的坐标特征可得出点B 、D 的坐标,由2AB DE =可得出关于a 的无理方程,解之即可得出a 值;(3)由(1)(2)可得出点B 、C 的坐标,由旋转的性质可得出点'C 的坐标,利用两点间的距离公式可求出2'2BC m m =-++,再利用二次函数的性质即可求出:当1522m -≤≤时,'BC 的长度范围. 【详解】解:(1)当x =0时,y =ax 2﹣2amx +am 2+1=am 2+1,∴点C 的纵坐标为am 2+1.故答案为am 2+1.(2)设抛物线对称轴与x 轴交于点E ,如图1所示.∵DA =DB ,∠DAB =45°,∴△ABD 为等腰直角三角形,∴AB =2DE .∵y =ax 2﹣2amx +am 2+1=a (x ﹣m )2+1,∴点D 的坐标为(m ,1).当y =0时,ax 2﹣2amx +am 2+1=0,即a (x ﹣m )2=﹣1,解得:x 1=m x 2=m∴AB =2, 解得:a =﹣1.(3)由(1)(2)可知:点C 的坐标为(0,1﹣m 2),点B 的坐标为(m +1,0).∵点C 绕O 逆时针旋转90°得到点C ′,∴点C ′的坐标为(m 2﹣1,0),∴BC ′=|m +1﹣(m 2﹣1)|=|﹣m 2+m +2|.∵﹣m 2+m +2=﹣(m ﹣12)2+94,﹣12≤m ≤52,∴当m=52时,﹣m2+m+2取得最小值,最小值为﹣74;当m=12时,﹣m2+m+2取得最大值,最大值为94,∴当﹣12≤m≤52时,﹣74≤﹣m2+m+2≤94,∴当﹣12≤m≤52时,0≤BC′≤94.【点睛】本题考查了二次函数图象上点的坐标特征、等腰直角三角形、解无理方程、两点间的距离公式以及二次函数的性质,解题的关键是:(1)代入0x 求出y值;(2)利用等腰直角三角形的性质找出关于a的无理方程;(3)利用二次函数的性质找出'BC的长度范围.28.(1)y=-12x2+ x+4;(2)当m=2时,PE2;(3)存在,满足题意的d3的值为2或665.【解析】【分析】(1)由直线y=-x+4得出B(4,0),C(0,4),即可得出A(-2,0),将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;(2)已知P点横坐标,根据直线AB、抛物线的解析式,求出C、P的坐标,由此得到线段PC的长;在Rt△OBC中,∠OCB=45°,根据平行线的性质得出∠PFD=45°,解直角三角形即可求出PD的表达式,利用二次函数的性质求出PD的最大值即可.(3)见解析.【详解】解:(1)由y=-x+4得当x=0时,y=4;当y=0时,x=4.∴B (4,0) ,C (0,4), ∴ OB =4.∴ OA =12OB =2, ∴ 点 A (-2,0). 把A (-2,0),B (4,0)分别代入抛物线y =ax 2+bx +4中,得4230,16430.a b a b -+=⎧⎨++=⎩ 解得1,21.a b ⎧=-⎪⎨⎪=⎩ ∴ 抛物线的解析式为 y =-12x 2+ x +4. (2)∵ 点P 的横坐标为m ,则P (m ,-12m 2+ m +4). 过点P 作PF ∥y 轴交BC 于点F ,则F (m ,-m +4) .∴ PF =-12m 2+ m +4-(-m +4)=-12m 2+2m . 在Rt △OBC 中,OB =4,OC =4.又 PF ∥y 轴, ∴ ∠PFD =∠OCB=45°.∴ PD =PF ·sin ∠PFD = PF ·sin ∠OCB =22(-12m 2+2m )=-24(m -2)22 ∵ 0<m <4,-24<0,∴ 当m =2时,PE 2 (3)存在,∵y =-12x 2+ x +4=-12(x-1)²+92, ∴C 点坐标为(1,3),如图,d 1= d 2=12d 3 ,满足题意的d3的值为2或6或655.【点睛】本题考查了二次函数的应用以及解析式的确定、解直角三角形等知识,主要考查学生数形结合思想的应用能力,。
2.2 二次函数图象和性质(3)
抛物线y=ax2
向下平移 抛物线 y=ax2-c c个单位
二次函数y=ax2+c的性质
y=ax2+c 图象 a>0 a<0
c>0
开口
c<0
c>0
c<0
对称性
顶点 增减性
开口向下 开口向上 a的绝对值越大,开口越小 关于y轴对称
(0,c)
顶点是最高点 在对称轴左侧递减 在对称轴左侧递增 在对称轴右侧递增 在对称轴右侧递减 顶点是最低点
?
y
5
y=2x2
y=2(x+3)2
4. 3. 2. 1.
-3.
-2
-1
0. -1
1.
2.
3.
x
y=2(x+3)2 -1/2
返回
y
5
y=2x2
y=2(x+3)2
4. 3. 2. 1.
-3.
-2
-1
0. -1
1.
2.
3.
x
y=2(x+3)2 -1/2
返回
议一议:二次函数y=a(x-h)2+k 的图象与 y=ax2 有什么关系?
(0,k) (h,0) (h,k)
y a (x h) 2 (a 0)
y a(x h) k(a 0)
2
直线X=0 直线X=h 直线X=h
开口向上
延伸题
1) 若抛物线y=-x2向左平移2个单位,再向 下平移4个单位所得抛物线的解析式是 ________ 2) 如何将抛物线y=2(x-1) 2+3经过平移得 到抛物线y=2x2 3) 将抛 物线y=2(x -1)2+3经过怎样的平 移得到抛物线y=2(x+2)2-1 4) 若抛物线y=2(x-1)2+3沿x轴方向平移后,经 过(3,5),求平移后的抛物线的解析式_______
(人教版数学)初中9年级上册-同步练习-22.1 二次函数的图像与性质 同步练习3 含答案
22.1《二次函数的图像与性质》同步练习3带答案一.选择题1.把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y2.抛物线2)3(2--=x y 的顶点坐标和对称轴分别是( )A.3),0,3(-=-x 直线B. 3),0,3(=x 直线C. 3),3,0(-=-x 直线D. 3),3,0(-=x 直线3.已知二次函数2)1(3+=x y 的图象上有三点 ),2(),,2(),,1(321y C y B y A - ,则321,,y y y 的大小关系为( )A.321y y y >>B. 312y y y >>C. 213y y y >>D. 123y y y >>4.把抛物线2)1(6+=x y 的图象平移后得到抛物线26x y =的图象,则平移的方法可以是( )A.沿y 轴向上平移1个单位长度B.沿y 轴向下平移1个单位长度C.沿x 轴向左平移1个单位长度D.沿x 轴向右平移1个单位长度5.若二次函数12+-=mx x y 的图象的顶点在x 轴上,则m 的值是( )A. 2B. 2-C.0D. 2±6.对称轴是直线2-=x 的抛物线是( )A.22+-=x yB.22+=x yC.2)2(21+=x y D.2)2(3-=x y 7.对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小8.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个B.2个C.3个D.4个二.填空题1.抛物线2)1(3--=x y 的开口向 ,对称轴是 ,顶点坐标是 。
二次函数的图象与性质(3种题型)-2023年新九年级数学核心知识点与常见题型(浙教版)(解析版)
二次函数y=ax^2+c(a ≠0)与y=a (x-h)^2+k(a ≠0)的图象与性质【知识梳理】一、二次函数y=ax 2+c(a ≠0)的图象及性质1.二次函数y=ax 2+c(a ≠0)的图象(1)(2)2.二次函数y=ax 2+c(a ≠0)的图象的性质关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:>a 0<a 0=+≠y ax c a (0)2jjjj向上 向下 (0,c) (0,c) 3.二次函数与之间的关系;(上加下减).的图象向上(c >0)【或向下(c <0)】平移│c │个单位得到的图象. 要点诠释:函数的图象是由函数的图象向上(或向下)平移个单位得到的,顶点坐标为(0,c).抛物线y =ax 2(a ≠0)的对称轴、最值与顶点密不可分,其对称轴即为过顶点且与x 轴垂直的一条直线,其顶点横坐标x =0,抛物线平移不改变抛物线的形状,即a 的值不变,只是位置发生变化而已. 二、函数2()(0)y a x h a =−≠与函数2()(0)y a x h k a =−+≠的图象与性质 1.函数2()(0)y a x h a =−≠的图象与性质()20y ax a =≠()20y ax c a =+≠()20y ax a =≠()20y ax c a =+≠2(0)y ax c a =+≠2(0)y ax a =≠||c2.函数2()(0)y a x h k a =−+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题. 