试题B(2004级上高等数学)
2004年普通高等学校招生全国统一考试湖北卷理科数学试题及答案
2004年普通高等学校招生湖北卷理工类数学试题一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.与直线042=+-y x 的平行的抛物线2x y =的切线方程是 ( )A .032=+-y xB .032=--y xC .012=+-y xD .012=--y x 2.复数ii 31)31(2++-的值是( )A .-16B .16C .41-D .i 4341- 3.已知)(,11)11(22x f xx x x f 则+-=+-的解析式可取为( )A .21xx+ B .212xx+-C .212xx+ D .21xx+- 4.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.若011<<b a ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④2>+baa b 中,正确的不等式有( )A .1个B .2个C .3个D .4个6.已知椭圆191622=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .59 B .3 C .779 D .49 7.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为( )A .41B .21 C .2D .48.已知数列{n a }的前n 项和),,2,1]()21)(1(2[])21(2[11=+---=--n n b a S n n n 其中a 、b 是非零常数,则存在数列{n x }、{n y }使得( )A .}{,n n n n x y x a 其中+=为等差数列,{n y }为等比数列B .}{,n n n n x y x a 其中+=和{n y }都为等差数列C .}{,n n n n x y x a 其中⋅=为等差数列,{n y }都为等比数列D .}{,n n n n x y x a 其中⋅=和{n y }都为等比数列9.函数1)(3++=x ax x f 有极值的充要条件是( )A .0>aB .0≥aC .0<aD .0≤a10.设集合044|{},01|{2<-+∈=<<-=mx mx R m Q m m P 对任意实数x 恒成立},则下列关系中成立的是( )A .P QB .Q PC .P=QD .P Q=11.已知平面βα与所成的二面角为80°,P 为α、β外一定点,过点P 的一条直线与α、β所成的角都是30°,则这样的直线有且仅有( )A .1条B .2条C .3条D .4条12.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:经长期观察,函数)(t f y =的图象可以近似地看成函数)sin(ϕω++=t A k y 的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( )A .]24,0[,6sin 312∈+=t t y πB .]24,0[),6sin(312∈++=t t y ππC .]24,0[,12sin312∈+=t t y πD .]24,0[),212sin(312∈++=t t y ππ二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.设随机变量ξ的概率分布为====a k a ak P k 则为常数,,2,1,,5)( ξ . 14.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,则恰好有3个球的标号与其所在盒子的标号不一致的放入方法共有 种.(以数字作答)15.设A 、B 为两个集合,下列四个命题: ①A ⊄B ⇔对任意B x A x ∉∈有, ②A ⊄ B ⇔=B A φ③A ⊄B ⇔AB④A ⊄ B ⇔存在B x A x ∉∈使得,其中真命题的序号是 .(把符合要求的命题序号都填上)16.某日中午12时整,甲船自A 处以16km/h 的速度向正东行驶,乙船自A 的正北18km处以24km/h 的速度向正南行驶,则当日12时30分时两船之间距间对时间的变化率是 km/h.三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知)32sin(],,2[,0cos 2cos sin sin622παππααααα+∈=-+求的值.18.(本小题满分12分) 如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱 CD 上的动点.(I )试确定点F 的位置,使得D 1E ⊥平面AB 1F ;(II )当D 1E ⊥平面AB 1F 时,求二面角C 1—EF —A 的大小(结果用反三角函数值表示). 19.(本小题满分12分)如图,在Rt △ABC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值. 20.(本小题满分12分)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 21.(本小题满分12分) 某突发事件,在不采取任何预防措施的情况下发生的概率为0.3,一旦发生,将造成 400万元的损失. 现有甲、乙两种相互独立的预防措施可供采用. 单独采用甲、乙预防措施 所需的费用分别为45万元和30万元,采用相应预防措施后此突发事件不发生的概率为0.9 和 若预防方案允许甲、乙两种预防措施单独采用、联合采用或不采用,请确定预防 方案使总费用最少. (总费用...=采取预防措施的费用+发生突发事件损失的期望值.) 22.(本小题满分14分)已知.,2,1,1,}{,011 =+==>+n a a a a a a a nn n 满足数列 (I )已知数列}{n a 极限存在且大于零,求n n a A ∞→=lim (将A 用a 表示);(II )设;)(:,,2,1,1A b A b b n A a b n nn n n +-==-=+证明(III )若 ,2,121||=≤n b n n 对都成立,求a 的取值范围. 2004年普通高等学校招生湖北卷理工类数学试题AC A 1C 1参考答案一、选择题1.D 2.A 3.C 4.B 5.B 6.D 7.B 8.C 9.C 10.A 11.D 12.A 二、填空题13.4 14.240 15.(4) 16.-1.6 三、解答题17.本小题考三角函数的基本公式以及三角函数式的恒等变形等基础知识和基本运算技能,满分12分. 解法一:由已知得:0)cos sin 2)(cos 2sin 3(=-+αααα 由已知条件可知).,2(,2,0cos ππαπαα∈≠≠即所以 解法二:由已知条件可知所以原式可化为则,2,0cos παα≠≠18.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力和推理运算能力,满分12分. 解法一:(I )连结A 1B ,则A 1B 是D 1E 在面ABB 1A ;内的射影∵AB 1⊥A 1B ,∴D 1E ⊥AB 1, 于是D 1E ⊥平面AB 1F ⇔D 1E ⊥AF. 连结DE ,则DE 是D 1E 在底面ABCD 内的射影.∴D 1E ⊥AF ⇔DE ⊥AF.∵ABCD 是正方形,E 是BC 的中点. ∴当且仅当F 是CD 的中点时,DE ⊥AF , 即当点F 是CD 的中点时,D 1E ⊥平面AB 1F.…………6分 (II )当D 1E ⊥平面AB 1F 时,由(I )知点F 是CD 的中点. 又已知点E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC , 设AC 与EF 交于点H ,则CH ⊥EF ,连结C 1H ,则CH 是 C 1H 在底面ABCD 内的射影. C 1H ⊥EF ,即∠C 1HC 是二面角C 1—EF —C 的平面角.在Rt △C 1CH 中,∵C 1C=1,CH=41AC=42,∴tan ∠C 1HC=224211==CH C C . ∴∠C 1HC=arctan 22,从而∠AHC 1=22arctan -π. 故二面角C 1—EF —A 的大小为22arctan -π.解法二:以A 为坐标原点,建立如图所示的空间直角坐标系(1)设DF=x ,则A (0,0,0),B (1,0,0),D (0,1,0), A 1(0,0,1),B (1,0,1),D 1(0,1,1),E )0,21,1(,F (x ,1,0)(1)当D 1E ⊥平面AB 1F 时,F 是CD 的中点,又E 是BC 的中点,连结EF ,则EF ∥BD. 连结AC ,设AC 与EF 交于点H ,则AH ⊥EF. 连结C 1H ,则CH 是C 1H 在底面ABCD 内的射影. ∴C 1H ⊥EF ,即∠AHC 1是二面角C 1—EF —A 的平面角.19.本小题主要考查向量的概念,平面向量的运算法则,考查运用向量及函数知识的能力,满分12分.解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系.20应用能力,满分12分. 解:(Ⅰ)将直整理得后的方程代入双曲线的方程,12122=-+=y x C kx y l.022)2(22=++-kx x k ……①依题意,直线l 与双曲线C 的右支交于不同两点,故(Ⅱ)设A 、B 两点的坐标分别为),(11y x 、),(22y x ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x kk x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得: 整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及26=c 代入③式化简得 解得))(2,2(566566舍去或--∉-=+-=k k 可知566+-=k 使得以线段AB 为直径的圆经过双曲线C 的右焦点. 21.本小题考查概率的基本知识和数学期望概念及应用概率知识解决实际问题的能力,满分12分. 解:①不采取预防措施时,总费用即损失期望为400×=120(万元); ②若单独采取措施甲,则预防措施费用为45万元,发生突发事件的概率为1-0.9=0.1,损失期望值为400×=40(万元),所以总费用为45+40=85(万元)③若单独采取预防措施乙,则预防措施费用为30万元,发生突发事件的概率为1-0.85=0.15,损失期望值为400×0.15=60(万元),所以总费用为30+60=90(万元); ④若联合采取甲、乙两种预防措施,则预防措施费用为45+30=75(万元),发生突发事件的概率为(1-0.9)(1-0.85)=0.015,损失期望值为400×=6(万元),所以总费用为75+6=81(万元).综合①、②、③、④,比较其总费用可知,应选择联合采取甲、乙两种预防措施,可使总费用最少.22.本小题主要考查数列、数列极限的概念和数学归纳法,考查灵活运用数学知识分析问题和解决问题的能力,满分14分.解:(I )由两边取极限得对且存在nn n n n n a a a A a A a 1),0(lim ,lim 1+=>=+∞→∞→(II ).11,11Ab a A b a a a A b a n n n n n n ++=++=+=++得由 (III ).21|)4(21|,21||21≤++-≤a a ab 得令 (i )当n=1时结论成立(已验证).(ii )假设当那么即时结论成立,21||,)1(kk b k k n ≤≥= 故只须证明.232||,21||1成立对即证≥≥+≤+a A b A A b A k k即n=k+1时结论成立.根据(i )和(ii )可知结论对一切正整数都成立.故).,23[,2,121||+∞=≤的取值范围为都成立的对a n b nn。
04年4月全国自学考试高等数学(工本)统一考试试题及答案
-第 1 页 共 6 页-2004年上半年高等教育自学考试全国统一命题考试高等数学(工本)试题(课程代码 0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.函数f(x)=xx1x 37-+-的定义域是( ) A .⎥⎦⎤ ⎝⎛∞-37,B .⎥⎦⎤⎝⎛-∞37,0)0,(C .)37,0()0,( -∞D .)37,(-∞2.设是,则数列}a {1n 2n1a n n +-=( ) A .单调减而下有界 B .单调减而下无界 C .单调增而下有界 D .单调增而下无界3.极限=---→21x )1x ()1x cos(1lim ( ) A .21- B .0 C .1D .21 4.函数f(x)=⎪⎩⎪⎨⎧=≠-0x ,20x 22x1,在x=0处( )A .左连续B .右连续C .连续D .前三个均不成立5.设函数f(x)在x 0处可导,则极限=--+→h)h x (f )h x (f lim000h ( ) A .)x (f 20' B .)x (f 210'C .)x (f 0'D .06.设函数=''+-=⎰)(,11)(x f xxx 则( ) A .3)x 1(4+B .2)x 1(4+--第 2 页 共 6 页-C .3)x 1(x 2+- D .3)x 1(x 2+7.下列结论正确的是( ) A .函数y=x 2在[)+∞,0上是单调减函数B .x=0是曲线y=x 3的拐点C .直线y=0是曲线y=|x|在点(0,0)处的切线D ..x=0是函数y=x 3的驻点8.不定积分⎰=-dx x311( ) A .C x 31+-- B .C x 31+- C .C x 3123+--D .C x 3132+--9.定积分⎰=+10dx x11( ) A .2+22lnB .2lnC .2-ln 4D .1-ln 210.曲线2y 2x -=和x=|y|所围成的平面图形面积为( ) A .4πB .2π C .πD .23π 11.在下列方程中其图形是圆柱面的方程是( ) A .x 2+y 2-3=0 B .x 2+y 2+z 2-3=0 C .x 2+y 2-z 2-3=0 D .x 2+y 2-z-3=0 12.与平面3x-4y-5z=0平行的平面方程为( ) A .6x-8y+10z-9=0 B .3x+4y-5z-8=0 C .6x-8y-10z-7=0 D .3x-4y+5z-10=0 13.设z=f(x,y)在(x 0,y 0)处的偏导数存在,则=∂∂)y ,x (00xz( )A .x)y ,x (f )y y ,x x (f lim00000x ∆-∆+∆+→∆B .x)y ,x (f )y ,x x (f lim 000x ∆-∆+→∆C .x)y ,x (f )y ,x x (f lim 0x ∆-∆+→∆D .x)y ,x (f )y ,x x (f lim 00000x ∆-∆+→∆14.函数z=(6x-x 2)(4y-y 2)的驻点个数为( )-第 3 页 共 6 页-A .2B .3C .4D .515.设积分区域B 是连结三点(1,1),(4,1),(4,2)的线段所围成的三角形,则⎰⎰=σBd 4( ) A .4B .6C .8D .1216.设G 是由坐标面和平面x+y+z=1所围成的区域,则三重积分⎰⎰⎰Gdv 化为累积分为( ) A .⎰⎰⎰11010dz dy dxB .⎰⎰⎰--yx 101010dz dxdy C .⎰⎰⎰---yx 10x 101dz dydxD .⎰⎰⎰---xy 10z 1010dz dxdy17.微分方程是x sin xydx dy =+( ) A .可分离变量的微分方程 B .齐次微分方程 C .一阶线性齐次微分方程 D .一阶线性非齐次微分方程 18.下列函数中,是微分方程0y 3y =-'的通解的是( ) A .y=e -3x+CB .y=Ce 3xC .y=Ce -3xD .y=Ce x+319.设a 是非零常数,则当|q|<1时,级数∑∞=-0n n naq )1(收敛于( ) A .q 11- B .q 11+ C .q1a +D .q1a - 20.幂级数∑∞=-1n nn )1x (的收敛区间是( )A .(-1,1)B .[)2,0C .[)1,1-D .(0,2)二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
2004年普通高等学校招生全国统一考试数学 (理工农林医 类)
2004年普通高等学校招生全国统一考试数学 (理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至1页,第Ⅱ卷3至10页。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔在答题卡上对应题宗旨答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,惟有一项乃是符合题目要求的。
参阅公式:三角函数的和差化积公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合NM 中元素的个数为( )A .1B .2C .3D .4 2.函数2sin x y =的最小正周期乃是( )A .2πB .πC .π2D .π43.设数列{}n a 乃是等差数列,且6,682=-=a a ,n S 乃是数列{}n a 的前n 项和,则 ( )A .54S S <B .54S S =C .56S S <D .56S S = 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x 5.函数)1(log 221-=x y 的定义域为( )A .[)(]2,11,2 -- B .)2,1()1,2( --C .[)(]2,11,2 --D .)2,1()1,2( --6.设复数z 的辐角的主值为32π,虚部为3,则2z =( )A .i 322--B .i 232--C .i 32+D .i 232+7.设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5B .5 C .25D .45 8.不等式311<+<x 的解集为( )A .()2,0B .())4,2(0,2 -C .()0,4-D .())2,0(2,4 --9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( )A .322 B .2C .32D .324 10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .3311.设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A .(][]10,02, -∞-B .(][]1,02, -∞-C .(][]10,12, -∞-D .[]10,1]0,2[ -12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种第Ⅱ卷步骤.)13.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 .14.函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 .15.已知函数)(x f y =乃是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数乃是)(x g y =,则=-)8(g .16.设P 乃是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解读回答题(6道题,共76分)17.(本小题满分12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值.18.(本小题满分12分)解方程 11214=-+xx.m的矩形蔬菜温室。
2004年高考数学真题
