大学物理活页作业答案(全套)
活页作业-第三章(一)-答案-20090222
第三章 守恒定律(一)(活页作业参考解答)1.答案:B 2.答案:C 3.答案:C 4.答案:D ;提示:保守力做功才不改变系统总机械能 5.答案:D 6.答案:B提示:,4B B B A AA m V m V m V m V m m ''+=+=B B A A 144,()4B B B B A A A A V V V V V V V V ''''⇒+=+=-+ 7.答案:C提示:当弹簧恢复原长时,离开,由机械能守恒:22211()22B A kd m m v mv =+=8.答案:> 相反 提示:设人跳出甲船时,速度为v ,则110,m vm v m v v m +==人人船船- 人跳入乙船时, ,m m v m m v m m =+=+人22人人船人船()v v9.答案:222F t m;提示:动量原理:,Ft mv =动能原理:2211()22F t A mv A m m =⇒=10.答案:与路程无关 p A E =-∆ 11.解:(1)310,(),B A BA F N F m m a a m m ⨯=+=+F=3B 受力31.810BB BA m m a F N m m ===⨯'+F(2)射入B 前,由动量定理得:B A m m +1I=Ft=()v16/BA Ftv m s m m ∴==+子弹、看作一个系统,整个过程动量守恒:122()21.9/B A mv m v m m v v m s ++⇒==12.解:由动能定理可得:00232012r r r k kA mv F dr k dr dr r r r ∞∞==⋅=⋅≤==⎰⎰⎰ v ∴=13.解:由功能转换关系得:(1)2112()p p p p p A E E E E E =-∆=--=-()()()GMm GMm GMmh R h R R h R=---=++(2)2,()GMmh mv v R h R ==+1A=2。
最新大学物理活页作业答案及解析((全套))
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdvmmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+= 7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ① mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
大学物理活页作业答案(全套)
1 1 m( u V ) 2 MV 2 mgR 2 2
解得:
V m
2 gR ;u M ( M m)
2( M m ) gR M
(2) 当 m 到达 B 点时,M 以 V 运动,且对地加速度为零,可看成惯性系,以 M 为参考系
N mg mu 2 / R
N mg mu 2 / R mg 2( M m )mg / M
6.解: (1) FT cos FN sin ma
FT sin FN cos mg
FT mg sin ma cos ;
(2)F N=0 时;a=gcotθ
FN mg cos ma sin
7.解: o m 2 R mg 8.解:由牛顿运动定律可得
N
Mmg 2( M m )mg 3 M 2m mg M M
2 质点运动学单元练习二答案—10
6. 刚体转动单元练习(一)答案
1.B 2.C 3.C 4.C 5.v = 1.23 m/s ;an = 9.6 m/s 2 ;α = –0.545 rad/ s 2 ;N = 9.73 转。 6.
dv ( SI ) ; a 2i dt
( SI )
(2)由切向加速度和法向加速度的定义
at
d 2t 4t 2 4 dt t2 1 2 t2 1
( SI )
a n a 2 a t2 v2 2 t2 1 an
( SI )
(3)
3/2
( SI )
1 1 1 2 mv 12 m2v 2 (m1 m2 )v 2 2 2 2 1 m1 m2 (v 1 v 2 ) 2 /(m1 m2 ) 2
大学物理活页作业(马文蔚主编)答案
1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI j dtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A3.B 4.C5.14-⋅==s m tdt dsv ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥ 3.牛顿定律单元练习答案1.C 2.C 3.A4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+分离变量积分()⎰⎰+=to vdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+to vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程1. av m f mg 2cos =-θ,tvm m g d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+-解得 )(22121x x m g kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律 mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ②解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
大学物理活页作业(马文蔚主编)答案
运动方程。)
7.解:(1)
r
2ti
(2
t
2
)
j
( SI )
r1 2i j (m)
r2 4i 2 j (m)
r r2 r1 2i 3 j (m)
v
r
2i
3j
t
(m / s)
(2) v
mr 2 J
(2)设绳子对物体(或绳子对轮轴)的拉力为 T,则根据牛顿运动定律和转动定律 得:
mg – T=ma
T r=J
由运动学关系有: a = r
联立解得:
mgJ T
J mr 2
1 质点运动学单元练习一答案—11
10.解:以中心 O 为原点作坐标轴 Ox、Oy 和 Oz 如图所示,取质量为 dm dxdy
式中面密度 为常数,按转动惯量定义,
Jz
(x2
y 2 )dm
b
2 b
dx
a
2 a
(
x
2
y 2 )dy
(ab3 12
a3b)
2
2
薄板的质量 m ab
所以
Jz
m (a2 12
b2 )
7.刚体转动单元练习(二)答案
1.C
2.A
3.D
4.B
5.