三、二次函数的平移 1.平移步骤:⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标; ⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”.2()+(0y a x h k a =−≠)()2y a x h k =−+()h k ,2y ax =()h k,h k要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或)【考点剖析】题型一、二次函数y=ax 2+c(a ≠0)的图象及性质例1.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线; (2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线. 【答案与解析】(1)由于待求抛物线形状相同,开口方向相反,可知二次项系数为,又顶点坐标是(0,-5),故常数项,所以所求抛物线为.(2)因为待求抛物线顶点为(0,1),所以其解析式可设为, 又∵ 该抛物线过点(3,-2),∴ ,解得.∴ 所求抛物线为.【总结升华】抛物线形状相同则相同,再由开口方向可确定的符号,由顶点坐标可确定的值,从而确定抛物线的解析式. 例2.在同一直角坐标系中,画出和的图象,并根据图象(如图所示)回答下列问题.2=++y ax bx c y m 2=++y ax bx c 2=+++y ax bx c m 2=++−y ax bx c m 2=++y ax bx c m 2=++y ax bx c 2()()=++++y a x m b x m c 2()()=−+−+y a x m b x m c =−+y x 2312=−+y x 231221=−k 5=−y x 2512=+y ax 12+=−a 912=−a 31=−+y x 3112a ||a k =+y ax k 2=−y x 2=−+y x 12(1)抛物线向________平移________个单位得到抛物线;(2)抛物线,开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________.【答案】 (1)下; l ; (2)向下; y 轴; (0,1); (3)>0; =0; 大; 大 ; 1. 【解析】在同一平面直角坐标系内画出两条抛物线,利用图象回答问题.(1)抛物线向 下 平移 1__个单位得到抛物线;(2)抛物线,开口方向是 向下 ,对称轴为___ y 轴_____,顶点坐标为_ (0,1)__;(3)抛物线,当x >0时,y 随x 的增大而减小; 当x =0__时,函数y 有最 大 值,其最 大__值是 1 .【总结升华】本例题把函数与函数的图象放在同一直角坐标系中进行对比,易得出二次函数与的图象形状相同,只是位置上下平移的结论.可以看作是把的图象向上或向下平移个单位得到的.例3. 有一个抛物线形的拱形隧道,隧道的最大高度为6m ,跨度为8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P (如图)安装一盏照明灯,灯离地面高4.5m .求灯与点B 的距离.21y x =−+2y x =−21y x =−+21y x =−+21y x =−+2y x =−21y x =−+21y x =−+21y x =−+2y x =−2(0)y ax k a =+≠2(0)y ax a =≠2(0)y ax k a =+≠2(0)y ax a =≠(0)k >(0)k <||k【答案与解析】(1)由题意,设抛物线所对应的函数关系为y=ax2+6(a <0), ∵点A (-4,0)或B (4,0)在抛物线上, ∴0=a•(-4)2+6, 16a+6=0,16a=-6,.故抛物线的函数关系式为.(2)过点P 作PQ ⊥AB 于Q ,连接PB ,则PQ=4.5m .将y=4.5代入,得x=±2.∴P (-2,4.5),Q (-2,0), 于是|PQ|=4.5,|BQ|=6,从而所以照明灯与点B 的距离为7.5m .【总结升华】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.(1)根据抛物线在坐标系的位置可设解析式:y=ax2+6,把点A (-4,0)代入即可;(2)灯离地面高4.5m ,即y=4.5时,求x 的值,再根据P 点坐标,勾股定理求PB 的值.38a =−2368y x =−+2368y x =−+7.5m =【变式】(1)抛物线的开口方向 ,对称轴是 ,顶点坐标是 . (2)抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 . (3)抛物线向 平移 个单位后,得到抛物线. 【答案】(1)下;y 轴;(0,-5).(2)y=3x2+1, y=-3x2+1. (3)下;10.例4. 根据下列条件求a 的取值范围:(1)函数y =(a -2)x 2,当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大; (2)函数y =(3a -2)x 2有最大值; (3)抛物线y =(a+2)x 2与抛物线的形状相同; (4)函数的图象是开口向上的抛物线.【答案与解析】(1)由题意得,a-2<0,解得a <2.(2)由题意得,3a-2<0,解得.(3)由题意得,,解得,. (4)由题意得,,解得a1=-2,a2=1,但a >0,∴ a =1.【总结升华】解答此类问题,要注意联想二次函数的图象和性质,抓住形状、开口、最值、增减性等特征,并结合草图去确定二次项系数的取值范围.【变式】在同一平面直角坐标系中,一次函数与二次函数 的图象大致为( ).【答案】B.225y x =−−2y ax c =+23y x =2172y x =−+2132y x =−−212y x =−2a ay ax +=23a <1|2|2a +=−152a =−232a =−220a a a ⎧+=⎨>⎩y ax c =+2y ax c =+例5.在同一坐标系中,一次函数y=ax +b 与二次函数y=ax 2﹣b 的图象可能是( )A .B .C .D .【总结升华】先由一次函数y=ax+b 图象得到字母a 、b 的正负,再与二次函数y=ax2﹣b 的图象相比较看是否一致. 【答案】D. 【解析】解:A 、由直线y=ax+b 的图象经过第二、三、四象限可知:a <0,b <0, 二次函数y=ax2﹣b 的图象开口向上, ∴a >0,A 不正确;B 、由直线y=ax+b 的图象经过第一、二、三象限可知:a >0,b >0, 二次函数y=ax2﹣b 的图象开口向下, ∴a <0,B 不正确;C 、由直线y=ax+b 的图象经过第一、二、四象限可知:a <0,b >0, 二次函数y=ax2﹣b 的图象开口向上, ∴a >0,C 不正确;D 、由直线y=ax+b 的图象经过第一、二、三象限可知:a >0,b >0, 二次函数y=ax2﹣b 的图象开口向上,顶点在y 轴负半轴, ∴a >0,b >0,D 正确. 故选D .【总结升华】本题考查了一次函数的图象以及二次函数的图象,解题的关键是根据函数图象逐条分析四个选项中a 、b 的正负.本题属于基础题,难度不大,解决该题型题目时,根据一次函数的图象找出其系数的正负,再与二次函数图象进行比较即可得出结论.题型二、二次函数2()(0)y a x h k a =−+≠图象及性质例6.二次函数y=﹣(x ﹣3)2+2的顶点的坐标是 ,对称轴是 . 【思路点拨】根据二次函数顶点式解析式分别解答即可. 【答案】(3,2),直线x=3.【解析】二次函数y=﹣(x ﹣3)2+2;顶点坐标是(3,1),对称轴是直线x=3. 故答案为:(3,2),直线x=3.【总结升华】本题考查了二次函数的性质,熟练掌握利用二次函数顶点式形式求解对称轴和顶点坐标的方法是解题的关键.【变式】将抛物线向右平移2个单位,再向上平移5个单位,得到的抛物线解析式为 .【答案】. 例7.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,求得到的抛物线解析式.【答案与解析】解:y=x2﹣6x+5=(x ﹣3)2﹣4, ∴抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2), ∴平移后得到的抛物线解析式为y=(x ﹣4)2﹣2.【总结升华】由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 【变式】二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.【答案】上;右.例8.已知是由抛物线向上平移2个单位长度,再向右平移1个单位长度得到的抛物线.