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i=( )A .2-2iB .2+2iC .-2D .22.已知函数=-=+-=)(.)(.11lg)(a f b a f x xx f 则若( )A .bB .-bC .b 1D .-b 13.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( ) A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1)5.73)12(x x -的展开式中常数项是( )A .14B .-14C .42D .-426.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误的是 ( )A .( I A)∪B=IB .( I A)∪( I B)=IC .A ∩( I B)=φD .( I A)∪( I B)= I B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径A .23B .3C .27D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21]B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH的表面积为T ,则S T等于 ( )A .91B .94C .41D .3111.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516C .12518D .1251912.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项 1, n=1, a n =,n ≥2.16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数x xx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y a x 与直线相交于两个不同的点A 、B.(I)求双曲线C的离心率e的取值范围:(II)设直线l与y轴的交点为P,且.125PBPA=求a的值.22.(本小题满分14分)已知数列1}{1=aan中,且a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3, a5;(II)求{ a n}的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④三、解答题 17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:x x xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x xx所以函数f (x )的最小正周期是π,最大值是43,最小值是41.18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分. 解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:ξ0 1 2 3 4P 0.09 0.3 0.37 0.2 0.04所以E ξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分. 解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数.(II )当,02,02,02>-<>+>x a x ax x a 或解得由时由.02,022<<-<+x a ax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a 2,由2x +ax 2<0,解得x <0或x >-a 2.所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a 2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB , ∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60° 由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.(II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG .又知).0,233,2(),0,23,1(-C A 由此得到:,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BCGA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角,于是,772||||cos -=⋅⋅=BC GA BCGA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC.∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG .又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°.在Rt △PEG 中,EG=PE ·cos60°=23.在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23,又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan 23.21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a aa e(II )设)1,0(),,(),,(2211P y x B y x A .125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1],于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为:当n 为奇数时,a n =;121)1(232121-⨯-+-+n n当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004—数一真题、标准答案及解析
2004年全国硕士研究生入学统一考试数学一真题、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx上与直线x y 1垂直的切线方程为(2)已知f(e x) xxe ,且f(1)=0,则f(x)=(3)设L为正向圆周x22在第一象限中的部分,则曲线积分L xdy 2ydx的值为(4)欧拉方程x2d2ydx24x d^ 2y 0(x 0)的通解为•dx(5)2 1 设矩阵A 1 2矩阵,则(6)矩阵B满足ABA*2BA E ,其中A为A的伴随矩阵,E是单位设随机变量X服从参数为的指数分布,则P{X DX} =二、选择题(本题共8小题,每小题把所选项前的字母填在题后的括号内)4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,(7)把x 0时的无穷小量X cost2dt,0 '2xtanX 30 si nt dt ,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) (B) (C) (D)(8)设函数f(x)连续,且f (0)0,则存在0,使得(A) f(x)在(0,)内单调增加.(B) f(x)在( ,0)内单调减少•(C) 对任意的x(0,)有f(x)>f(0).(D) 对任意的x(,0)有f(x)>f(0).(9)设a n为正项级数,下列结论中正确的是n 1(A) 若lim na n=0,则级数na n收敛•n 1(B)若存在非零常数,使得lim na nn ,则级数a n发散•n 1阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?t t(10) 设f(x)为连续函数,F(t) 1 dy y f(x)dx ,则F ⑵等于 (A)2f(2).(B) f(2).(C) -(2).(D) 0.[](11) 设A 是3阶方阵,将 A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C,贝U 满足AQ=C 的可逆矩阵Q 为(A) A 的列向量组线性相关, (B) A 的列向量组线性相关, (C) A 的行向量组线性相关, (D) A 的行向量组线性相关,(A) Cov( X 1,Y)2n(B) Cov(X 1,Y)2.(C)D(X 1 Y)n 2 2 (D)D(X 1Y) n 1nn(15) (本题满分 12分)设ea b e 2 ,证明ln 2 bIn 2a —2(b a)e(16) (本题满分 11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 (C) 若级数2a n 收敛,则lim nn0.(D)若级数a n 发散,则存在非零常数n 1,使得 lim na nn0 1 00 1 00 1 0 0 1 1 (A)1 0 0 . (B)1 0 1 . (C) 1 0 0 .(D)1 0 0 1 0 1 0 0 10 1 10 0 1的任意两个非零矩阵,则必有(12)设A,B 为满足AB=OB 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关 B 的列向量组线性相关1),数u 满足P{X u } ,若P{X x},则x 等于(A) U_.2(B) U .1I(C) u 」. ~2-(D) U 1(14)设随机变量X 1,X 2, 0.令Y 丄 X i ,则n i 1(13)设随机变量 X 服从正态分布 N(0,1),对给定的(0,X n ( n 1)独立同分布,且其方差为飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?1F(x, )1x0, x 1,x 1,注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分I2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,数 x n 收敛.n 1(20)(本题满分9分) 设有齐次线性方程组(1 a)X 1X 2X n 0, 2x 1 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,并求出其通解9分)试问a 取何值时,该方程组有非零解, (21)(本题满分33的特征方程有一个二重根,求 a 的值,并讨论5(22)(本题满分9 分)求:(I )二维随机变量(X,Y)的概率分布;(23)(本题满分9分) 设总体X 的分布函数为其中是曲面z 1(z 0)的上侧.(18)(本题满分 11 分)设有方程x nnx 10,其中 n 为正整数.证明此方程存在惟一正实根X n ,并证明当 1时,级(19)(本题满分 12 分)设z=z(x,y)是由x 2 6xy 10y 22yzz 2 18 0确定的函数,求zz(x, y)的极值点和极值.设矩阵A 11A 是否可相似对角化.设A,B 为随机事件,且P(A) 右P(BA) 3‘P (AB)-,令XA发生, 0, A 不发生;Y 1, B 发生,0, B 不发生.(II ) X 和Y 的相关系数 XY -其中未知参数1,X!,X2, ,X n为来自总体X的简单随机样本,求: (I)的矩估计量;(II)的最大似然估计量.3 022004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=lnx 上与直线x y 1垂直的切线方程为 y x 1 .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由y (Inx)1,得x=1,可见切点为(1,0),于是所求的切线方程为xy 0 1 (x 1),即 y x 1.1【评注】本题也可先设切点为 (x 0,|n x 0),曲线y=lnx 过此切点的导数为 y— 1,得x 0 1,x x 0x 0由此可知所求切线方程为 y0 1(x1),即yx1.本题比较简单,类似例题在一般教科书上均可找到xx1 2(2) 已知 f (e ) xe ,且 f(1)=0,则 f(x) = (In x).2【分析】 先求出f (X )的表达式,再积分即可.【详解】令e x t ,则x lnt ,于是有ln tr, ln xf (t),即f (x)t x 积分得f(x)In x, 1 2dx (ln x) C .利用初始条件 f(1)=0,得C=0,故所求函数为 f(x)x 2丄仲x)2. 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分223 (3)设L 为正向圆周x y 2在第一象限中的部分,则曲线积分 L xdy 2ydx 的值为 -【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分 2 2【详解】 正向圆周x y2在第一象限中的部分,可表示为x 、 2 cos , 小y -2sin ,:0222si n 2【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参于是Lxdy 2ydx o 2 [一 2 cos 2 cos2 2sin ■- 2 sin ]d9数法化为定积分计算即可【分析】欧拉方程的求解有固定方法,作变量代换x e t 化为常系数线性齐次微分方程即可【详解】令xe t ,则 dy dy dt e 电1 dydx dt dxdt x dtd 2y 1 dy 1 d 2y dt 1[d 2 x 2[dt y dy F dt ]dx 2x 2 dt x dt 2dx 代入原方程,整理得d 2y c dy2y 0,.2 3 - dtdt解此方程,得通解为y tqe c 2e2tC1C22・2x x【评注】 本题属基础题型,也可直接套用公式,令 x e t ,则欧拉方程【详解】 已知等式两边同时右乘 A ,得ABA *A 2BA *A A ,而 A 3,于是有3AB 6B A ,即(3A 6E)B A ,再两边取行列式,有3A 6E||B A 3,1而3A 6E 27,故所求行列式为 B(4)欧拉方程2d 2y x dx 24x2y 0(x 0)的通解为y 纟乌dx x x可化为2 axd 2y dx 2cy f (x),2眷貉哼cy 讪.(5)设矩阵A2 1 01 2 0,矩阵B 满足ABA * 2BA * E ,其中A *为A 的伴随矩阵, 0 0 1E 是单位矩阵,则B【分析】可先用公式A *AA E 进行化简【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵A ,一般均应先利用公式A A AA * AE 进行化简.(6)设随机变量X 服从参数为 的指数分布,则P{X , DX } = 1 .e【分析】 已知连续型随机变量 X 的分布,求其满足一定条件的概率,转化为定积分计算即可1【详解】 由题设,知DX 冷,于是一1XP{X DX} = P{X -}ie X dx【评注】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算 二、选择题(本题共8小题,每小题 把所选项前的字母填在题后的括号内)一个的高阶无穷小,则正确的排列次序是4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,(7 )把x0时的无穷小量Xcost 2dt,2xtan 、tdt,0 ':X 30 si nt dt ,使排在后面的是前(A)(B)(C)(D)【分析】 先两两进行比较,再排出次序即可【详解】 lim — x 0 tan 一tdt lim 卫厂 x 0cost 2dt 0limtanx 2x 2cosx0,可排除 (C),(D)选项,【评注】 limx 0limx 0=-lim 4 x 0x3sint dt_0 ___________X 2 tan )t dt3 2sin x 2 ,可见 lim2x tanx是比低阶的无穷小量,故应选 (B).本题是无穷小量的比较问题,也可先将 ,,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) 0,则存在0,使得 (A) f(x)在(0,)内单调增加. (B) f(x)在(,0)内单调减少.(C) 对任意的 x (0,)有 f(x)>f(0)(D)对任意的 x ( ,0)有 f(x)>f(0)【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除 (A),(B)选项,再利用导数的定义及极限的保号性进行分析即可•【详解】 由导数的定义,知f(0) lim f(x) f(0)0,x 0 x根据保号性,知存在 0,当x (,0) (0,)时,有f(x) f(0)x即当 x (,0)时,f(x)<f(0);而当 x (0,)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论 (9) 设 a n 为正项级数,下列结论中正确的是n 12(C)若级数a n 收敛,则limn a “0.nn 1(E)若级数n1a n 发散,则存在非零常数,使得^m na n* "]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项1 2又取a n ----------------- ,则级数a n 收敛,但lim n a “nUnn1 n【评注】 本题也可用比较判别法的极限形式,a1 lim na n lim n0,而级数发散,因此级数a n 也发散,故应选(B).n n1n 1nn 1n【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被积函数中不含有(A)若lim na n =0,则级数na n 收敛.n 1(B )若存在非零常数,使得lim na nn,则级数a n 发散•n 1【详解】 取a n1 nln n,则 lim na n =0,但na nn 111n ln n发散,排除(A),(D);,排除(C),故应选(B).(10) 设f(x)为连续函数,F(t) (A)2f(2). (B) f(2).t t1 dy y f(x)dx ,贝U F (2)等于(C) -(2).(D)0.变量 t.【详解 】 交换积分次序,得t t t x tF(t) 1dy y f(x)dx = 1[1 f(x)dy]dx 1 f(x)(x 1)dx于是,F (t) f(t)(t 1),从而有 F (2)f(2),故应选(B).评注】 在应用变限的积分对变量 x 求导时,应注意被积函数中不能含有变量 x: b(x)[ a(x) f(t)dt] f [b(x)]b (x) f[a(x)]a(x)a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量 x 换到积分号外或积分线上 .( 11) 设 A 是 3 阶方阵,将 A 的第 1 列与第 2 列交换得 B, 再把 B 的第 2 列加到第 3 列得 C, 则满足 AQ=C 的可逆矩阵 Q 为0 1 0 0 1 0 0 1 0 0 1 1 (A)1 0 0. (B)1 0 1. (C) 1 0 0. (D) 10 0 1 0 10 0 11 10 0 1[ D ]分析 】 本题考查初等矩阵的的概念与性质,对 A 作两次初等列变换,相当于右乘两个相应的初等 矩阵, 而 Q 即为此两个初等矩阵的乘积 详解 】由题设,有0 1 01 0 0A 1 0 0B , B 0 1 1C ,0010 0 10 1 0 10 00 1 1 于是,A 1 0 0 0 1 1A 1 0 0 C.0 0 1 0 0 10 0 1可见, 应选 (D). 评注 】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系12) 设 A,B 为满足 AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关, (E) A 的列向量组线性相关, (F)A 的行向量组线性相关, (D) A 的行向量组线性相关,【详解1】 设A 为m n 矩阵,B 为n s 矩阵,则由AB=O 知,r(A) r(B) n .又 A,B 为非零矩阵,必有 r(A)>0,r(B)>0. 可见 r(A)<n, r(B)<n, 即 A 的列向量组线性相关, B 的行向量组线 性相关,故应选 (A).【详解 2】 由 AB=O 知, B 的每一列均为 Ax=0 的解,而 B 为非零矩阵,即 Ax=0 存在非零解,可见 A 的列向量组线性相关 .B 的行向量组线性相关B 的列向量组线性相关 B 的行向量组线性相关B 的列向量组线性相关【分析 】A,B 的行列向量组是否线性相关,可从 零解进行分析讨论 .A,B 是否行(或列)满秩或 Ax=0 (Bx=0 )是否有非同理,由AB=O知,B T A T O,于是有B T的列向量组,从而B的行向量组线性相关,故应选(A).【评注】AB=O是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=O r(A) r(B) n;2) AB=O B的每列均为Ax=0的解.(13)设随机变量X服从正态分布N(0,1),对给定的(0 1),数u满足P{X u } ,若P{X x} ,则x等于(A) u_2(B) u1 -2(C) u L~2(D) u1(A) Cov(X n Y) (B) Cov(X「Y)Cov(X1, X i) 1Cov(X1,X1) 1 Cov(X1,X i)n i 1 n n i 2【分析】此类问题的求解,可通过u的定义进行分析, 也可通过画出草图, 直观地得到结论【详解】由标准正态分布概率密度函数的对称性知,P{XP{X x} P{X x} P{X x} P{X x} 2P{X x}即有P{X x}1,可见根据定义有x2本题【评注】A,故应选(C).u相当于分位数,直观地有2(14)设随机变量X1,X2, ,X n( n 1)独立同分布,且其方差为nX i,则n i 1(C) D(X1 Y) (D)【分析】本题用n方差和协方差D(X1 Y)-n的运算性质直接计算即可,注意利用独立性有:Cov(X1,X i) 0,i 2,3, n.