3
o
;
1 3
Ep
1 2
mv12
1 2
m2v
2 2
1 2
(m1
m2 )v 2
大学物理A活页作业
练习1 质点运动学(一)班级 学号 姓名 成绩 .1. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量),则该质点作(A) 匀速直线运动. (B) 变速直线运动.(C) 抛物线运动. (D)一般曲线运动. [ ] 2.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为 ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有:(A )v v v,v (B )v v v,v(C )v v v,v (D )v v v,v [ ]3.一质点沿直线运动,其运动学方程为x = 6 t -t 2 (SI),则在t 由0至4s 的时间间隔内,质点的位移大小为___________,在t 由0到4s 的时间间隔内质点走过的路程为_______________.4.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示.则该质点在第 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向.5. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.6. 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够使两者一致?练习2 质点动力学(一)班级 学号 姓名 成绩 .1.质量分别为m 1和m 2的两滑块A 和B 通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为 ,系统在水平拉力F 作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度a A 和a B 分别为 (A) a A =0 , a B =0. (B) a A >0 , a B <0. (C) a A <0 , a B >0. (D) a A <0 , a B[ ]2. 体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定.[ ]3. 分别画出下面二种情况下,物体A 的受力图. (1) 物体A 放在木板B 上,被一起抛出作斜上抛运动,A 始终位于B 的上面,不计空气阻力; (2) 物体A 的形状是一楔形棱柱体,横截面为直角三角形,放在桌面C 上.把物体B轻轻地放在A 的斜面上,设A 、B 间和A 与桌面C 间的摩擦系数皆不为零,A 、B 系统静止.4.质量为m 的小球,用轻绳AB 、BC 连接,如图,其中AB 水平.剪断绳AB 前后的瞬间,绳BC 中的张力比 T : T ′=____________.5. 如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m=m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
物理学活页作业答案
物理学活页作业答案13.静电场(二)答案1. C 2. D 3. B 4. C 5.224141041r QR Q R Q o o o πεπεπε;;; 6. >7. 解:假设阴极A 与阳极B 单位长度带电分别为–λ与λ,由高斯定律求电场分布,并进一步求出阴极与阳极间的电势差U ,由已知量求电场强度并由阴极表面的电场强度求电子刚从阴极射出时所受的电场力12ln 22R R U rE o o πελ=πελ=12lnR R r U E =N R R R eU eE F 141211034.4ln-⨯===8.解:(1)方法一:取同心球面为高斯面,利用高斯定理求电场强度的分布再求电势分布;)(011R r E <=)(4421212122R r R e rQ E Qr E ro o<<πε=ε=π)(44222132123R r e r Q Q E Q Q r E ro o>πε+=ε+=π2212213344R r r Q Q l d e rQ Q l d E V o rr o r>πε+=⋅πε+=⋅=⎰⎰∞∞⎰⎰⎰⎰∞∞⋅πε++⋅πε=⋅+⋅=22222212132244R r o R rr o R R rl d e rQ Q l d e r Q l d E l d E V21221244R r R R Q r Q V o o <<πε+πε=⎰⎰⎰⎰⎰∞∞⋅πε++⋅πε=⋅+⋅+⋅=221221122121321144R r o R R r o R R R R rl d e r Q Q l d e r Q l d E l d E l d E V12211144R r R Q R Q V o o <πε+πε=方法二:带电量为Q ,半径为R 的带电球面对电势的贡献球面内电势:R Q V o πε=4 球面外电势:rQV o πε=4有电势的叠加求电势分布;结果与方法一一致。
大学物理A活页作业答案