(1)求出a 、h 、k 的值;(2)在同一坐标系中,画出与的图象; (3)观察的图象,当x 取何值时,y 随x 的增大而增大;当x 取何值时,y 随x 增大而减小,并求出函数的最值;23y x =−23127y x x =−+−21(3)42y x =−+212y x =2()y a x h k =−+212y x =−2()y a x h k =−+212y x =−2()y a x h k =−+(4)观察的图象,你能说出对于一切x 的值,函数y 的取值范围吗? 【答案与解析】(1)∵ 抛物线向上平移2个单位长度, 再向右平移1个单位长度得到的抛物线是,∴,1h =,.(2)函数与的图象如图所示.(3)观察的图象知,当时,y 随x 的增大而增大;当时,y 随x 增大而减小,当x =1时,函数y 有最大值是2. (4)由图象知,对于一切x 的值,总有函数值y ≤2.【总结升华】先根据平移的性质求出抛物线平移后的抛物线的解析式,再对比得到a 、h 、k 的值,然后画出图象,由图象回答问题.【变式】把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.2()y a x h k =−+212y x =−21(1)22y x =−−+12a =−2k =21(1)22y x =−−+212y x =−21(1)22y x =−−+1x <1x >212y x =−2()y a x h k =−+2()y a x h k =−+21(1)12y x =−+−2()y a x h k =−+【答案】(1).(2)开口向下,对称轴x=1, 顶点坐标为(1,-5),当x ≥1时,y 随x 的增大而减小; 当x <1时,y 随x 的增大而增大.例9.二次函数y=(x ﹣1)2+1,当2≤y <5时,相应x 的取值范围为 .【思路点拨】把y=2和y=5分别代入二次函数解析式,求x 的值,已知对称轴为x=1,根据对称性求x 的取值范围.【答案】﹣1<x ≤0或2≤x <3. 【解析】解:当y=2时,(x ﹣1)2+1=2, 解得x=0或x=2,当y=5时,(x ﹣1)2+1=5,解得x=3或x=﹣1, 又抛物线对称轴为x=1, ∴﹣1<x ≤0或2≤x <3.【总结升华】本题考查了二次函数的增减性,对称性.关键是求出函数值y=2或5时,对应的x 的值,再结合图象确定x 的取值范围.题型三、二次函数2()(0)y a x h k a =−+≠性质的综合应用例10.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点. (1)确定二次函数与直线AB(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.【答案与解析】解:(1)把A (0,﹣1)代入y1=a (x ﹣2)2,得:﹣1=4a ,即a=﹣, ∴二次函数解析式为y1=﹣(x ﹣2)2=﹣a2+a ﹣1; 设直线AB 解析式为y=kx+b ,1,1,52a h k =−==−把A (0,﹣1),B (2,0)代入得:,解得:k=,b=﹣1,则直线AB 解析式为y=x ﹣1;(2)根据图象得:当y1<y2时,x 的范围为x <0或x >2;y1=y2时,x=0或x=2,y1>y2时,0<x <2. 【总结升华】可先由待定系数法建立方程组求出两个函数的解析式,然后利用函数图象写出自变量的取值范围.例11.在同一直角坐标系中,画出下列三条抛物线:,,.(1)观察三条抛物线的相互关系,并分别指出它们的开口方向、对称轴和顶点坐标; (2)请你说出抛物线的开口方向,对称轴及顶点坐标. 【答案与解析】 (1)列表:描点、连线,可得抛物线.将的图象分别向上和向下平移3个单位,就分别得到与的图象(如图所示).抛物线,与开口都向上,对称轴都是y 轴,顶点坐标依次是(0,0)、(0,3)和(0,-3).212y x =2132y x =+2132y x =−212y x c =+212y x =212y x=2132y x =+2132y x =−212y x =2132y x =+2132y x =−(2)抛物线的开口向上,对称轴是y 轴(或直线),顶点坐标为(0,c ).【总结升华】先用描点法画出的图象,再用平移法得到另两条抛物线,并根据图象回答问题.规律总结:.例12.已知:二次函数y=x 2﹣4x+3.(1)求出该二次函数图象的对称轴和顶点坐标; (2)求出该抛物线与x 轴的交点坐标; (3)当x 取何值时,y <0. 【解析】解:(1)∵y=x2﹣4x+3, ∴y=(x ﹣2)2﹣1, ∴对称轴为:直线x=2, ∴顶点(2,﹣1); (2)令y=0, 则,x2﹣4x+3=0, ∴(x ﹣1)(x ﹣3)=0, ∴x1=1,x2=3,∴与x 轴的交点坐标为(1,0),(3,0); (3)当1<x <3时,y <0.【总结升华】本题考查了二次函数的性质,抛物线与x 轴坐标的求解方法,二次函数与不等式,熟记性质并把函数解析式整理成顶点式形式求解更简便. 【变式】已知抛物线y=2(x ﹣1)2﹣8.(1)直接写出它的顶点坐标: ,对称轴: ; (2)x 取何值时,y 随x 增大而增大? 【答案与解析】解:(1)抛物线y=2(x ﹣1)2﹣8的顶点坐标为(1,﹣8),对称轴为直线x=1; 故答案为(1,﹣8),直线x=1; (2)当x >1时,y 随x 增大而增大.212y x c =+0x =212y x=2y ax k =+k ←⎯⎯⎯⎯⎯向上平移个单位2y ax =k ⎯⎯⎯⎯→向下平移个单位2(0)y ax k k =−>例13. 如图所示,抛物线的顶点为C ,与y 轴交点为A ,过点A 作y 轴的垂线,交抛物线于另一点B .(1)求直线AC 的解析式; (2)求△ABC 的面积;(3)当自变量x 满足什么条件时,有? 【答案与解析】(1)由知抛物线顶点C(-1,0),令x =0,得, ∴ .由待定系数法可求出,∴.(2)∵ 抛物线的对称轴为x =-1,根据抛物线对称性知. ∴ .(3)根据图象知或时,有.【总结升华】 图象都经过A 点和C 点,说明A 点、C 点同时出现在两个图象上,A 、C 两点的坐标均满足两个函数的解析式,解答这类题时,要画出函数图象,结合几何图形的性质,运用数形结合的思想和抛物线的对称性,特别要慎重处理平面直角坐标系中的坐标(数)与线段长度(形)之间的关系,不要出现符号上的错误,充分利用函数图象弄清函数值与自变量的关系,利用图象比较函数值的大小,或根据函数值的大小,确定自变量的变化范围.【过关检测】一、单选题1.(2021秋·浙江绍兴·九年级校联考期中)二次函数22y x =−的顶点坐标是( ) A .(0,0)B .(0,﹣2)C .(0,2)D .(,0)211)y x =+2y kx b =+12y y >211)y x =+y =A b =k =2y =+211)y x =+(B −122ABC S =⨯=△0x >1x <−12y y >【分析】直接2y ax k =+根据的性质求解即可.【详解】解:二次函数22y x =−的顶点坐标是(0,﹣2).故选:B .【点睛】本题考查了二次函数2y ax k =+ (a ,h ,k 为常数,a≠0)的性质,熟练掌握二次函数2y ax k =+的性质是解答本题的关键.2y ax k =+是抛物线的顶点式,a 决定抛物线的形状和开口方向,其顶点是(0,k),对称轴是y 轴.2.(2023·浙江宁波·统考二模)已知点()11,A x y ,()22,B x y 是二次函数()233y x =−+上的两点,若123x x <<,126x x +>,则下列关系正确的是( )A .123y y <<B .123y y <<C .213y y <<D .213y y <<【答案】B【分析】根据二次函数的性质,进行分析即可得出结论. 【详解】解:∵()233y x =−+,对称轴为3x =,10a =>,∴抛物线的开口向上,当3x =时,函数取得最小值,3y =,抛物线上的点离对称轴越远,函数值越大, ∵123x x <<,126x x +>,∴点,A B 在对称轴的两侧,且1233x x −<−,∴123y y <<;故选B .【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的性质,是解题的关键.3.(2022秋·浙江杭州·九年级校联考期中)对于二次函数()223y x =−+的图象,下列说法不正确的是( ) A .开口向下B .对称轴是直线3x =−C .顶点坐标为()30−,D .当3x <−时,y 随x 的增大而减小【分析】根据二次函数的图象和性质,即可进行解答. 【详解】解:A 、∵20a =−<,∴函数图象开口向下,故A 正确,不符合题意; B 、对称轴是直线3x =−,故B 正确,不符合题意; C 、顶点坐标为()30−,,故C 正确,不符合题意;D 、∵函数图象开口向下,对称轴是直线3x =−,∴当3x <−时,y 随x 的增大而增大,故D 不正确,符合题意; 故选:D .