【详解】Cov( X1,Y)(x) (e 2)= -DX 11 2.n n本题(C),(D)两个选项的方差也可直接计算得到:如2n 3n2 nn 2 2n 22n(15) (本题满分12分)$ (b a). e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明In 2 b In 2 a24In x ,则e【证法1】 对函数2In x 在[a,b ]上应用拉格朗日中值定理,设(t)平,则(t),当t>e 时,0, 所以(t)单调减少,从而2 (e ),即In In e~2e2~~2,e故 In 2 b In 2 a 4(b a).所以当 即当e(x) (x) x>e 时, 2 .x e 时,In x 2 -xJ In x 2 2x(x)0,4_2 , e (x)单调减少,从而当(x)单调增加.e 2时,【评注】 D(X iY) D(^X 1n-X 2 n^X n ) n(1 n)2 n 2n 1 22nD(X in 1 Y) D( X 1n 1 X n )n(n 1)2 2nn 1 22~n2o2设 e a b e ,证明 In b In ab.【证法2】(x)因此当e x e 2时,(b)(a),v 0解得C v 0,两端积分得通解 v Cek —tm,代入初始条件v即 ln 2beln 2a4 ~~2a,故In 2 b ln 2 af (b e a).【评注】 本题也可设辅助函数为(x) 2 2 42In x In a 2 (x a),e a x e 或 e(x) ln 2 b ln 2 x$(b x),e x b2e ,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使 飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h.经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为 k 6.0 106).问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可 【详解1】 由题设,飞机的质量 m=9000kg ,着陆时的水平速度 v 0 700km/h .从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得dvm kv . dt dv dx dx dt所以,飞机滑行的最长距离为 1.05km.dvvdx ,又史dt由以上两式得dx 积分得x(t) x(t)m .dv ,k mv k m (v0 kC. 由于v(0)V 0, x(0)0,故得C — v °,从而k当 v(t)0时, v(t)). x(t)mv °k9000 700 66.0 101.05(km).【详解2】 根据牛顿第二定律,得 dv m — dtkv ,所以dv±dt. m【详解】取1为xoy 平面上被圆x 2 y 2 1所围部分的下侧,记 为由 与1围成的空间闭区域,(17) (本题满分12分) 计算曲面积分2x 3dydz 2y 3dzdx 3(z 2 1)dxdy,其中是曲面z 1 x 2 y 2(z 0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直 接投影法求解即可.jkt故 v(t)v 0e m .飞机滑行的最长距离为v(t)dtmv ° ekmv ° k1.05( km).或由dr上t v °e m,知x(t)t0v 0e上tmdtItm1),故最长距离为当t时,kv ox(t)m1.05(km).【详解3】 根据牛顿第二定律,d 2x m —亏dt 2dx k , dtd 2x dt 2k dx dt其特征方程为解之得m0, 2C 2edxx0,v --t 01 t 0dtkC 2 emV 0,得C 1C 2x(t) mv 0Atm).所以, 时,x(t)mv 0 1.05(km).k飞机滑行的最长距离为1.05km.【评注】本题求飞机滑行的最长距离, 可理解为t 或v(t)0的极限值,这种条件应引起注意•由 mv 0t 0C 1 Jkt m3 3 2I 2x dydz 2y dzdx 3(z 1)dxdy13 3 22x dydz 2y dzdx 3(z 1)dxdy.1由高斯公式知3 3 22x dydz 2y dzdx 3(z 1)dxdy122 1 1 r 2 2=6 d dr (z r )rdz3322x dydz 2y dzdx 3(z1 )dxdy 3dxdy 3x 2 y 2 1故123【评注】 本题选择 1时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在 1上直接投影积分时,应注意符号(1取下侧,与z 轴正向相反,所以取负号).(18) (本题满分11分) 设有方程x nnx 1 0,其中n 为正整数.证明此方程存在惟一正实根 x n ,并证明当 1时,级数x n 收敛.n 1【分析】利用介值定理证明存在性,利用单调性证明惟一性 .而正项级数的敛散性可用比较法判定 .【证】记 f n (x)x n nx 1.由f n (O) 1 0, f n (1) n 0,及连续函数的介值定理知,方程x n nx 10存在正实数根x n (0,1).当x>0时,f n (x) n x n 1 n 0,可见f n (x)在[0,)上单调增加,故方程x n nx 1 0存在惟一正实数根 X n ・由x n nx1 0与 X n0知1 X :11 0 X n,故当1 时,0 X n(-).n nn 而正项级数1丄收敛, 所以当1时,级数x n 收敛n 1nn 1【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要2 26( x y z)dxdydz=121[1r(1 r 2) 22、2 r 3(1 r 2)]dr1(9, 3, 3)i ,C2z2x2z2z(9, 3, 3)(9, 3, 3)基本概念清楚,应该可以轻松求证 (19) (本题满分12分)设z=z(x,y)是由x 2 6xy 10y 2 2yz z 218 0确定的函数,求z z(x, y)的极值点和极值【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然 后用二阶偏导确定是极大值还是极小值,并求出相应的极值2 2 2因为 x 6xy 10y 2yz z 18 0,所以2x 6y 2^z 2z^0,x x6x 20 y 2z 2y-^ 2z —z 0. y y故 x 3y , z y.x 9, x 9, y 3, 或 y 3, z 3z3.类似地,由【详解】—0, x —0 yx 3y 0, 3x 10y z 0,将上式代入x 26xy 10y 2 2yz z 218 0,可得由于22 2— 2(上)2x x2z2z2x2z2yx y2z2z0,202— 2二 y y2y- 2z 2y2(二)2 y22z z y 0,2所以 A—z x1 B2 z1,C2z5 (9,3,3)6,x y(9,3,3)2y(9,3,3)3,21 1 故 AC B 236,又A6z(9,3)=3.6xxx y0 ,从而点(9,3)是z(x,y)的极小值点,极小值为21 1 可知AC B 0,又A0 ,从而点(-9,-3)是z(x,y)的极大值点,极大值为366z(-9, -3)= -3.【评注】本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程•(20) (本题满分9分) 设有齐次线性方程组(1 a)x 1 X 2 X n 0, 2捲 (2 a)X 2 2x n 0, (n 2)n% nx 2(n a)X n0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】本题是方程的个数与未知量的个数相同的齐次线性方程组, 可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵 A 作初等行变换,有1 a 1 1 1 1 a 1 11A2 2 a 2 2 2a aBnnnn ana 0 0 a当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为X i X 2x n 0,由此得基础解系为1( 1,1,0,,0)T,2( 1,0,1, ,0)Tj , n 1 (1,0,0,,1)T ,于是方程组的通解为x k 1 1 k n 1 n 1,其中k 1, ,k n1为任意常数.当a 0时,对矩阵B作初等行变换, 有1 a 11 1a n(n 1)0 0 0 B2 1 0 022 1n 00 1n0 01可知an(n 2 1)时,r(A) n 1 n ,故方程组也有非零解,其同解方程组为2%X20, 3%X3,n^X n0 ,由此得基础解系为(1,2, ,n)T,于是方程组的通解为x k ,其中k为任意常数. 【详解2】方程组的系数行列式为1 a 1 12 2 a 2An n n当A 0,即a=0或a n(n 1)时,方程组有非零解2当a=0时,对系数矩阵A作初等行变换,有1 1 11 1 1112 2 220 000An n n n0 00 00故方程组的同解方程组为x1x2X n 0,由此得基础解系为1 ( 1,1,0, ,0)T,2 ( 1,0,1,,0)T,,n 1(1,0,0, ,1)T于是方程组的通解为x k1 1 k n 1 n 1 ,其中k1, , k n 1为任意常数a2卫时,对系数矩阵A作初等行变换,有1 a111 1 a 1112 A 2 a222a a00n n n n a na 00a(a 3)a n112 3E A1 4 31a 511 0 =(2) 14 31a52 (2) 0 14 3 1a522 16 18 3a 0,解得 a= -2.1 a 1 1 1 0 0 0 02 1 0 0 2 1 0 0 n 01n 01故方程组的同解方程组为2% x 2 0,3x 1 X 30,n% x 0,由此得基础解系为(1,2, ,n)T ,于是方程组的通解为x k ,其中k 为任意常数【评注】 矩阵A 的行列式 A 也可这样计算:1 a 1 1 1 1 1 11 1 1 1 1 A2 2 a 2 2 2 =aE +2 22,矩阵2 2 2 2的nnnn an n nn n n nn特征值为0,,0, n(n °,从而A 的特征值为a,a, ,a n(n 1),故行列式 A (a n(n 1))a n 1.2 2 2(21) (本题满分9分)1 23设矩阵A 1 43的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.1 a 5【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可•【详解】 A 的特征多项式为(2)( 2 8 18 3a).2是特征方程的二重根,则有323a2时,A的特征值为2, 4,4,矩阵4E-A= 103秩为2,故4对应的线性无关32113的特征向量只有一个,从而A不可相似对角化求:(I)二维随机变量(X,Y)的概率分布;(II) X和Y的相关系数XY-【分析】先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I) 由于P(AB) P(A)P(BA) 2,P(B)P(AB) 1 P(AB) 6'所以,P{X1,Y1}1 P(AB)—,12P{X1,Y0}P(AB) P(A)P(AB)1 6P{X0,Y1}P(AB) P(B)P(AB)1 12,1 当a= -2时,A的特征值为2,2,6,矩阵2E-A=12 32 3的秩为1,故2 32对应的线性无关的特征向量有两个,从而A可相似对角化.若2不是特征方程的二重根,则18 3a为完全平方,从而18+3a=16,解得a【评注】n阶矩阵A可对角化的充要条件是: 对于A的任意k i重特征根i,恒有n r( i E A) 而单根一定只有一个线性无关的特征向量•(22) (本题满分9分)1设A,B为随机事件,且P(A) -,P(B A)43,P(AB)1, A发生,0, A不发1, B发生,P{X 0,Y 0} P(AB) 1 P(A B)=1 P(A) P(B) P(AB)(或P{X 0,Y 0}故(X,Y)的概率分布为i 1 1 丄2),12 6 12 3【评注】本题尽管难度不大,但考察的知识点很多,综合性较强•通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意(23)(本题满分9分)设总体X的分布函数为1,X1,X2, ,X n为来自总体X的简单随机样本,求:(I) 的矩估计量;(II) 的最大似然估计量•【分析】先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可【详解】X的概率密度为——X 1,X 1,40, X「(I)由于则EXX01Y013151P——P一—446611351-,EY DX DY=——,E(XY)=46163612'(II) X, Y的概率分布分别为故Cov(X,Y) E (XY) EX EY —,从而24XYCov(X,Y) 1515F(x,)x0,1,1其中未知参数f(x,)1,X i 1(i 1,2, ,n),(X 1X 2 X n )0,其他 n1) In X i , i 1dInL()d故的最大似然估计量为 nnIn X ii 1难度不大,但计算量比较大,实际做题时应特别注意计算的准确性 EX Xf (X ; )dX X — 1 X T dx 令X ,解得 1 1,所以参数 的矩估计量为(II )似然函数为两边对求导,得 令dInL( ) 0,可得 d nn, In x ii 1L() f (X i ; 当x i1(i 1,2, ,n)时, L( 0,取对数得 lnL()n In In X i ,【评注】本题是基础题型,。
2004高考数学试题(全国1理)及答案
2004年高考试题全国卷Ⅰ理参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60 1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b|=( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1)B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .(I C A)∪B=IB .(IC A)∪(I C B)=I C .A ∩(I C B)=φD .(I C A) (I C B)= I C B7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于 ( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n },满足a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)a n -1(n ≥2),则{a n }的通项1___n a ⎧=⎨⎩12n n =≥ 16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线;②两条互相垂直的直线;③同一条直线; ④一条直线及其外一点;在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A 、B 、C 、D 四部热线电话,已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望. 19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间. 20.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD 侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离,(II )求面APB 与面CPB 所成二面角的大小. 21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125PB PA =求a 的值. 22.(本小题满分14分)已知数列1}{1=a a n 中,且a 2k =a 2k -1+(-1)K , a 2k+1=a 2k +3k , 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年高考试题全国卷1 理科数学(必修+选修Ⅱ)参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37. P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2 P(ξ=4)= 0.52×0.42=0.0419.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.所以当a =0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,+∞)内为增函数. (II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a 2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a 2)内为增函数,在区间(-a2,+∞)内为减函数.20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥ 等于所求二面角的平面角, 于是,772||||cos -=⋅=BC GA BC GA θ 所以所求二面角的大小为772arccos-π .解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a aaa e(II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a a a x a a x a a x 所以由得消去所以 22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分. 解:(I )a 2=a 1+(-1)1=0, a 3=a 2+31=3. a 4=a 3+(-1)2=4, a 5=a 4+32=13, 所以,a 3=3,a 5=13. (II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k , 所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1, ……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)], 由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k k a 2k = a 2k -1+(-1)k =2123+k (-1)k -1-1+(-1)k =2123+k(-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nn n a。
2004年高考数学(理科)真题及答案[全国卷I]
2004年全国统一考试理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合=⋂<--=<=N M x x x N x x M 则集合},032|{},4|{22 ( )A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.=-+-+→542lim 22x x x x n x ( )A .21B .1C .52 D .41 3.设复数ωω++-=1,2321则i =( )A .ω-B .2ωC .ω1-D .21ω 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π,其中R 表示球的半径5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6πC .12π-D .12π 6.函数x e y -=的图象( )A .与x e y =的图象关于y 轴对称B .与x e y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与x e y -=的图象关于坐标原点对称7.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则 球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 8.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 9.已知平面上直线l 的方向向量e =),53,54(-点O (0,0)和A (1,-2)在l 上的射影分别是O ′和A ′,则λ=''A O e ,其中λ= ( )A .511 B .511-C .2D .-2 10.函数x x x y sin cos -=在下面哪个区间内是增函数( )A .)23,2(ππB .)2,(ππC .)25,23(ππ D .)3,2(ππ 11.函数x x y 24cos sin +=的最小正周期为 ( )A .4π B .2π C .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521 的数共有 ( ) A .56个 B .57个 C .58个 D .60个第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱 ④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知锐角三角形ABC 中,.51)sin(,53)sin(=-=+B A B A (Ⅰ)求证:B A tan 2tan =;(Ⅱ)设AB=3,求AB 边上的高. 18.(本小题满分12分) 已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率; (Ⅱ)A 组中至少有两支弱队的概率. 19.(本小题满分12分)数列}{n a 的前n 项和记为S n ,已知).3,2,1(2,111 =+==+n S nn a a n n 证明: (Ⅰ)数列}{nS n是等比数列; (Ⅱ).41n n a S =+ 20.(本小题满分12分)如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=1,CB=2,侧棱AA 1=1,侧面AA 1B 1B的两条对角线交点为D ,B 1C 1的中点为M.(Ⅰ)求证CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小.21.(本小题满分12分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。
