2018北师大版数学八年级下册第四章《因式分解》单元测试

合集下载

北师大版初二数学下册第4章《因式分解》单元测试卷 (含答案)

北师大版初二数学下册第4章《因式分解》单元测试卷  (含答案)

北师大版八年级数学下册第4章《因式分解》单元测试题一.选择题(共8小题,满分24分,每小题3分)1.将多项式x﹣x3因式分解正确的是()A.x(1﹣x2)B.x(x2﹣1)C.x(1+x)(1﹣x)D.x(x+1)(x﹣1)2.多项式a2﹣25与a2﹣5a的公因式是()A.a+5B.a﹣5C.a+25D.a﹣253.下列各式中,不能用平方差公式因式分解的是()A.﹣a2﹣4b2B.﹣1+25a2C.﹣9a2D.1﹣a44.下列各式中,能用完全平方公式分解因式的个数是()(1)x2﹣4;(2)x2+6x+9;(3)4x4﹣2x2+;(4)x2+4xy+2y2A.1个B.2个C.3个D.4个5.下列由左到右的变形,属于因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2+4x﹣2=x(x+4)﹣2C.x2﹣4=(x+2)(x﹣2)D.x2﹣4+3x=(x+2)(x﹣2)+3x6.将对x2+mx+n分解成(x﹣7)(x+2),则m,n的值为()A.5,﹣14B.﹣5,14C.5,14D.﹣5,﹣14 7.如果(x+4)(x﹣3)是x2﹣mx﹣12的因式,那么m是()A.7B.﹣7C.1D.﹣18.计算(﹣2)100+(﹣2)99的结果是()A.2B.﹣2C.﹣299D.299二.填空题(共7小题,满分28分,每小题4分)9.把多项式m3﹣81m分解因式的结果是.10.在实数范围内分解因式:m4﹣2m2=.11.分解因式:a2﹣9b2+2a﹣6b=.12.已知x2+4mx+16能用完全平方公式因式分解,则m的值为.13.已知a、b满足a+b=5,ab2+a2b=10,则ab的值是.14.若x2+x﹣1=0,那么代数式x3+2x2﹣7的值是.15.232﹣1可以被10和20之间某两个整数整除,则这两个数是.三.解答题(共7小题,满分48分)16.把下列多项式分解因式:(1)x3﹣9x;(2)2a2+4ab+2b217.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4918.已知a+b=,ab=﹣,求代数式a3b+2a2b2+ab3的值.19.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.20.待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式.21.阅读以下材料,根据阅读材料提供的方法解决问题【阅读材料】对于多项式x3﹣5x2+x+10,我们把x=2代入多项式,发现x=2能使多项式的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后代入,就可以把多项式x3﹣5x2+x+10因式分解.【解决问题】(1)求式子中m、n的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.22.拼图游戏:一天,小嘉在玩纸片拼图游戏时,发现利用图①中的三种材料各若干,可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2.(1)则图③可以解释为等式:.(2)在虚线框中用图①中的基本图形若干块(每种至少用一次)拼成一个长方形,使拼出的长方形面积为3a2+7ab+2b2,并通过拼图对多项式3a2+7ab+2b2因式分解:3a2+7ab+2b2=.(拼图图形画在方框内)(3)如图④,大正方形的边长为m,小正方形的边长为n,若用x、y表示四个长方形的两边长(x>y),结合图案,指出以下关系式:①xy=;②x+y=m;③x2﹣y2=m•n;④x2+y2=其中正确的关系式为.(4)试着用剪拼图形的方法由几何图形的面积来证明:a2﹣b2=(a+b)(a﹣b).参考答案一.选择题(共8小题,满分24分,每小题3分)1.解:x﹣x3=x(1﹣x2)=x(1﹣x)(1+x).故选:C.2.解:多项式a2﹣25=(a+5)(a﹣5)与a2﹣5a=a(a﹣5)的公因式是:a﹣5.故选:B.3.解:不能用平方差公式分解的是﹣a2﹣4b2.故选:A.4.解:(1)x2﹣1是两项,不能用完全平方公式,故此选项不符合题意;(2)x2+6x+9,符合完全平方公式;故此选项符合题意.(3)4x4﹣2x2+符合完全平方公式;故此选项符合题意;(4)x2+4xy+2y2不符合完全平方公式;故此选项不符合题意.故选:B.5.解:A、(x+2)(x﹣2)=x2﹣4,是整式的乘法运算,故此选项错误;B、x2+4x﹣2=x(x+4)﹣2,不符合因式分解的定义,故此选项错误;C、x2﹣4=(x+2)(x﹣2),是因式分解,符合题意.D、x2﹣4+3x=(x+2)(x﹣2)+3x,不符合因式分解的定义,故此选项错误;故选:C.6.解:∵将对x2+mx+n分解成(x﹣7)(x+2),∴m=﹣7+2=﹣5,n=﹣7×2=﹣14,故选:D.7.解:∵(x+4)(x﹣3)是x2﹣mx﹣12的因式,∴(x+4)(x﹣3)=x2﹣mx﹣12=x2+x﹣12,故﹣m=1,解得:m=﹣1.故选:D.8.解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.二.填空题(共7小题,满分28分,每小题4分)9.解:m3﹣81m=m(m2﹣81)=m(m+9)(m﹣9).故答案为:m(m+9)(m﹣9).10.解:m4﹣2m2=m2(m2﹣2)=m2(m+)(m﹣).故答案为:m2(m+)(m﹣).11.解:a2﹣9b2+2a﹣6b,=(a2﹣9b2)+(2a﹣6b),=(a+3b)(a﹣3b)+2(a﹣3b),=(a﹣3b)(a+3b+2).12.解:∵关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,∴m=±2,故答案为:±2.13.解:∵ab2+a2b=10,∴ab(b+a)=10,∵a+b=5,∴ab=2,故答案为:2.14.解:∵x2+x﹣1=0,∴x2+x=1∴x3+2x2﹣7=x(x2+x)+x2﹣7=x+x2﹣7=1﹣7=﹣6故答案为:﹣6.15.解:原式=(216+1)(216﹣1)=(216+1)(28+1)(24+1)(24﹣1)=(216+1)(28+1)×17×15.则这两个数是15和17.故答案是:15和17.三.解答题(共7小题)16.解:(1)x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3);(2)2a2+4ab+2b2=2(a2+2ab+b2)=2(a+b)2.17.解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.18.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,∵a+b=,ab=﹣,∴原式=ab(a+b)2=﹣×()2=﹣3,即代数式a3b+2a2b2+ab3的值是﹣3.19.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.20.解:(1)∵x2+2x+3=x2+(3﹣a)x+3,∴3﹣a=2,a=1;故答案为:1;(2)设x3+2x+3=(x+1)(x2+ax+3)=x3+(a+1)x2+(a+3)x+3,a+1=0,解得a=﹣1,多项式的另一因式是x2﹣x+3.21.解:(1)在等式x3﹣5x2+x+10=(x﹣2)(x2+mx+n)中,分别令x=0,x=1,即可求出:m=﹣3,n=﹣5;(2)把x=﹣1代入x3+5x2+8x+4,得其值为0,则多项式可分解为(x+1)(x2+ax+b)的形式,用上述方法可求得:a=4,b=4,所以x3+5x2+8x+4=(x+1)(x2+4x+4)=(x+1)(x+2)2.22.解:(1)图③可以解释为等式:(a+2b)(2a+b)=2a2+ab+4ab+2b2=2a2+5ab+2b2故答案为:(a+2b)(2a+b)=2a2+5ab+2b2.(2)拼图如图⑤所示:3a2+7ab+2b2=(3a+b)(a+2b);故答案为:(3a+b)(a+2b);(3)∵m2﹣n2=4xy∴①正确;∵x+y=m∴②正确;∵x+y=m,x﹣y=n∴(x+y)(x﹣y)=mn,即x2﹣y2=mn,∴③正确;∵m2+n2=(x+y)2+(x﹣y)2=2x2+2y2=2(x2+y2);∴④正确.故答案为:①②③④.(4)剪拼图形如图⑥、⑦;把图⑥中的阴影沿虚线三次剪下来,拼成如图⑦所示的梯形,∴这个梯形的上底长为2b,下底长为2a,高为(a﹣b),∴S阴影(梯形)=(2a+2b)(a﹣b)=(a+b)(a﹣b),∵图⑥中的S阴影=a2﹣b2,∴a2﹣b2=(a+b)(a﹣b).。

最新北师大版初二数学下册第四章因式分解单元测试题

最新北师大版初二数学下册第四章因式分解单元测试题
精品文档
精品文档
21、如图,某市有一块长为 3a b 米,宽为 2a b 米的长方形地块, ?规划部 门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少 平方米? ?并求出当 a 3, b 2 时的绿化面积.
22、察下列各式 ( x- 1) (x+1)=x 2- 1
(x-1)(x 2+x+1)=x 3-1 ( x- 1) (x3+x2+x+1)=x 4-1
C、8cm
D、7cm
7、 在实数范围内分解因式 a2 6

精品文档
精品文档
8、当 x ___________时, x 4 0 等于 1;
2008
9、 2
2009
1.5
___________。
3
10、若 3x= 1 , 3y= 2 ,则 3x-y 等于

2
3
11、若 9x2 mxy 16 y2 是一个完全平方式,那么 m 的值是 __________。
精品文档
精品文档
( 1)分解因式: x5 1
( 2)根据规律可得 (x -1)(xn-1+…… +x +1)=
(其中 n 为正整数)
( 3)计算: (3 1)( 350 3 49 3 48
32 3 1)
( 4)计算: ( 2)1999 ( 2)1998 ( 2)1997
( 2)3 ( 2) 2 ( 2) 1

A、a 2 ( b)2
B、5m2 20mn
C、 x2 y 2
D、 x2 9
5、如 (x+m) 与(x+3)的乘积中不含 x 的一次项,则 m 的值为(

初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)

初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)

北师大版八年级下册第4 章《因式分解》单元测试卷满分: 100 分姓名: ___________班级: ___________学号: ___________成绩: ____________一.选择题(共 8 小题,满分 24 分)1.多项式 ① x 2 +8y 2, ② x 2 ﹣ 4y 2, ③ ﹣ x 2+1, ④ ﹣ x 2﹣ y 2中能用平方差公式分解因式的有( )A .①②B .②③C . ③④D . ①④2.下列各式从左到右的变形,是因式分解的是( )A .m (a+b )= ma+mbB . ma+mb+1= m ( a+b )+1C .(a+3)(a ﹣ 2)= a 2+a ﹣ 6D . x 2﹣ 1=( x+1)( x ﹣ 1)3.分解因式 a 4﹣ 2a 2b 2+b 4的结果是( )A .a 2( a 2﹣ 2b 2) +b 4B .( a ﹣ b )2C .(a ﹣ b )4D .( a+b ) 2( a ﹣ b )24.若△ ABC 的三边长为a ,b ,c 满足 a 2+b 2+c 2+50 = 6a+8b+10c ,则△ ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 5.若 x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),那么 a+b 的值为() A .﹣1B .1C .﹣ 2D . 22的值()6. a 是有理数,则多项式﹣ a +a ﹣ A .一定是正数B .一定是负数C .不可能是正数D .不可能是负数 7.(﹣ 2)100+(﹣ 2) 101的结果是()A .2100B .﹣ 2100C .﹣ 2D . 2 8.已知 a ﹣ b = 5,且 c ﹣ b = 10,则 a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac 等于() A .105B .100C . 75D . 50二.填空题(共 8 小题,满分 24 分)9.分解因式: 32.a +2a +a =10.如图中的四边形均为矩形,根据图形,写出一个正确的等式 .11.在实数范围内分解因式 : x 5﹣ 4x =.12.如果代数式 x 2+mx+9=( ax+b ) 2,那么 m 的值为.13.若 3x 2﹣mx+n 进行因式分解的结果为( 3x+2)( x ﹣ 1),则 mn =.14.若长方形的长为 a ,宽为 b ,周长为 16,面积为22的值为 .15,则 a b+ab 15.已知 a 2+a ﹣ 3= 0,则 a 3+3 a 2﹣a+4 的值为.16.化简: a+1+a ( a+1) +a (a+1) 2 + +a ( a+1)99=.三.解答题(共 6 小题,满分 52 分)17.因式分解:( 1)﹣ 2ax 2+8ay 2;( 2) 4m 2﹣ n 2+6n ﹣ 9.18.利用因式分解计算: 22 ﹣315 2.999 +999+68519.若已知 x+y = 3, xy =1,试求( 1)(x ﹣ y ) 2的值( 2) x 3 y+xy 3 的值.20.观察下面的分解因式过程,说说你发现了什么.例:把多项式 am+an+bm+bn 分解因式解法 1: am+an+bm+bn =( am+an )+(bm+bn )= a ( m+n )+b (m+n )=( m+n )(a+b )解法 2: am+an+bm+bn =( am+bm )+( an+bn )= m ( a+b ) +n ( a+b )=( a+b )(m+n )根据你的发现,把下面的多项式分解因式:( 1)mx ﹣ my+nx ﹣ ny ;( 2) 2a+4b ﹣ 3ma ﹣ 6mb .21.因式分解与整式乘法是方向相反的变形.∵( x+4)( x+2)= x 2+6 x+8∴ x 2+6x+8=( x+4)( x+2)由此可见 x 2+6x+8 是可以因式分解成( x+4)( x+2)的,爱研究问题的小明同学经过认真思考,找到了 x 2+6x+8 的因式分解方法如下:x 2+6x+8 = x 2+6x+32﹣ 32+8 =( x+3) 2﹣ 1=( x+3+1 )( x+3﹣ 1)=( x+4)( x+2)根据你对以上内容的理解,解答下列问题:( 1)小明同学在对 2 进行因式分解的过程中,在2 的后面加 2,其目的是构 x +6x+8 x +6x 3成完全平方式,请在下面两个多项式的后面分别加上适当的数,使这成为完全平方式,并将添加后的多项式写成平方的形式.① x 2+4x+ =( )2;② x 2﹣ 8x+=()2( 2)请模仿小明的方法,尝试对多项式x 2+10x ﹣ 24 进行因式分解.22.材料阅读:若一个整数能表示成 2 2a +b ( a 、 b 是正整数)的形式,则称这个数为“完美数”.例如:因为 13=32+22,所以 13 是“完美数” ;22 2 222也是“完美数”.再如:因为 a +2ab+2b =( a+b ) +b ( a 、b 是正整数),所以 a +2ab+2 b( 1)请你写出一个大于 20 小于 30 的“完美数” ,并判断 53 是否为“完美数” ;( 2)试判断( x 2+9y 2)(? 4y 2+x 2)(x 、 y 是正整数)是否为“完美数” ,并说明理由.参考答案一.选择题1.【解答】解: ② x 2﹣ 4y 2, ③ ﹣ x 2+1 能用平方差公式分解因式,故选: B .2.【解答】解: A 、是多项式乘法,不是因式分解,错误;B 、右边不是整式的积的形式,实际上本题不能分解,错误;C 、是多项式乘法,不是因式分解,错误;D 、是平方差公式,分解正确.故选: D .3.【解答】解: a 4﹣ 2a 2b 2+b 4,=( a 2﹣b 2) 2,=( a+b ) 2( a ﹣b ) 2.故选: D .4.【解答】解:已知等式整理得:( a 2﹣ 6a+9) +( b 2﹣8b+16) +(c 2﹣ 10c+25)= 0,即( a222﹣ 3) +( b ﹣ 4) +( c ﹣ 5) = 0,∴ a ﹣ 3= 0, b ﹣4= 0, c ﹣5= 0,解得: a = 3, b = 4, c = 5,∵ 32+42=52,∴△ ABC 为直角三角形,故选: B .5.【解答】解: ( x ﹣ 2)( x+b )= x 2+(﹣ 2+b ) x ﹣ 2b ,∵ x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),∴﹣ a =﹣ 2+b ,﹣ 2b =﹣ 1,∴ a = , b = ,∴ a+b =2,故选: D .6.【解答】解:∵﹣ a 2+a ﹣ =﹣( a ﹣ ) 2,∴多项式﹣ a 2+a ﹣ 的值不可能是正数.故选: C .7.【解答】解: (﹣ 2) 100101 100 100+(﹣ 2) =(﹣ 2) ×( 1﹣ 2)=﹣ 2 .故选: B .8.【解答】解:∵ a ﹣ b = 5,c ﹣b = 10∴ a ﹣ c =﹣ 5a 2+b 2+c 2﹣ab ﹣ bc ﹣ ac = [( a ﹣ b )2+( b ﹣ c )2+( a ﹣ c )2]= × [52+(﹣ 10)2+(﹣ 5)2]=75故选: C . 二.填空题9.【解答】解: a 3+2a 2+a = a ( a 2+2a+1 ) = a ( a+1) 2,故答案为: a ( a+1)210.【解答】解:由题意可得: am+bm+cm = m ( a+b+c ). 故答案为: am+bm+cm =m (a+b+c ).11.【解答】解:原式= x ( x 4﹣ 4)= x ( x 2+2)(x 2﹣ 2)= x (x 2+2)( x+ )( x ﹣ ),故答案为: x ( x 2+2)( x+ )( x ﹣ )12.【解答】解:已知等式整理得:x 2+mx+9=( ax+b ) 2,可得 m =± 2× 3× 1,则 m =± 6.故答案为:± 6.213.【解答】解:∵( 3x+2 )( x ﹣1)= 3x ﹣x ﹣2,∴ 3x 2﹣ mx+n =3x 2﹣ x ﹣ 2,∴ m = 1, n =﹣ 2,∴ mn =﹣ 2,故答案为:﹣ 2.14.【解答】解:由题意得: a+b = 8, ab = 15,则原式= ab ( a+b )= 120,故答案为: 12015.【解答】解:∵ a 2+a ﹣ 3= 0,∴ a 2= 3﹣ a ,∴ a 3= a?a 2= a ( 3﹣ a )= 3a ﹣ a 2= 3a ﹣( 3﹣ a )= 4a ﹣3,32∴ a +3a ﹣ a+4= 4a ﹣ 3+3( 3﹣ a )﹣ a+4= 10.故答案为 10.16.【解答】解:原式=( a+1) [1+ a+a ( a+1) +a ( a+1) 2+ +a ( a+1 )98]=( a+1) 2[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )97]=( a+1) 3[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )96]==( a+1) 100.100故答案为:( a+1) .2217.【解答】解: ( 1)原式=﹣ 2a ( x ﹣4y )( 2)原式= 4m 2﹣( n 2﹣ 6n+9)= 4m 2﹣( n ﹣3)2=( 2m+n ﹣3)( 2m ﹣ n+3 ).18.【解答】解: 9992+999+685 2﹣ 3152= 999×( 999+1) +( 685﹣ 315)×( 685+315)= 999× 1000+370× 1000= 999000+370000= 1369000.19.【解答】解: ( 1)∵ x+y = 3,xy = 1;∴( x ﹣y ) 2=( x+y )2﹣ 4xy = 9﹣ 4= 5;( 2)∵ x+y = 3, xy = 1,∴ x 3y+xy 3= xy[( x+y ) 2﹣ 2xy] = 9﹣2= 7.20.【解答】解( 1)原式= m ( x ﹣ y )+n ( x ﹣ y )=( x ﹣y )( m+n );( 2)原式= 2(a+2 b )﹣ 3m (a+2b )=( a+2b )( 2﹣3m ).21.【解答】解: ( 1) ① x 2+4x+22=( x+2) 2;故答案为: 22, x+2;② x 2﹣ 8x+16=( x ﹣ 4) 2故答案为: 42, x ﹣ 4;( 2) x 2+10x ﹣ 24= x 2+10x+52﹣ 52﹣ 24=( x+5) 2﹣ 49=( x+12)( x ﹣ 2).2 222.【解答】解: ( 1) 25= 4 +3,∵ 53=49+4 = 72+22,∴ 53 是“完美数” ;( 2)(x 2+9y 2)(? 4y 2+x 2)是“完美数” ,22 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2理由:∵( x +9 y )(? 4y +x )= 4x y +36y +x +9x y = 13x y +36y +x =( 6y +x ) +x y ,∴( x 2+9y 2)(? 4y 2+x 2)是“完美数” .。