练习1 质点运动学(一)参考答案1. B ;2. D;3. 8m, 10m.4. 3, 3 6;5. 解:(1) 5.0/-==∆∆t x v m/s(2) v = d x /d t = 9t - 6t 2v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m6. 答:矢径r是从坐标原点至质点所在位置的有向线段.而位移矢量是从某一个初始时刻质点所在位置到后一个时刻质点所在位置的有向线段.它们的一般关系为0r r r-=∆0r 为初始时刻的矢径, r 为末时刻的矢径,△r为位移矢量.若把坐标原点选在质点的初始位置,则0r =0,任意时刻质点对于此位置的位移为△r =r,即r既是矢径也是位移矢量.练习2 质点动力学(一)参考答案1.D2.C3.4. l/cos 2θ5.如图所示,A ,B ,C 三物体,质量分别为M=0.8kg, m= m 0=0.1kg ,当他们如图a 放置时,物体正好做匀速运动。
(1)求物体A 与水平桌面的摩擦系数;(2)若按图b 放置时,求系统的加速度及绳的张力。
解:(1)mM m )(m 00+=+===μμ联立方程得:g m M N NT T g (2)(1)(2)BA NBA f A PCA NA PBgMm m m M T gMm m a Ma Mg T a m m T g m m ++=+==-+=-+)(计算结果,得到利用)()(0''0'0)1(μ6.解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d v v =- ∴ ⎰⎰=-=-vv v vvvd d ,d d 0tt m K t m K ∴ mKt /0e -=v v(2) 求最大深度 解法一: txd d =vt x mKt d ed /0-=vt x m Kt tx d e d /000-⎰⎰=v∴ )e1()/(/0mKt K m x --=vK m x /0max v =解法二:xm t x x m t mK d d )d d )(d d (d d vvv v v ===- ∴ v d Kmdx -=v v d d 0max⎰⎰-=K mx x ∴ K m x /0max v =练习3 刚体力学(一)参考答案1. B2. C挂重物时, mg -T = ma =mR β, TR =J β,P =mg由此解出 JmR mgR+=2β而用拉力时, mg R = J β' JmgR=/β 故有 β'>β3. ma 2 ,21 ma 2 , 21ma 2 . 4. 4.0rad/s5. 质量为m 1, m 2 ( m 1 > m 2)的两物体,通过一定滑轮用绳相连,已知绳与滑轮间无相对滑动,且定滑轮是半径为R 、质量为 m 3的均质圆盘,忽略轴的摩擦。
大学物理上活页作业答案
Part
04
结论
总结答案解析
答案A解析
此答案详细解释了问题中涉及的 物理原理和公式,并给出了正确 的计算过程和结论。
答案D解析
此答案提供了与问题相关的实际 应用案例,帮助学生更好地理解 物理原理和概念。
答案B解析
此答案提供了另一种解题思路, 通过不同的公式和计算方法得出 了正确的答案。
答案C解析
总结词
分析物理过程,选择合适的物理模型
详细描述
对于涉及多个物理过程的问题,需要仔细分析每个过程的物理特点和相互关系。根据分析结果,选择 合适的物理模型进行描述和计算。在选择物理模型时,要注意模型的适用条件和局限性,确保其能够
正确反映物理过程。同时,要注意不同物理过程之间的联系和影响,以便更好地理解和解决问题。
作业目的
加深学生对物理学基本概 念和原理的理解,提高其 理论水平。
训练学生运用物理学知识解 决实际问题的能力,培养其 科学素养和实践能力。
通过习题的求解过程,培养 学生的逻辑思维和创造性思 维,提高其综合素质。
Part
02
作业题目及答案
题目一答案
总结词
理解基本概念
描述1
理解了牛顿第二定律的基本概念和应 用,能够正确分析物体的受力情况和 运动状态。
大学物理上活页作业 答案
• 引言 • 作业题目及答案 • 解题思路及解析 • 结论
目录
Part
01
引言
作业背景
大学物理是理工科专业的一门必修基础课程,旨在培养学生掌握物理学的基本原理、概 念和实验技能,为后续的专业课程学习打下基础。
活页作业是大学物理教学过程中的一个重要环节,旨在通过习题练习帮助学生巩固所学 知识,提高解题能力和思维水平。
大学物理第一卷活页作业答案刘兆龙
大学物理第一卷活页作业答案刘兆龙1、通电线圈在磁场中受到磁场力的作用而转动时,将机械能转化为电能[判断题] *对错(正确答案)答案解析:电能转化为机械能2、在足球比赛中,下列说法正确的是()[单选题]A.飞行过程中,足球不受力的作用B.头顶足球时头会感到疼,说明力的作用是相互的(正确答案)C.下落过程中,足球的惯性变大D.足球在地面上越滚越慢,说明物体的运动需要力来维持3、小林在水平路面上匀速直线骑自行车,自行车受到的重力跟地面对自行车的支持力二力平衡[判断题] *对错(正确答案)答案解析:以自行车与小林整体为研究对象,他们的总重力跟地面对自行车的支持力二力平衡4、42.下列场景与所蕴含的物理知识对应完全正确的是()[单选题] *A.体育训练后满头大汗,回到教室不停扇风——提高液体温度加快蒸发B.手拿着一瓶冰冻矿泉水,一段时间后冰减少,手感到凉——熔化吸热(正确答案)C.清晨操场边的双杠上铺满了一层霜——霜是水蒸气凝固形成的D.戴眼镜的小卉从寒冷教室外走进温暖的教室内,眼镜镜片模糊不清——汽化放热5、17.影视剧中,为了防止演员受伤,砸向演员的道具石头一般是用泡沫塑料制成的。