2004年高考理科数学全国卷(word版含答案)
2004年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k(1-P)n -k一、选择题 :本大题共12小题,每小题6分,共60。
1.(1-i)2·i= ( )A .2-2iB .2+2iC .-2D .2 2.已知函数=-=+-=)(.)(.11lg )(a f b a f xxx f 则若 ( )A .bB .-bC .b1D .-b1 3.已知a 、b 均为单位向量,它们的夹角为60°,那么|a +3b |= ( )A .7B .10C .13D .4 4.函数)1(11≥+-=x x y 的反函数是( )A .y=x 2-2x +2(x <1) B .y=x 2-2x +2(x ≥1)C .y=x 2-2x (x <1)D .y=x 2-2x (x ≥1) 5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设A 、B 、I 均为非空集合,且满足A ⊆B ⊆I ,则下列各式中错误..的是 ( )A .( IA)∪B=IB .( IA)∪( I B)=I C .A ∩( IB)=φD .( I A)∪( I B)=I B 7.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点 球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π, 其中R 表示球的半径为P ,则||2PF = ( )A .23 B .3C .27 D .48.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A .[-21,21] B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象 ( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H.设四面体EFGH 的表面积为T ,则S T等于( )A .91B .94 C .41 D .31 11.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为 ( )A .12513 B .12516 C .12518 D .12519 12.ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 ( )A .3-21 B .21-3 C .-21-3 D .21+3第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式|x +2|≥|x |的解集是 .14.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 .15.已知数列{a n},满足a1=1,a n=a1+2a2+3a3+…+(n-1)a n-1(n≥2),则{a n}的通项1, n=1,a n= ,n≥2.16.已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是 .①两条平行直线②两条互相垂直的直线③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是(写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)求函数xx xxxxf2sin2cossincossin)(2 24 4-++=的最小正周期、最大值和最小值.18.(本小题满分12分)一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.19.(本小题满分12分)已知,R a ∈求函数axe x xf 2)(=的单调区间.20.(本小题满分12分)如图,已知四棱锥 P—ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD 与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,Array(II)求面APB与面CPB所成二面角的大小.21.(本小题满分12分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.22.(本小题满分14分)已知数列1}{1 a a n 中,且 a 2k =a 2k -1+(-1)K,a 2k+1=a 2k +3k, 其中k=1,2,3,……. (I )求a 3, a 5;(II )求{ a n }的通项公式.2004年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题DBCBABCCBADB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥-1} 14.x 2+y 2=4 15.2!n 16.①②④ 三、解答题17.本小题主要考查三角函数基本公式和简单的变形,以及三角函娄的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数f (x )的最小正周期是π,最大值是43,最小值是41. 18.本小题主要考查离散型随机变量分布列和数学期望等概念.考查运用概率知识解决实际问题的能力.满分12分.解:P(ξ=0)=0.52×0.62=0.09.P(ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3P(ξ=2)= 22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P(ξ=3)= 22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2P(ξ=4)= 0.52×0.42=0.04于是得到随机变量ξ的概率分布列为:19.本小题主要考查导数的概率和计算,应用导数研究函数性质的方法,考查分类讨论的数学思想.满分12分.解:函数f (x )的导数:.)2(2)(22ax ax ax e ax x e ax xe x f ++=+='(I )当a =0时,若x <0,则)(x f '<0,若x >0,则)(x f '>0.(II )当,02,02,02>-<>+>x ax ax x a 或解得由时 由.02,022<<-<+x aax x 解得 所以,当a >0时,函数f (x )在区间(-∞,-a 2)内为增函数,在区间(-a2,0)内为减函数,在区间(0,+∞)内为增函数;(III )当a <0时,由2x +ax 2>0,解得0<x <-a2, 由2x +ax 2<0,解得x <0或x >-a2. 所以当a <0时,函数f (x )在区间(-∞,0)内为减函数,在区间(0,-a2)内为增函数,在区间(-a2,+∞)内为减函数. 20.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE. ∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD.由此知∠PEB 为面PAD 与面ABCD 所成二面角的平面角, ∴∠PEB=120°,∠PEO=60°由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23. (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=GA 于是有所以θ的夹角BC GA PB BC PB GA ,.⊥⋅⊥于是,772||||cos -=⋅=BC GA θ 所以所求二面角的大小为772arccos-π . 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB , ∴∠AGF 是所求二面角的平面角. ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23. 在Rt △PEG 中,EG=21AD=1.于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE.所以所求二面角的大小为π-arctan23. 21.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分12分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率).,2()2,26(226,120.11122+∞≠>∴≠<<+=+= 的取值范围为即离心率且且e e e a a a a a e (II )设)1,0(),,(),,(2211P y x B y x A.125).1,(125)1,(,125212211x x y x y x PB PA =-=-∴=由此得 由于x 1+x 2都是方程①的根,且1-a 2≠0,1317,06028912,,.12125.1212172222222222=>=----=--=a a aa x a a x a a x 所以由得消去所以22.本小题主要考查数列,等比数列的概念和基本知识,考查运算能力以及分析、归纳和推理能力.满分14分.解:(I )a 2=a 1+(-1)1=0,a 3=a 2+31=3.a 4=a 3+(-1)2=4,a 5=a 4+32=13,所以,a 3=3,a 5=13.(II) a 2k+1=a 2k +3k= a 2k -1+(-1)k +3k ,所以a 2k+1-a 2k -1=3k +(-1)k ,同理a 2k -1-a 2k -3=3k -1+(-1)k -1,……a 3-a 1=3+(-1).所以(a 2k+1-a 2k -1)+(a 2k -1-a 2k -3)+…+(a 3-a 1)=(3k +3k -1+…+3)+[(-1)k +(-1)k -1+…+(-1)],由此得a 2k+1-a 1=23(3k -1)+21[(-1)k -1], 于是a 2k+1=.1)1(21231--++k ka 2k = a 2k -1+(-1)k=2123+k (-1)k -1-1+(-1)k =2123+k (-1)k =1. {a n }的通项公式为: 当n 为奇数时,a n =;121)1(232121-⨯-+-+n n 当n 为偶数时,.121)1(2322-⨯-+=nnn a。
2004年普通高考数学试题及答案(浙江理科卷)
2004年普通高等学校招生全国统一考试数学(理工类)(浙江卷)第Ⅰ卷 (选择题 共60分)一.选择题: 本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1) 若U={1,2,3,4}, M={1,2},N={2,3}, 则C U (M ∪N)=(A) {1,2,3} (B) {2} (C) {1,3,4} (D) {4} (2) 点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动32π弧长到达Q 点,则Q 的坐标为(A) )23,21(- (B) ()21,23-- (C) ()23,21-- (D) ()21,23- (3) 已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = (A) –4 (B) –6 (C) –8 (D) –10 (4)曲线x y 42=关于直线x=2对称的曲线方程是(A) x y 482-= (B) 842-=x y (C) x y 4162-= (D)1642-=x y(5) 设z=x —y ,式中变量x 和y 满足条件⎩⎨⎧≥-+≥-03,02y x y x 则z 的最小值为(A) 1 (B) –1 (C) 3 (D) –3 (6) 已知复数i t z i z +=+=21,43,且21z z ⋅是实数,则实数t=(A)43 (B) 34 (C) --34 (D) --43 (7) 若n xx )2(3+展开式中存在常数项,则n 的值可以是(A) 8 (B) 9 (C) 10 (D) 12 (8)在ΔABC 中,“A>30º”是“sinA>21”的 (A) 充分而不必要条件 (B) 必要而不充分条件 (C) 充分必要条件 (D) 既不充分也必要条件(9)若椭圆)0(12222〉〉=+b a by a x 的左、右焦点分别为F 1、F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成5:3两段,则此椭圆的离心率为(A )1716(B )17174 (C )54 (D )552(10)如图,在正三棱柱ABC —A 1B 1C 1中已知AB=1,D 在棱BB 1上,且BD=1,若AD 与平面AA 1C 1C 所成的角为α,则α= (A )3π(B )4π (C )410arcsin(D )46arcsin(11)设)(x f '是函数f(x)的导函数,y=)(x f '的图象 如图所示,则y= f(x)的图象最有可能的是(12)若)(x f 和g(x)都是定义在实数集R 上的函数,且方程0)]([=-x g f x 有实数解,则)]([x f g 不可能...是 (A )512-+x x (B )512++x x (C )512-x (D )512+x第Ⅱ卷 (非选择题 共90分)二.填空题:三大题共4小题,每小题4分,满分16分。
2004年普通高等学校招生全国统一考试数学 (理工农林医类)
2004年普通高等学校招生全国统一考试数学 (理工农林医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至1页,第Ⅱ卷3至10页。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔在答题卡上对应题目的答案涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:三角函数的和差化积公式 )]sin()[sin(21cos sin βαβαβα-++= )]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合NM I 中元素的个数为( )A .1B .2C .3D .4 2.函数2sin x y =的最小正周期是( )A .2πB . πC .π2D .π43.设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则 ( )A .54S S <B .54S S =C .56S S <D .56S S = 4.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )正棱台、圆台的侧面积公式l c c S )(21+'=台侧 其中c ′、c 分别表示上、下底面周长,l 表示斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径C .043=+-y xD .023=+-y x 5.函数)1(log 221-=x y 的定义域为( )A .[)(]2,11,2Y --B .)2,1()1,2(Y --C .[)(]2,11,2Y --D .)2,1()1,2(Y --6.设复数z 的辐角的主值为32π,虚部为3,则2z =( )A .i 322--B .i 232--C .i 32+D .i 232+7.设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5B .5 C .25D .45 8.不等式311<+<x 的解集为( )A .()2,0B .())4,2(0,2Y -C .()0,4-D .())2,0(2,4Y --9.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为 ( )A .322 B .2C .32D .324 10.在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A .223 B .233 C .23 D .3311.设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )A .(][]10,02,Y -∞-B .(][]1,02,Y -∞-C .(][]10,12,Y -∞-D .[]10,1]0,2[Y -12.将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A .12种B .24种C .36种D .48种第Ⅱ卷二、填空题(每小题4分,共16分.把答案填在题中横线上,解答应写出文字说明,证明过程或演算步骤.) 13.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比14.函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 .15.已知函数)(x f y =是奇函数,当0≥x 时,13)(-=xx f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16.设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17.(本小题满分12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值.18.(本小题满分12分)解方程 11214=-+xx.m的矩形蔬菜温室。
2004普通高等学校招生全国统一考试辽宁卷数学试题及答案