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)

【精选】北师大版八年级下册数学第四章《因式分解》测试卷(含答案)一、选择题(每题3分,共30分)1.【教材P 94习题T 2改编】【2021·兴安盟】下列等式从左到右变形,属于因式分解的是( )A .(a +b )(a -b )=a 2-b 2B .x 2-2x +1=(x -1)2C .2a -1=a ⎝ ⎛⎭⎪⎫2-1aD .x 2+6x +8=x (x +6)+82.下列四个多项式中,能因式分解的是( )A .a -1B .a 2+1C .x 2-4yD .x 2-4x +43.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x +1B .x 2+2x -1C .x 2-1D .x 2-10x +254.分解因式-2m (n -p )2+6m 2(p -n )时,应提取的公因式为( )A .-2m 2(n -p )2B .2m (n -p )2C .-2m (n -p )D .-2m5.一次课堂练习,小红同学做了如下4道因式分解题,你认为小红做得不够完整的一题是( )A .a 3-a =a (a 2-1)B .m 2-2mn +n 2=(m -n )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )6.下列因式分解正确的是( ) A .3ax 2-6ax =3(ax 2-2ax )B .x 2+y 2=(-x +y )(-x -y )C .a 2+2ab -4b 2=(a +2b )2D .-ax 2+2ax -a =-a (x -1)27.如果x -2是多项式x 2-6x +m 的一个因式,那么m 的值为( )A .8B .6C .4D .28.【2023·绵阳南山双语学校模拟】从边长为a 的正方形纸板中挖去一个边长为b 的小正方形纸板后,将其裁成四个相同的等腰梯形,如图①所示,然后拼成一个平行四边形,如图②所示,那么通过计算两个图形阴影部分的面积,可以验证成立的为( )A .a 2-b 2=(a -b )2B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a 2-b 2=(a +b )(a -b )9.【教材P 105复习题T 12变式】已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形10.下列各数中,可以写成两个连续偶数的平方差的是( )A .500B .520C .250D .205二、填空题(每题3分,共24分)11.分解因式:3m 3+6m 2=____________.12.把多项式()1+x ()1-x -()x -1提取公因式x -1后,余下的部分是__________.13.【2022·苏州】已知x +y =4,x -y =6,则x 2-y 2=________.14.一个长方体的体积为x 2y -9y ,长和宽是关于x 的一次二项式(一次项系数为1),则长是________,宽是________.15.【教材P 105复习题T 13改编】若关于x 的二次三项式x 2+ax +14是完全平方式,则a 的值是__________.16.已知a ,b 满足|a +2|+b -4=0,分解因式:(x 2+y 2)-(axy +b )=________________.17.在对多项式x 2+ax +b 进行因式分解时,小明看错了b ,分解的结果是(x -10)(x +2);小亮看错了a ,分解的结果是(x -8)(x -2),则多项式x 2+ax +b 进行因式分解的正确结果为____________.18.【规律探索题】观察下列各式:x 2-1=(x -1)(x +1),x 3-1=(x -1)(x 2+x +1),x 4-1=(x -1)(x 3+x 2+x +1),根据前面各式的规律可猜想:x n +1-1=_________________________________________.三、解答题(19题16分,20,24题每题12分,21,22题每题8分,23题10分,共66分)19.【教材P104复习题T2改编】把下列各式因式分解:(1)4x2-64;(2)a3b+2a2b2+ab3;(3)(a-b)2-2(b-a)+1;(4)x2-2xy+y2-16z2.20.【数学运算】利用因式分解计算:(1)57×99+44×99-99;(2)2 0242-4 048×2 023+2 0232;(3)9×1.22-16×1.42.21.【教材P105复习题T6变式】已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.22.【教材P105复习题T5变式】若一个两位正整数m的个位数字为8,求证:m2-64一定为20的倍数.23.【阅读理解题】阅读下列材料:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,巧妙地运用配方法不仅可以将一个看似不能分解的多项式进行因式分解,还能结合非负数的意义来解决一些问题.如:将x2+2x-3因式分解.解:原式=x2+2x+1-4=(x+1)2-22=(x+1+2)(x+1-2)=(x+3)(x-1).(1)请你仿照以上方法,完成因式分解:a2+4ab-5b2;(2)若m2+2n2+6m-4n+11=0,求m+n的值.24.【直观想象】观察猜想如图,大长方形是由三个小长方形和一个小正方形拼成的,请根据此图填空:x2+(p+q)x +pq=x2+px+qx+pq=(________)(________).说理验证事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=_______________=(________)(________).于是,我们可以利用上面的方法进行多项式的因式分解.尝试运用例题:把x2+3x+2因式分解.解:x2+3x+2=x2+(2+1)x+2×1=(x+2)(x+1).请利用上述方法将下列多项式因式分解:。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试卷(答案解析)(2)

一、选择题1.已知2m n +=,则224m n n -+的值是( )A .2B .4C .6D .82.若3x y -=-,5xy =,则代数式3223242x y x y xy -+的值为( )A .90B .45C .15-D .30- 3.下列因式分解正确的是( ) A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 4.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 5.下列因式分解正确的是( )A .a 2﹣ab +a =a (a ﹣b )B .m 2+n 2=(m +n )(m ﹣n )C .111x x x ⎛⎫+=+ ⎪⎝⎭D .x 2+2xy +y 2=(x +y )2 6.下列各式中,从左到右的变形是因式分解的是A .22(2)(2)4x y x y x y +-=-B .221()1x y xy xy x y --=--C .a 2-4ab+4b 2=(a-2b )2D .ax+ay+a =a (x+y ) 7.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )28.已知1x =,则代数式222x x -+的值为( ) A .23B .22C .21D .20 9.下列多项式中,不能用乘法公式进行因式分解的是( ) A .a 2﹣1B .a 2+2a +1C .a 2+4D .9a 2﹣6a +1 10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k 取任何实数,多项式x 2﹣ky 2总能分解成两个一次因式积的形式;③若(t ﹣3)3﹣2t =1,则t 可以取的值有3个;④关于x ,y 的方程组为252ax y x ay a +=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a 每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31x y =⎧⎨=-⎩. 其中正确的说法是( ) A .①④B .①③④C .②③D .①②11.下列式子从左到右变形是因式分解的是( )A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 12.若M=2-a a ,N=1a -,则M 、N 的大小关系是( )A .M>NB .M<NC .M ≥ND .M ≤ N 二、填空题13.分解因式:2a 2﹣2b 2=_____.14.分解因式:-3x 2+6xy -3y 2=________.15.因式分解:316m m -=________.16.因式分解:41x -=______.17.二次三项式2248y xy x -+-在实数范围内分解因式的结果是______.18.分解因式:x 2y ﹣y 3=_____.19.若m +n =1,mn =﹣6,则代数式m 2n +mn 2的值是_____.20.若a 2-b 2=8,a-b=2,则a+b 的值为_________.三、解答题21.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和公式法,其实分解因式的方法还有分组分解法、配方法(拆项法)、十字相乘法等等.分组分解法是将一个多项式适当分组后,再用提公因式或运用公式继续分解的方法.如①和②:①ax by bx ay +++()()ax bx ay by =+++()()x a b y a b =+++()()a b x y =++②2221xy y x +-+()2221x xy y =++-()21x y =+-()()11x y x y =+++-请你仿照以上方法,探索并解决下列问题:(1)分解因式:22a a b b +--;(2)两个不相等的实数m ,n 满足2240m n +=.若26m m k -=,26n n k -=,求m n +和k 的值.22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.分解因式(1)22363ax axy ay -+(2)()()22162x x x ---24.已知某种商品去年售价为每件a 元,可售出b 件.今年涨价x 成(1成10%=),则售出的数量减少mx 成(m 是正数).试问:如果涨价1.25成价格,营业额将达到2(1)4ab m m+,求m . 25.(1)计算:2()()a a b a b +--; (2)因式分解:2250a -.26.因式分解:(1)4(a ﹣2b )2﹣1(2)x 3+2x 2y +xy 2【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先把原式中()22m n-进行因式分解,再把2m n +=代入进行计算即可. 【详解】解:2m n +=,∴22()()44m n m n m n n n =+-+-+2()4m n n =-+224m n n =-+2()m n =+22=⨯4=.故选:B .【点睛】本题考查了因式分解的应用,解答此题的关键是利用因式分解的方法把原式化为已知条件的形式,再把2m n +=代入进行计算.2.A解析:A【分析】将多项式提取公因式2xy 后再根据完全平方公式分解因式,再将3x y -=-,5xy =代入计算即可.【详解】解:∵3x y -=-,5xy =,∴3223242x y x y xy -+=22(22)x xy xy y -+=22()x x y y -=225(3)⨯⨯-=90,故选:A .【点睛】此题考查多项式的求值,掌握多项式分解因式的方法是解题的关键.3.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.4.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.5.D解析:D【分析】运用提取公因式法、公式法分解因式以及因式分解的定义逐项排除即可.【详解】解:A、a2﹣ab+a=a(a﹣b+1),故此选项错误;B、m2+n2,无法分解因式,故此选项错误;C、x+1,无法分解因式,故此选项错误;D、x2+2xy+y2=(x+y)2,正确.故答案为D.【点睛】本题主要考查了提取公因式法和公式法分解因式以及因式分解的定义,掌握运用乘法公式进行因式分解是解答本题的关键.6.C解析:C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是因式分解,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.7.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A、a2﹣2a﹣3=a(a﹣2)﹣3,不符合因式分解的定义,故此选项错误;B、3ax2﹣6ax=3ax(x﹣2),故此选项错误;C、m3﹣m=m(m﹣1)(m+1),正确;D、x2+2xy﹣y2,无法运用完全平方公式分解因式,故此选项错误;故选:C.【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.8.B解析:B【分析】先将多项式因式分解,再将x 的值代入求值.【详解】222x x -+=22(1)111)122x -+=-+=,故选:B.【点睛】此题考查了已知式子的值求多项式的值,多项式的因式分解,正确将多项式因式分解是解题的关键.9.C解析:C【分析】直接利用公式法分别分解因式进而得出答案.【详解】A 、a 2﹣1=(a+1)(a ﹣1),可以运用公式法分解因式,不合题意;B 、a 2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C 、a 2+4,无法利用公式法分解因式,符合题意;D 、9a 2﹣6a+1=(3a ﹣1)2,可以运用公式法分解因式,不合题意;故选:C .【点睛】本题考查了公式法,正确运用乘法公式是解题的关键.10.A解析:A【分析】利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a 取每一个值方程的解都相同,求出x 、y 的值.【详解】①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k 为负值时,多项式x 2﹣ky 2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程为(a ﹣1)x+(a+2)y=2a ﹣5.∵a每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31 xy=⎧⎨=-⎩.综上正确的说法是①④.故选:A.【点睛】本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.11.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.第II卷(非选择题)请点击修改第II卷的文字说明12.C解析:C【分析】要比较M,N的大小,可作M与N的差.若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.【详解】M-N=a2-a-(a-1)=a2-a-a+1=a2-2a+1=(a-1)2≥0,∴M≥N.故选C.【点睛】本题考查了完全平方公式法分解因式,关键是作差后整理成完全平方公式的形式,然后利用因式分解,进行代数式的比较.二、填空题13.2(a+b)(a-b)【分析】先提取公因式再用公式分解【详解】解:2a2﹣2b2=2(a2﹣b2)=2(a+b )(a-b )故答案为:2(a+b )(a-b )【点睛】本题考查了因式分解解题关键是熟练运用解析:2(a +b )(a -b )【分析】先提取公因式,再用公式分解.【详解】解:2a 2﹣2b 2=2(a 2﹣b 2)=2(a +b )(a -b )故答案为:2(a +b )(a -b ).【点睛】本题考查了因式分解,解题关键是熟练运用因式分解的方法与步骤进行分解. 14.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --; 故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 15.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.16.【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=(x2-1)(x2+1)=故答案为:【点睛】本题考查了运用平方差公式分解因式熟练掌握因式分解的方法是解本题的关键解析:()()()2111x x x +-+. 【分析】两次运用平方差公式进行因式分解即可得到答案.【详解】解:41x -=(x 2-1)(x 2+1)=()()()2111x x x +-+. 故答案为:()()()2111x x x +-+. 【点睛】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 17.【分析】先提出负号把括号内多项式分两组4y2-8xy 两项一组x2单独一组把两项一组配方4y2-8xy+4x2-4x2=4(y-x )2-4x2把-4x2与x2合并得-3x2括号内变为再因式分解即可【详解析:)(22)y x --【分析】先提出负号()224y 8xy x --+,把括号内多项式分两组4y 2-8xy 两项一组,x 2单独一组, 把两项一组配方4y 2-8xy +4x 2-4x 2=4(y-x )2-4x 2,把-4x 2与x 2合并得-3x 2,括号内变为 ()()2222224y 2-443xy x x x y x x ⎡⎤⎡⎤--++=---⎣⎦⎣⎦,再因式分解即可. 【详解】22-4y 8xy x +-,()224y 8xy x =--+,()222242y xy x x x ⎡⎤=--+-+⎣⎦, ()2243y x x ⎡⎤=---⎣⎦, ()()22y x y x ⎡⎤⎡⎤=--+-⎣⎦⎣⎦()()2222y x y x =--+-.故答案为:()()2222y x y x ---- 【点睛】本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键. 18.y (x+y )(x ﹣y )【解析】试题分析:先提取公因式y 再利用平方差公式进行二次分解解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y)故答案为y(x+y)(x﹣y)解析:y(x+y)(x﹣y).【解析】试题分析:先提取公因式y,再利用平方差公式进行二次分解.解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y).19.-6【分析】利用提公因式法因式分解再把m+n=1mn=﹣6代入计算即可【详解】解:∵m+n=1mn=﹣6∴m2n+mn2=mn(m+n)=(﹣6)×1=﹣6故答案为:﹣6【点睛】此题考查了已知式子的解析:-6【分析】利用提公因式法因式分解,再把m+n=1,mn=﹣6代入计算即可.【详解】解:∵m+n=1,mn=﹣6,∴m2n+mn2=mn(m+n)=(﹣6)×1=﹣6.故答案为:﹣6.【点睛】此题考查了已知式子的值求代数式的值,正确分解因式是解题的关键.20.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b)(a+b)=8∴2(a+b)=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a2-b2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a2-b2=8∴(a-b)(a+b)=8∴2(a+b)=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键.三、解答题21.(1)()()1a b a b -++;(2)6m n +=,2k =.【分析】(1)先分组得()22a b a b -+-,再根据平方差公式和提取公因式法进行因式分解; (2)由已知26m m k -=,26n n k -=两式相减得到22660m m n n --+=,左边分解后可得到6m n +=,再由已知26m m k -=,26n n k -=两式相加结合2240m n +=即可求得k 的值.【详解】解:(1)22a a b b +--()22a b a b =-+-()()()a b a b a b =+-+-()()1a b a b =-++;(2)∵26m m k -=,26n n k -=,两式相减得22660m m n n --+=,∴22660m n m n --+=,即()()()60m n m n m n +---=,因式分解得()()60m n m n -+-=,∵m n ≠,∴60m n +-=即6m n +=,∵26m m k -=,26n n k -=,两式相加得22662m m n n k -+-=,即()2262m n m n k +-+=, ∵2240m n +=,6m n +=,∴240664k =-⨯=,∴2k =.【点睛】本题考查了平方差公式以及分组分解法分解因式,因式分解的应用,正确灵活应用公式是解题关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ; 【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)3a (x-y )2;(2)()()()2+44x x x --【分析】(1)先提取公因式3a ,然后由完全平方公式进行因式分解;(2)直接提取公因式(x-2),进而利用平方差公式分解因式即可.【详解】解:(1)原式=3a (x 2-2xy+y 2)=3a (x-y )2;(2)()()22162x x x ---()()2=216x x --()()()=2+44x x x --【点睛】本题考查了分解因式.因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.24.0.8m =【分析】 今年该商品售价为每件110x a ⎛⎫+⎪⎝⎭,售出的数量是110mx b ⎛⎫- ⎪⎝⎭,然后根据题意列方程求解即可.【详解】解:由题意知今年该商品售价为每件(110%)a x +⨯,售出的数量是(110%)b mx -⨯, 则销售额是111010x mx a b ⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭, 如果售价每件涨价1.25成,营业额将达到2(1)4ab m m+, 则可列21.25 1.125(1)1110104m ab m a b m ⨯+⎛⎫⎛⎫+⨯-= ⎪ ⎪⎝⎭⎝⎭, 化简得22540160m m -+=,∴(5m-4)2=0,∴5m=4,∴0.8m =.【点睛】本题考查了方程的应用,完全平方公式,正确列出方程是解答本题的关键.25.(1)23ab b -;(2)2(5)(5)a a +-【分析】(1)先按照多项式乘法和完全平方公式化简,再合并同类项即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】解:(1)原式2222222(2)23a ab a ab b a ab a ab b ab b =+--+=+-+-=-.(2)原式()22252(5)(5)a a a =-=+-. 【点睛】本题考查了整式的乘法和因式分解,熟练掌握相关运算法则是解题的关键.26.(1)()()241241a b a b -+--;(2)()2x x y +. 【分析】(1)利用平方差公式进行因式分解即可得;(2)综合利用提取公因式法和完全平方公式进行因式分解即可得.【详解】(1)原式()2221a b =--⎡⎤⎣⎦, ()2241a b =--, ()()241241a b a b =-+--;(2)原式()222x x xy y =++,()2x x y =+.【点睛】本题考查了利用提取公因式法和公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟练掌握各方法是解题关键.。