将小石块和道具石头分别放在调节好的天平左右盘,横梁静止后的情景如图所示。
下列说法正确的是()[单选题] *A.道具石头的质量比小石块的质量大B.道具石头的密度比小石块的密度大C.质量相同时,道具石头的体积比小石块的体积小D.体积相同时,道具石头的质量比小石块的质量小(正确答案)6、77.小明研究液体密度时,用两个完全相同的容器分别装入甲、乙两种液体,并绘制出总质量m与液体体积V的关系图象如图所示,由图象可知()[单选题] *A.容器的质量是40kgB.甲液体的密度是5g/cm3C.乙液体的密度是0g/cm3(正确答案)D.密度是0g/cm3 的液体的m﹣V图象应位于Ⅲ区域7、14.自习课上,老师能根据声音辨别出哪位同学在说话,依据的是声音的()[单选题] *A.音调B.音色(正确答案)C.响度D.频率8、下列事例中,利用热传递改变物体内能的是()[单选题]A.流星坠入大气层与空气摩擦生热B.用锯条锯木头,锯条发热C.人站在阳光下暴晒,感到很热(正确答案)D.古时候,人们利用钻木取火9、动圈式扬声器利用了电磁感应的原理[判断题] *对错(正确答案)答案解析:动圈式扬声器利用了通电导体在磁场中受力的原理,动圈式话筒利用了电磁感应的原理10、4.在周一的升旗仪式上,海右中学的全体师生高唱国歌。
同济大学普通物理活页作业答案
第一章 质点运动学班号 学号 姓名 日期一、 选择题1. 一个质点在Oxy 平面上运动,已知质点的运动方程为j t i t r2252 (SI ),则该质点作(A )匀速直线运动; (B )变速直线运动; (C )抛物线运动; (D )一般曲线运动。
( B ) 2.一个质点作曲线运动,r 表示位置矢量,s 表示路程, 表示曲线的切线方向。
下列几个表达式中,正确的表达式为C (A )a t d d v ; (B )v trd d ; (C )v tsd d ; (D ) a t d d v 。
( C ) 3.沿直线运动的物体,其速度的大小与时间成反比,则其加速度的大小与速度大小的关系是(A )与速度大小成正比; (B )与速度大小的平方成正比; (C )与速度大小成反比; (D )与速度大小的平方成反比。
( B ) 4.下列哪一种说法是正确的(A) 在圆周运动中,加速度的方向一定指向圆心; (B) 匀速率圆周运动的速度和加速度都恒定不变;(C) 物体作曲线运动时,速度的方向一定在运动轨道的切线方向上,法向分速度恒等于零;因此其法向加速度也一定等于零;(D) 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零。
( D )5. 如图所示,路灯距离地面高度为H ,行人身高为h匀速v 背向路灯行走,则人头的影子移动的速度为(A)v H h H ; (B )v h H H; (C ) v H h ; (D ) v hH。
( B )6.一物体从某一确定高度以0v 的速度水平抛出,已知它落地时的速度为t v ,那么它运动的时间是 (A)g t 0v v ; (B) gt 20v v ; (C) g21202tv v ; (D)g221202tv v。
( C )7.一个质点沿直线运动,其速度为kte 0v v (式中k 、v 0为常量)。
当0 t 时,质点位于坐标原点,则此质点的运动方程为: (A )kt e k x0v ; (B )kt e kx 0v; (C ))1(0kt e k xv ; (D ))1(0kt e kx v。
大学物理活页作业问题详解(全套)
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI j dt vd a -==)/(422s m j i v-=)/(222--=s m ja8.解:t A tdt A adt v totoωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x totoω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t tdx 6462.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv ot m kmg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,tvm mg d d sin =θ,以及 ta v d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+=mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
同济大学大学物理活页作业答案
2. 对一枚火箭的圆锥型头部进行试验。把它以初速度 150 m s 铅直向上发射后,受空气
-1
阻力而减速,其阻力所引起的加速度大小为 0.0005v (SI) ,求火箭头部所能达到的最 大高度?