【点睛】本题主要考查了二次函数图象和性质,解题的关键是熟练掌握二次函数()2y a x h =−的顶点坐标为()0h ,,对称轴为x h =,当0a >时,函数图象开口向上,当a<0时,函数图象开口向下.4.(2022秋·浙江金华·九年级统考期中)已知()14.4,A y −,()23.3,B y −为抛物线()21y x =−+上的两点,则下列结论一定成立的是( ) A .210y y << B .120y y <<C .120y y <<D .210y y <<【答案】C【分析】先判断抛物线的开口方向和对称轴位置,再根据增减性求解即可. 【详解】解:∵抛物线()21y x =−+的对称轴为直线=1x −,开口向下,顶点坐标为:()10−,,∴当1x <−时,y 随x 的增大而增大, 又∵ 4.4 3.31−<−<−, ∴120y y <<,故选 C .【点睛】本题主要考查二次函数的性质,掌握二次函数的增减性是解题的关键.5.(2022秋·浙江杭州·九年级校考期中)设函数()112y x a =−,()222y x a =−,()323y x a =−.直线x b =的图象与函数1y ,2y ,3y 的图象分别交于点()1,A b c ,()2,B b c ,()3,C b c ,( ) A .若123b a a a <<<,则312c c c << B .若123a b a a <<<,则123c c c << C .若123a a b a <<<,则321c c c << D .若123a a a b <<<,则321c c c << 【答案】D【分析】按照题意,画出满足题意的图象,根据直线x b =与二次函数图象的交点进行判断即可. 【详解】解:如图所示,A .由图象可知,若123b a a a <<<,当x b =时,123c c c <<,故选项错误,不符合题意;B .由图象可知,若123a b a a <<<,,当x b =时,123c c c <<不一定成立,故选项错误,不符合题意;C .由图象可知,若123a a b a <<<,当x b =时,321c c c <<不一定成立,故选项错误,不符合题意;D .由图象可知,若123a a a b<<<,当x b =时,321c c c <<,故选项正确,符合题意;故选:D【点睛】此题主要考查了二次函数的图象和性质,数形结合是解题的关键.6.(2023春·浙江绍兴·九年级校联考阶段练习)若二次函数2y 2(x 1)1=−−的图象如图所示,则坐标原点可能是( )A .点AB .点BC .点CD .点D【答案】A【分析】根据顶点坐标,进行判断即可.【详解】解:∵2y 2(x 1)1=−−,∴顶点坐标为:()1,1-,∴顶点坐标在第四象限, ∴原点在函数顶点的左上方, 由图可知,坐标原点只可能是点A ; 故选A .【点睛】本题考查二次函数的性质及二次函数的图象,确定二次函数图象的顶点坐标是解题的关键.【答案】C【分析】根据题意分别画出12,y y 的图象,继而根据图象即可求解.【详解】解:∵直线1x =的图象与函数1y ,2y 的图象分别交于点()11,A c ,()21,B c ,A. 若121a a <<,如图所示,则12c c >B. 若121a a <<,如图所示,则12c c >则12c c <,故B 选项不合题意,C. 若121a a <<,如图所示,∴12c c <,故C 选项正确,D 选项不正确;故选:C .【点睛】本题考查了二次函数图象的性质,数形结合是解题的关键.【答案】C【分析】根据各函数的增减性依次进行判断即可.【详解】解:A 、2(0)y x x =−>中,20k =−<,则当0x >时,y 随x 的增大而增大,即当12x x >时,必有12y y >,此时21210y y x x −>−,故本选项不成立;B 、∵2(2)5(0)y x x =−+≥的对称轴为直线2x =,∴当02x <<时,y 随x 的增大而减小,当2x >时y 随x 的增大而增大, ∴当2x >时,当12x x >时,必有12y y >,此时21210y y x x −>−,故本选项不成立;C 、∵2(3)4(0)y x x =−−<的对称轴为直线3x =,∴当3x <时,y 随x 的增大而减小, ∴当0x <时,当12x x >时,必有12y y <,此时21210y y x x −<−,故本选项成立;D 、∵37y x =+中,30k =>, ∴y 随x 的增大而增大,即当12x x >时,必有12y y >,此时21210y y x x −>−,故本选项不成立.故选:C .【点睛】本题主要考查了一次函数、反比例函数和二次函数的图象和性质,掌握各类函数的增减性是关键.二、填空题【答案】a >2【分析】】根据二次函数的性质可知,当抛物线开口向下时,二次项系数2-a <0. 【详解】∵抛物线y=(2-a )x2+2开口向下, ∴2-a <0,即a >2, 故答案为:a >2.【点睛】本题主要考查了二次函数的性质.用到的知识点:对于二次函数y=ax2+bx+c (a≠0)来说,当a >0时,抛物线y=ax2+bx+c (a≠0)开口向上;当a <0时,抛物线y=ax2+bx+c (a≠0)开口向下.10.(2022秋·浙江绍兴·九年级统考期中)二次函数()()232y x h t x t =−++≤≤+的图象上任意二点连线不与x 轴平行,则t 的取值范围为______.【答案】5t ≤−或3t ≥−【分析】先根据函数表达式得出函数的对称轴,再根据题意可得该二次函数的图象取对称轴的左边或对称轴的右边,即可进行解答. 【详解】解:∵二次函数表达式为()()232y x h t x t =−++≤≤+,∴该函数的对称轴为直线3x =−, ∵图象上任意二点连线不与x 轴平行, ∴3x ≤−或3x ≥−, ∵2t x t ≤≤+,∴233t t +≤−⎧⎨≥−⎩,解得:5t ≤−或3t ≥−. 故答案为:5t ≤−或3t ≥−.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的图象,会根据二次函数的表达式求出函数的对称轴.【答案】()2213y x =−−或()2213y x =−−−【分析】根据二次函数的顶点坐标为()1,3−,可得可设这个二次函数的解析式为()213y a x =−−,再根据图象的形状和与抛物线22y x =相同,可得2a =±,即可求解. 【详解】解:∵二次函数的顶点坐标为()1,3−,∴可设这个二次函数的解析式为()213y a x =−−,∵二次函数图象的形状与抛物线22y x =相同,, ∴2=a ,∴2a =±,∴这个二次函数的解析式为()2213y x =−−或()2213y x =−−−.故答案为:()2213y x =−−或()2213y x =−−−.【点睛】本题考查了二次函数的图象与性质,牢记形状相同的二次函数二次项系数的绝对值相等是解题的关键.12.(2022·浙江金华·九年级浙江省义乌市稠江中学校考阶段练习)如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________ 【答案】(-1,3)【分析】根据抛物线的对称性即可得到点B 的坐标. 【详解】解:∵抛物线的对称轴为1x =,点A (3,3), ∴点A 关于对称轴的对称点B 的坐标为(-1,3)【点睛】本题主要考查二次函数图形的性质和特征,应用对称性性是解题的关键.13.(2022秋·浙江绍兴·九年级校考期中)已知点()11,A x y 、()22,B x y 为抛物线()22y x =−上的两点,如果122x x <<,那么1y ______2.(y 填“>”“<”或“=”)【答案】>【分析】根据函数的表达式即可得出该函数的对称轴和开口方向,根据对称轴和开口方向分析函数的增减性即可解答.【详解】解:抛物线表达式为:()22y x =−,∴函数开口向上,对称轴为2x =,∴当2x <时,y 随x 的增加而减小,2x >时,y 随x 的增大而增大, ∵122x x <<,∴12y y >,故答案为:>.【点睛】本题主要考查了二次函数的增减性,解题的关键是根据抛物表达式得出函数的开口方向和对称轴,从而分析函数的增减性.【答案】23(2)32y x =++【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)−∴可设此抛物线的解析式为2(2)3y a x =++又此抛物线的形状,开口方向与23312y x x =−+相同32a ∴=则此抛物线的解析式为23(2)32y x =++故答案为:23(2)32y x =++.【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 15.(2023秋·浙江湖州·九年级统考期末)抛物线22(3)4y x =−++的开口方向是______. 【答案】向下【分析】由函数解析式可得20a =−<,结合抛物线的性质即可得到答案; 【详解】解:由题意可得,∵22(3)4y x =−++,∴20a =−<, 故答案为:向下.