北师大版数学八年级下册第四章因式分解 测试题含答案

北师大版数学八年级下册第四章因式分解 测试题含答案
故选:C.
【点睛】
本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
10.A
【解析】
【分析】
先提公因式,再套用完全平方公式.
【详解】
ax2﹣4ax+4a,
=a(x2﹣4x+4),
=a(x﹣2)2.
故选A.
∴ ,
∴பைடு நூலகம்=9,
故答案为:9.
【点睛】
此题考查完全平方式,解题关键在于掌握完全平方式的运算.
13.-5
【解析】
试题分析:根据m、n互为相反数可得m+n=0,即可求得结果.
由题意得m+n=0,则5m+5n-5=5(m+n)-5=-5.
考点:本题考查的是相反数
点评:解答本题的关键是熟练掌握互为相反数的两个数的和为0.
8.C
【解析】
解析:选项A.用平方差公式法,应为x2y2-z2=(xy+z)·(xy-z),故本选项错误.
选项B.用提公因式法,应为-x2y+ 4xy-5y=- y(x2- 4x+5),故本选项错误.
选项C.用平方差公式法,(x+2)2-9=(x+2+3)(x+2-3)=(x+5)(x-1),故本选项正确.
选项D.用完全平方公式法,应为9-12a+4a2=(3-2a)2,故本选项错误.
故选C.
点睛:(1)完全平方公式: .
(2)平方差公式:(a+b)(a-b)= .
(3)常用等价变形:
,
,
.
9.C
【解析】
【分析】
当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

初中数学北师大版八年级下册第四章 因式分解3.公式法-章节测试习题(3)

章节测试题1.【答题】把x2y-y分解因式,正确的是()A. y(x2-1)B. y(x+1)C. y(x-1)D. y(x+1)(x-1)【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:原式选D.2.【答题】已知a-b=3,则的值是()A. 4B. 6C. 9D. 12【答案】C【分析】先分解因式,再代入求值即可.【解答】∵a-b=3,∴=(a+b)(a-b)-6b=(a+b)(a-b)-6b=3(a+b) -6b=3a+3b-6b=3(a-b)=3×3=9.选C.3.【答题】下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B. x2-2x-1C. x2+xy+y2D. x2+4【答案】A【分析】能用完全平方公式分解因式的式子的特点是:有三项,其中两个平方项的符号必须相同,第三项为两平方项底数乘积的2倍.【解答】解:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.选A.4.【答题】下列多项式中,在有理数范围内能够分解因式的是()A. ﹣5B. +5x+3C. 0.25﹣16D. +9【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:0.25x2-16y2=(0.5x)2-(4y)2=(0.5x+4y)( 0.5x-4y),所以在有理数范围内能够分解因式的是C,选C.5.【答题】把多项式x3-2x2+x分解因式结果正确的是()A. x(x2-2x)B. x2(x-2)C. x(x+1)(x-1)D. x(x-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2选D.6.【答题】下列分解因式正确的是()A. x3﹣x=x(x2﹣1)B. x2+y2=(x+y)(x﹣y)C. (a+4)(a﹣4)=a2﹣16D. m2+m+=(m+)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:A、x3﹣x=x(x+1)(x-1),故此选项错误;B、x2+y2不能够进行因式分解,故错选项错误;C、是整式的乘法,不是因式分解,故此选项错误;D、正确.选D.7.【答题】把代数式x3﹣4x2+4x分解因式,结果正确的是()A. x(x2﹣4x+4)B. x(x﹣4)2C. x(x+2)(x﹣2)D. x(x﹣2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】原式=x(x2﹣4x+4)=x(x﹣2)2,选D.8.【答题】下列各式中,能用完全平方公式分解因式的是()A. 16x2+1B. x2+2x-1C. a2+2ab+4b2D. x2-x+【答案】D【分析】根据完全平方公式因式分解.【解答】解: A. 16x2+1只有两项,不能用完全平方公式分解;B. x2+2x-1,不能用完全平方公式分解;C. a2+2ab+4b2,不能用完全平方公式分解;D. x2-x+=,能用完全平方公式分解.选D.9.【答题】分解因式结果正确的是()A.B.C.D.【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解:选D.10.【答题】把代数式3x3-12x2+12x分解因式,结果正确的是()A. 3x(x2-4x+4)B. 3x(x-4)2C. 3x(x+2)(x-2)D. 3x(x-2)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】3x3-12x2+12x=3x(x2-4x+4)=3x(x-2)2选D.11.【答题】2 0152-2 015一定能被()整除A. 2 010B. 2 012C. 2 013D. 2 014【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】解析:2 0152-2 015=2 015×(2 015-1)=2 015×2 014,所以一定能被2 014整除.选D.12.【答题】下列因式分解正确的是().A.B.C.D.【答案】C【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】A选项中,因为,所以本选项分解错误;B选项中,因为,所以本选项错误;C选项中,因为,所以本选项正确;D选项中,因为,所以本选项错误;选C.13.【答题】把2x-4x分解因式,结果正确的是()A. (x+2)(x-2)B. 2x(x-2)C. 2(x-2x)D. x(2x-4)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】2x2-4x=2(x2-2x)=2x(x-2).选B.14.【答题】计算:2-(-2) 的结果是()A. 2B. 3×2C. -2D. ()【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】22014-(-2)2015=22014+22015=22014(1+2)=3×22014.选B.15.【答题】下列多项式① x²+xy-y²② -x²+2xy-y²③ xy+x²+y²④1-x+ x其中能用完全平方公式分解因式的是()A. ①②B. ①③C. ①④D. ②④【答案】D【分析】根据完全平方公式分解因式.【解答】①③均不能用完全平方公式分解;②-x2+2xy-y2=-(x2-2xy+y2)=-(x-y)2,能用完全平方公式分解,正确;④1-x+=(x2-4x+4)=(x-2)2,能用完全平方公式分解.选D.16.【答题】下列各式是完全平方公式的是()A. 16x²-4xy+y²B. m²+mn+n²C. 9a²-24ab+16b²D. c²+2cd+c²【答案】C【分析】根据完全平方式解答即可.【解答】A.16x²-4xy+y²,不能分解成两个因式的乘积,故本选项错误;B.m²+mn+n²不能分解成两个因式的乘积,故本选项错误;C.9a²-24ab+16b²=(3a-4b)2,故本选项正确;D.c²+2cd+c²不能分解成两个因式的乘积,故本选项错误.选C.17.【答题】下列各式中,能用平方差公式分解因式的是()A.B.C.D.【答案】C【分析】根据平方差公式分解因式解答即可.【解答】平方差公式为:a2-b2=(a+b)(a-b),C选项-x2+4y2= -(x2-4y2)= -(x+2y)(x-2y).方法总结:平方差公式:a2-b2=(a+b)(a-b).18.【答题】一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A. 4x2-4x+1=(2x-1)2B. x3-x=x(x2-1)C. x2y-xy2=xy(x-y)D. x2-y2=(x+y)(x-y)【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】B选项中,(x2-1)仍能继续运用平方差公式,最后结果应为x(x+1)(x-1);选B.19.【答题】把8a3-8a2+2a进行因式分解,结果正确的是()A. 2a(4a2-4a+1)B. 8a2(a-1)C. 2a(2a+1)2D. 2a(2a-1)2【答案】D【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.选D.20.【答题】下列各式不能用公式法分解因式的是()A.B.C.D.【答案】B【分析】本题主要考查了因式分解的方法,在因式分解时首先要观察多项式中有没有公因式,如有公因式,一定要先提取公因式,再看能否套用平方差公式或完全平方公式.【解答】选项A能用平方差公式分解因式;选项C、D能用完全平方公式因式分解;选项B不能因式分解,选B.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》检测题(有答案解析)(3)