2004年普通高等学校招生辽宁卷数学试题第Ⅰ卷(选择题 共60分)参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率kn k k n n P P C k P --=)1()( 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若θθθ则角且,02sin ,0cos <>的终边所在象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaaa111++<④aaaa111++>其中成立的是 A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题 βα//:q . 则q p 是的 A .充分而不必要的条件 B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件4.设复数z 满足=+=+-|1|,11z i zz则A .0B .1C .2D .25.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是 p 2,那么恰好有1人解决这个问题的概率是A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p ---6.已知点)0,2(-A 、)0,3(B ,动点2),(x PB PA y x P =⋅满足,则点P 的轨迹是A .圆B .椭圆C .双曲线D .抛物线7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数8.已知随机变量ξ的概率分布如下:则==)10(ξPA .932 B .1032 C .931 D .1031 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时, 点P 到坐标原点的距离是A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是 A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是A .234B .346C .350D .363AC 1AC第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若经过点P (-1,0)的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 . 14.πππ--→x x x x cos )(lim= .15.如图,四棱柱ABCD —A 1B 1C 1D 1的底面ABCD 底面边长均为2a ,且︒=∠=∠6011AB A AD A ,则侧棱AA 1面B 1D 1DB 的距离是 .16.口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出的5个球所标数字之和小于2或大于3的概率是 .(以 数值作答)三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知四棱锥P —ABCD ,底面ABCD 是菱形,⊥︒=∠PD DAB ,60平面ABCD ,PD=AD , 点E 为AB 中点,点F 为PD 中点. (1)证明平面PED ⊥平面PAB ;(2)求二面角P —AB —F 的平面角的余弦值.18.(本小题满分12分)设全集U=R(1)解关于x 的不等式);(01|1|R a a x ∈>-+- (2)记A 为(1)中不等式的解集,集合}0)3cos(3)3sin(|{=-+-=ππππx x x B ,若B A C U )(恰有3个元素,求a 的取值范围.19.(本小题满分12分)设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21+=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程; (2)||的最小值与最大值.20.(本小题满分12分)甲方是一农场,乙方是一工厂. 由于乙方生产须占用甲方的资源,因此甲方有权向乙方 索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系t x 2000=.若乙方每生产一吨产品必须赔付甲方s 元(以下称s 为赔付价格),(1)将乙方的年利润w (元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额2002.0t y =(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格s 是多少?21.(本小题满分14分)已知函数223)(x ax x f -=的最大值不大于61,又当.81)(,]21,41[≥∈x f x 时 (1)求a 的值; (2)设.11.),(,21011+<∈=<<++n a N n a f a a n n n 证明22.(本小题满分12分)已知函数)0)(ln()(>+=a a e x f x. (1)求函数)(x f y =的反函数)()(1x f x fy 及-=的导数);(x f '(2)假设对任意0))(ln(|)(|)],4ln(),3[ln(1<'+-∈-x f x fm a a x 不等式成立,求实数m 的取值范围.AC2004年普通高等学校招生辽宁卷数学试题答案与评分参考一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D2.D3.B4.C5.B6.D7.B8.C9.A 10.A 11.C 12.B 二、填空题:本题考查基本知识和基本运算. 每小题4分,满分16分.13.1 14.π2- 15.a 16.6313 三、解答题17.本小题主要考查空间中的线面关系,四棱锥的有关概念及余弦定理等基础知识,考查空间想象能力和推理能力. 满分12分. (1)证明:连接BD.ADB DAB AD AB ∆∴︒=∠=,60, 为等边三角形.E 是AB 中点,.DE AB ⊥∴…………2分⊥PD 面ABCD ,AB ⊂面ABCD ,.PD AB ⊥∴⊂DE 面PED ,PD ⊂面PED ,⊥∴=AB D PD DE , 面PED.…………4分 ⊂AB 面PAB ,⊥∴PED 面面PAB. ……………………6分(2)解:⊥AB 平面PED ,PE ⊂面PED ,.PE AB ⊥∴ 连接EF ,⊂EF PED ,.EF AB ⊥∴PEF ∠∴为二面角P —AB —F 的平面角. ………… 9分 设AD=2,那么PF=FD=1,DE=3. 在,1,2,7,===∆PF EF PE PEF 中,147572212)7(cos 22=⨯-+=∠∴PEF 即二面角P —AB —F 的平面角的余弦值为.1475…12分 18.本小题主要考查集合的有关概念,含绝对值的不等式,简单三角函数式的化简和已知三角函数值求角等基础知识,考查简单的分类讨论方法,以及分析问题和推理计算能力. 满分12分.解:(1)由.1|1|01|1|a x a x ->->-+-得 当1>a 时,解集是R ;当1≤a 时,解集是}.2|{a x a x x -><或……………………3分 (2)当1>a 时, A C U =φ;当1≤a 时,A C U =}.2|{a x a x -≤≤……………………5分 因)3cos(3)3sin(ππππ-+-x x .sin 2]3sin )3cos(3cos )3[sin(2x x x πππππππ=-+-= 由.,),(,0sin Z B Z k x Z k k x x =∈=∈==所以即得πππ…………8分当B A C U )(怡有3个元素时,a 就满足⎩⎨⎧<--≤<4)2(21a a a 解得.01≤<-a 12分19.本小题主要考查平面向量的概念、直线方程的求法、椭圆的方程和性质等基础知识,以及轨迹的求法与应用、曲线与方程的关系等解析几何的基本思想和综合解题能力. 满分 12分.(1)解法一:直线l 过点M (0,1)设其斜率为k ,则l 的方程为.1+=kx y记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122yx kx y 的解.…………………………2分 将①代入②并化简得,032)4(22=-++kx x k ,所以⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y kk x x 于是 ).44,4()2,2()(21222121kk k y y x x OB OA OP ++-=++=+=…………6分 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x ………………8分① ②解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④ .142222=+y x ⑤④—⑤得0)(4122212221=-+-y y x x ,所以 .0))((41))((21212121=+-++-y y y y x x x x当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥ 并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧ 当21x x =时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0) 也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x ………………8分 (2)解:由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x ……10分故当41=x ,||取得最小值,最小值为61;41-=x 当时,||取得最大值,最大值为.621……………………12分 注:若将ts 1000=代入v 的表达式求解,可参照上述标准给分.21.本小题主要考查函数和不等式的概念,考查数学归纳法,以及灵活运用数学方法分析和解决问题的能力. 满分14分.(1)解:由于223)(x ax x f -=的最大值不大于,61所以 .1,616)3(22≤≤=a a a f 即 ① ………………3分又,81)(]21,41[≥∈x f x 时所以1.813234,81832,81)41(,81)21(≥⎪⎪⎩⎪⎪⎨⎧≥-≥-⎪⎪⎩⎪⎪⎨⎧≥≥a a a f f 解得即. ② 由①②得.1=a ………………6分(2)证法一:(i )当n=1时,2101<<a ,不等式110+<<n a n 成立; 因2,3161)(0),32,0(,0)(12=<≤=<∈>n a f a x x f 故所以时不等式也成立.(ii )假设)2(≥=k k n 时,不等式110+<<k a k 成立,因为223)(x x x f -=的对称轴为,31=x 知]31,0[)(在x f 为增函数,所以由311101≤+<<k a 得)11()(0+<<k f a f k ………………8分于是有,21)2()1(24212121)1(123110221+<+++-+=+-+++⋅-+<<+k k k k k k k k k a k…………12分所以当n=k+1时,不等式也成立.根据(i )(ii )可知,对任何*∈N n ,不等式11+<n a n 成立.…………14分 证法二:(i )当n=1时,2101<<a ,不等式110+<<n a n 成立;(ii )假设)1(≥=k k n 时不等式成立,即110+<<k a n ,则当n=k+1时, )231()2(21)231(1k k k k k a a k k a a a -⋅+⋅+=-=+………………8分因,0231,0)2(>->+k k a a k 所以.1]2)21(1[]2)232(1[)231()2(22<++=-++≤-⋅+kk k k a k a k a a k ……12分 于是.2101+<<+k a k 因此当n=k+1时,不等式也成立. 根据(i )(ii )可知,对任何*∈N n ,不等式11+<n a n 成立.…………14分证法三:(i )当n=1时,,2101<<a 不等式110+<<n a n 成立;(ii )假设1,110,)1(+=+<<≥=k n k a k k n k 则当时时. 若.210+<<k a k 则.21)231(01+<<-=<+k a a a a k k k k ①…………8分.0)()()()(2312212*********212>---=---=-t t t t a t t t t t a t t a t t v t v所以)(),(t v t u 都是增函数.因此当]4,3[a a t ∈时,)(t u 的最大值为)(,512)4(t v a a u =的最小值为 ,38)3(a a v =而不等式②成立当且仅当),3()4(a v e a u m <<即a e a m 38512<<,于是得 ).38ln()512ln(a m a <<………………12分 解法二:由0))(ln(|)(|1<'+--x f x fm 得.)ln()ln()ln()ln(x a e a e m x a e a e x x x x -++-<<++--设,)ln()ln()(,)ln()ln()(x a e a e x x a e a e x xxxx-++-=++--=ψϕ 于是原不等式对于)]4ln(),3[ln(a a x ∈恒成立等价于).()(x m x ψϕ<< ③…7分由1)(,1)(-++-='++--='a e e a e e x a e e a e e x x xx x x x xx ψϕ,注意到 ,0a e e a e x x x +<<-<故有0)(,0)(>'>'x x ψϕ,从而可)()(x x ϕϕ与均在)]4ln(),3[ln(a a 上单调递增,因此不等式③成立当且仅当)).3(ln())4(ln(a m a ψϕ<<即 ).38ln()512ln(a m a <<………………12分。
2004年高考数学试题(全国4理)及答案
2004年高考试题全国卷Ⅳ理科数学(必修+选修Ⅱ)第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n (k)=C kn P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的 1.已知集合},2|{},2,1,0{M a a x x N M ∈===,则集合N M ⋂= ( )A .{0}B .{0,1}C .{1,2}D .{0,2} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.过点(-1,3)且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 4.)1)31(2ii +-=( )A .i +3B .i --3C .i -3D .i +-3 5.不等式03)2(<-+x x x 的解集为( )A .}30,2|{<<-<x x x 或B .}3,22|{><<-x x x 或C .}0,2|{>-<x x x 或D .}3,0|{<<x x x 或6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .220 7.对于直线m 、n 和平面α,下面命题中的真命题是( )A .如果m n m ,,αα⊄⊂、n 是异面直线,那么α//n ;B .如果m n m ,,αα⊄⊂、n 是异面直线,那么α与n 相交C .如果m n m ,//,αα⊂、n 共面,那么n m //;D .如果m n m ,//,//αα、n 共面,那么n m //8.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为( )球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π 其中R 表示球的半径A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=2,BC=32,则球心 到平面ABC 的距离为( )A .1B .2C .3D .211.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+12.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ( )A .0B .1C .25 D .5第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .15.函数)(2cos 21cos )(R x x x x f ∈-=的最大值等于 . 16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)求函数241)1ln()(x x x f -+=在[0,2]上的最大值和最小值.C19.(本小题满分12分) 某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:每题回答正确得100分,回答不正确得-100分.假设这名同学每题回答正确的概率均为0.8,且各题回答正确与否相互之间没有影响. (Ⅰ)求这名同学回答这三个问题的总得分ξ的概率分布和数学期望; (Ⅱ)求这名同学总得分不为负分(即ξ≥0)的概率. 20.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 21.(本小题满分12分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围. 22.(本小题满分14分)已知函数0)(),sin (cos )(='+=-x f x x ex f x将满足的所有正数x 从小到大排成数列}.{n x(Ⅰ)证明数列{}{n x f }为等比数列;(Ⅱ)记n S 是数列{}{n n x f x }的前n 项和,求.lim 21nS S S nn +++∞→2004年高考试题全国卷4理科数学(必修+选修Ⅱ)参考答案一、选择题1—12 D C A D A B C A B A B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.21-15.43 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++= 当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.本小题主要考查函数的导数计算,利用导数讨论函数的性质,判断函数的最大值、最小 值以及综合运算能力.满分12分. 解:,2111)(x x x f -+=' 令 ,02111=-+x x 化简为,022=-+x x 解得.1),(221=-=x x 舍去当)(,0)(,10x f x f x >'<≤时单调增加; 当)(,0)(,21x f x f x <'≤<时单调减少. 所以412ln )1(-=f 为函数)(x f 的极大值. 又因为 ),2()1(,013ln )2(,0)0(f f f f >>-==所以 0)0(=f 为函数)(x f 在[0,2]上的最小值,412ln )1(-=f 为函数)(x f 在[0,2]上的最大值.19.本小题主要考查离散型随机变量的分布列、数学期望等概念,以及运用概率统计知识解 决实际问题的能力.满分12分. 解:(Ⅰ)ξ的可能值为-300,-100,100,300.P (ξ=-300)=0.23=0.008, P (ξ=-100)=3×0.22×0.8=0.096, P (ξ=100)=3×0.2×0.82=0.384, P (ξ=300)=0.83=0.512, 所以ξ的概率分布为图2Cy图1根据ξ的概率分布,可得ξ的期望E ξ=(-300)×0.08+(-100)×0.096+100×0.384+300×0.512=180.(Ⅱ)这名同学总得分不为负分的概率为P (ξ≥0)=0.384+0.512=0.896.20.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD , 所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.通过计算可得EO=3,AE=23知AD=43,AB=8,得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.21.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+=由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是.525≤≤e 22.本小题主要考查函数的导数,三角函数的性质,等差数列与等比数列的概念和性质,以及综合运用的能力.满分14分.(Ⅰ)证明:.sin 2)cos sin ()sin (cos )(x e x x e x x e x f xx x ----=+-++-='由,0)(='x f 得.0sin 2=--x ex解出n n x ,π=为整数,从而,3,2,1,==n n x n π .)1()(πn n n e x f --=.)()(1π-+-=e x f x f n n所以数列)}({n x f 是公比π--=eq 的等比数列,且首项.)(1q x f =(Ⅱ)解:)()()(2211n n n x f x x f x x f x S +++= ),21(1-+++=n nq q q π),11()21(),2(122n nnn n n n n nq qq q nq qq q qS S nq q q q qS ---=-+++=-+++=-πππ 而).11(1n nn nq qq q q S ----=πnS S S n+++ 21.)1()1()1(2)1()11()1(11)1()1()21()1()1()1()1(2232222222121222q q q q n q q qnq qq q n q q q q n q q q nq q q n q qq q n q q qn nnn n n n -+----=----------=+++--+++---=+--πππππππππ因为0lim .1||=<=∞→-n n q eq π,所以.)1()1(lim 2221+-=-=+++∞→ππππe e q q n S S S n n。
2004年全国高考数学试题(全国卷理科word版)