【点睛】本题考查抛物线的性质:a<0开口向下,正确理解二次函数的性质是解题的关键.16.(2022秋·浙江杭州·九年级校考期中)已知二次函数()2y x a =−+,当4x ≤−时,y 随x 的增大而增大;当4x ≥−时,y 随x 的增大而减小,当0x =时,y 的值是______. 【答案】16−【分析】根据二次函数的增减性,结合图像与性质即可得到二次函数图像的对称轴为4x =−,从而确定a 值,得到二次函数解析式为()24y x =−+,将0x =代入即可得到结论.【详解】解:二次函数()2y x a =−+,当4x ≤−时,y 随x 的增大而增大;当4x ≥−时,y 随x 的增大而减小,4x a ∴=−=−,即4a =,∴二次函数解析式为()24y x =−+,当0x =时,()20416y =−+=−,故答案为:16−.【点睛】本题考查二次函数的图像与性质,熟练掌握二次函数增减性与对称轴的关系是解决问题的关键.17.(2020·浙江·模拟预测)无论a 取什么实数,点()21,241P a a a −−+都在二次函数y 上,(,)Q m n 是二次函数y 上的点,则2421m n −+=_____________. 【答案】3【分析】由题意可知y=2x2-1,首先把点Q (m ,n )代入二次函数y=2x2-1解析式,代入得出,关于m ,n 的等式进一步整理得出答案即可.【详解】解:由题意得,当x=a-1时,y=2a2-4a+1=2(a-1)2-1, ∴可得:y=2x2-1,∵Q (m ,n )是二次函数y=2x2-1上的点, ∴2m2-1=n , ∴2m2-n=1,所以4m2-2n+1=2(2m2-n )+1=3 故答案为:3.【点睛】此题考查二次函数图象上点的坐标特点,注意适合解析式的点在图象上,在图象上的点都适合二次函数.18.(2023春·浙江杭州·九年级校考阶段练习)已知二次函数2(1)10y x =−−+,当m x n ≤≤,且0mn <时,y 的最小值为2m ,y 的最大值2n ,则m n +的值为___________. 【答案】2【分析】由题意可得0m <,0n >,则y 的最小值为2m 为负数,最大值为2n 为正数.分两种情况讨论:①当1n <时,x m =时,y 取最小值,求出m 的值,当x n =时,y 取最大值,可求得n 的值,即可得到m n +的值;②当1n ≥时,当x m =时,y 取最小值,求出m 的值,当1x =时,y 取最大值,求出n 的值,或x n =时,y 取最小值,1x =时,y 取最大值,分别求出m ,n 的值,故可求解.【详解】解:二次函数2(1)10y x =−−+的大致图象如下:0mn <时,y 的最小值为2m ,y 的最大值为2n ,0m ∴<,0n >,①当1n <时,x m =时,y 取最小值,即()22110m m =−−+, 解得:3m =−.当x n =时,y 取最大值,即()22110n n =−−+, 解得:3n =或3(n =−均不合题意,舍去);②当1n ≥时,当x m =时,y ()22110m m =−−+, 解得:3m =−.当1x =时,y 取最大值,即()221110n =−−+, 解得:5n =,或x n =时,y 取最小值,1x =时,y 取最大值,()22110m n =−−+,5n =,3m ∴=−,所以352m n +=−+=. 故答案为:2.【点睛】本题考查了二次函数的最值问题,二次函数的增减性,数形结合是解题的关键.三、解答题19.(2022秋·浙江丽水·九年级校联考期中)已知二次函数的图像以点()1,4A −为顶点,且过点()2,5B −. (1)求该函数的解析式;(2)直接写出y 随x 的增大而增大时自变量x 的取值范围.【答案】(1)223y x x =−−+;(2)1x <−【分析】(1)根据顶点坐标直接设解析式为顶点式,然后代入B 点坐标求解即可; (2)结合解析式,根据开口方向以及对称轴即可确定范围. 【详解】(1)设二次函数的解析式为()2y a x h k=−+.由题知:1h =−,4k =,则()214y a x =++,又∵二次函数图像过点()2,5B −∴()25214a −=++,∴1a =−.∴二次函数的解析式为:()221423y x x x =−++=−−+.(2)由(1)知当1x <−时,y 随x 的增大而增大.【点睛】灵活从二次函数三种形式中选择合适的表达式求解是解题关键.20.(2022·浙江·九年级专题练习)如图,已知经过原点的抛物线22y x mx =+与x 轴交于另一点A (2,0).(1)求m 的值和抛物线顶点M 的坐标; (2)求直线AM 的解析式.【答案】(1)4m =−,M (1,-2);(2)24y x =−【分析】(1)将A(2,0)代入抛物线的解析式,可求得m 的值,再配成顶点式即可求解; (2)利用待定系数法即可求得直线AM 的解析式.【详解】解 (1)∵抛物线22y x mx =+过点A(2,0),22220m ∴⨯+=,解得4m =−,224y x x ∴=−,22(1)2x =−−,∴顶点M 的坐标是(1,-2); (2)设直线AM 的解析式为()0y kx b k =+≠,∵图象过A(2,0),M (1,-2),202k b k b +=⎧∴⎨+=−⎩,解得24k b =⎧⎨=−⎩, ∴直线AM 的解析式为24y x =−.【点睛】本题考查了待定系数法求函数解析式,二次函数的图象和性质,解题的关键是灵活运用所学知识解决问题.【答案】(1)285S t t =++(2)25(3)S 有最小值-11【分析】(1)将x 和y 的表达式代入S 的表达式即可; (2)将2t =代入(1)中得到的函数表达式求解即可; (3)将(1)中的函数表达式化为顶点式即可解答.【详解】(1)解:将231x t y t −==+,代入8S x y =+得:()()2238185S t t t t =−++=++,∴S 与t 的函数关系式为:285S t t =++.(2)将2t =代入285S t t =++得:2282525S =+⨯+=,∴当2t =时25S =. (3)()2285411S t t t =++=+−,∴当4t =−时,函数S 有最小值-11.【点睛】本题主要考查了二次函数的性质,解题的关键是将函数表达式化为顶点式,得出函数的最值.【答案】(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可; (2)从开口大小和增减性两个方面作答即可. 【详解】(1)解:如图:,2113=+y x 与2113=−−y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴,2113=+y x 与2113=−−y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=−−y x 开口向下,顶点坐标是(0,﹣1);(2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=−−y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小.【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键. 23.(2020春·浙江杭州·八年级阶段练习)如图,已知二次函数的图象顶点是(2,3)P −,且过C 点(0,5). (1)求此二次函数的解析式;(2)已知直线1y x =+与该二次函数图像相交于点,A B ,求,A B 两点的坐标. (3)写出当x 在什么范围内时,一次函数的值大于二次函数的值.【答案】(1)()2223y x =−−;(2)A (12,32),B (4,5);(3)12<x <4【分析】(1)根据顶点坐标设出顶点式,再将点C 坐标代入,即可求出解析式; (2)令()22231x x −−=+,解方程即可得到A 、B 的横坐标,从而计算出纵坐标;(3)根据图象可得出当一次函数图像在二次函数图像上方时的x 取值范围. 【详解】解:(1)∵二次函数的图象顶点是(2,3)P −, 设二次函数表达式为()223y a x =−−,∵过C 点(0,5),代入,()20235a −−=,解得:a=2,∴二次函数表达式为:()2223y x =−−; (2)由题意可得:()22231x x −−=+,解得:x=12或4,。
2023中考九年级数学分类讲解 - 第六讲 二次函数(含答案)(全国通用版)