一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.若22()x y A x y -+⋅=-,则代数式A 等于( ) A .x y --B .-+x yC .x y -D .x y + 3.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 4.如果917255+能被n 整除,则n 的值可能是( ) A .20B .30C .35D .40 5.下列各式由左到右的变形中,属于因式分解的是( ) A .()210x 5x 5x 2x 1-=-B .()()2222a b c a b a b c --=-+-C .()a m n am an +=+D .()()2x 166x x 4x 46x -+=+-+ 6.下列多项式中,不能用乘法公式进行因式分解的是( ) A .a 2﹣1 B .a 2+2a +1 C .a 2+4D .9a 2﹣6a +1 7.下列各式从左到右因式分解正确的是( ) A .()26223x y x y -+=-B .()22121x x x x -+=-+C .()2242x x -=-D .()()311x x x x x -=+- 8.下列各式中:①()()22x y x y x y --=-+-,②()()22x y x y x y -+=-++, ③()22 242x x x --=-,④221142x x x ++=+⎛⎫ ⎪⎝⎭中,分解因式正确的个数有( ) A .1个 B .2个 C .3个 D .4个9.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( )A .301050B .103020C .305010D .501030 10.下列各式从左到右的变形中,属于因式分解的是( )A .()212x a ax x +=+B .2224(4)x x x x -+=-+C .()236966)9(x x x x x -+=+-+D .()()22m n m n m n -=+- 11.因式分解2x ax b ++,甲看错了a 的值,分解的结果是()()61x x +-,乙看错了b的值,分解的结果为()()21x x -+,那么x ax b ++分解因式正确的结果为( ). A .()()23x x -+B .()()23x x +-C .()()23x x --D .()()23x x ++12.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .0 二、填空题13.分解因式:269a a ++=_______________.14.分解因式:-3x 2+6xy -3y 2=________.15.因式分解:24a b b -=______.16.已知2019x y +=,20202019-=x y ,则22x y -的值为___________. 17.若a 2-b 2=8,a-b=2,则a+b 的值为_________.18.分解因式:3m n mn -=_________.19.把多项式2122214x x --进行分解因式,结果为________________.20.若多项式222(3)x mx x x +=-,则m =_______________.三、解答题21.(1)因式分解:32862a a a --;(2)利用因式分解进行计算:32322022220222020202220222023-⨯-+-. 22.因式分解(1)22()()a x y b x y --- (2)2288x y xy y -+23.观察下列分解因式的过程:2223a ab b +-.解:原式=222223a ab b b b ++--222(2)4a ab b b =++-22()(2)a b b =+-()()22a b b a b b =+++-(3)()a b a b =+-像这种通过增减项把多项式转化成完全平方形式的方法称为配方法.(1)请你运用上述配方法分解因式:2245a ab b +-;(2)代数式222612a a b b ++-+是否存在最小值?如果存在,请求出当a 、b 分别是多少时,此代数式存在最小值,最小值是多少?如果不存在,请说明理由.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)21449x x -+=__________;2718x x +-=__________;(2)()()2294a x y b y x -+-.26.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a②(x 2+1)2﹣4x 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.A解析:A【分析】利用平方差公式将等号右边写成()()x y x y +-,即可求解.【详解】解:∵()()22()y x y A x y x y x -+=+⋅--=, ∴A x y =--,故选:A .【点睛】本题考查平方差公式,掌握平方差公式是解题的关键.3.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 4.B解析:B【分析】两项的底数可以进行转化,25写成5的平方,利用幂的乘方转化后,就可提取公因数进行分解即可解答.【详解】()91718171717162555555156530+=+=⨯+=⨯=⨯,917255∴+能被n 整除,则n 的值可能是30,故选B .【点睛】本题考查了分解因式在计算中的应用,将所给的式子化成积的形式,关键是将两项的底数转化成相同的.5.A解析:A【分析】根据把一个多项式写成几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.【详解】解:A 、10x 2-5x=5x(2x-1)是因式分解,故本选项正确;B 、右边不是整式积的形式,故本选项错误;C 、是整式的乘法,不是因式分解,故本选项错误;D 、右边不是整式积的形式,故本选项错误.故选A.【点睛】本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,熟记因式分解的定义是解题的关键.6.C解析:C【分析】直接利用公式法分别分解因式进而得出答案.【详解】A 、a 2﹣1=(a+1)(a ﹣1),可以运用公式法分解因式,不合题意;B 、a 2+2a+1=(a+1)2,可以运用公式法分解因式,不合题意;C 、a 2+4,无法利用公式法分解因式,符合题意;D 、9a 2﹣6a+1=(3a ﹣1)2,可以运用公式法分解因式,不合题意;故选:C .【点睛】本题考查了公式法,正确运用乘法公式是解题的关键.7.D解析:D【分析】根据提公因式法可判断A 项,根据公式法可判断B 、C 两项,根据提公因式法和平方差公式可判断D 项,进而可得答案.【详解】解:A 、()262231x y x y -+=-+,所以本选项因式分解错误,不符合题意; B 、()22211x x x -+=-,所以本选项因式分解错误,不符合题意;C 、()()2422x x x -=-+,所以本选项因式分解错误,不符合题意;D 、()()()32111x x x x x x x -=-=+-,所以本选项因式分解正确,符合题意. 故选:D .【点睛】本题考查了多项式的因式分解,属于基本题型,熟练掌握分解因式的方法是解题的关键. 8.B解析:B【分析】直接利用平方差公式和完全平方公式分解因式得出答案即可.【详解】解:①()2222+x y x y--=-,无法分解因式,故此选项错误; ②()()22x y x y x y -+=-++,正确;③()222415(11x x x x x --=--=-+--,故此选项错误; ④221142x x x ++=+⎛⎫ ⎪⎝⎭,故此选项正确;所以,正确的答案有2个,故选:B .【点睛】此题主要考查了公式法分解因式,正确应用平方差公式和完全平方公式是解题关键. 9.B解析:B【分析】对多项式利用提公因式法分解因式,利用平方差公式分解因式,然后把数值代入计算即可确定出密码.【详解】x 3−xy 2=x (x 2−y 2)=x (x +y )(x−y ),当x =30,y =20时,x =30,x +y =50,x−y =10,组成密码的数字应包括30,50,10,所以组成的密码不可能是103020.故选:B .【点睛】本题主要考查提公因式法分解因式、平方差公式分解因式,立意新颖,熟记公式结构是解题的关键.10.D解析:D【分析】将多项式写成整式积的形式,即为将多项式分解因式,根据定义解答.【详解】A 、()212x a ax x +=+,不是因式分解,不符合题意;B 、2224(4)x x x x -+=-+,不是因式分解,不符合题意;C 、()236966)9(x x x x x -+=+-+,不是因式分解,不符合题意; D 、()()22m n m n m n -=+-,是因式分解,符合题意; 故选:D .【点睛】此题考查多项式因式分解的定义,熟记定义及因式分解的特点是解题的关键.11.B解析:B【分析】根据甲看错了a 的值,将分解的结果展开,能求出正确的b 的值,乙看错了b 的值,可以求出a 的值,再因式分解即可得到答案.【详解】解:∵甲看错了a 的值∴b 是正确的∵()()61x x +-=256x x +-∴b=-6∵乙看错了b 的值∴a 是正确的∵()()21x x -+=22x x --∴a=-1∴26x x --=()()23x x +-故选:B .【点睛】本题主要考查了因式分解,熟练因式分解以及计算是解决本题的关键.12.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 二、填空题13.(a+3)2【分析】直接利用完全平方公式分解因式得出答案【详解】解:(a+3)2故答案为:(a+3)2【点睛】此题主要考查了公式法分解因式正确运用乘法公式是解题关键解析:(a +3)2【分析】直接利用完全平方公式分解因式得出答案.【详解】解:269a a ++=(a +3)2.故答案为:(a +3)2.【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.14.;【分析】先提公因式-3再用完全平方公式因式分解即可【详解】解:原式=-3(x2-2xy+y2)=;故答案为:;【点睛】本题考查了因式分解掌握因式分解的方法是解题的关键解析:23()x y --;【分析】先提公因式-3,再用完全平方公式因式分解即可.【详解】解:原式=-3(x 2-2xy+y 2)=23()x y --; 故答案为:23()x y --;【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键. 15.【分析】直接提取公因式b 进而利用平方差公式分解因式得出即可【详解】解:4a2b-b=b (4a2-1)=b (2a-1)(2a+1)故答案为:b (2a-1)(2a+1)【点睛】本题考查了提取公因式法以及解析:()()2121b a a -+【分析】直接提取公因式b ,进而利用平方差公式分解因式得出即可.【详解】解:4a 2b-b=b (4a 2-1)=b (2a-1)(2a+1).故答案为:b (2a-1)(2a+1).【点睛】本题考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题的关键. 16.2020【分析】将写成(x+y)(x-y)然后利用整体代入求值即可【详解】解:∵∴故答案为:2020【点睛】本题考查了平方差公式的应用将写成(x+y)(x-y)形式是代入求值在关键解析:2020【分析】将22x y -写成(x+y)(x-y),然后利用整体代入求值即可.【详解】解:∵2019x y +=,20202019-=x y , ∴()()222020==2019=20202019x y x y y x -+⨯-, 故答案为:2020.【点睛】 本题考查了平方差公式的应用,将22x y -写成(x+y)(x-y)形式是代入求值在关键.17.4【分析】先对a2-b2=8左侧因式分解然后将a-b=2代入求解即可【详解】解:∵a2-b2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4故答案为4【点睛】本题考查了代数式求值和因式分解析:4【分析】先对a 2-b 2=8左侧因式分解,然后将a-b=2代入求解即可.【详解】解:∵a 2-b 2=8∴(a-b )(a+b )=8∴2(a+b )=8∴a+b=4.故答案为4.【点睛】本题考查了代数式求值和因式分解,灵活运用因式分解是正确解答本题的关键. 18.【分析】原式提取公因式后利用平方差公式分解即可【详解】解:==故答案为:【点睛】此题主要考查了提公因式法与公式法的综合运用熟练掌握因式分解的方法是解本题的关键解析:()()11mn m m +-【分析】原式提取公因式后,利用平方差公式分解即可.【详解】解:3m n mn -=2(1)mn m -=()()11mn m m +-.故答案为:()()11mn m m +-.【点睛】此题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.2(2x+1)(3x-7)【分析】先提取公因式2再利用十字相乘法进行因式分解【详解】12x2-22x-14=2(6x2-11x-7)=2(2x+1)(3x-7)故答案为:2(2x+1)(3x-7)【解析:2(2x+1)(3x-7)【分析】先提取公因式2,再利用十字相乘法进行因式分解.【详解】12x 2-22x-14=2(6x 2-11x-7)=2(2x+1)(3x-7).故答案为:2(2x+1)(3x-7).【点睛】考查了十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,本题需要进行两次因式分解,分解因式一定要彻底. 20.-6【分析】利用多项式乘法去括号根据对应项的系数相等即可求解【详解】∵∴故答案为:-6【点睛】本题主要考查了因式分解与整式的乘法互为逆运算并且考查了代数式相等的条件:对应项的系数相等解析:-6【分析】利用多项式乘法去括号,根据对应项的系数相等即可求解.【详解】∵222(3)262+x x x x x mx --==∴6m =-,故答案为:-6.【点睛】本题主要考查了因式分解与整式的乘法互为逆运算,并且考查了代数式相等的条件:对应项的系数相等.三、解答题21.(1)()()2141a a a -+;(2)20202023. 【分析】(1)提取公因式2a ,后用十字相乘法分解即可;(2)反复使用提取公因式法化简即可.【详解】(1)32862a a a --=22(431)a a a --=()()2141a a a -+;(2)32322022220222020202220222023-⨯-+- =222022(20222)20202022(20221)2023--+- =22202220202020202220232023⨯-⨯- =222020(20221)2023(20221)⨯-⨯- =20202023.【点睛】本题考查了提取公因式法,十字相乘法分解因式,熟练掌握因式分解的基本方法,并灵活选择方法是解题的关键.22.(1)()()()x y a b a b -+-;(2)22(2)y x -【分析】(1)根据提取公因式和平方差公式化简即可;(2)先提取公因式,再利用完全平方公式化简即可;【详解】(1)()()()()()2222()()---=--=--+a x y b x y x y a b x y a b a b ; (2)()()22228824422-+=-+=-x y xy y y x x y x ; 【点睛】本题主要考查了因式分解的应用,准确计算是解题的关键.23.(1)(a-b )(a+5b );(2)存在最小值,当a=-1,b=3时,最小值为2.【分析】(1)理解题意,按题意所给方法分解因式即可;(2)根据题中所给方法,对原式进行变形求解即可.【详解】解:(1) 2245a ab b +-,22224445a ab b b b -=++-,()()2223a b b =+-, ()()2323b a b a b b =+++-,()()5a b a b =+-;(2)代数式222612a a b b ++-+,=a 2+2a+1+b 2-6b+9-1-9+12,=()()22132a b ++-+, ()()2210,30a b +≥-≥, ∴当10a +=,b-3=0即1a =-,b=3时原式有最小值,最小值是2.【点睛】本题主要考查了配方法分解因式,掌握因式分解的方法,正确理解问题情境是解题关键. 24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)()27x -;()()29x x -+;(2)()()()3232x y a b a b -+- 【分析】(1)直接运用完全平方公式和十字相乘法因式分解即可;(2)先凑出公因式x-y ,然后提取公因式,最后运用平方差公式分解即可.【详解】解:(1)21449x x -+=22277x x -⨯+=()27x -; 2718x x +-=()()29x x -+:(2)()()2294a x y b y x -+-()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法、完全平方公式和十字相乘法成为解答本题的关键.26.(1)①4a ②x 2﹣y 2+18y ﹣81 (2)①﹣2a (a ﹣3)2 ②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x2+1+2x)(x2+1-2x)=(x+1)2(x﹣1)2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.。

北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题

北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题

2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。

北师大八年级数学下册第四章 因式分解单元测试题

北师大八年级数学下册第四章 因式分解单元测试题

初中数学试卷第四章 因式分解单元测试题一、选择题:(每小题3分,共36分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1、下列从左边到右边的变形,是因式分解的是( )A.29)3)(3(x x x -=+- ;B.))((23n m n m m mn m -+=-; C.)1)(3()3)(1(+--=-+y y y y ; D.z yz z y z z y yz +-=+-)2(2242; 2、多项式3222315520m n m n m n +-的公因式是( )A.5mn ;B.225m n ;C.25m n ;D.25mn ; 3、下列多项式中能用平方差公式分解因式的是( )A.22)(b a -+;B.mn m 2052-;C.22y x --; D.92+-x ; 4、下列整式中能直接运用完全平方公式分解因式的为( ) A .x 2﹣1 B .x 2+2x+1 C .x 2+3x+2 D .x 2+y 25、下列多项式能分解因式的是 ( )A.a 2-b ; B.a 2+1; C.a 2+ab+b 2; D.a 2-4a+4; 6、下列各式中不是完全平方式的是( )A.21664m m -+;B.2242025m mn n ++;C.2224m n mn -+;D.221124964mn m n ++;7、把多项式)2()2(2a m a m -+-分解因式等于( )A.))(2(2m m a +-;B.))(2(2m m a --; C.m(a-2)(m-1); D.m(a-2)(m+1);8、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A.1,3-==c b ;B.2,6=-=c b ;C.4,6-=-=c b ;D.6,4-=-=c b 9、如果2592++kx x 是一个完全平方式,那么k 的值是( )A. 15 ;B. ±5;C. 30;D. ±30; 10、两个连续奇数的平方差是( )A.16的倍数B.8的倍数C.12的倍数D.6的倍数11、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是()A.))((22b a b a b a -+=-B.2222)(b ab a b a ++=+C.2222)(b ab a b a +-=-D.)(2b a a ab a -=-12、已知△ABC 的三边a,b,c ,满足,022=-+-bc ac b a 则△ABC 的形状是( ) A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形 二、填空题(每题3分,共12分) 题号 13 14 15 16 答案13、24m 2n +18n 的公因式是________________; 14、若22210b a b b a -+-+==,则。

北师大版八年级数学下册第四章 因式分解单元测试题含答案

北师大版八年级数学下册第四章 因式分解单元测试题含答案

北师大版八年级数学下册第四章因式分解单元测试题含答案一、选择题(本大题共 8 小题,每小题 4 分,共 32 分)1.下列从左到右的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.m3-mn2=m(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列各式因式分解正确的是()A.x2+6xy+9y2=(x+3y)2B.2x2-4xy+9y2=(2x-3y)2C.2x2-8y2=2(x+4y)(x-4y)D.x(x-y)+y(y-x)=(x-y)(x+y)3.如果多项式 4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为()A.2a-b+c C.2a+b-c B.2a-b-c D.2a+b+c4.若a2+8ab+m2 是一个完全平方式,则m应是()A.b2B.±2b C.16b2D.±4b 5.对于任何整数m,多项式(4m+5)2-9 一定能()A.被 8 整除B.被m整除C.被m-91 整除D.被 2m-1 整除6.若m-n=-1,则(m-n)2-2m+2n的值是()A.3B.2C.1D.-17.已知 3a=3b-4,则代数式 3a2-6ab+3b2-4 的值为()44A.3B.-3C.2D.38.若a,b,c是三角形三边的长,则代数式(a2-2ab+b2)-c2 的值()A.大于零B.小于零C.大于或等于零D.小于或等于零二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)9.因式分解:m2n+2mn2+n3=________.10.因式分解:16x4-y4=____________________.11.请在二项式x2-□y2 中的“□”里面添加一个整式,使其能因式分解,你在“□”中添加的整式是________(写出一个即可).12.在半径为R的圆形钢板上,裁去四个半径为r的小圆,当R=7.2 cm,r=1.4 cm 时,剩余部分的面积约是________cm (π 取 3.14,结果精确到个位).213.若△ABC的三边长分别是a,b,c,且a+2ab=c+2bc,则△ABC是____________.14.如图 1,已知边长为a,b的长方形,若它的周长为 24,面积为 32,则a2b+ab2 的值为________.图 1三、解答题(本大题共 5 小题,共 44 分) 15.(9 分)将下列各式因式分解:(1)2x3y-2xy3;(2)x3y-10x2y+25xy;(3)(a-b)(3a+b)2+(a+3b)2(b-a).11122216.(7 分)给出三个多项式:x2+2x-1,x2+4x+1,x2-2x,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.17.(8 分)已知|m+4|与 n2-2n+1 的值互为相反数,把多项式(x2+4y2)-(mxy+n)因式分解.18.(10 分)如图 2①所示是一个长为 2m,宽为 2n 的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.图 2(1)请用两种不同的方法求图②中阴影部分的面积(直接用含 m,n 的代数式表示).方法一:________________________________________________________________________;方法二:________________________________________________________________________.(2)根据(1)的结论,请你写出代数式(m+n)2,(m-n)2,mn 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:已知实数 a,b 满足 a+b=6,ab=5,求 a-b 的值.19.(10 分)阅读材料:对于多项式 x +2ax+a 可以直接用公式法分解为(x+a) 的形式.但对于多项式222x2+2ax-3a2 就不能直接用公式法了,我们可以根据多项式的特点,在 x2+2ax-3a2 中先加上一项 a ,再减去 a 这项,使整个式子的值不变.22解题过程如下:x2+2ax-3a2=x +2ax-3a +a -a (第一步)2222=x +2ax+a -a -3a (第二步)2222=(x+a) -(2a) (第三步)22=(x+3a)(x-a).(第四步)参照上述材料,回答下列问题:(1)从第三步到第四步用到的是哪种因式分解的方法:________________;(2)请你参照上述方法把 m2-6mn+8n2 因式分解.答案1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 218.解:(1)(m+n)2-4mn(m-n)2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).答案1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b ) =8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0, { m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).1. B 2. A 3. C 4. D9. n (m +n )25. A 6. A 7. A 8. B10. (4x 2+y 2)(2x +y )(2x -y )11. 答案不唯一,如 412. 13813. 等腰三角形14. 384 15.解:(1)2x 3y -2xy 3=2xy (x 2-y 2)=2xy (x +y )(x -y ).(2)x 3y -10x 2y +25xy =xy (x 2-10x +25)=xy (x -5)2.(3)(a -b )(3a +b )2+(a +3b )2(b -a )=(a -b )[(3a +b ) -(a +3b ) ]2 2 =(a -b )(3a +b +a +3b )(3a +b -a -3b )=8(a -b ) (a +b ).2 ( 1 ) ( 1 ) x 2+2x -1 x 2+4x +1 2 216.解:(1) + =x 2+6x =x (x +6). ( 1 ) ( 1 ) x 2+2x -1 x 2-2x2 2 (2) + =x 2-1=(x +1)(x -1). ( 1 ) ( 1 ) x 2+4x +1 x 2-2x 22 (3) + =x 2+2x +1=(x +1)2.(答案不唯一,选择其中一种即可)17.解:由题意可得|m +4|+(n -1)2=0,{ m 4 0 ) { m )+ = , =-4, n -1=0, n =1, ∴ 解得 ∴(x +4y )-(mxy +n )=x +4y +4xy -1=(x +2y ) -1=(x +2y +1)(x +2y -1). 2 2 2 2 2(2)(m+n)2-4mn=(m-n)2.(3)由(2)可知(a-b)2=(a+b)2-4ab=62-4×5=16,∴a-b=4 或 a-b=-4.19.解:(1)平方差公式法(2)m2-6mn+8n2=m2-6mn+8n2+n2-n2=m2-6mn+9n2-n2=(m-3n)2-n2=(m-2n) (m-4n).。