2004年全国高考数学(人教版)试题(理科)一、选择题(每小题5分,共60分)1、设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为( )A 、1B 、2C 、3D 、42、函数2sin x y =的最小正周期是( ) A 、 2π B 、 π C 、π2 D 、π4 3、设数列{}n a 是等差数列,且6,682=-=a a ,n S 是数列{}n a 的前n 项和,则( )A 、54S S <B 、54S S =C 、56S S >D 、56S S =4、圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A 、023=-+y xB 、043=-+y xC 、043=+-y xD 、023=+-y x5、函数)1(log 221-=x y 的定义域为( )A 、[)(]2,11,2 --B 、)2,1()1,2( --C 、[)(]2,11,2 --D 、)2,1()1,2( --6、设复数z 的辐角的主值为32π,虚部为3,则2z =( ) A 、i 322-- B 、i 232-- C 、i 32+ D 、i 232+7、设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( ) A 、5 B 、 5 C 、25 D 、45 8、不等式311<+<x 的解集为( )A 、()2,0B 、())4,2(0,2 -C 、()0,4-D 、())2,0(2,4 --9、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A 、322B 、2C 、32D 、324 10、在△ABC 中,AB=3,BC=13,AC=4,则边AC 上的高为( )A 、223B 、233 C 、23 D 、3311、设函数⎪⎩⎪⎨⎧≥--<+=1,141,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( ) A 、(][]10,02, -∞- B 、(][]1,02, -∞- C 、(][]10,12, -∞- D 、[)[]10,10,2 -12、将4名教师分配到3所中学任教,每所中学至少1名,则不同的分配方案共有( )A 、12种B 、24种C 、36种D 、48种二、填空题(每小题4分,共16分)13、用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .14、函数x x y cos 3sin +=在区间⎥⎦⎤⎢⎣⎡2,0π上的最小值为 . 15、已知函数)(x f y =是奇函数,当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g .16、设P 是曲线)1(42-=x y 上的一个动点,则点P 到点)1,0(的距离与点P 到y 轴的距离之和的最小值为 .三、解答题(6道题,共76分)17、(12分)已知α为锐角,且21tan =α,求ααααα2cos 2sin sin cos 2sin -的值。
2004—数一真题标准答案及解析
2004年全国硕士研究生入学统一考试数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为__________ . (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dx y d x的通解为. __________ . (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B __________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ ] (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少. (C) 对任意的),0(δ∈x 有f(x)>f(0) .(D) 对任意的)0,(δ-∈x 有f(x)>f(0) . [ ](9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(D) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ ](10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ ](11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ ](12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (A) A 的列向量组线性相关,B 的行向量组线性相关. (B) A 的列向量组线性相关,B 的列向量组线性相关. (C) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ ](13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ](14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ ] (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. (20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解. (21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. (22)(本题满分9分) 设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ(23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标. 【详解】 由11)(ln =='='xx y ,得x=1, 可见切点为)0,1(,于是所求的切线方程为 )1(10-⋅=-x y , 即 1-=x y .【评注】 本题也可先设切点为)ln ,(00x x ,曲线y=lnx 过此切点的导数为11=='=x y x x ,得10=x ,由此可知所求切线方程为)1(10-⋅=-x y , 即 1-=x y .本题比较简单,类似例题在一般教科书上均可找到. (2)已知xxxee f -=')(,且f(1)=0, 则f(x)=2)(ln 21x . 【分析】 先求出)(x f '的表达式,再积分即可. 【详解】 令t e x=,则t x ln =,于是有t t t f ln )(=', 即 .ln )(x xx f =' 积分得 C x dx x x x f +==⎰2)(ln 21ln )(. 利用初始条件f(1)=0, 得C=0,故所求函数为f(x)=2)(ln 21x . 【评注】 本题属基础题型,已知导函数求原函数一般用不定积分. (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为π23 . 【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分. 【详解】 正向圆周222=+y x 在第一象限中的部分,可表示为.20:,sin 2,cos 2πθθθ→⎩⎨⎧==y x于是θθθθθπd y d x x d y L]s i n 2s i n 22c o s 2c o s 2[220⋅+⋅=-⎰⎰=.23sin 2202πθθππ=+⎰d 【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加的线段上用参数法化为定积分计算即可.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为 221x c x c y +=. 【分析】 欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可. 【详解】 令te x =,则dtdyx dt dy e dx dt dt dy dx dy t 1==⋅=-,][11122222222dtdydt y d x dx dt dt y d x dt dy x dx y d -=⋅+-=, 代入原方程,整理得02322=++y dt dydty d , 解此方程,得通解为 .221221x c x c e c ec y t t+=+=-- 【评注】 本题属基础题型,也可直接套用公式,令te x =,则欧拉方程)(222x f cy dx dybx dx y d ax=++, 可化为 ).(][22t e f cy dt dyb dt dy dty d a =++- (5)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100021012A ,矩阵B 满足E BA ABA +=**2,其中*A 为A 的伴随矩阵,E 是单位矩阵,则=B91 . 【分析】 可先用公式E A A A =*进行化简 【详解】 已知等式两边同时右乘A ,得A A BA A ABA +=**2, 而3=A ,于是有A B AB +=63, 即 A B E A =-)63(,再两边取行列式,有363==-A B E A ,而 2763=-E A ,故所求行列式为.91=B【评注】 先化简再计算是此类问题求解的特点,而题设含有伴随矩阵*A ,一般均应先利用公式E A AA A A ==**进行化简.(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >=e1 . 【分析】 已知连续型随机变量X 的分布,求其满足一定条件的概率,转化为定积分计算即可. 【详解】 由题设,知21λ=DX ,于是}{DX X P >=dx e X P x⎰+∞-=>λλλλ1}1{ =.11eex=-∞+-λλ 【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) γβα,,. (B) βγα,,. (C) γαβ,,. (D) αγβ,,. [ B ] 【分析】 先两两进行比较,再排出次序即可.【详解】 0c o s 2t a n lim cos tan limlim 22002=⋅==+++→→→⎰⎰x xx dtt dt t x xx x x αβ,可排除(C),(D)选项, 又 xx xx dtt dtt x xxx x tan 221sin lim tan sin lim lim 230302⋅==+++→→→⎰⎰βγ=∞=+→20lim 41xxx ,可见γ是比β低阶的无穷小量,故应选(B). 【评注】 本题是无穷小量的比较问题,也可先将γβα,,分别与nx 进行比较,再确定相互的高低次序. (8)设函数f(x)连续,且,0)0(>'f 则存在0>δ,使得(A) f(x)在(0,)δ内单调增加. (B )f(x)在)0,(δ-内单调减少.(C) 对任意的),0(δ∈x 有f(x)>f(0) . (D) 对任意的)0,(δ-∈x 有f(x)>f(0) .[ C ]【分析】 函数f(x)只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可.【详解】 由导数的定义,知0)0()(lim)0(0>-='→xf x f f x ,根据保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f即当)0,(δ-∈x 时,f(x)<f(0); 而当),0(δ∈x 时,有f(x)>f(0). 故应选(C). 【评注】 题设函数一点可导,一般均应联想到用导数的定义进行讨论. (9)设∑∞=1n na为正项级数,下列结论中正确的是(A) 若n n na ∞→lim =0,则级数∑∞=1n na收敛.(B ) 若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散.(C) 若级数∑∞=1n na收敛,则0lim 2=∞→n n a n .(E) 若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim . [ B ]【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到正确选项.【详解】 取n n a n ln 1=,则n n na ∞→lim =0,但∑∑∞=∞==11ln 1n n n nn a 发散,排除(A),(D);又取nn a n 1=,则级数∑∞=1n na收敛,但∞=∞→n n a n 2lim ,排除(C), 故应选(B).【评注】 本题也可用比较判别法的极限形式,01limlim ≠==∞→∞→λna na n n n n ,而级数∑∞=11n n 发散,因此级数∑∞=1n n a 也发散,故应选(B). (10)设f(x)为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A) 2f(2). (B) f(2). (C) –f(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求)2(F '即可.关键是求导前应先交换积分次序,使得被积函数中不含有变量t.【详解】 交换积分次序,得⎰⎰=tt ydx x f dy t F 1)()(=⎰⎰⎰-=t x tdx x x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有 )2()2(f F =',故应选(B).【评注】 在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x: ⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.(11)设A 是3阶方阵,将A 的第1列与第2列交换得B,再把B 的第2列加到第3列得C, 则满足AQ=C 的可逆矩阵Q 为(A) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010. (B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010. (C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010. (D) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110. [ D ]【分析】 本题考查初等矩阵的的概念与性质,对A 作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q 即为此两个初等矩阵的乘积.【详解】由题设,有B A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001010,C B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100110001, 于是, .100001110100110001100001010C A A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡可见,应选(D).【评注】 涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系. (12)设A,B 为满足AB=O 的任意两个非零矩阵,则必有 (D) A 的列向量组线性相关,B 的行向量组线性相关. (E) A 的列向量组线性相关,B 的列向量组线性相关. (F) A 的行向量组线性相关,B 的行向量组线性相关.(D) A 的行向量组线性相关,B 的列向量组线性相关. [ A ]【分析】A,B 的行列向量组是否线性相关,可从A,B 是否行(或列)满秩或Ax=0(Bx=0)是否有非零解进行分析讨论.【详解1】 设A 为n m ⨯矩阵,B 为s n ⨯矩阵,则由AB=O 知,n B r A r <+)()(.又A,B 为非零矩阵,必有r(A)>0,r(B)>0. 可见r(A)<n, r(B)<n, 即A 的列向量组线性相关,B 的行向量组线性相关,故应选(A).【详解2】 由AB=O 知,B 的每一列均为Ax=0的解,而B 为非零矩阵,即Ax=0存在非零解,可见A 的列向量组线性相关.同理,由AB=O 知,O A B TT =,于是有T B 的列向量组,从而B 的行向量组线性相关,故应选(A). 【评注】 AB=O 是常考关系式,一般来说,与此相关的两个结论是应记住的: 1) AB=O ⇒n B r A r <+)()(; 2) AB=O ⇒B 的每列均为Ax=0的解.(13)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ C ]【分析】 此类问题的求解,可通过αu 的定义进行分析,也可通过画出草图,直观地得到结论. 【详解】 由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有 21}{α-=≥x X P ,可见根据定义有21α-=u x ,故应选(C). 【评注】 本题αu 相当于分位数,直观地有2(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A) Cov(.),21nY X σ= (B) 21),(σ=Y X Cov .(C) 212)(σn n Y X D +=+. (D) 211)(σnn Y X D +=-. [ A ] 【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:.,3,2,0),(1n i X X Cov i ==【详解】 Cov(∑∑==+==ni i n i i X X Cov n X X Cov n X n X Cov Y X 2111111),(1),(1)1,(),=.1121σnDX n = 【评注】 本题(C),(D) 两个选项的方差也可直接计算得到:如222222111)1()111()(σσn n n n X n X n X n n D Y X D n -++=++++=+ =222233σσn n nn n +=+, 222222111)1()111()(σσn n n n X n X n X n n D Y X D n -+-=----=-=.222222σσn n nn n -=- (15)(本题满分12分)设2e b a e <<<, 证明)(4ln ln 222a b ea b ->-. 【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明. 【证法1】 对函数x 2ln 在[a,b]上应用拉格朗日中值定理,得 .),(ln 2ln ln 22b a a b a b <<-=-ξξξ设t t t ln )(=ϕ,则2ln 1)(tt t -='ϕ, 当t>e 时, ,0)(<'t ϕ 所以)(t ϕ单调减少,从而)()(2e ϕξϕ>,即2222ln ln ee e =>ξξ, 故 )(4ln ln 222a b ea b ->-. 【证法2】 设x e x x 224ln )(-=ϕ,则24ln 2)(e x x x -='ϕ, 2ln 12)(xxx -=''ϕ, 所以当x>e 时,,0)(<''x ϕ 故)(x ϕ'单调减少,从而当2e x e <<时,044)()(222=-='>'e e e x ϕϕ, 即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即 a ea b e b 22224ln 4ln ->-, 故 )(4ln ln 222a b ea b ->-.【评注】 本题也可设辅助函数为2222),(4ln ln )(e x a e a x ea x x <<<---=ϕ或 2222),(4ln ln )(e b x e x b ex b x <<<---=ϕ,再用单调性进行证明即可. (16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h. 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】 本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度h km v /7000=. 从飞机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得kv dt dvm -=. 又 dxdv v dt dx dx dv dt dv =⋅=,由以上两式得 dv kmdx -=, 积分得 .)(C v k m t x +-= 由于0)0(,)0(0==x v v ,故得0v k mC =,从而 )).(()(0t v v kmt x -=当0)(→t v 时, ).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km. 【详解2】 根据牛顿第二定律,得 kv dtdvm -=, 所以.dt mk v dv -= 两端积分得通解t mkCe v -=,代入初始条件00v vt ==解得0v C =,故 .)(0t mk ev t v -=飞机滑行的最长距离为 ).