3
2
解: 取 Ox 向上为正方向, 则火箭头部的加速度为 a ( g 0.0005v 2 ) , 又a 从而得
1.一质量为 2 kg 的质点在力 F 20t 8 N 的作用下,沿 Ox 轴作直线运动。在 t 0 时,
2 at d v /d t g 2 t / v0 g 2 t 2 与 v 同向.
an g 2 at2
.
1/ 2
2 v0 g / v0 g 2 t 2 方向与 a t 垂直
4
第二章(一) 牛顿力学
班号 学号 姓名 日期
四、 选择题
1.下列说法中正确的是: (A) 运动的物体有惯性, 静止的物体没有惯性; (B) 物体不受外力作用时, 必定静止; (C) 物体作圆周运动时, 合外力不可能恒定; (D) 牛顿运动定律只适用于低速、微观物体。 ( 2. 图中 P 是一圆的竖直直径 PC 的上端点, 一质点从 P 开始分别沿 不同的弦无摩擦下滑时,把到达各弦的下端所用的时间相比较是 (A)到 A 用的时间最短; (B)到 B 用的时间最短; (C)到 C 用的时间最短; (D)所用时间都一样。 ( D ) 3.假设质量为 70kg 的飞机驾驶员由于动力俯冲得到 6 g 的净加速 度, 问作用于驾驶员上的力最接近于下列的哪一个值 (A) 10 N ; (B) 70 N ; (C) 420 N ; (D) 4100 N 。 ( D ) C )
(B) 2 i 2 j ; (D) 2 i 2 j 。 ( B )
大学物理活页答案 第1-10单元
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m ji v-=)/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rg o μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=to vdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=t oxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,tvm mg d d sin =θ,以及 tav d d θ=,θd d v at =,积分并代入初条件得 )cos 1(22θ-=ag v , )2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ= 由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r)(21m ji r)(242m ji r)(3212m ji r r r)/(32s m ji t r v(2))(22SI j t i dtrd v )(2SI jdt vd a)/(422s m j i v)/(222 s m ja8.解:t A tdt A adt v totosin cos 2t A tdt A A vdt A x totocos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5s m th dt ds v /1094.1cos 32(2)当旗杆与投影等长时,4/ th s t 0.31008.14410.解: ky yv v t y y v t dv ad d d d d d d -k y v d v / d yC v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C )(2222y y k v v o o2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14 s m t dt ds v ;24s m dtdva t ;2228 s m t Rv a n ;2284 s m e t e a nt6.s rad o /0.2 ;s rad /0.4 ;2/8.0s rad r a t ;22/20s m r a n7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v ;)(2SI idtv d a(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t)(12222SI t a a a t n(3))(122/322SI t a v n8.解:火箭竖直向上的速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin9.解:s m uv /6.3430tan10.解:l h v u ;u hl v3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721;2/98.02.0s m MT a 5.x k v x 22 ;x x xv k dtdxk dt dv v 222 221mk dt dv mf x x 6.解:(1)ma F F N T sin cosmg F F N T cos sinsin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o 2Rg o8.解:由牛顿运动定律可得dtdv t 1040120 分离变量积分tovdt t dv 4120.6 )/(6462s m t t v精选文库t oxdt t tdx 6462.5 )(562223m t t t x9.解:由牛顿运动定律可得dtdv mmg kv 分离变量积分t o vv o dt m k mg kv kdv ot m kmg kv mg olnmg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos ,t vm mg d d sin ,以及 ta v d d, d d v a t ,积分并代入初条件得 )cos 1(22 ag v ,)2cos 3(cos 2mg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v;2212m t F v v7.解:(1)t dt dxv x 10;10 dtdv a x x N ma F 20 ;m x x x 4013J x F W 800(2)s N Fdt I40318.解: 1'v m m mv221221'2121o kx v m m mv''m m k mm vx9.