北师大版八年级下册数学第四章《因式分解》综合练习题

北师大版八年级下册数学第四章《因式分解》综合练习题

《因式分解》综合练习题一.选择题(共10小题)1.(2021春•沙坪坝区校级月考)多项式x3+6x2y+9xy2与x3y﹣9xy3的公因式是()A.x(x+3y)2B.x(x+3y)C.xy(x+3y)D.x(x﹣3y)2.(2021春•高州市月考)已知:a=2020x+2019,b=2020x+2020,c=2020x+2021,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.33.(2020秋•梁平区期末)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.34.(2018秋•浦东新区期末)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1 5.(2018秋•海珠区校级期中)已知a,b,c是△ABC的三条边长,且(a+b+c)(a﹣b)=0,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.以上均不对6.(2021春•西湖区校级期中)多项式x2+ax+12分解因式为(x+m)(x+n),其中a,m,n 为整数,则a的取值有()A.3个B.4个C.5个D.6个7.(2020秋•澄海区期末)已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15D.168.对任意一个两位数n,如果n满足个位与十位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”的十位上的数字与个位上的数字互换位置后,得到一个新两位数:把所得的新两位数与原两位数的和与11的商记为F(n).例如n=23.互换十位与个位上的数字得到32,所得的新两位数与原两位数的和为23+32=55,55÷11=5,所以F(23)=5.若s,t都是“相异数”,其中s=10x+3,t=50+y(1≤x≤9,1≤y≤9.x,y都是正整数),当F(s)+F(t)=15时,则的最大值为()A.2B.C.D.49.设a为实数,且a3+a2﹣a+2=0,则(a+1)2011+(a+1)2012+(a+1)2013=()A.3B.﹣3C.1D.﹣110.(2019秋•乐清市期末)如果x和y是非零实数,使得|x|+y=3和|x|y+x3=0,那么x+y的值是()A.3B.C.D.4﹣二.填空题(共10小题)11.(2021•常德模拟)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3﹣xy2,取x=11,y=12时,用上述方法产生的密码是(写出一个即可).12.(2021春•江北区校级期中)已知a+b=4,ab=﹣2,则a3b﹣2a2b2+ab3=.13.(2021春•西湖区校级期中)已知多项式x4+mx+n能分解为(x2+px+q)(x2+2x﹣3),则p=,q=.14.(2018春•成都期末)已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=.15.(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为.16.(2017秋•虎林市期末)多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k =,m=.17.(2017春•大邑县期末)已知x2+x=3,则2015+2x+x2﹣2x3﹣x4=.18.(2015春•青羊区校级月考)若a3+3a2+a=0,求=.19.(2019春•西湖区校级月考)已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.20.(2019春•嘉兴期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).三.解答题(共10小题)21.(2020秋•泗水县期末)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正(以方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以分解因式为;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.22.(2021春•拱墅区校级期中)如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)填空:32奇特数,2018奇特数.(填“是”或者“不是”)(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)如图所示,拼叠的正方形边长是从1开始的连续奇数…,按此规律拼叠到正方形ABCD,其边长为99,求阴影部分的面积.23.(2021春•龙华区期中)(1)分解因式:﹣ax2+6ax﹣9a.(2)解不等式组,并把其解集在数轴上表示出来.24.(2021春•龙泉驿区期中)综合与实践下面是某同学对多项式(x2﹣4x)(x2﹣4x﹣10)+25进行因式分解的过程:解:设x2﹣4x=y,原式=y(y﹣10)+25(第一步)=y2﹣10y+25(第二步)=(y﹣5)2(第三步)=(x2﹣4x﹣5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了.A.提取公因式B.平方差公式C.两数差的完全平方公式D.两数和的完全平方公式(2)该同学因式分解的结果是否彻底?(填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为.(3)请你模仿上述方法,对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解.25.(2021春•巴南区期中)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”;643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”.(1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.26.(2021春•九龙坡区校级月考)若一个四位正整数满足,a+b+c+d=20,则称该数为“0萌数”.例如:对于四位数3890,因为3+8+9+0=20,所以3890是“0萌数”;对于四位数2983,因为2+9+8+3=22≠20,所以2983不是“0萌数”.(1)最小的“0萌数”是;(2)判断4579是不是“0萌数”,并说明理由;(3)若一个四位“0萌数”S,满足S=1010a+100b+305(1≤a≤9,0≤b≤6,a、b均为整数),请求出所有满足条件的“0萌数”S.27.(2021春•沙坪坝区校级月考)若一个正整数a可以表示为a=(b+1)(b﹣2),其中b 为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6﹣2)=7×4.(1)“十字点”为7的“十字数”为;130的“十字点”为;(2)若b是a的“十字点”,且a能被(b﹣1)整除,其中b为大于2的正整数,求a 的值;(3)m的“十字点”为p,n的“十字点”为q,当m﹣n=18时,求p+q的值.28.(2021春•郫都区校级期中)(1)若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,求解以下问题:①求p,q的值;②代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.(2)若多项式2x4﹣3x3+ax2+7x+b能被x2+x﹣2整除,求ab.29.(2021春•望城区校级月考)若三个非零实数x,y,z中有一个数的平方等于另外两个数的积,则称三个实数x,y,z三构成“星城三元数”.(1)实数4,6,9可以构成“星城三元数”吗?请说明理由;(2)若M1(t,y1),M2(t﹣1,y2),M3(t+1,y3)三点均在函数(k为常数且k ≠0)的图象上且这三点的纵坐标y1,y2,y3构成“星城三元数”,求实数t的值;(3)设非负实数x1,x2,x3是“星城三元数”且满足x1<x3<x2,其中x1,x2是关于x的一元二次方程nx2+mx+n=0的两个根,x3是二次函数y=ax2+bx+c(其中a>2b>3c)与x轴的一个交点的横坐标,求点P(,)到原点的距离OP的取值范围.30.(2021•九龙坡区校级模拟)一个正整数p能写成p=(m+n)(m﹣n)(m、n均为正整数,且m≠n),则称p为“平方差数”,m、n为p的一个平方差变形,在p的所有平方差变形中,若m2+n2最大,则称m、n为p的最佳平方差变形,此时F(p)=m2+n2.例如:24=(7+5)(7﹣5)=(5+1)(5﹣1),因为72+52>52+12,所以7和5是24的最佳平方差变形,所以F(24)=74.(1)F(32)=;(2)若一个两位数q的十位数字和个位数字分别为x,y(1≤x≤y≤7),q为“平方差数”且x+y能被7整除,求F(q)的最小值.参考答案一.选择题(共10小题)1.(2021春•沙坪坝区校级月考)多项式x3+6x2y+9xy2与x3y﹣9xy3的公因式是()A.x(x+3y)2B.x(x+3y)C.xy(x+3y)D.x(x﹣3y)【考点】公因式.【专题】整式;运算能力.【分析】分别将多项式x3+6x2y+9xy2与多项式x3y﹣9xy3进行因式分解,再寻找他们的公因式.【解答】解:∵x3+6x2y+9xy2=x(x2+6xy+9y2)=x(x+3y)2,x3y﹣9xy3=xy(x2﹣9y2)=xy(x+3y)(x﹣3y),∴多项式x3+6x2y+9xy2与多项式x3y﹣9xy3的公因式是x(x+3y).故选:B.【点评】本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.2.(2021春•高州市月考)已知:a=2020x+2019,b=2020x+2020,c=2020x+2021,则代数式a2+b2+c2﹣ab﹣ac﹣bc的值为()A.0B.1C.2D.3【考点】因式分解的应用.【专题】因式分解;运算能力.【分析】由题意:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,设S=a2+b2+c2﹣ab﹣ac﹣bc,则2S=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc,将式子的右边进行因式分解变形,结论可得.【解答】解:∵a=2020x+2019,b=2020x+2020,c=2020x+2021,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1.设S=a2+b2+c2﹣ab﹣ac﹣bc,则2S=2a2+2b2+2c2﹣2ab﹣2ac﹣2bc.∵2a2+2b2+2c2﹣2ab﹣2ac﹣2bc=a2﹣2ab+b2+a2﹣2ac+c2+b2﹣2bc+c2=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣2)2+(﹣1)2=6,∴S=3.∴a2+b2+c2﹣ab﹣ac﹣bc=3.故选:D.【点评】本题主要考查了因式分解的应用,完全平方公式,利用因式分解法可使运算简便.3.(2020秋•梁平区期末)已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是()A.0B.1C.2D.3【考点】因式分解的应用.【专题】计算题.【分析】根据题目中的式子,可以求得a﹣b、a﹣c、b﹣c的值,然后对所求式子变形,利用完全平方公式进行解答.【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.【点评】本题考查因式分解的应用,解答本题的关键是明确题意,应用完全平方公式进行解答.4.(2018秋•浦东新区期末)下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1【考点】实数范围内分解因式.【专题】实数;运算能力.【分析】对每个选项,令其值为0,得到一元二次方程,计算判别式的值,即可判断实数范围内一定能分解因式的二次三项式.【解答】解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.【点评】本题考查二次三项式在实数范围内的因式分解.解题的关键是把问题转化为一元二次方程是否有实数根的问题.5.(2018秋•海珠区校级期中)已知a,b,c是△ABC的三条边长,且(a+b+c)(a﹣b)=0,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.以上均不对【考点】因式分解的应用.【专题】因式分解;运算能力.【分析】利用因式分解法得到a+b+c=0或a﹣b=0,而a+b+c>0,所以a﹣b=0,即a =b,从而可判断△ABC一定是等腰三角形.【解答】解:∵(a+b+c)(a﹣b)=0,∴a+b+c=0或a﹣b=0,∵a,b,c是△ABC的三条边长,∴a+b+c>0,∴a﹣b=0,即a=b,∴△ABC一定是等腰三角形.故选:A.【点评】本题考查了因式分解的应用:利用因式分解解决求值问题.利用因式分解解决证明问题;利用因式分解简化计算问题.6.(2021春•西湖区校级期中)多项式x2+ax+12分解因式为(x+m)(x+n),其中a,m,n 为整数,则a的取值有()A.3个B.4个C.5个D.6个【考点】因式分解﹣十字相乘法等.【专题】整式;数感.【分析】把12分解为两个整数的积的形式,a等于这两个整数的和.【解答】解:12=1×12时,a=1+12=13;12=﹣1×(﹣12)时,﹣1+(﹣12)=﹣13;12=2×6时,a=2+6=8;12=﹣2×(﹣6)时,﹣2+(﹣6)=﹣8;12=3×4时,a=3+4=7;12=﹣3×(﹣4)时,﹣3+(﹣4)=﹣7;∴a的取值有6个.故选:D.【点评】本题考查了用十字相乘法进行因式分解.能够得出m、n之积为12,m、n之和为a是解题的关键.7.(2020秋•澄海区期末)已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,则该长方形的面积为()cm2.A.B.C.15D.16【考点】因式分解的应用.【专题】整式;运算能力.【分析】由长方形的周长可以求出x+y=8①,再利用完全平方公式可以得出x﹣y=1②,联立①②,解方程组即可得出x,y的值,最后求长方形的面积即可得出结论.【解答】解:∵长方形的周长为16cm,∴2(x+y)=16,∴x+y=8①;∵(x﹣y)2﹣2x+2y+1=0,∴(x﹣y)2﹣2(x﹣y)+1=0,∴(x﹣y﹣1)2=0,∴x﹣y=1②.联立①②,得,解得:,∴长方形的面积S=xy==(cm2),故选:A.【点评】本题考查完全平方公式,解二元一次方程组,考查学生的计算能力,本题的关键是把x﹣y看作一个整体,进行因式分解.8.对任意一个两位数n,如果n满足个位与十位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”的十位上的数字与个位上的数字互换位置后,得到一个新两位数:把所得的新两位数与原两位数的和与11的商记为F(n).例如n=23.互换十位与个位上的数字得到32,所得的新两位数与原两位数的和为23+32=55,55÷11=5,所以F(23)=5.若s,t都是“相异数”,其中s=10x+3,t=50+y(1≤x≤9,1≤y≤9.x,y都是正整数),当F(s)+F(t)=15时,则的最大值为()A.2B.C.D.4【考点】因式分解的应用.【专题】新定义;运算能力.【分析】先用含x的式子表示出F(s),再用含y的式子表示出F(t),然后根据x和y 的取值求出最大值即可.【解答】解:将s的十位上的数字与个位上的数字互换位置后的数记为s'.∵s=10x+3.∴s'=30+x∴F(s)=.将t的十位上的数字与个位上的数字互换位置后的数记为t'.∵t=50+y.∴t'=10y+5.∴F(t)=.∵F(s)+F(t)=15.∴3+x+5+y=15.∴x+y=7.∴y=7﹣x.∴.∵x,y都是正整数.∴x最大为6.∴.故选:B.【点评】本题主要考查数字的处理能力和计算能力,关键在于将F(s)和F(t)用含x 和y的式子表示出来.9.设a为实数,且a3+a2﹣a+2=0,则(a+1)2011+(a+1)2012+(a+1)2013=()A.3B.﹣3C.1D.﹣1【考点】因式分解的应用.【专题】计算题;分类讨论;因式分解;实数;数感;符号意识;运算能力;推理能力.【分析】由已知等式用分组分解法,提取公因式法,整式乘法,方程等知识恒等变形,求出符合条件的a+1的值为﹣1,再将﹣1代入式子中进行运算求出值为﹣1,即答案为D.【解答】解:∵a3+a2﹣a+2=0,(a3+1)+(a2﹣a+1)=0,(a+1)(a2﹣a+1)+(a2﹣a+1)=0(a2﹣a+1)(a+1+1)=0,(a2﹣a+1)(a+2)=0,∴a+2=0,或a2﹣a+1=0,(1)若a2﹣a+1=0时,△=b2﹣4ac=(﹣1)2﹣4×1×1=﹣3<0,∵a为实数,∴此一元二次方程在实数范围内无解;(2)若a+2=0时,变形得:a+1=﹣1…①将①代入下列代数式得:(a+1)2011+(a+1)2012+(a+1)2013=(﹣1)2011+(﹣1)2012+(﹣1)2013=﹣1+1+(﹣1)=﹣1故选:D.【点评】本题综合考查了因式分解中分组分解法,提取公因式法,多项式乘法法则,一元二次方程的解法,乘方运算等相关知识点,重点掌握因式分解的运用,难点是分组分解法因式分解,判定一元二次方程的根的存在性.10.(2019秋•乐清市期末)如果x和y是非零实数,使得|x|+y=3和|x|y+x3=0,那么x+y的值是()A.3B.C.D.4﹣【考点】因式分解的应用.【专题】计算题;分类讨论;运算能力.【分析】根据题意,结合2个式子可得|x|(3﹣|x|)+x3=0,分x>0与x<0两种情况讨论,求出x的值,由y=3﹣|x|,求出y的值,相加即可得答案.【解答】解:根据题意,|x|+y=3则y=3﹣|x|,又由|x|y+x3=0,则有|x|(3﹣|x|)+x3=0,分2种情况讨论:①当x>0时,由|x|(3﹣|x|)+x3=0得到:x(3﹣x)+x3=0,变形可得:x2﹣x+3=0,无解;②当x<0时,由|x|(3﹣|x|)+x3=0得到(﹣x)[3﹣(﹣x)]+x3=0,变形可得:x2﹣x﹣3=0,解可得:x=或x=,(舍)综合可得:x=,则y=3﹣|x|=3+x,x+y=3+2x=4﹣;故选:D.【点评】本题考查因式分解的应用,绝对值的化简计算,注意分类讨论|x|的值.二.填空题(共10小题)11.(2021•常德模拟)在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3﹣xy2,取x=11,y=12时,用上述方法产生的密码是113410(写出一个即可).【考点】因式分解的应用.【专题】因式分解;运算能力.【分析】先因式分解,再代值计算.【解答】解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y).当x=11,y=12时,各因式的值为:x=11,2x+y=22+12=34.2x﹣y=22﹣12=10.∴产生的密码为:113410.故答案为:113410.【点评】本题考查因式分解的应用,正确因式分解是求解本题的关键.12.(2021春•江北区校级期中)已知a+b=4,ab=﹣2,则a3b﹣2a2b2+ab3=﹣48.【考点】因式分解的应用.【专题】因式分解;运算能力.【分析】因式分解后整体代换求值【解答】解:∵a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2=ab[(a+b)2﹣4ab]=﹣2×(16+8)=﹣48.故答案为﹣48.【点评】本题考查因式分解,提公因式再分解求值是求解本题的关键.13.(2021春•西湖区校级期中)已知多项式x4+mx+n能分解为(x2+px+q)(x2+2x﹣3),则p=﹣2,q=7.【考点】因式分解﹣十字相乘法等.【专题】方程思想;因式分解;运算能力;推理能力.【分析】把(x2+px+q)(x2+2x﹣3)展开,找到所有x3和x2的项的系数,令它们的系数分别为0,列式求解即可.【解答】解:∵(x2+px+q)(x2+2x﹣3)=x4+px3+qx2+2x3+2px2+2qx﹣3x2﹣3px﹣3q =x4+(p+2)x3+(q+2p﹣3)x2+(2q﹣3p)x﹣3q=x4+mx+n.∴展开式乘积中不含x3、x2项,∴,解得:.故答案为:﹣2,7.【点评】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可.14.(2018春•成都期末)已知x2﹣2x﹣3=0,则x3﹣x2﹣5x+12=15.【考点】因式分解的应用.【专题】因式分解;数据分析观念.【分析】由x2﹣2x﹣3=0,则x2=2x+3,原式=x(2x+3)﹣x2﹣5x+12=2x2+3x﹣x2﹣5x+12=x2﹣2x+12,即可求解.【解答】解:∵x2﹣2x﹣3=0,∴x2=2x+3,∴原式=x(2x+3)﹣x2﹣5x+12=2x2+3x﹣x2﹣5x+12=x2﹣2x+12=3+12=15,故答案为15.【点评】主要考查了分解因式的实际运用,解此类题目的关键是将分解的因式与条件比对,将条件代入后再继续分解.15.(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为3.【考点】因式分解的应用.【分析】根据已知条件可得a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,再将a2+b2+c2﹣ab﹣bc ﹣ca变形为[(a﹣b)2+(b﹣c)2+(c﹣a)2],然后代入计算即可.【解答】解:∵a=2009x+2007,b=2009x+2008,c=2009x+2009,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=(1+1+4)=3.故答案为3.【点评】本题考查了因式分解的应用以及代数式求值,掌握完全平方公式以及整体代入思想是解题的关键.16.(2017秋•虎林市期末)多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k =9,m=3.【考点】因式分解﹣十字相乘法等.【分析】直接利用多项式乘法将原式化简,进而得出关于m,k的等式求出答案即可.【解答】解:∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:,故答案为:9,3.【点评】此题主要考查了十字相乘法的应用,正确利用多项式乘法是解题关键.17.(2017春•大邑县期末)已知x2+x=3,则2015+2x+x2﹣2x3﹣x4=2012.【考点】因式分解的应用.【专题】转化思想.【分析】把代数式2015+2x+x2﹣2x3﹣x4整理成含(x2+x)的形式,进一步整体代入求得数值即可.【解答】解:∵x2+x=3,∴2015+2x+x2﹣2x3﹣x4=﹣x2(x2+x)﹣x3+(x2+x)+x+2015=﹣3x2﹣x3+3+x+2015=﹣x(x2+x)﹣2x2+3+x+2015=﹣3x﹣2x2+3+x+2015=﹣2(x2+x)+2018=﹣6+2018=2012.故答案是:2012.【点评】本题考查了提公因式法分解因式,整理成已知条件的形式,利用整体代入求解是解题的关键.18.(2015春•青羊区校级月考)若a3+3a2+a=0,求=﹣或0.【考点】因式分解的应用.【专题】计算题.【分析】用提公因式法对方程a3+3a2+a=0的左边因式分解得a(a2+3a+1)=0则a=0或a2+3a+1=0,当a=0时上式的值为零,当a2+3a+1=0时,可将每一项都除以a,得到a+=﹣3,上式分子分母中每一项都除以a3,分子为常数2,分母为a3+3+,再用立方和公式进行计算.【解答】解:∵a3+3a2+a=0,∴a(a2+3a+1)=0∴a=0或a2+3a+1=0当a=0时的值为0.当a2+3a+1=0时,每项都除以a得a+=﹣3,将上式的分子分母同时除以a3,分子为常数2,分母为a3+6+,又∵a3+=(a+)(a2﹣1+)=(a+)[(a+)2﹣3]=﹣3[9﹣3]=﹣18,∴==﹣故的值为﹣或0.【点评】用因式分解法将多项式分解,使多项式化简,灵活运用立方和公式.19.(2019春•西湖区校级月考)已知x2﹣2x﹣1=0,则3x2﹣6x=3;则2x3﹣7x2+4x﹣2019=﹣2022.【考点】因式分解的应用.【专题】计算题;整体思想;运算能力.【分析】根据因式分解的提公因式法分解因式,利用整体代入的方法即可求得第一个空的解;分解第二个因式后把﹣7x写成﹣4x﹣3x再重新组合,进行提公因式,最后整体代入即可求得第二个空的解.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x2﹣4x=2,∴3x2﹣6x=3(x2﹣2x)=3.2x3﹣7x2+4x﹣2019=x(2x2﹣7x)+4x﹣2019=x(2x2﹣4x﹣3x)+4x﹣2019=x(2﹣3x)+4x﹣2019=2x﹣3x2+4x﹣2019=﹣3x2+6x﹣2019=﹣3(x2﹣2x)﹣2019=﹣3×1﹣2019=﹣2022.故答案为:3,﹣2022.【点评】本题考查了因式分解的应用,解决本题的关键是整体思想的运用.20.(2019春•嘉兴期末)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是104020(答案不唯一)(写出一个即可).【考点】因式分解的应用.【专题】整式;数据分析观念.【分析】9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【解答】解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.【点评】本题考查的是因式分解,分解后,将变量赋值,按照因式组合即可.三.解答题(共10小题)21.(2020秋•泗水县期末)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图(1)可以用来解释a2+2ab+b2=(a+b)2,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.如图(2),将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正(以方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以分解因式为(2m+n)(m+2n);(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.【考点】代数式;完全平方公式的几何背景;因式分解的应用;全等图形.【专题】阅读型;数形结合;符号意识.【分析】(1)通过图形即可求得到;(2)由题意可得mn=10,2m2+2n2=58,利用完全平方公式求出m+n的值,即可求解.【解答】解:(1)由图形可知,2m2+5mn+2n2表示所有部分面积之和,整体来看面积为:(2m+n)(m+2n),∴2m2+5mn+2n2=(2m+n)(m+2n),故答案为:(2m+n)(m+2n);(2)由题意可知mn=10,2m2+2n2=58,所有裁剪线(虚线部分)长之和为:6(m+n),∴(m+n)2=m2+n2+2mn=29+20=49,∴m+n=7,∴所有裁剪线(虚线部分)长之和为:6(m+n)=42(cm).【点评】本题考查因式分解的应用;理解题意,从题目中获取信息,列出正确的代数式,再由图形的特点求解是解题的关键.22.(2021春•拱墅区校级期中)如果一个正整数能表示为两个连续奇数的平方差,那么称这个正整数为“奇特数”,例如:8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数.(1)填空:32是奇特数,2018不是奇特数.(填“是”或者“不是”)(2)设两个连续奇数是2n﹣1和2n+1(其中n取正整数),由这两个连续奇数构造的奇特数是8的倍数吗?为什么?(3)如图所示,拼叠的正方形边长是从1开始的连续奇数…,按此规律拼叠到正方形ABCD,其边长为99,求阴影部分的面积.【考点】平方差公式的几何背景;因式分解的应用.【专题】整式;运算能力.【分析】(1)根据32=92﹣72,以及8、16、24这三个数都是奇特数,他们都是8的倍数,而2018=2×1009,不是8的整数倍,进行判断.(2)利用平方差公式计算(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n •2=8n,得到两个连续奇数构造的奇特数是8的倍数;(3)利用阴影部分面积为:S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12,进而求出即可.【解答】解:(1)∵8=32﹣12,16=52﹣32,24=72﹣52;则8、16、24这三个数都是奇特数,∴奇特数是8的整数倍,即8n(n是正整数),∵32=8×4=92﹣72,∴32是奇特数,∵2018=2×1009,不是8的整数倍,∴2018不是奇特数,故答案为:是,不是;(2)由这两个连续奇数构造的奇特数是8的倍数,理由:∵(2n+1)2﹣(2n﹣1)2=(2n+1+2n﹣1)(2n+1﹣2n+1)=4n•2=8n,∴由这两个连续奇数构造的奇特数是8的倍数.(3)S阴影部分=992﹣972+952﹣932+912﹣892+…+72﹣52+32﹣12=(99+97)(99﹣97)+(95+93)(95﹣93)+(91+89)(91﹣89)+…+(7+5)(7﹣5)+(3+1)(3﹣1)=(99+97+95+…+3+1)×2=×2=5000.【点评】本题考查了正方形面积、新概念应用、平方差公式a2﹣b2=(a+b)(a﹣b)应用,利用图形正确表示出阴影部分是解题关键.23.(2021春•龙华区期中)(1)分解因式:﹣ax2+6ax﹣9a.(2)解不等式组,并把其解集在数轴上表示出来.【考点】提公因式法与公式法的综合运用;在数轴上表示不等式的解集;解一元一次不等式组.【专题】整式;运算能力.【分析】(1)先提公因式﹣a,再用完全平方公式即可;(2)分别解出两个不等式的解集,表示在数轴上,公共部分即为不等式组的解集.【解答】解:(1)原式=﹣a(x2﹣6x+9)=﹣a(x﹣3)2;(2),解不等式①得:x≥﹣1,解不等式②得:x<2,把不等式的解集表示在数轴上如图所示,∴原不等式组的解集为:﹣1≤x<2.【点评】本题考查了因式分解,解一元一次不等式组,考核学生的计算能力,解不等式时,不等式两边同时除以一个负数,不等号的方向改变.24.(2021春•龙泉驿区期中)综合与实践下面是某同学对多项式(x2﹣4x)(x2﹣4x﹣10)+25进行因式分解的过程:解:设x2﹣4x=y,原式=y(y﹣10)+25(第一步)=y2﹣10y+25(第二步)=(y﹣5)2(第三步)=(x2﹣4x﹣5)2(第四步)回答下列问题:(1)该同学第二步到第三步运用了C.A.提取公因式B.平方差公式C.两数差的完全平方公式D.两数和的完全平方公式(2)该同学因式分解的结果是否彻底?不彻底(填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为(x﹣5)2(x+1)2.(3)请你模仿上述方法,对多项式(x2﹣2x﹣1)(x2﹣2x+3)+4进行因式分解.【考点】因式分解﹣提公因式法;因式分解﹣运用公式法;因式分解﹣十字相乘法等.【专题】整式;运算能力;模型思想.【分析】(1)由完全平方公式可得答案;(2)根据换元法分解因式的方法进行解答即可;(3)利用(1)(2)问中提供的方法,设x2﹣2x=m,再逐步进行分解即可.【解答】解:(1)由y2﹣10y+25到(y﹣5)2是利用完全平方公式所得,故答案为:C;(2)设x2﹣4x=y,原式=y(y﹣10)+25,=y2﹣10y+25,=(y﹣5)2=(x2﹣4x﹣5)2,=[(x﹣5)(x+1)]2,=(x﹣5)2(x+1)2;故答案为:不彻底,(x﹣5)2(x+1)2;(3)设x2﹣2x=m,原式=(m﹣1)(m+3)+4,=m2+2m+1,=(m+1)2=(x2﹣2x+1)2,=[(x﹣1)2]2,=(x﹣1)4;即(x2﹣2x﹣1)(x2﹣2x+3)+4=(x﹣1)4.【点评】本题考查换元法分解因式,掌握换元的意义,完全平方公式是解决问题的关键.25.(2021春•巴南区期中)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”;643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”.(1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.【考点】列代数式;因式分解的应用.【专题】阅读型;运算能力.【分析】(1)根据好数的定义判断即可得出结论;(2)设十位数数字为a,则百位数数字为a+7(0<a≤2的整数),得出百位数字和十位数字的和为2a+7,再分别取a=1,2,计算判断即可得出结论.【解答】解:(1)134是“好数”.理由:∵1,3,4都不为0,且1+3=4,4能被4整除,∴134是“好数”.614不是“好数”.理由:∵6+1=7,7不能被4整除,∴614不是“好数”.(2)设十位数数字为a,则百位数数字为a+7(0<a≤2的整数),∴a+a+7=2a+7.当a=1时,2a+7=9.∵9能被1,3,9整除,∴满足条件的三位数有:811,813,819.当a﹣2时,2a+7=11.∵11能被1整除,∴满足条件的三位数有:921.综上,百位上的数字比十位上的数字大7的所有“好数”有:811,813,819,921.【点评】本题主要考查了因式分解的应用,列代数式和求代数式的值,正确理解题干中的定义并熟练应用是解题的关键.26.(2021春•九龙坡区校级月考)若一个四位正整数满足,a+b+c+d=20,则称该数为“0萌数”.例如:对于四位数3890,因为3+8+9+0=20,所以3890是“0萌数”;对于四位数2983,因为2+9+8+3=22≠20,所以2983不是“0萌数”.(1)最小的“0萌数”是1199;(2)判断4579是不是“0萌数”,并说明理由;(3)若一个四位“0萌数”S,满足S=1010a+100b+305(1≤a≤9,0≤b≤6,a、b均为整数),请求出所有满足条件的“0萌数”S.【考点】因式分解的应用;解二元一次方程组.【专题】整式;运算能力.【分析】(1)根据a,b,c,d为正整数,最小的0萌数的千位数字和百位数字为1,根据和为20可知十位数字和个位数字都是9;(2)根据四个数字的和是否为20进行判断;(3)对S进行变形,得到这个四位数的千位数字为a,百位数字为b+3,十位数字为a,个位数字为5,根据四个数字的和为20得到a,b的关系,根据题中1≤a≤9,0≤b≤6,a、b均为整数确定a,b的值,进而求出S.【解答】解:(1)∵a,b,c,d为正整数,∴最小的0萌数的千位数字和百位数字为1,∴a=b=1,∵a+b+c+d=20,∴c+d=18,∴c=d=9,∴最小的0萌数是1199.故答案为:1199.(2)不是,理由如下:∵4+5+7+9=25≠20,∴4579不是0萌数;(3)∵S=1010a+100b+305=1000a+100(b+3)+10a+5,∴四位数的千位数字为a,百位数字为b+3,十位数字为a,个位数字为5,∴a+b+3+a+5=20,∴2a+b=12,∵1≤a≤9,0≤b≤6,a、b均为整数,∴满足条件的有或或或,∴S=6365,5555,4745,3935.。