(05.1)(000km kmv ekmv dt t v x tm k==-==∞+-∞+⎰或由t m ke v dtdx-=0,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→【详解3】 根据牛顿第二定律,得 dt dxk dt x d m -=22,022=+dtdxm k dt x d , 其特征方程为02=+λλm k ,解之得mk -==21,0λλ, 故 .21t mk eC C x -+=由 002000,0v e mkC dt dxv x t tm kt t t =-====-===,得 ,021kmv C C =-= 于是 ).1()(0t m ke k mv t x --= 当+∞→t 时,).(05.1)(0km kmv t x =→所以,飞机滑行的最长距离为1.05km.【评注】 本题求飞机滑行的最长距离,可理解为+∞→t 或0)(→t v 的极限值,这种条件应引起注意. (17)(本题满分12分) 计算曲面积分 ,)1(322233dxdy zdzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加的曲面上应用直接投影法求解即可.【详解】 取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdy zdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233.)1(3221233dxdy z dzdx y dydz x ⎰⎰∑-++-由高斯公式知d x d y d z z y x d x d y z d z d x y d y d z x ⎰⎰⎰⎰⎰Ω∑+∑++=-++)(6)1(322222331=rdz r z dr d r )(62011022⎰⎰⎰-+πθ=.2)]1()1(21[12232210ππ=-+-⎰dr r r r r而⎰⎰⎰⎰≤+∑=--=-++123322133)1(322y x dxdy dxdy zdzdx y dydz x π,故 .32πππ-=-=I【评注】 本题选择1∑时应注意其侧与∑围成封闭曲面后同为外侧(或内侧),再就是在1∑上直接投影积分时,应注意符号(1∑取下侧,与z 轴正向相反,所以取负号).(18)(本题满分11分)设有方程01=-+nx x n,其中n 为正整数. 证明此方程存在惟一正实根n x ,并证明当1>α时,级数∑∞=1n n x α收敛.【分析】 利用介值定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定. 【证】 记.1)(-+=nx x x f n n 由01)0(<-=n f ,0)1(>=n f n ,及连续函数的介值定理知,方程01=-+nx x n存在正实数根).1,0(∈n x当x>0时,0)(1>+='-n nx x f n n ,可见)(x f n 在),0[+∞上单调增加, 故方程01=-+nx x n存在惟一正实数根.n x由01=-+nx x n与0>n x 知n n x x nn n 110<-=<,故当1>α时,αα)1(0n x n <<. 而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.【评注】 本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证.(19)(本题满分12分)设z=z(x,y)是由0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点和极值. 【分析】 可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】 因为 0182106222=+--+-z yz y xy x ,所以 02262=∂∂-∂∂--xz z x z yy x , 0222206=∂∂-∂∂--+-yzz y z yz y x . 令 ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0yz xz得⎩⎨⎧=-+-=-,0103,03z y x y x 故 ⎩⎨⎧==.,3y z y x将上式代入0182106222=+--+-z yz y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或 ⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 由于 02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx z z x z y z y x z y x z 02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,所以 61)3,3,9(22=∂∂=x zA ,21)3,3,9(2-=∂∂∂=y x zB ,35)3,3,9(22=∂∂=yzC , 故03612>=-B AC ,又061>=A ,从而点(9,3)是z(x,y)的极小值点,极小值为z(9,3)=3. 类似地,由61)3,3,9(22-=∂∂=---x zA ,21)3,3,9(2=∂∂∂=---y x zB ,35)3,3,9(22-=∂∂=---yzC ,可知03612>=-B AC ,又061<-=A ,从而点(-9, -3)是z(x,y)的极大值点,极大值为 z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意x,y,z 满足原方程.(20)(本题满分9分) 设有齐次线性方程组)2(,0)(,02)2(2,0)1(212121≥⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n x a n nx nx x x a x x x x a n n n试问a 取何值时,该方程组有非零解,并求出其通解.【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩阵直接用初等行变换化为阶梯形,再讨论其秩是否小于n ,进而判断是否有非零解;或直接计算系数矩阵的行列式,根据题设行列式的值必为零,由此对参数a 的可能取值进行讨论即可.【详解1】 对方程组的系数矩阵A 作初等行变换,有.00002111122221111B a na a a a a n n n n a a A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++= 当a=0时, r(A)=1<n ,故方程组有非零解,其同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有.10000120002)1(10000121111⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--++→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→ n n n a n a B 可知2)1(+-=n n a 时,n n A r <-=1)(,故方程组也有非零解,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【详解2】 方程组的系数行列式为1)2)1((22221111-++=+++=n a n n a an nnna aA. 当0=A ,即a=0或2)1(+-=n n a 时,方程组有非零解. 当a=0时,对系数矩阵A 作初等行变换,有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000000111122221111 n n n n A , 故方程组的同解方程组为 ,021=+++n x x x 由此得基础解系为,)0,,0,1,1(1T -=η ,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,对系数矩阵A 作初等行变换,有 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a na a a a a n n n n a a A00002111122221111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+→1000012000010000121111 n n a , 故方程组的同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x由此得基础解系为Tn ),,2,1( =η, 于是方程组的通解为ηk x =,其中k 为任意常数.【评注】 矩阵A 的行列式A 也可这样计算:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=a n n n n a a A 22221111=aE +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111,矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111的特征值为2)1(,0,,0+n n ,从而A 的特征值为a,a,2)1(,++n n a , 故行列式.)2)1((1-++=n a n n a A(21)(本题满分9分)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=51341321a A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化. 【分析】 先求出A 的特征值,再根据其二重根是否有两个线性无关的特征向量,确定A 是否可相似对角化即可.【详解】 A 的特征多项式为513410)2(251341321-------=------=-λλλλλλλλaa A E=).3188)(2(51341011)2(2a a++--=------λλλλλλ当2=λ是特征方程的二重根,则有,03181622=++-a 解得a= -2.当a= -2时,A 的特征值为2,2,6, 矩阵2E-A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----321321321的秩为1,故2=λ对应的线性无关的特征向量有两个,从而A 可相似对角化.若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18+3a=16,解得 .32-=a当32-=a 时,A 的特征值为2,4,4,矩阵4E-A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---1321301323秩为2,故4=λ对应的线性无关的特征向量只有一个,从而A 不可相似对角化.【评注】 n 阶矩阵A 可对角化的充要条件是:对于A 的任意i k 重特征根i λ,恒有.)(i i k A E r n =--λ 而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)设A,B 为随机事件,且21)(,31)(,41)(===B A P A B P A P ,令 ;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(I )二维随机变量(X,Y)的概率分布; (II )X 和Y 的相关系数.XY ρ【分析】 先确定(X,Y)的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(X,Y)的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】 (I ) 由于121)()()(==A B P A P AB P , ,61)()()(==B A P AB P B P所以, 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , ,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-=====32)()()(1=+--AB P B P A P (或32121611211}0,0{=---===Y X P ), 故(X,Y)的概率分布为 YX 0 10 32121 1 61121 (II) X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ 【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ 其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(I ) β的矩估计量; (II ) β的最大似然估计量.【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.【详解】 X 的概率密度为.1,1,0,),(1≤>⎪⎩⎪⎨⎧=+x x x x f βββ(I ) 由于梅花香自苦寒来,岁月共理想,人生齐高飞!第 - 21 - 页 共 21 页 1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx x x dx x xf EX , 令X =-1ββ,解得 1-=X X β,所以参数β的矩估计量为 .1ˆ-=X X β (II )似然函数为⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L i n nni i ββββ 当),,2,1(1n i x i =>时,0)(>βL ,取对数得∑=+-=ni i x n L 1ln )1(ln )(ln βββ,两边对β求导,得∑=-=n i i x n d L d 1ln )(ln βββ, 令0)(ln =ββd L d ,可得 ∑==n i ixn 1ln β, 故β的最大似然估计量为.ln ˆ1∑==n i iXnβ 【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.。
2004年普通高等学校招生全国统一考试数学试卷(全国卷.理)
读一切好书,就是和许多高尚的人谈话。
——笛卡尔web试卷生成系统谢谢使用一、填空题(每空?分,共?分)1、已知函数的最小正周期为3,则A= .2、设满足约束条件:则的最大值是.二、选择题(每空?分,共?分)3、在△ABC中,AB=3,BC=,AC=4,则边AC上的高为A. B. C.D.4、设集合U={1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M∩(U N)=(A){5} (B){0,3} (C){0,2,3,5}(D) {0,1,3,4,5}5、函数的反函数为(A)(B)(C)(D)6、正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为(A)(B)(C)(D)7、函数在处的导数等于(A)1 (B)2 (C)3 (D)48、为了得到函数的图像,可以把函数的图像(A)向左平移3个单位长度(B)向右平移3个单位长度(C)向左平移1个单位长度(D)向右平移1个单位长度9、等差数列中,,则此数列前20项和等于(A)160 (B)180 (C)200(D)22010、已知函数的图象有公共点A,且点A的横坐标为2,则(A)(B)(C)(D)11、已知圆C的半径为2,圆心在轴的正半轴上,直线与圆C相切,则圆C的方程为(A )(B )(C )(D )12、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有(A)210种(B)420种(C)630种(D)840种13、函数的最小值等于(A)-3 (B)-2 (C)-1 (D)-14、已知球的表面积为20,球面上有A、B、C三点.如果AB=AC=BC=2,则球心到平面ABC的距离为(A)1 (B)(C ) (D)215、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC 的面积为,那么b=A.B. C.D.16、已知函数(A)(B)-(C)2 (D)-217、函数的反函数是A. B.C. D.18、的展开式中常数项是(A)14 (B)-14 (C)42 (D)-4219、设若则=A. B. C. D.420、设抛物线的准线与轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是A. B.[-2,2] C.[-1,1] D.[-4,4]21、已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T ,则等于A. B. C. D.22、从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A. B. C.D.三、计算题(每空?分,共?分)23、已知数列{}为等比数列,(Ⅰ)求数列{}的通项公式;(Ⅱ)设是数列{}的前项和,证明24、已知直线为曲线在点(1,0)处的切线,为该曲线的另一条切线,且(Ⅰ)求直线的方程;(Ⅱ)求由直线、和轴所围成的三角形的面积.25、双曲线的焦距为2c ,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e的取值范围.参考答案一、填空题1、3/22、2二、选择题3、B4、B5、C6、A7、D8、D9、B10、A11、D12、B13、C14、A15、B16、B17、B18、A19、B20、C21、A22、C三、计算题23、解:(I)设等比数列{a n}的公比为q,则a2=a1q, a5=a1q4.a1q=6,依题意,得方程组a1q4=162.解此方程组,得a1=2, q=3.故数列{a n}的通项公式为a n=2・3n-1.(II)24、解:(Ⅰ)y′=2x+1.直线l1的方程为y=3x-3.设直线l2过曲线y=x2+x-2上的点B(b, b2+b-2),则l2的方程为y=(2b+1)x-b2-2 因为l1⊥l2,则有2b +1=所以直线l2的方程为(II)解方程组得所以直线l1和l2的交点的坐标为l1、l2与x轴交点的坐标分别为(1,0)、.所以所求三角形的面积25、解:直线的方程为,即由点到直线的距离公式,且,得到点(1,0)到直线的距离,同理得到点(-1,0)到直线的距离由即于是得解不等式,得由于所以的取值范围是读一切好书,就是和许多高尚的人谈话。
DA2004年高考数学(广东卷B卷)
2004年普通高等学校招生全国统一考试广东数学标准答案(13)75 (14)-2i (15)PC PB PA PC PB PA ⋅⋅⋅⋅''' (16))(22R x ee xx ∈+三、解答题17.解:∵α,β,γ成公比为2的等比数列,∴β=2α,γ=4α∵sin α,sin β,sin γ成等比数列21cos ,1cos 01cos cos 21cos 2cos 2sin 4sin sin 2sin sin sin sin sin 22-===---=⇒=⇔=∴ααααααααααβγαβ或解得即当cos α=1时,sin α=0,与等比数列的首项不为零矛盾,故cos α=1应舍去,316,38,3438,34,32,3432,]2,0[,21cos πγπβπαπγπβπαπαπαπαα========∈-=或所以或时当 18.解:(I )以A 为原点,1,,分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则有D (0,3,0)、D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2) 于是,)2,2,4(),2,3,1(),0,3,3(11-==-=FD EC DE 设向量),,(z y x =与平面C 1DE 垂直,则有22tan 36400411220101||||cos ,)2,0,0(,),2,1,1(0),2,1,1(2),2,2(21023033101011011001=∴=++⨯++⨯+⨯-⨯-=⨯=--∴=--=>--=--=∴-==⇒⎭⎬⎫=++=-⇒⎪⎭⎪⎬⎫⊥⊥θθθAA n C DE C AA n CDE AA DE C n n z zz z z zy x z y x y x EC n ΘΘ的平面角为二面角所成的角与垂直与平面向量垂直的向量是一个与平面则取其中(II )设EC 1与FD 1所成角为β,则142122)4(2312223)4(1||||cos 2222221111=++-⨯++⨯+⨯+-⨯=⨯=FD EC β 19.证明:(I )⎪⎪⎩⎪⎪⎨⎧+∞∈-∈-=-=),1(,11]1,0(,11|11|)(x xx xx x f Θ 故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数,由0<a<b 且f (a )=f (b )得0<a<1<b 和ab b a ab ba b a 22211,1111>+=⇒=+-=-即 故1,1>>ab ab 即 (II )0<x <1时,10,1)(,11|11|)(0200'<<-=∴-=-==x x f xx x f y x 曲线y=f (x )在点P (x 0,y 0)处的切线方程为: 0020202),(1x x xy x x y y x x -+-=--=-即∴切线与x 轴、y 轴正向的交点为)2(1,0()0),2((0000x x x x --和故所求三角形面积表达式为:2000000)2(21)2(1)2(21)(x x x x x x A -=-⋅-=20.解:如图,y xoAB C P以接报中心为原点O ,正东、正北方向为x 轴、y 轴正向,建立直角坐标系.设A 、B 、C分别是西、东、北观测点,则A (-1020,0),B (1020,0),C (0,1020)设P (x ,y )为巨响发生点,由A 、C 同时听到巨响声,得|PA|=|PB|,故P 在AC 的垂直平分线PO 上,PO 的方程为y=-x ,因B 点比A 点晚4s 听到爆炸声,故|PB|- |PA|=340×4=1360 由双曲线定义知P 点在以A 、B 为焦点的双曲线12222=-by a x 上, 依题意得a=680, c=1020,13405680340568010202222222222=⨯-⨯=-=-=∴y x a c b 故双曲线方程为把y=-x 代入上式,得5680±=x ,∵|PB|>|PA|,)(x y P PO m ∴=-=-=即故答:巨响发生在接报中心的西偏北450距中心m 10680处. 21.(I )解:函数f (x )=x -ln (x +m ),x ∈(-m ,+∞)连续,且m x x f mx x f -==+-=1,0)(,11)(''得令 当x ∈(-m ,1-m )时,()0f x '<,f (x )为减函数,f (x )>f (1-m ) 当x ∈(1-m , +∞)时,()0f x '>,f (x )为增函数,f (x )>f (1-m ) 根据函数极值判别方法,f (1-m )=1-m 为极小值,而且 对x ∈(-m , +∞)都有f (x )≥f (1-m )=1-m 故当整数m ≤1时,f (x ) ≥1-m ≥0(II )证明:由(I )知,当整数m>1时,f (1-m )=1-m<0,函数f (x )=x -ln (x +m ),在]1,[m m em--- 上为连续减函数.,)1()(,10)ln()(异号与时当整数m f m ef m e m m e m e m e f mm m m m -->>=+---=------由所给定理知,存在唯一的0)(),1,(11=--∈-x f m m e x m使而当整数m>1时,2222(21)()3(11)312302m m m m m f e m e m m m m --=->+->++->,(1211m m >∴->Q ,上述不等式也可用数学归纳法证明) 类似地,当整数m>1时,函数f (x )=x -ln (x +m ),在2[1,]mm em -- 上为连续增函数且 f (1-m )与)(2m e f m-异号,由所给定理知,存在唯一的222[1,,],()0m x m e m f x ∈--=使.故当m>1时,方程f (x )=0在],[2m e m em m---内有两个实根。