解: 物体m 落下h 后的速度为 gh v 2当绳子完全拉直时,有 '2v M m gh mgh mM m v 2'gh mM mMMv I I T 22'2210.解:设船移动距离x ,人、船系统总动量不变为零0 mv Mu等式乘以d t 后积分,得totomvdt Mudt0)( l x m Mx m mM mlx 47.05.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f由功能原理 2121210)(kx x x f 解得 )(22121x x mg kx .8.解:根据牛顿运动定律 Rv m F mg N 2cos由能量守恒定律mgh mv 221质点脱离球面时 RhR F Ncos ;0 解得:3R h9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m ①212211m m v m v m v(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p② 联立①、②得 )/()(212122121m m m m E pv v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)( MV V u m ①mgR MV V u m 2221)(21 ② 解得: )(2m M M gRmV ;MgRm M u )(2(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2M mg m M mg R mu mg N /)(2/2mg MmM M mg m M Mmg N 23)(26.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
6.2ln kJ7.解:(1)由转动定律,2/2.39s rad JFr(2)由刚体转动的动能定理J Fh E E k k 490 (3)根据牛顿运动定律和转动定律:mg –F ’=ma rF ’=J α a=r α联立解得飞轮的角加速度22/8.21s rad mrJ mg8.解:(1)由转动定律 2312ml l mglg 23 (2)取棒与地球为系统,机械能守恒mgl E k 21(3)棒下落到竖直位置时22312121 ml mgl lg39.解:(1)系统的能量守恒,有222121J mv mgh r v联立解得: J mr mghr v222 ; Jmr mgh22 (2)设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg – T =ma T r =J 由运动学关系有: a = r 联立解得: 2mr J mgJT10.解:以中心O 为原点作坐标轴Ox 、Oy 和O z 如图所示,取质量为y x m d d d式中面密度 为常数,按转动惯量定义,)(12)()(3322222222b a ab y y x x m y x a a b bd d d z J 薄板的质量 ab m 所以 )(1222b a m Jz7.刚体转动单元练习(二)答案1.C 2.A 3.D 4.B 5.o 3;o J 31 6.o 34;221o o J 7.解:小球转动过程中角动量守恒422o o or m mr o 42222232121o o o mr J J W8.子弹与木杆在水平方向的角动量守恒2221221212l m l m l v m l m m v m 212369.解:圆环所受的摩擦力矩为mgR M ,由转动定律 2mR mgR , Rg至圆环停止所经历的时间 gRt00 10.解:落下过程棒的机械能守恒。
设棒刚到竖直位置时角速度为2312122LMg ML , ① 碰撞过程,物体与棒系统角动量守恒231ML mvx , ② 碰撞过程轴不受侧向力,物体与棒系统水平方向动量守恒M Lmv 2, ③ ①、③消去 ,得 gL mMv 32 , ④ ②、④消去v ,得 L x 32.8.机械振动单元练习(一)答案1. B 2. B 3. C 4. A5. 0.10cos(π/6π/3)m x t 6. 2:17. 解:0.1m A ,2π/πT运动方程cos()0.1cos(π)m x A t t(1)由旋转矢量法π/2 ,0.1cos(ππ/2)m x t ; (2)由旋转矢量法π/3 ,0.1cos(ππ/3)m x t ; (3)由旋转矢量法π ,0.1cos(ππ)m x t 。
8. 解:木块处于平衡位置时,浮力大小F mg 。
上下振动时,取其处于力平衡位置点为坐标原点,竖直向下作为x 轴正向,则当木块向下偏移x 位移时,合外力为'F P F v v v其中,浮力2'F F gSx mg ga x合外力2'F P F ga x kx2k ga 为常数,表明木块在其平衡位置上下所作的微小振动是简谐运动。
由22d x F m dt 可得木块运动的微分方程为2220d x ga xdt m令22ga m,可得其振动周期为2π2πa T g木水9. 解:如图,由旋转矢量法可知π/3tπ/31/3s t 10. 解:(1)22111224p E kx E kA20.141m 2x A(2)22211111()28424p E kx kA kA E34k k E E E E图8-19.机械振动单元练习(二)答案10. B 11. B 12. C13. 2ππ/3k ,2710m ,2π4π/3k ,2110m 14. π/215. (1)0.5s ,1.5s ;(2)0s ,1s, 2s 。
16.解:(1)由已知的运动方程可知:0.10m A ,2π/3 ,3π ,2π/2/3s T(2)-1max 0.94m s A v ,2-2max 8.88m s a A17.解:振动系统的角频率为11210s km m由动量守恒定律得振动的初速度即子弹和木块的共同运动初速度的值0v 为11020.8m s m m1vv m又因初始位移00x ,则振动系统的振幅为2200()0.08m A xv v如图由旋转矢量法可知0π/2 ,则简谐运动方程为0.08cos(10π/2)(m)x t18.解:如图由旋转矢量法可知,合振动振幅为2212122cos(π/2)0.10m A A A A A合振动初相为图9-11221sin π/3sin π/6πarctancos π/6cos π/3A A A Aπarctan 2.341113 o10. 解:如图由旋转矢量法可知0π/3a ,02π/3b 。