北师大版八年级数学下册 第四章 因式分解 章末综合测试卷 含答案

北师大版八年级数学下册 第四章 因式分解 章末综合测试卷 含答案

解得:m= ,n= .
25、解: (1)a2b+ab2=ab(a+b)=2×3=6;
(2)∵(a+b)2=a2+2ab+b2 ∴a2+b2=(a+b)2﹣2ab, =32﹣2×2, =5. 26、解: 当 ab=1,a+b=2 时, 原式=ab(a+b)=1×2=2. 故答案为:2. 27、解: b2﹣2b+1﹣a2=(b﹣1)2﹣a2=(b﹣1+a)(b﹣1﹣a), 当 a=﹣3,b= +4 时, 原式= ×( +6)=3+6 .


解得:n=﹣7,m=﹣21 ∴另一个因式为(x﹣7),m 的值为﹣21 问题:仿照以上方法解答下面问题: 已知二次三项式 2x2+3x﹣k 有一个因式是(2x﹣5),求另一个因式以及 k 的值.
24.若 x2+x+m=(x+n)2,求 m,n 的值.
25.已知:a+b=3,ab=2,求下列各式的值: (1)a2b+ab2 (2)a2+b2
(8x+c),其中 a,b,c 均为整数,则 a+b+c=( )
A.﹣12
B.﹣32
C. 38 D. 72
5.若 a*b=a2+2ab,则 x2*y 所表示的代数式分解因式的结果是( )
A. x2(x2+2y)
B. x(x+2)
C. y2(y2+2x)
D.x2(x2﹣2y)
6.多项式 m2﹣4n2 与 m2﹣4mn+4n2 的公因式是( )
9.已知 a、b、c 是△ABC 的三边长,且满足 a3+ab2+bc2=b3+a2b+ac2,则△ABC

北师大八年级下册第四章《因式分解》单元测试题含答案解析

北师大八年级下册第四章《因式分解》单元测试题含答案解析

第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。

北师大版数学八年级下册:第四章 因式分解 单元测试(附答案)

北师大版数学八年级下册:第四章 因式分解  单元测试(附答案)

第四章因式分解单元测试(时间:40分钟满分:100分)一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是()A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是()A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是()A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是()A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是()A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为()A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是()A.x2+2x=x(x+2)B.x2-2x+1=(x-1)2C.x2+2x+1=(x+1)2D.x2+3x+2=(x+2)(x+1)8.已知a-b=1,则a2-b2-2b的值为()A.4 B.3 C.1 D.09.对于任何整数m ,多项式(4m +5)2-9都能( )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m = .12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是 .13.若x +y =2,则代数式14x 2+12xy +14y 2= . 14.计算:1.222×9-1.332×4= .15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是 .三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ; (2)n 2(m -2)-n(2-m );(3)(a +b )3-4(a +b ); (4)8(x 2-2y 2)-x(7x +y )+xy.17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值.18.(9分)商贸大楼共有四层,第一层有商品(a+b)2种,第二层有商品a(a+b)种,第三层有商品b(a+b)种,第四层有商品(b+a)2种.若a+b=10,则这座商贸大楼共有商品多少种?19.(10分)阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式.【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为,图4中的几何体的体积为,根据它们的体积关系得到关于a,b的等式为:.(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.参考答案:一、选择题(每小题3分,共30分)1.下列从左边到右边的变形中,是因式分解的是(B)A.(3-x)(3+x)=9-x2B.m4-n4=(m2+n2)(m+n)(m-n)C.(y+1)(y-3)=-(3-y)(y+1)D.4yz-2y2z+z=2y(2z-yz)+z2.下列多项式中,能用公式法因式分解的是(C)A.x2-xy B.x2+xyC.x2-y2D.x2+y23.把8a3-8a2+2a进行因式分解,结果正确的是(D)A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a+1)2D.2a(2a-1)24.将下列多项式因式分解,结果中不含有因式a+1的是(C)A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+15.一次数学课堂练习,小明同学做了如下四道因式分解题.你认为小明做得不够完整的一题是(B)A.4x2-4x+1=(2x-1)2B.x3-x=x(x2-1)C.x2y-xy2=xy(x-y)D.x2-y2=(x+y)(x-y)6.若x2+ax-24=(x+2)(x-12),则a的值为(A)A.-10 B.±10 C.14 D.-147.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是(D)A.x2+2x=x(x+2)B .x 2-2x +1=(x -1)2C .x 2+2x +1=(x +1)2D .x 2+3x +2=(x +2)(x +1)8.已知a -b =1,则a 2-b 2-2b 的值为(C )A .4B .3C .1D .09.对于任何整数m ,多项式(4m +5)2-9都能(A )A .被8整除B .被m 整除C .被m -1整除D .被2m -1整除 10.某同学粗心大意,因式分解时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是(B )A .8,1B .16,2C .24,3D .64,8二、填空题(每小题3分,共15分)11.因式分解:2m 3-8m =2m(m +2)(m -2).12.若二次三项式x 2-kx +9是一个完全平方式,则k 的值是±6.13.若x +y =2,则代数式14x 2+12xy +14y 2=1. 14.计算:1.222×9-1.332×4=6.32.15.两名同学将同一个二次三项式因式分解,甲因看错了一次项系数而分解成(x +1)(x +9);乙因看错了常数项而分解成(x -2)(x -4),则将原多项式因式分解后的正确结果应该是(x -3)2.三、解答题(共55分)16.(16分)因式分解:(1)3m 2n -12mn +12n ;解:原式=3n(m 2-4m +4)=3n(m -2)2.(2)n 2(m -2)-n(2-m );解:原式=n 2(m -2)+n(m -2)=n(n +1)(m -2).(3)(a +b )3-4(a +b );解:原式=(a +b )[(a +b )2-4]=(a +b )(a +b +2)(a +b -2).(4)8(x 2-2y 2)-x(7x +y )+xy.解:原式=8x 2-16y 2-7x 2-xy +xy=x 2-16y 2=(x +4y )(x -4y ).17.(8分)不解方程组⎩⎨⎧2x +y =6,x -3y =1,求7y(x -3y )2-2(3y -x )3的值. 解:原式=(x -3y )2[7y +2(x -3y )]=(x -3y )2(2x +y ).∵⎩⎨⎧2x +y =6,x -3y =1,∴原式=12×6=6.18.(9分)商贸大楼共有四层,第一层有商品(a +b )2种,第二层有商品a(a +b )种,第三层有商品b(a +b )种,第四层有商品(b +a )2种.若a +b =10,则这座商贸大楼共有商品多少种?解:(a +b )2+a(a +b )+b(a +b )+(b +a )2=2(a +b )2+(a +b )(a +b )=2(a +b )2+(a +b )2=3(a +b )2.因为a +b =10,所以3(a +b )2=300.答:这座商贸大楼共有商品300种.19.(10分)阅读下列解题过程:已知a ,b ,c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状. 解:∵a 2c 2-b 2c 2=a 4-b 4,①∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).②∴c 2=a 2+b 2.③∴△ABC 为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.解:正确的解法如下:∵a 2c 2-b 2c 2=a 4-b 4,∴c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)[c2-(a2+b2)]=0.分三种情况讨论:①当a2-b2=0,c2-(a2+b2)≠0时,则a=b,∴△ABC为等腰三角形;②当a2-b2≠0,c2-(a2+b2)=0时,则c2=a2+b2,∴△ABC为直角三角形;③当a2-b2=0,且c2-(a2+b2)=0时,则a=b,c2=a2+b2,∴△ABC为等腰直角三角形.综上所述,△ABC为直角三角形或等腰三角形或等腰直角三角形.20.(12分)【知识再现】在研究平方差公式时,我们在边长为a的正方形中剪掉一个边长为b的小正方形(a>b),如图1,把余下的阴影部分再剪拼成一个长方形(如图2),根据图1、图2阴影部分的面积关系,可以得到一个关于a,b的等式a2-b2=(a+b)(a-b).【知识迁移】在边长为a的正方体上挖去一个边长为b(a>b)的小正方体后余下的部分(如图3)再切割拼成一个几何体(如图4).图3中的几何体的体积为a3-b3,图4中的几何体的体积为a2(a-b)+ab(a-b)+b2(a-b),根据它们的体积关系得到关于a,b的等式为:a3-b3=(a-b)(a2+ab+b2).(结果写成整式的积形式)【知识运用】(1)因式分解:8x3-1;(2)已知a-b=4,ab=3,求a3-b3的值.解:(1)8x3-1=(2x)3-1=(2x-1)(4x2+2x+1).(2)∵a-b=4,ab=3,∴a2+b2=(a-b)2+2ab=16+6=22.∴a3-b3=(a-b)(a2+ab+b2)=4×(22+3)=100.。