第六讲 二次函数专项一 二次函数的图象和性质知识清单一、二次函数的概念一般地,形如 (a ,b ,c 为常数,a≠0)的函数叫做二次函数.其中x是自变量,a ,b ,c 分别是函数解析式的二次项系数、 和常数项. 二、二次函数的图象和性质1. 二次函数的图象是一条 .其一般形式为y =ax 2+bx +c ,由配方法可化成y =a (x -h )2+k 的形式,其中h=2ba-,k=244ac b a -.2. 二次函数y =ax 2+bx +c (a ≠0)的图象和性质3. 二次函数y =ax 2+bx +c (a ≠0)的图象与系数a ,b ,c 符号的关系ab <0(a ,b 异号)对称轴在y 轴右侧 c决定抛物线与y 轴的交点c >0 交点在y 轴正半轴 c =0 交点在原点 c <0交点在y 轴负半轴考点例析例1 抛物线y=ax 2+bx+c 经过点(-1,0),(3,0),且与y 轴交于点(0,-5),则当x=2时,y 的值为( )A .-5B .-3C .-1D .5分析:画出抛物线的大致图象,可知抛物线的对称轴为x=1,根据抛物线的对称性可求出y 的值. 例2 一次函数y=ax+b 的图象如图1所示,则二次函数y=ax 2+bx 的图象可能是( )A B C D分析:根据一次函数y=ax+b 的图象经过的象限得出a <0,b >0,可知二次函数y=ax 2+bx 的图象开口向下,对称轴在y 轴右侧.例3 二次函数y=ax 2+bx+c (a≠0)的图象如图2所示,下列说法中,错误的是( ) A .对称轴是x=12B .当-1<x <2时,y <0C .a+c=bD .a+b >-c图2分析:由图可知,对称轴是x=1+22-=12,选项A 正确;当-1<x <2时,函数图象在x 轴的下方,所以当-1<x <2时,y <0,选项B 正确;当x=-1时,y=a-b+c=0,所以a+c=b ,选项C 正确;当x=1时,y=a+b+c <0,所以a+b <-c ,选项D 错误.例4二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =12,且经过点(2,0).有下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若112y ⎛⎫- ⎪⎝⎭,,252y ⎛⎫ ⎪⎝⎭,是抛物线上的两点,则y 1<y 2;图1⑤14b +c >m (am +b )+c (其中m ≠12).其中正确的有( ) A .2个B .3个C .4个D .5个图3分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而可得abc 的正负;由对称轴x=2b a -=12,得b=-a ,由图象易知当x=-1时,y=a-b+c=﹣2b+c =0;根据抛物线经过点(2,0),可得4a+2b+c=0;根据“开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”可判断y 1与y 2的大小;由图象知当x =12时,y 有最大值为14a+12b+c=14b +c ,由此可判断14b +c 与m (am +b )+c 的大小关系.归纳:(1)几种常见代数式的判断①2a ±b 2b a-与±1比较②a ±b +c 令x =±1,看纵坐标 ③4a ±2b +c 令x =±2,看纵坐标 ④9a ±3b +c令x =±3,看纵坐标⑤3a +c ,3b -2c 等关于a ,c 或b ,c 的代数式 一般由②③④式与①式结合判断(2①当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小.ꎻ②利用抛物线上的对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性比较大小. ③利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小;开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”也可以比较大小. 跟踪训练1.已知二次函数y=(a-1)x 2,当x >0时,y 随x 的增大而增大,则实数a 的取值范围是( ) A .a >0 B .a >1 C .a≠1 D .a <12.二次函数y=x 2+4x+1的图象的对称轴是( )A .x=2B .x=4C .x=-2D .x=-4 3.关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值64.一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A B C D5.如图3,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0),与y轴交于点C.有下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数为()A.1 B.2 C.3 D.4第5题图6.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.专项二确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的解析式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5分析:由抛物线的解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线的顶点坐标,用待定系数法求出新抛物线的解析式.跟踪训练1.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P 关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)2.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了如图所示直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数解析式各不相同,其中a的值最大为()A.52B.32C.56D.12第2题图专项三二次函数图象的平移知识清单二次函数图象的平移规律平移前的解析式平移方向及距离平移后的解析式口诀顶点坐标y=a(x-h)2+k (a≠0)向左平移m个单位长度y=a(x-h+m)2+k左加右减纵坐标不变向平移m个单位长度y=a(x-h-m)2+k向上平移m个单位长度y=a(x-h)2+k+m上加下减横坐标不变向平移m个单位长度y=a(x-h)2+k-m平移前后a值不变例将抛物线y=-x2-2x+3向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线必定经过()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)分析:先将y=-x2-2x+3转化成顶点式y=a(x-h)2+k,再利用二次函数的平移规律:左加右减,上加下减,得出平移后抛物线的解析式,最后把各选项的点代入判断即可.跟踪训练1.将抛物线y=ax2+bx+c(a≠0)向下平移2个单位长度,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.抛物线的函数解析式为y=3(x-2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为()A.y=3(x+1)2+3 B.y=3(x-5)2+3 C.y=3(x-5)2-1 D.y=3(x+1)2-13.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.-1 C.5或1 D.-5或-14.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2 B.-5 C.2 D.-25.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.6.如图,二次函数y=(x-1)(x-a)(a为常数)的图象的对称轴为x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的解析式.第6题图专项四二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:Δ=b2-4ac一元二次方程ax2+bx+c=0根的情况二次函数y=ax2+bx+c的图象与x轴的位置关系Δ>0有两个不等的实数根有两个不同的公共点Δ=0有两个相等的实数根只有唯一的公共点Δ<0无实数根没有公共点考点例析例已知关于x的一元二次方程x2+x-m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方程x2+x-m=0的解.分析:(1)由方程x2+x-m=0有两个不相等的实数根,可得Δ>0,列不等式即可求出m的取值范围;(2)根据二次函数图象的对称性,可得二次函数y=x2+x-m的图象与x轴的另一个交点,从而得到一元二次方程x2+x-m=0的解.解:跟踪训练1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A.0 B.1 C.2 D.1或22.