2004年普通高等学校招生全国统一考试北京卷理科数学试题及答案
2004年普通高等学校招生北京卷理工农医类数学试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分第I卷1至2页第II卷3至9页共150分考试时间120分钟第I卷(选择题共40分)注意事项:1. 答第I卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上3. 考试结束,监考人将本试卷和答题卡一并收回参考公式:三角函数的积化和差公式正棱台、圆台的侧面积公式其中c’,c分别表示上、下底面周长,表示斜高或母线长球体的表面积公式其中R表示球的半径一. 选择题:本大题共8小题,每小题5分,共40分在每小题给出的四个选项中,只有一项是符合题目要求的(1)设全集是实数集R,,,则等于A. B.C. D.(2)满足条件的复数z在复平面上对应点的轨迹是A. 一条直线B. 两条直线C. 圆D. 椭圆(3)设m、n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是A. ①和②B. ②和③C. ③和④D. ①和④(4)如图,在正方体中,P是侧面内一动点,若P到直线BC与直线的距离相等,则动点P的轨迹所在的曲线是A. 直线B. 圆C. 双曲线D. 抛物线(5)函数在区间[1,2]上存在反函数的充分必要条件是A. B. C. D.(6)已知a、b、c满足,且,那么下列选项中一定成立的是A. B. C. D.(7)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种在这些取法中,以取出的三条线段为边可组成的钝角三角形的个数为m,则等于A. B. C. D.(8)函数,其中P、M为实数集R的两个非空子集,又规定,,给出下列四个判断:①若,则②若,则③若,则④若,则其中正确判断有A. 1个B. 2个C. 3个D. 4个第II卷(非选择题共110分)二. 填空题:本大题共6小题,每小题5分,共30分把答案填在题中横线上(9)函数的最小正周期是___________(10)方程的解是___________________(11)某地球仪上北纬纬线的长度为,该地球仪的半径是__________cm,表面积是______________cm2(12)曲线C:(为参数)的普通方程是__________,如果曲线C 与直线有公共点,那么实数a的取值范围是_______________-- (13)在函数中,若a,b,c成等比数列且,则有最______________值(填“大”或“小”),且该值为______________(14)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和已知数列是等和数列,且,公和为5,那么的值为______________,这个数列的前n项和的计算公式为________________三. 解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演算步骤(15)(本小题满分13分)在中,,,,求的值和的面积如图,在正三棱柱中,AB=3,,M为的中点,P是BC 上一点,且由P沿棱柱侧面经过棱到M的最短路线长为,设这条最短路线与的交点为N,求:(I)该三棱柱的侧面展开图的对角线长(II)PC和NC的长(III)平面NMP与平面ABC所成二面角(锐角)的大小(用反三角函数表示)(17)(本小题满分14分)如图,过抛物线上一定点P()(),作两条直线分别交抛物线于A(),B()(I)求该抛物线上纵坐标为的点到其焦点F的距离(II)当PA与PB的斜率存在且倾斜角互补时,求的值,并证明直线AB的斜率是非零常数函数是定义在[0,1]上的增函数,满足且,在每个区间(1,2……)上,的图象都是斜率为同一常数k的直线的一部分(I)求及,的值,并归纳出的表达式(II)设直线,,x轴及的图象围成的矩形的面积为(1,2……),记,求的表达式,并写出其定义域和最小值(19)(本小题满分12分)某段城铁线路上依次有A、B、C三站,AB=15km,BC=3km,在列车运行时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时12分到达C站,在实际运行中,假设列车从A站正点发车,在B站停留1分钟,并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差(I)分别写出列车在B、C两站的运行误差(II)若要求列车在B,C两站的运行误差之和不超过2分钟,求的取值范围(20)(本小题满分13分)给定有限个正数满足条件T:每个数都不大于50且总和L=1275现将这些数按下列要求进行分组,每组数之和不大于150且分组的步骤是:首先,从这些数中选择这样一些数构成第一组,使得150与这组数之和的差与所有可能的其他选择相比是最小的,称为第一组余差;然后,在去掉已选入第一组的数后,对余下的数按第一组的选择方式构成第二组,这时的余差为;如此继续构成第三组(余差为)、第四组(余差为)、……,直至第N组(余差为)把这些数全部分完为止(I)判断的大小关系,并指出除第N组外的每组至少含有几个数(II)当构成第n(n<N)组后,指出余下的每个数与的大小关系,并证明(III)对任何满足条件T的有限个正数,证明:2004年普通高等学校招生北京卷理工农医类数学试题参考答案一. 选择题:本大题主要考查基本知识和基本运算每小题5分,满分40分(1)A (2)C (3)A (4)D(5)D (6)C (7)B (8)B(8)函数,其中P、M为实数集R的两个非空子集,又规定,,给出下列四个判断:①若,则②若,则③若,则④若,则其中正确判断有A. 1个B. 2个C. 3个D. 4个分析:∵函数∴=≠=≠当时,有且只有{0}∴0∈,故②正确.当P∩M=时,可以列举P、M,的某些或全部元素有可能在P中,故①错.当时,可以列举P、M,或若,则, ∴.故③错.当时,存在,则从而故④正确.综上,正确判断有2个,故选B.二. 填空题:本大题主要考查基本知识和基本运算每小题5分,满分30分(9)(10)(11)(12)(13)大-3(14)3 当n为偶数时,;当n为奇数时,三. 解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演算步骤(15)本小题主要考查三角恒等变形、三角形面积公式等基本知识,考查运算能力满分13分解法一:又解法二:(1)(2)(1)+(2)得:(1)-(2)得:(以下同解法一)(16)本小题主要考查直线与平面的位置关系、棱柱等基本知识,考查空间想象能力、逻辑思维能力和运算能力满分14分解:(I)正三棱柱的侧面展开图是一个长为9,宽为4的矩形,其对角线长为(II)如图1,将侧面绕棱旋转使其与侧成在同一平面上,点P运动到点的位置,连接,则就是由点P沿棱柱侧面经过棱到点M的最短路线设,则,在中,由勾股定理得求得(III)如图2,连结,则就是平面NMP与平面ABC的交线,作于H,又平面ABC,连结CH,由三垂线定理得,AB CA1B 1C1PNMP 1H就是平面NMP与平面ABC所成二面角的平面角(锐角)在中,在中,故平面NMP 与平面ABC 所成二面角(锐角)的大小为(17)本小题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力满分14分解:(I)当时,又抛物线的准线方程为由抛物线定义得,所求距离为(2)设直线PA的斜率为,直线PB的斜率为由,相减得故同理可得由PA,PB倾斜角互补知即所以故设直线AB的斜率为由,相减得所以将代入得,所以是非零常数(18)本小题主要考查函数、数列等基本知识,考查分析问题和解决问题的能力满分14分解:(I)由,得由及,得同理,归纳得(II)当时所以是首项为,公比为的等比数列所以的定义域为1,当时取得最小值(19)本小题主要考查解不等式等基本知识,考查应用数学知识分析问题和解决问题的能力满分12分解:(I)列车在B,C两站的运行误差(单位:分钟)分别是和(II)由于列车在B,C两站的运行误差之和不超过2分钟,所以(*)当时,(*)式变形为解得当时,(*)式变形为解得当时,(*)式变形为解得综上所述,的取值范围是[39,](20)本小题主要考查不等式的证明等基本知识,考查逻辑思维能力、分析问题和解决问题的能力满分13分解:(I)除第N组外的每组至少含有个数(II)当第n组形成后,因为,所以还有数没分完,这时余下的每个数必大于余差,余下数之和也大于第n组的余差,即由此可得因为,所以(III)用反证法证明结论,假设,即第11组形成后,还有数没分完,由(I)和(II)可知,余下的每个数都大于第11组的余差,且故余下的每个数(*)因为第11组数中至少含有3个数,所以第11组数之和大于此时第11组的余差这与(*)式中矛盾,所以。
2004~2005学年第一学期《高等数学》期末考试试题B卷(.
2004~2005学年第一学期《高等数学》期末考试试题B 卷答案一、填空题(4×4分1、32−x ; 2、31−; 3、4; 4、(xf x c +; 5、2222sin 1cos x x x + 二、单项选择题(5×3分1、C;2、D;3、A;4、C;5、B三、试解下列各题解:1、0000→→→→x 2、66sin 31ln(2lim sin 20lim 31(lim 00e e e x x x x x x x x x ===+→→+→ 3、xdx dx x x x x x erc dy arctan 11tan 22=⎦⎤⎢⎣⎡+−++= 4、两边对x 求导(10x y dy dy e y x dx dx++−−= x y x y dy e y dx x e ++−=−5、22sin dx t t dt =−222222(cos 2sin cos 2sin dy t t t t dt t tdt =−−=−2222sin 2sin dy t t t dx t t == dy d dt dx = 22212sin d y dx t t =− 6、2c ==+ 7、22204 4044sin sin sin 111x x xx x x dx dx dx e e e ππππ−−−−−−=++++∫∫∫ 220404sin sin 11x t x t dxx t dt e e ππ−−=−++∫∫ 22444004sin 1sin (1cos 221xx dx xdx x dx e ππππ−−==−+∫∫∫ 40111(sin 2(2228x x ππ=−=− 8、2201arctan(1arctan (1td t ′∫+− ∫+−−−=2122121(arctan 1(21dt tt t t 125/2arctan −+=u四、解:例如广义积分∫10d 1x x 收敛时,但广义积分∫10d 1x x 发散。
2004~2005 学年第一学期《高等数学》期末考试试题B卷及答案
x ♦ 2004~2005 学年第一学期《高等数学》期末考试试题 B 卷(216 学时) 专业班级学号 姓名一、填空题:(4×4 分)1、设 f (x + 1 ) = x 2+1-1,则 f (x ) =。
2、lim xx 2sin(1 - x ) = 。
x →1(x -1)(x + 2)3、设 f '(x ) = -2 ,则limf (x 0 - h ) - f (x 0 + h )= 。
h →0h4、 ⎰[ f (x ) + xf '(x )]dx = 。
dx 2sin t5、dx ⎰01 + cos2 t dt = 。
二、选择题:(5×3 分)1、 x = 2 是函数 f (x ) = arctan12 - x的 ( )A 、连续点;B 、可去间断点;C 、第一类不可去间断点;D 、第二类间断点;♣1 - cos x 2、设 f (x ) = ♠, x > 0 ,其中 g (x ) 是有介函数,则 f (x ) 在 x = 0 处( )♠♥x 2 g (x ) , x ≤ 0 A 、极限不存在; B 、极限存在,但不连续; C 、连续,但不可导; D 、可导;3、在区间(a ,b ) 内,f (x ) 的一阶导数 f '(x ) >0,二阶导数 f '(x ) <0,则 f (x ) 在区间(a ,b )内是( )A 、单增且凸; C 、单增且凹;4、下列命题中正确的是B 、单减且凸; D 、单减且凹;( )A 、 f ''(x 0 ) = 0 ,则(x 0 , f (x 0 )) 一定是由曲线 y = f (x ) 的拐点;B 、若 f '(x 0 ) = 0 ,则 f (x ) 在 x 0 处一定取极值;C 、 f (x ) 可导,且在 x = x 0 上取得极值,则 f '(x 0 ) = 0 ;D 、 f (x ) 在[a , b ] 上取得最大值,则该最大值一定是 f (x ) 在(a , b ) 内的极大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考 试 试 卷B
一:(20分)判断填空题(只有 一个正确答案) 1.函数211
2
++-=
x x y 的定义域为( )
(A )x>-2, (B) 1,2)(,12)(,1±≠-≥±≠->±≠x x D x x C x 且,且
2.设f(x)=sin3000x. 则当x →0时, 有( ).
(A)f(x)与x 是等价无穷小; (B)f(x)与x 同阶但非等价无穷小;
(C)f(x)是比x 高阶的无穷小; (D)f(x)是比x 低阶的无穷小.
3.函数212x
x y +=是( ).
(A)偶函数; (B)基本初等函数; (C)单调函数; (D)有界函数.
4. 下列极限存在的有( ).
(A)2)1(lim x
x x x +∞→; (B)121
lim 0-→x x ; (C)x x e 1
0lim →; (D)x
x x 1
lim 2++∞→.
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班
级:2004
级 专 业:制药、药剂、城规、环科
学生姓名:
1
3
-x (A) x →0; (B) x →1; (C) x →-1+; (D) x →+∞.
6. 已知一个函数的导数为x y 2=',21==y x 时且,这个函数是( )
(A );2
C
x y += (B )
;12
+=x y
(C )
C
x
y +=
2
2
; (D )
.1+=x y
7.若⎰=+1
02)2(dx p x , 则p =( ). (A)0; (B)-1; (C)1; (D)2
1.
8. 设函数⎰
-=
x
dt
u y 0
)1(, 则y 有( ).
(A)极小值2
1; (B)极小值2
1-;
(C)极大值2
1; (D)极大值2
1-.
9. 设函数f(x)在点x 0及其邻近有定义, 且有 f(x 0+∆x)-f(x 0)=a ∆x +b(∆x) 2, a , b 为常数, 则有( )这种说法不对. (A) f(x)在点x =x 0 处连续;
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班 级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
(B) f(x)在点x =x 0 处可导且f '(x 0)=a ; (C) f(x)在点x =x 0 处可微且df(x 0)=adx ; (D)f(x 0+∆x)≈f(x 0)+a ∆x (∆x 充分小时).
10. 下列函数在给定区间上满足罗尔定理的有( ). (A)y =x 2-5x +6, [2, 3]; (B)3
2
)
1(1
-=x y , [0, 2];
(C)y =xe -x , [0, 1]; (D)⎩⎨⎧≥<+=5
15
1x x x y , [0, 5].
二:(5分)证明题
证明多项式f (x)=x 3-3x +a 在[0, 1]上不可能有两个零点. 证明:
三:(20分)计算题
(1)1
)1sin(lim 21--→x x x 解:
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班
级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
(2)y =cos ln(1+2x), 求y ' 解 : .
(3)由
0=-+
a y x 确定y 是x 的函数, 求y '.
解:
(4)
dx e x x -⎰
2;
解 :
(5)⎰
-2
3
2
1
2
1z
dz ;
解: .
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班
级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
四:(30分)求解下列问题
1.如果f(x)=x 5-2x 3+3x , 证明f(-x)=-f(x). 证明:
2.设⎪⎪⎩
⎪
⎪⎨⎧<-≤<-=<=x x x x x x x x x f 2 6320 20 00 1)(22, 讨论x →0及
x →2时f(x)的
极限是否存在, 并求)(lim x f x -∞→及)(lim x f x +∞
→. 解 :
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班
级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
3.求函数y =x -2x +5, [-2, 2]在给定区间上的最大值与最小值 解 : 4.求x
x x tg )
2
ln(lim
2
π
π
-
+
→
=?;
解 : .
5.求曲线y =x 2+3在区间[0, 1]上的曲边梯形的面积. 解:
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班 级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
五:(15分)讨论函数211x
y +=的性态并画出它的图形。
解:
考 试 试 卷
考试课程:高等数学Ⅱ(上) 班 级:2004级 专 业:制药、药剂、城规、环科
学生姓名:
六:(10分)已知某产品生产
x 个单位时, 总收益R 的变化率为
100
200)(x
x R R -
='='(x ≥0).
(1)求生产了50个单位时的总收益. 解 :
考试试卷
考试课程:高等数学Ⅱ(上)班级:2004级
专业:制药、药剂、城规、环科学生姓名:
(2)如果已经生产了100个单位,求再生产100个单位时的总收益.
解:。