(完整版)新北师大版八年级数学下册第四章《因式分解》测试卷

(完整版)新北师大版八年级数学下册第四章《因式分解》测试卷

新北师大版八年级数学下册一、选择题(每小题 3 分,共36 分)1、下列等式从左到右的变形,属于因式分解的是()A.a( x y) ax ayB.x 22x 1 x( x 2) 1C.( x21)( x 3) x 4 x 3 3D.x x x( x 1)( x 1)2、观察下列多项式:(1)2a 2 b4b 2(2)(a b) 2 x 5x 2 (a b) 4(a b) 2 (3)9a 2 (x y) 4b ( y x) 、(4)8a 34a 2 2 a 1 其中,可以用提取公因式法分解因式的只有()A. (1)(4)B.(2)(3)C.(2)(4)D. (1)(3)3、a 4 b 6a 3b 9a 2b 分解因式正确的是()A. a 2 b( a 26a 9)B. a 2b(a 3)( a 3)C.b( a 23) 2D. a 2 b( a 3) 24、2 y(x y) 2( y x) 3 ()A.( x2y)( x y) B.(3 y 2x)( x y) C.( x 23 y)( y x) 3D.( y x)5、28a 2b 21ab 27ab ()A.7ab( 4a 3b 1)B.7ab( 4a 3b 1)C.7ab( 4a 3b 1)D.7 a b(4a 3b)6、( 2) m2( 2) m 1 的值是()A. 1 B. -1 C. 0 D. (-1)m+17、若3x-2y=40 ,x-4y=-50 ,则(x y)2(2 x 3 y) 2 的值为()A. 2000 B. -2000 C. 200 D.-2008、2 a22b 22c22ab 2bc 2 a c ()A. (a b) 2c(c 2a 2b)B. ( a b c) 2C. (b c) 2 a 2 2a(b c)D. (a b) 2(b c)2(c a)29、对于任意正整数m,多项式(4m 5) 29 都能被下列哪个整式整除()A. 8B. mC. m-1D. 2 m-110、已知a,b,c 是△ABC 的三边长,且满足 a 22b 2 c 2 2b(a c) 0 ,则此三角形是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 不能确定11、某同学粗心大意,分解因式时,把等式x4-■= (x2+4 )(x+2 )(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是()A. 8 ,1 B. 16,2 C. 24,3 D. 64,81 12、若xx 3 ,则x21x 2的值为()A. 11 B. 9 C. 7 D. 6二、填空题(每小题 3 分,共15 分)13、如果( 1b) M b 2 1 ,则M= 。

2018北师大版数学八年级下册第四章《因式分解》单元测试

2018北师大版数学八年级下册第四章《因式分解》单元测试

第四章 因式分解单元测试一、选择题(每小题4分,共40分)1、下列从左边到右边的变形,是因式分解的是( )A 、29)3)(3(x x x -=+- ;B 、))((23n m n m m mn m -+=-;C 、)1)(3()3)(1(+--=-+y y y y ;D 、z yz z y z z y yz +-=+-)2(2242;2、下列多项式中能用平方差公式分解因式的是( )A 、22)(b a -+;B 、mn m 2052-;C 、22y x --;D 、92+-x ;3、多项式3222315520m n m n m n +-的公因式是( )A 、5mn ;B 、225m n ;C 、25m n ;D 、25mn ;4、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、 15 ;B 、 ±5;C 、 30;D 、 ±30;5、下列多项式能分解因式的是 ( )A 、a 2-b;B 、a 2+1;C 、a 2+ab+b 2;D 、a 2—4a+4;6、若E p q p q q p ⋅-=---232)()()(,则E 是( )A 、p q --1;B 、p q -;C 、q p -+1;D 、p q -+1;7、下列各式中不是完全平方式的是( )A 、21664m m -+;B 、2242025m mn n ++;C 、2224m n mn -+;D 、221124964mn m n ++;8、把多项式)2()2(2a m a m -+-分解因式等于() A 、))(2(2m m a +-; B 、))(2(2m m a --; C 、m (a —2)(m-1); D 、m (a —2)(m+1);9、已知多项式c bx x ++22分解因式为)1)(3(2+-x x ,则c b ,的值为( )A 、1,3-==c b ;B 、2,6=-=c b ;C 、4,6-=-=c b ;D 、6,4-=-=c b10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a 〉b )、把余下的部分剪拼成一个矩形(如图)、通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )A 、))((22b a b a b a -+=-B 、2222)(b ab a b a ++=+C 、2222)(b ab a b a +-=-D 、)(2b a a ab a -=-二、填空题(每空3分,满分30分)1、24m 2n +18n 的公因式是________________;2、分解因式x (2-x )+6(x -2)=_________________;(x 2+y 2)2-4x 2y 2=________________;3、x 2-254y 2=(x +52y )·( ____ ); 4、在括号前面填上“+”或“-"号,使等式成立:(1)22)()(y x x y -=-; (2))2)(1()2)(1(--=--x x x x 。

北师大版数学八年级下册 第四章 因式分解 单元测试卷(含答案)

北师大版数学八年级下册 第四章 因式分解  单元测试卷(含答案)

第四章因式分解单元测试卷一、选择题(每题3分,共30分)1.下列从左到右的变形中,是因式分解的是()A.x2-9=(x-3)2B.x2-x+4=x(x-1)+4C.(x+2)2=x2+4x+4 D.x2+2x=x(x+2)2.用提公因式法分解因式2x2-x时,应提取的公因式是()A.x B.2x C.x2D.23.下列多项式中,可以用平方差公式进行因式分解的是()A.x2+4y2B.-9x2-y2C.4x+y2D.-16x2+25y24.下列多项式能用完全平方公式进行因式分解的是()A.a2-2a+4 B.a2+2a-1C.a2+a-1 D.a2-4a+45.若多项式x2+kx-6可以因式分解为(x-2)(x+3),则k的值为() A.1 B.-1 C.-2 D.26.利用因式分解计算11×1022-11×982的结果是()A.44 B.800 C.2 200 D.8 8007.如图,长为a,宽为b的长方形的周长为16,面积为12,则a2b+ab2的值为()A.28 B.96C.192 D.2008.已知x3+x2+x+1=0,则x2 023+x2 022+x2 021+…+x+1的值是() A.0 B.1 C.-1 D.29.若多项式2x2+ax-6能分解成两个一次因式的积,且其中一个一次因式为2x -3,则a的值为()A.1 B.5 C.-1 D.-5 10.216-1可以被10~20之间的两个整数整除,则这两个整数是()A.13和15 B.12和16 C.14和17 D.15和17 二、填空题(每题3分,共15分)11.因式分解:2ax2-2a=____________________.12.已知x=y+3,则代数式x2-2xy+y2-20的值为________.13.若2 0242-4=2 022m,则m=________.14.若关于x的二次三项式x2+2(m-3)x+16可用完全平方公式分解因式,则m 的值为________.15.设M=2n+28+1,若M为某个有理数的平方,则n的值为____________.三、解答题(一)(每题8分,共24分)16.因式分解:(1)4a2-25;(2)2x2-8xy+8y2.17.给出三个多项式:12x3+2x2-x,12x3+4x2+x,12x3-2x2,请选择你喜欢的两个多项式进行加法运算,再把结果因式分解.18.已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.四、解答题(二)(每题9分,共27分)19.甲、乙两个同学因式分解x2+ax+b时,甲看错了b,分解结果为(x+4)·(x+2),乙看错了a,分解结果为(x+1)·(x+9).求多项式x2+ax+b分解因式的正确结果.20.如图①,在一个边长为a的正方形中,剪去一个边长为b的小正方形,再将余下的部分拼成如图②所示的长方形.(1)[观察]比较两图中阴影部分的面积,可以得到等式:________(用字母a,b表示);(2)[应用]计算:x4-81;(3)[拓展]已知2m-n=3,2m+n=4,求8m2-2n2的值.321. 在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式x3+2x2-x-2因式分解的结果为(x-1)(x+1)(x +2).当x=18时,x-1=17,x+1=19,x+2=20,此时可以得到数字密码171 920或201 719等.(1)根据上述方法,当x=28,y=11时,对于多项式x3-xy2分解因式后可以得到数字密码:______________;(2)将关于x的多项式(m-n)x3-(m+12n)x分解因式后,利用题目中所示的方法,当x=18时得到的数字密码之一为182 016,求m,n的值.五、解答题(三)(每题12分,共24分)22.在一次数学综合与实践活动中,同学们需要制作如图1所示的三种卡片,其中卡片①是边长为a的正方形,卡片②是长为b,宽为a的长方形,卡片③是边长为b的正方形.(1)卡片①,卡片②,卡片③的面积之和为_________________________;(2)小明制作了2张卡片①,3张卡片②,1张卡片③,并用这些卡片无缝无叠合拼成如图2所示的大长方形,请根据图2的面积写一个多项式的因式分解为____________;(3)小刚将自己制作的2张卡片①和1张卡片②送给小明,小明用所有卡片重新无缝无叠合拼成一个大的正方形M,若a=1.6,b=2.8,求正方形M的边长.23.教材中写道:“形如a2±2ab+b2的式子称为完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决数学问题的方法,不仅可以将有些看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题及求代数式最大、最小值等问题.例如:分解因式x2+2x-3.原式=x2+2x+1-1-3=(x2+2x+1)-4=(x+1)2-4=(x+1+2)(x+1-2)=(x+3)(x-1).例如:求代数式x2+4x+6的最小值.原式=x2+4x+4-4+6=x2+4x+4+2=(x+2)2+2.∵(x+2)2≥0,∴当x=-2时,x2+4x+6有最小值,是2.解决下列问题:(1)若多项式x2+6x+m是一个完全平方式,那么常数m的值为________;(2)分解因式:x2+6x-16=______________;(3)若x>-1,比较:x2+6x+5________0(填“>”“<”或“=”),并说明理由;(4)求代数式-x2-6x-5的最大或最小值.5答案一、1.D 2.A 3.D 4.D 5.A 6.D 7.B 8.A 9.A10.D 点拨:216-1=(28+1)(28-1)=(28+1)(24+1)(24-1)=257×17×15.二、11.2a (x +1)(x -1) 12.-1113.2 026 14.7或-115.5或14或-10 点拨:当2n 是乘积二倍项时,原式=28+2×24+1=(24+1)2,此时n =5;当28是乘积二倍项时,原式=2n +2×27+1=(27+1)2,此时n =14;当1是乘积二倍项时,原式=2n +2×24×2-5+28=(24+2-5)2,此时n =-10. 综上所述,n 的值为5或14或-10.三、16.解:(1)原式=(2a +5)(2a -5).(2)原式=2(x 2-4xy +4y 2)=2(x -2y )2.17.解:12x 3+2x 2-x +12x 3+4x 2+x =x 3+6x 2=x 2(x +6)或12x 3+2x 2-x +12x 3-2x 2=x 3-x =x (x 2-1)=x (x +1)(x -1)或12x 3+4x 2+x +12x 3-2x 2=x 3+2x 2+x =x (x 2+2x +1)=x (x +1)2.18.解:∵x +y =4,∴(x +y )2=16,即x 2+y 2+2xy =16.∵x 2+y 2=14,∴xy =1.∴x 3y -2x 2y 2+xy 3=xy (x 2-2xy +y 2)=1×(14-2)=12.四、19.解:∵(x +4)·(x +2)=x 2+6x +8,∴a =6.∵(x +1)·(x +9)=x 2+10x +9,∴b =9,∴x 2+ax +b =x 2+6x +9=(x +3)2.20.解:(1)a 2-b 2=(a +b )(a -b )(2)原式=(x 2-9)(x 2+9)=(x -3)(x +3)(x 2+9).(3)原式=2(2m -n )(2m +n )=2×3×4=24.7 21.解:(1)281 739(答案不唯一) 点拨:∵x 3-xy 2=x (x -y )(x +y ),∴当x =28,y =11时,x -y =17,x +y =39,∴可得到数字密码281 739或283 917或172 839或173 928或391 728或392 817.(2)∵x =18,20=x +2,16=x -2,∴(m -n )x 3-(m +12n )x =x (x +2)(x -2)=x (x 2-4)=x 3-4x ,∴⎩⎪⎨⎪⎧m -n =1,m +12n =4,解得⎩⎨⎧m =3,n =2. 五、22.解:(1)a 2+ab +b 2(2)2a 2+3ab +b 2=(2a +b )(a +b )(3)根据题意,得正方形M 的面积为4a 2+4ab +b 2=(2a +b )2,∴正方形M 的边长为2a +b ,当a =1.6,b =2.8时,2a +b =3.2+2.8=6,∴正方形M 的边长为6.23.解:(1)9 (2)(x +8)(x -2)(3)>理由:x 2+6x +5=(x +1)(x +5).∵x >-1,∴x +1>0,x +5>4,∴x 2+6x +5=(x +1)(x +5)>0.(4)原式=-(x 2+6x +9-9)-5=-(x +3)2+4,∵(x +3)2≥0,∴-(x +3)2≤0,∴当x =-3时,-x 2-6x -5有最大值,是4.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(包含答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试题(包含答案解析)(2)