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,有下列结论:①c=2;②b2-4ac>0;③方程ax2+bx=0的两根为x1=-2,x2=0;④7a+c<0.其中正确的有()3.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.4.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.5.武汉)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是.(填序号)专项五二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数解析式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?分析:(1)根据“该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件”列出y与x的函数解析式;(2)设每个月的销售利润为w元,根据等量关系“利润=(售价-进价)×销量”列出函数解析式,配方后根据二次函数的性质求解.解:例2某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数解析式为y=-16(x-5)2+6.(1)求雕塑高OA;(2)求落水点C,D之间的距离;(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.分析:(1)根据给出的抛物线的函数解析式,令x=0,求出点A的纵坐标,可得出雕塑高OA;(2)根据给出的抛物线的函数解析式,令y=0,求出点D的横坐标,可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)将x=10代入函数解析式y=-16(x-5)2+6求出y的值,将求出的y值与1.8比较后即可得出顶部F是否会碰到水柱.解:跟踪训练1.某快餐店销售A,B两种快餐,每份利润分别为12元,8元,每天卖出份数分别为40份,80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数解析式;(2)设销售收入为p(万元),求p与x之间的函数解析式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入-总支出)第2题图3. 如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系. (1)求桥拱顶部O 离水面的距离.(2)如图②,桥面上方有3根高度均为4 m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m . ①求出其中一条钢缆抛物线的函数解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.① ②第3题图专项六 二次函数中的分类讨论思想分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.我们在运用分类讨论思想时,必须遵循下列两个原则:一是要有分类意识,善于从问题的情境中抓住分类对象;二是要找出科学合理的分类标准,应当满足互斥、无漏、最简原则. 引起分类讨论的因素较多,归纳起来主要有以下几个方面:①由数学概念、性质、定理、公式的限制条件引起的讨论;②由数学变形所需要的限制条件引起的讨论;③由图形的不确定性引起的讨论;④由于题目含有字母引起的讨论等等. 考点例析例 已知关于x 的二次函数y 1=x 2+bx+c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的解析式; (2)若b 2-c=0,当b-3≤x≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x+m ,若在(1)的条件下,当0≤x≤1时,总有y 2≥y 1,求实数m 的最小值.分析:(1)将(0,4)代入二次函数y 1=x 2+bx+c ,可求得c ,由对称轴为x=-2b=1,可求出b ;(2)二次函数y 1=x 2+bx+c 图象的对称轴为x=-2b ,需要分三种情况:b <-2b ,b-3>-2b 和b-3≤-2b≤b 进行分类讨论;(3)设函数y 3=y 2-y 1,根据二次函数图象的增减性进行求解. 解:跟踪训练科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数解析式;(2)求出y2与x之间的函数解析式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?参考答案专项一二次函数的图象和性质例1 A 例2 D 例3 D 例4 B1.B 2.C 3.D 4.C 5.B6.①②③专项二确定二次函数的解析式例 A1.A 2.A专项三二次函数图象的平移例 B1.D 2.C 3.C 4.B 5.y=2x2+4x6. 解:(1)因为y=(x-1)(x-a)=x2-(a+1)x+a,图象的对称轴为x=2,所以+12a=2,解得a=3.(2)由(1),知a=3,则该二次函数的解析式为y=x²-4x+3.所以二次函数的图象向下平移3个单位后经过原点.所以平移后图象所对应的二次函数的解析式是y=x²-4x.专项四二次函数与一元二次方程的关系例(1)由题意,知Δ>0,即1+4m>0,解得m>-14.(2)二次函数y=x2+x-m图象的对称轴为x=-12,所以该函数图象与x轴的两个交点关于直线x=-12对称.由图可知抛物线与x轴的一个交点为(1,0),所以另一个交点为(-2,0).所以一元二次方程x2+x-m=0的解为x1=1,x2=-2.1.C 2.B 3.1 4.①②④专项五二次函数的应用例1 (1)y=300-10(x-60)=-10x+900.(2)设每个月的销售利润为w元.由(1),知w=(x-50)y=(x-50)(-10x+900)=-10x2+1400x-45 000=-10(x-70)2+4000.因为-10<0,所以当x=70时,w有最大值为4000.所以该商品每件的销售价为70元时,每个月的销售利润最大,最大利润是4000元.x2=11.所以OD=11 m..因为从A点向四周喷水,喷出的水柱为抛物线,且形状相同,所以OC=OD=11 m.所以CD=OC+OD=22 m1.12642.解:(1)设y与x之间的函数解析式为y=kx+b.w(万元).(3)设销售利润为所以原料的质量x为24吨时,所获销售利润最大,最大销售利润是65.2万元.3. 解:(1)根据题意,知点F的坐标为(6,-1.5),可设拱桥侧面所在抛物线的函数解析式为y1=a1x2.=a2(x-6)2+1.(2)①根据题意,知右边钢缆所在抛物线的顶点坐标为(6,1),可设其解析式为y2②设彩带的长度为L m.所以当x=4时,L 最小值=2.答:彩带长度的最小值是2 m .专项六 二次函数中的分类讨论思想例 (1)因为二次函数的图象经过点(0,4),所以c=4.(2)当b 2-c=0时,b 2=c ,此时函数的解析式为y 1=x 2+bx+b 2. 根据题意,分三种情况:所以(b-3)2+b (b-3)+b 2=21,解得b 3=4,b 4=-1(舍去).(3)由(1),知二次函数的解析式为y 1=x 2-2x+4.设函数y 3=y 2-y 1=x 2+3x+m-4. 所以当x=0时,y 3即y 2-y 1有最小值m-4,所以m-4≥0,即m≥4.所以m 的最小值为4. 跟踪训练解:(1)y 1=5x+30.(2)当x=6时,y 1=5×6+30=60.因为y 2的图象是过原点的抛物线,所以可设y 2=ax 2+bx . 因为点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,所以=35366=60.a b a b ++⎧⎨⎩,解得=5=40.a b ⎩-⎧⎨,所以y 2=-5x 2+40x .所以y 2与x 的函数解析式为y 2=-5x 2+40x . (3)设小钢球和无人机的高度差为y 米. 令y 2=0,则-5x 2+40x=0,解得x=0或x=8.因为6<x≤8,所以当x=8时,y的最大值为70.70米.。
2.2二次函数的图象与性质(3)
当 x=h 时,y 最大值=0
2 二次函数的图象与性质
知识点二 二次函数 y=ax2 与 y=a(x-h)2 的图象的关系 二次函数 y=a(x-h)2 的图象与 y=ax2 的图象的形状完全相 同,开口方向也相同,但 y=a(x-h)2 的图象的对称轴是直 线 x=h,顶点坐标为(h,0).实际上,只要把 y=ax2 的图象 向左(h<0)或右(h>0)平移|h|个单位长度,就可以得到 y =a(x-h)2 的图象.
2-2-15 所示.
❖9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/172021/9/17Friday, September 17, 2021 ❖10、阅读一切好书如同和过去最杰出的人谈话。2021/9/172021/9/172021/9/179/17/2021 11:44:30 PM ❖11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/172021/9/172021/9/17Sep-2117-Sep-21 ❖12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/172021/9/172021/9/17Friday, September 17, 2021
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年全国各地数学中考试题分类汇编17二次函数的图象和性质3一、选择题 1.(2010湖北鄂州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个A .1 B.2 C.3 D.4【答案】C2.(2010湖北省咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、 B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2y D .不能确定【答案】A3.(2010北京) 将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2D . y =(x -1)2+2【答案】D4.(2010山东泰安)下列函数:①3y x =-;②21y x =-;③()10y x x=-<;④223y x x =-++,其中y 的值随x 值增大而增大的函数有( )A 、4个B 、3个C 、2个D 、1个 【答案】B5.(2010四川乐山).设a 、b 是常数,且b >0,抛物线y=ax 2+bx +a 2-5a -6为下图中四个图象之一,则a 的值为( )A. 6或-1B. -6或1C. 6D. -1【答案】DyxO yx Oyx O1 -1 yxO1 -16.(2010黑龙江哈尔滨)在抛物线42-=x y 上的一个点是( )(A )(4,4) (B )(1,-4) (C )(2,0) (D ).(0,4) 【答案】C7.(2010江苏徐州)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 A .向上平移4个单位 B .向下平移4个单位 C .向左平移4个单位 D .向右平移4个单位 【答案】B8.(2010陕西西安)已知抛物线103:2-==x x y C ,将抛物线C 平移得到抛物线C '若两条抛物线C 、C ' 关于直线1=x 对称,则下列平移方法中,正确的是A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位 C .将抛物线C 向右平移5个单位 D .将抛物线C 向右平移6个单位【答案】C9.(2010 福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是( )A .47-≥k B .47-≥k 且0≠k C .47->k D .47->k 且0≠k 【答案】B10.(2010 山东东营) 二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xcb a y +-=在同一坐标系内的图象大致为( )【答案】B二、填空题1.(2010江苏扬州)y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__________.x(B)x(A)x(C)(D)【答案】42.(2010山东泰安)将y=2x 2-12x-12变为y=a (x-m )2+n 的形式,则m·n=. 【答案】-903.(2010湖北襄樊)将抛物线212y x =-向上平移2个单位,再向右平移1个单位后,得到的抛物线的解析式为____________..【答案】21(1)22x --+或21322x x -++ 4.(2010江苏 镇江)已知实数y x y x x y x +=-++则满足,033,2的最大值为 .【答案】45.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20 三、解答题1.(2010湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C .(1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值.(4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0);(2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c c a b c =-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2. (3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =5t 5②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =255t ,∴555t =,解得t =40511-. ③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE =255PC ,∴12t =255(5t ),解得t 32540-(4)当CQ =PC 时,由(3)知t 5P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =15OP 与抛物线的交点坐标为(5152)和(5,152). 2.(2010湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-. ∴2b m =,23c m =. ∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--. ∴二次函数的最小值为4-.3.(2010湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由. (3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+33c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ), PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP / 则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去) ∴P 点的坐标为(2102+,23-)…………………………8分 (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y 则Q 点的坐标为(x ,x -3).EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形 3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的 面积875的最大值为. 4.(2010北京)在平面直角坐标系xOy 中,抛物线23454122+-++--=m x x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交与点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧做等等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点做x 轴的垂线,与直线AB 交与点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q点运动时,M 点、N 点也随之运动).若P 点运动到t分别有一条边恰好落在同一条直线上,求此刻t 的值.【答案】解:(1)∵抛物线23454122+-++--=m m x mx m y 经过原点, ∴m 2—3m +2=0. 解的m 1=1,m 2=2. 由题意知m ≠1. ∴m =2,∴抛物线的解析式为x x y 25412+-= ∵点B (2,n )在抛物线x x y 25412+-=,n=4.∴B 点的坐标为(2,4)(2)①设直线OB 的解析式为y =k 1x 求得直线OB 的解析式y =2x ∵A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ). 根据题意做等腰直角三角形PCD ,如图1.(第24题)可求得点C 的坐标为(3a ,2a ), 有C 点在抛物线上,得2a =-41x (3a )2+25x 3a . 即49a 2— 211a =0解得 a 1=922,a 2=0(舍去)∴OP =922②依题意作等腰直角三角形QMN . 设直线AB 的解析式y =k 2x +b由点A (10 ,0),点B (2,4),求得直线AB 的解析式为y =-21x +5 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示,可证△DPQ 为等腰直角三角形.此时QP 、OP 、AQ 的长可依次表示为t 、4t 、 2t 个单位. ∴PQ = DP = 4t ∴t +4t +2t =10 ∴t=710第二种情况:PC 与MN 在同一条直线上,如图3所示.可证△PQM 为等腰直角三角形.此时OP 、AQ 的长依次表示为t 、2t 个单位, ∴OQ = 10 - 2t ∵F 点在直线AB 上 ∴FQ =t ∵MQ =2t ∴PQ =MQ =CQ =2t ∴t +2t +2t =10 ∴t =2.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示,此时OP 、AQ 的长依次表示为t 、2t 个单位.∴t +2t=10 ∴t =310 综上,符合题意的值分别为710,2,310. 5.(2010云南红河哈尼族彝族自治州)二次函数2x y =的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式.(2)求经过两次平移后的图像与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?【答案】解:画图如图所示: 依题意得:2)1(2--=x y=2122-+-x x =122--x x∴平移后图像的解析式为:122--x x (2)当y=0时,122--x x =0 2)1(2=-x 21±=-x 212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0) 由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0. 6.(2010云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相较于点C (0,3). (1)求抛物线的函数关系式; (2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求处此时△ABD 的面积.【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得143a b c =⎧⎪=-⎨⎪=⎩所以抛物线的函数关系式为243y x x =-+. (2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=.所以155(31)244ABD S ∆=⨯-⨯=. 7.(2010湖北随州)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不存在请说明理由.【答案】(1)a =-1,b =2,c =0(2)过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1132.此时,MP =MF =PF =1,故△MPF 为正三角形. (3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >54,x >1时,PM 与PN 不可能相等.8.(2010河南)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【答案】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有1640,4,420.a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩∴抛物线的解析式y =12x 2+x ﹣4(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ). 则AD =m +4,MD =﹣n ,n =12m 2+m -4 . ∴S = S △AMD +S 梯形DMBO -S △ABO =12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12×4×4 = ﹣2n -2m -8 = ﹣2(12m 2+m -4) -2m -8 = ﹣m 2-4m (-4< m < 0)∴S 最大值 = 4(3)满足题意的Q 点的坐标有四个,分别是:(-4 ,4 ),(4 ,-4), (-2+52-25-2-52+59.(2010四川乐山)如图(13.1),抛物线y =x2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C(0,2),连接AC ,若tan ∠OAC =2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC =90°,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l ′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】解:(1)∵抛物线y=x2+bx+c过点C(0,2). ∴x=2又∵tan∠OAC=OCOA=2, ∴OA=1,即A(1,0).又∵点A在抛物线y=x2+bx+2上. ∴0=12+b×1+2,b=-3 ∴抛物线对应的二次函数的解析式为y=x2-3x+2(2)存在过点C作对称轴l的垂线,垂足为D,如图所示,∴x=-332212ba-=-=⨯.∴AE=OE-OA=32-1=12,∵∠APC=90°,∴tan∠PAE= tan∠CPD∴PE CDEA DP=,即12PE322PE=-,解得PE=12或PE=32,∴点P的坐标为(32,12)或(32,32)。