一、选择题1.下列因式分解正确的是( )A .m 2+n 2=(m+n)(m-n)B .a 3-a=a(a+1)(a-1)C .a 2-2a+1=a(a-2)+1D .x 2+2x-1=(x-1)2 2.下列各式从左到右的变形中,属于因式分解的是( ) A .()a m n am an +=+B .2221(1)x x x +-=-C .21055(21)x x x x -=-D .216+6(+4)(4)+6x x x x x -=- 3.下列各式中,从左到右的变形是因式分解的是A .22(2)(2)4x y x y x y +-=-B .221()1x y xy xy x y --=--C .a 2-4ab+4b 2=(a-2b )2D .ax+ay+a =a (x+y ) 4.已知三角形的三边a ,b ,c 满足2223()()b a b c ba a -+=-,则△ABC 是( )A .等腰三角形B .等腰直角三角形C .等边三角形D .等腰三角形或直角三角形5.已知a +1a =3,则a 2+21a 等于( ) A .5 B .7 C .9 D .116.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )2 7.下列因式分解正确的是( )A .()()()()a a b b a b a b a b ---=-+B .2229(3)a b a b -=-C .22244(2)a ab b a b ++=+D .2()a ab a a a b -+=-8.下列四个多项式:①-a 2+b 2;②-x 2-y 2;③1-(a -1)2;④x 2-2xy +y 2,其中能用平方差公式分解因式的有( )A .4个B .3个C .2个D .1个 9.下列式子从左到右变形是因式分解的是( ) A .12xy 2=3xy •4yB .(x +1)(x ﹣3)=x 2﹣2x ﹣3C .x 2﹣4x +1=x (x ﹣4)+1D .x 3﹣x =x (x +1)(x ﹣1) 10.下列因式分解正确的是( )A .221(21)1x x x x --=--B .2244(2)x x x -+=-C .256(6)(1)x x x x -+=-+D .()321x x x x -=- 11.下列各式从左边到右边的变形属于因式分解的是( )A .6ab =2a •3bB .a (x +y )=ax +ayC .x 2+4x +4=x (x +4)+4D .a 2﹣6a +9=(a ﹣3)2 12.已知d =x 4﹣2x 3+x 2﹣10x ﹣4,则当x 2﹣2x ﹣4=0时,d 的值为( )A .4B .8C .12D .16 二、填空题13.分解因式:3244x x x -+=__________.14.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.15.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.16.若6x y +=,3xy =-,则2222x y xy +=_____.17.二次三项式2248y xy x -+-在实数范围内分解因式的结果是______.18.分解因式:4232x -=_________.19.分解因式:2282a b -=______.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.(1)因式分解:334mn m n -;(2)先化简,再求值:()()222212132x x y xy x y x x y x y ---⎡⎤-++÷⎢⎥⎣⎦,其中x 与y 互为倒数.22.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.23.(1)分解下列因式,将结果直接写在横线上:a 2+2a +1= ,4x 2-4x +1= ,9y 2﹣12y +4= .(2)观察以上三个多项式的系数,有22=4×1×1,(-4)2=4×4×1,(﹣12)2=4×9×4,于是小明猜测:若多项式ax 2+bx +c (a >0)是完全平方式,则实数系数a 、b 、c 一定存在某种关系.①请你用数学式子把a 、b 、c 之间的这种关系表示出来;②根据①的结论解决问题:若多项式x 2﹣2(m ﹣3)x +(10﹣6m )是一个完全平方式,求m 的值,③根据②分解因式:x 2﹣2(m ﹣3)x +(10﹣6m ).24.计算或因式分解(1()20211- (2)计算()()()2322232a ab ab ⋅-÷-(3)因式分解:323108x xy -(4)因式分解:2221a b b -+-(5)先化简,再求值:()()()()225x y x y x y x x y ++-+--.其中1x =,y 是的小数部分.25.因式分解:4224109x x y y -+26.(1)因式分解;()()22a x y b x y ---;(2)解方程:213211x y x y +=⎧⎨-=⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据因式分解的定义判断即可.【详解】解:A 、等号左右两边不相等,故错误;B 、a 3-a=a(a+1)(a-1),故正确;C 、右边不是整式的积,故错误;D 、等号左右两边不相等,故错误.故选:B .【点睛】因式分解与整式的乘法互为逆变形,并且因式分解是等式的恒等变形,变形前后一定相等.2.C解析:C【分析】根据因式分解的定义逐项作出判断即可.【详解】解:A. ()a m n am an +=+,是乘法运算,不是因式分解,不合题意;B. 2221(1)x x x +-=-,变形错误,不是因式分解,不合题意;C. 21055(21)x x x x -=-,是因式分解符合题意;D. 216+6(+4)(4)+6x x x x x -=-,没有化为整式的积的形式,不是因式分解,不合题意. 故选:C .【点睛】本题考查了因式分解的定义:把一个多项式化为几个整式的积的形式,叫因式分解. 3.C解析:C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A 、右边不是整式积的形式,不是因式分解,故本选项错误;B 、右边不是整式积的形式,不是因式分解,故本选项错误;C 、是因式分解,故本选项正确;D 、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.4.D解析:D【分析】先将原式分解因式得(b-a )(b 2+c 2-a 2)=0,从而得b ﹣a =0或c 2+b 2﹣a 2=0,根据等腰三角形的判定和勾股定理的逆定理判断即可.【详解】解:∵2223()()b a b c ba a -+=-,∴(b-a )(b 2+c 2-a 2)=0.∴b ﹣a =0或c 2+b 2﹣a 2=0,则a=b 或c 2+b 2=a 2.∴△ABC 是等腰三角形或直角三角形.故选D .【点睛】此题综合运用了因式分解的知识、勾股定理的逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.B解析:B【分析】 利用完全平方公式把221a a+变形成为21()2a a +-,代入解答即可. 【详解】221a a+=21()2a a +-=232-=7. 故选B .【点睛】 本题考查了完全平方公式.解题的关键是把221a a+变形成为21()2a a +-. 6.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A 、a 2﹣2a ﹣3=a (a ﹣2)﹣3,不符合因式分解的定义,故此选项错误;B 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误;C 、m 3﹣m =m (m ﹣1)(m +1),正确;D 、x 2+2xy ﹣y 2,无法运用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.7.C解析:C【分析】利用提公因式法分解因式和平方差公式以及完全平方公式进行分解即可得到答案.【详解】A 、2()()()()()a a b b a b a b a b a b ---=--=-,故此选项错误;B 、229(3)(3)a b a b a b -=+-,故此选项错误;C 、22244(2)a ab b a b ++=+,故此选项正确;D 、2(+1)a ab a a a b -+=-,故此选项错误.故选:C .【点睛】此题主要考查了公式法和提公因式法分解因式,关键是注意口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶.8.C解析:C【分析】根据平方差公式特点:①两项,②都可以写成平方的形式,③平方前面是异号,可以得到答案.【详解】解:①-a 2+b 2;③1-(a -1)2;符合平方差特点;④x 2-2xy +y 2,②-x 2-y 2;不符合平方差特点;故选:C .【点睛】此题主要考查了平方差公式特点,把握公式特点是解题的关键.9.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选:D .【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.第II 卷(非选择题)请点击修改第II 卷的文字说明10.B解析:B【分析】根据因式分解的定义进行选择即可.【详解】A. 221(21)1x x x x --=--,不是因式分解,故本选项不符合题意;B. 2244(2)x x x -+=-,故本选项符合题意,C. 256(2)(-3)-+=-x x x x ,故本选项不符合题意;D. ()321=x x+1x-1()()-=-x x x x ,故本选项不符合题意;故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键 11.D解析:D【分析】根据因式分解的定义逐个判断即可.【详解】解:A 、从左到右的变形,不属于因式分解,故本选项不符合题意;B 、从左到右的变形,是整式的乘法,不属于因式分解,故本选项不符合题意;C 、从左到右的变形,不属于因式分解,故本选项不符合题意;D 、从左到右的变形,属于因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义:将一个多项式写成整式的积的性质,叫做将多项式因式分解也叫做分解因式,掌握多项式的因式分解与整式乘法之间的区别是解题的关键.12.D解析:D【分析】由已知方程求得x 2﹣2x =4,将d =x 4﹣2x 3+x 2﹣10x ﹣4代为x 2(x 2﹣2x )+(x 2﹣2x )﹣8x ﹣4,通过两次代值计算便可.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴d =x 4﹣2x 3+x 2﹣10x ﹣4=x 2(x 2﹣2x )+(x 2﹣2x )﹣8x ﹣4=4x 2+4﹣8x ﹣4=4(x 2﹣2x )=4×4=16.故选:D .【点睛】本题考查了因式分解的应用,求代数式的值,关键是通过因式分解把所求代数式转化为含x 2-2x 的代数式形式.二、填空题13.【分析】先提取公因式x 然后再运用完全平方公式解答即可【详解】解:===故答案为:【点睛】本题主要考查了因式分解掌握提公因式法和完全平方公式法是解答本题的关键解析:2(21)x x -【分析】先提取公因式x ,然后再运用完全平方公式解答即可.【详解】解:3244x x x -+=()2441x x x -+=()222221x x x ⎡⎤-⨯+⎣⎦=2(21)x x -故答案为:2(21)x x -.本题主要考查了因式分解,掌握提公因式法和完全平方公式法是解答本题的关键. 14.【分析】由可得可得:即再把分解因式再整体代入求值即可【详解】解:故答案为:【点睛】本题考查的是整式的乘法多项式的恒等因式分解的应用掌握以上知识是解题的关键解析:8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 解: 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点睛】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键.15.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.16.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值. 17.【分析】先提出负号把括号内多项式分两组4y2-8xy 两项一组x2单独一组把两项一组配方4y2-8xy+4x2-4x2=4(y-x )2-4x2把-4x2与x2合并得-3x2括号内变为再因式分解即可【详解析:)(22)y x --【分析】先提出负号()224y 8xy x --+,把括号内多项式分两组4y 2-8xy 两项一组,x 2单独一组, 把两项一组配方4y 2-8xy +4x 2-4x 2=4(y-x )2-4x 2,把-4x 2与x 2合并得-3x 2,括号内变为 ()()2222224y 2-443xy x x x y x x ⎡⎤⎡⎤--++=---⎣⎦⎣⎦,再因式分解即可. 【详解】22-4y 8xy x +-,()224y 8xy x =--+,()222242y xy x x x ⎡⎤=--+-+⎣⎦, ()2243y x x ⎡⎤=---⎣⎦, ()()22y x y x ⎡⎤⎡⎤=--+-⎣⎦⎣⎦()()2222y x y x =--+-.故答案为:()()2222y x y x ----本题考查在实数范围内因式分解问题,掌握两数和与差完全平方公式与平方差公式,会灵活运用公式解决问题,特别是三项式因式分解,一般要考虑用两数和与差完全平方公式,而且先配方,在因式分解是解题关键.18.2(x2+4)(x+2)(x -2)【分析】首先提取公因式2然后利用平方差公式继续分解直到不能分解为止即可求得答案【详解】解:2x4﹣32=2(x4﹣16)=2(x2+4)(x2﹣4)=2(x2+4)解析:2(x 2+4)(x +2)(x -2)【分析】首先提取公因式2,然后利用平方差公式继续分解,直到不能分解为止,即可求得答案.【详解】解:2x 4﹣32=2(x 4﹣16)=2(x 2+4)(x 2﹣4)=2(x 2+4)(x +2)(x -2).故答案为:2(x 2+4)(x +2)(x -2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 19.【分析】原式提取公因式2后再运用平方差公式进行因式分解即可【详解】故答案为:【点睛】此题主要考查了仍坚持公因式与公式法的综合运用熟练掌握因式分解的方法是解答此题的关键解析:2(2)(2)a b a b +-【分析】原式提取公因式2后,再运用平方差公式进行因式分解即可.【详解】2222822(4)2(2)(2)a b a b a b a b -=-=+-故答案为:2(2)(2)a b a b +-【点睛】此题主要考查了仍坚持公因式与公式法的综合运用,熟练掌握因式分解的方法是解答此题的关键.20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)(2)(2)mn n m n m +-;(2)12xy ,12 【分析】(1)先提公因式,再根据平方差公式分解因式可解答;(2)先计算括号里面的,再算除法,化简原式,然后根据互为倒数两数之积为1得1xy =,代入计算即可.【详解】解:(1)()332244mn m n mn n m -=-(2)(2)mn n m n m =+-.(2)原式()1222222132x y x y x y x x y x y ---⎡⎤=-++÷⎢⎥⎣⎦ 12122132x y x y x y ---⎛⎫=+÷ ⎪⎝⎭ 1221(2)213313223x y x y x y ------=÷=⨯ 12xy =. x 与y 互为倒数,1xy ∴=. ∴原式12=. 【点睛】本题主要考查因式分解、整式的化简求值,解题的关键是掌握整式的混合运算顺序和运算法则.22.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒, 2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.23.(1)2(1)a +,2(21)x -,2(32)y -;(2)①24b ac =;②m=±1;③当1m =时,2(2)x +;当1m =-时, 2(4)x +.【分析】(1)根据完全平方公式分解即可;(2)①根据(1)中3个式子特点总结即可;②根据①的结论列式求解即可;③把②中求得的m 的值代入分解即可;【详解】(1)a 2+2a +1=2(1)a +,4x 2-4x +1=2(21)x -,9y 2﹣12y+4=2(32)y -, 故答案为:2(1)a +,2(21)x -,2(32)y -;(2)①由22=4×1×1,(-4)2=4×4×1,(﹣12)2=4×9×4,可知,24b ac =;②多项式x 2﹣2(m ﹣3)x +(10﹣6m)中,a =1,b=﹣2(m ﹣3),c =10﹣6m ,由①24b ac =得:()22341(106)m m =⨯⋅⎡⎤⎣⎦﹣﹣﹣, 化简得21m =,解得m=±1;③根据②,当1m =时,x 2﹣2(m ﹣3)x +(10﹣6m)=2244(2)x x x ++=+;当1m =-时,x 2﹣2(m ﹣3)x +(10﹣6m)=22816(4)x x x ++=+.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a 2±2ab +b 2=(a ±b )2是解答本题的关键.两个平方项的符号需相同;另一项是两底数积的2倍,是易错点.24.(1)54;(2)94ab -;(3)3(6)(6)x x y x y +-;(4)(1)(1)a b a b +--+;(5)9xy ,9【分析】(1)先算算术平方根,立方根和乘方,再算加减法,即可求解;(2)先算积的乘方,再根据单项式的乘除法法则,求解即可;(3)先提取公因式,再利用平方差分解因式,即可;、(4)先括号,再利用完全平方公式和平方差公式分解因式,即可;(5)根据完全平方公式,平方差公式,单项式乘多项式法则,合并同类项法则,先化简,再代入求值,即可.【详解】(1)原式=()5(3)214+-+-- =54; (2)原式=()22433(2)(9)8a a b a b⋅÷- =94ab -; (3)原式=223(36)x x y -=3(6)(6)x x y x y +-;(4)原式=22(21)a b b --+=22(1)a b --=[][](1)(1)a b a b +---=(1)(1)a b a b +--+;(5)原式=222224455x xy y x y x xy +++--+=45xy xy +=9xy ,∵y的小数部分,∴1y =,∴当1x =+,1y =时,原式=9xy 11)=9.【点睛】 本题主要考查实数的混合运算,整式的化简求值,分解因式,掌握平方差公式和完全平方公式,是解题的关键.25.()()()()33x y x y x y x y -+-+【解析】试题分析:先利用十字相乘法进行因式分解,然后再利用平方差公式进行分解即可. 试题原式=()()22229x y x y --=()()()()33x y x y x y x y -+-+. 【点睛】本题考查了综合运用十字相乘法与公式法进行因式分解,根据式子的特点灵活选取因式分解的方法进行分解是关键.26.(1)()()()x y a b a b -+-;(2)31x y =⎧⎨=-⎩【分析】(1)先提取公因式,再采用平方差公式继续分解.(2)根据加减法解方程即可求解.【详解】(1)()()22a x y b x y ---22()()x y a b =--()()()x y a b a b =-+-;(2)213211x y x y ①②+=⎧⎨-=⎩ ①+②,得412x =,解得:3x =,将3x =代入①,得321y +=,解得1y =-,所以方程组的解是31x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.。

2018北师大版数学八年级下册第四章因式分解检测题A

2018北师大版数学八年级下册第四章因式分解检测题A

第四章《因式分解》检测题A一.选择题(共12小题)1.(2016•潍坊)将以下多项式因式分解,结果中不含有因式a+1的是()A.a2﹣1 B.a2+a C.a2+a﹣2 D.(a+2)2﹣2(a+2)+1 2.(2021•海南)以下式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25 3.(2021•临沂)多项式mx2﹣m与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)24.(2021•台湾)假设x2﹣4x+3与x2+2x﹣3的公因式为x﹣c,那么c之值为何?()A.﹣3 B.﹣1 C.1 D.35.(2016•长春)把多项式x2﹣6x+9分解因式,结果正确的选项是()A.(x﹣3)2B.(x﹣9)2C.(x+3)(x﹣3)D.(x+9)(x﹣9)6.(2021•北海)以下因式分解正确的选项是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)7.(2016•聊城)把8a3﹣8a2+2a进行因式分解,结果正确的选项是()A.2a(4a2﹣4a+1)B.8a2(a﹣1)C.2a(2a﹣1)2D.2a(2a+1)28.把x2﹣y2﹣2y﹣1分解因式结果正确的选项是()A.(x+y+1)(x﹣y﹣1)B.(x+y﹣1)(x﹣y﹣1)C.(x+y﹣1)(x+y+1)D.(x﹣y+1)(x+y+1)9.(2016•台湾)已知甲x的一次多项式,且其一次项的系数皆为正整数.假设甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,那么甲与丙相加的结果与以下哪个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1510.(2021•防城港)下面的多项式在实数范围内能因式分解的是()A.x2+y2B.x2﹣y C.x2+x+1 D.x2﹣2x+111.(2016•滨州)把多项式x2+ax+b分解因式,得(x+1)(x﹣3)那么a,b的值别离是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣312.(2016•宜昌)小强是爱好者,在他的密码手册中,有如此一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2别离对应以下六个字:昌、爱、我、宜、游、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱漂亮 B.宜昌游C.爱我宜昌D.美我宜昌二.填空题(共6小题)13.(2016•黔南州)假设ab=2,a﹣b=﹣1,那么代数式a2b﹣ab2的值等于.14.(2016•黔西南州)分解因式:x3﹣4x=.15.分解因式:x2﹣xy+xz﹣yz=.16.(2021•菏泽)假设x2+x+m=(x﹣3)(x+n)对x恒成立,那么n=.17.(2021•内江)已知实数a,b知足:a2+1=,b2+1=,那么2021|a﹣b|=.18.(2021•甘南州)已知a2﹣a﹣1=0,那么a3﹣a2﹣a+2021=.三.解答题(共10小题)19.因式分解:(1)(x﹣y)(3x﹣y)+2x(3x﹣y);(2)(a﹣b)(x﹣y)﹣(b﹣a)(x+y)(3)(x﹣1)(x﹣3)+1.(4)2a3﹣4a2b+2ab2;(5)x4﹣y420.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.21.认真阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式和m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)那么x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方式解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式和k的值.22.已知xy=﹣3,知足x+y=2,求代数式x2y+xy2的值.23.设y=kx,是不是存在实数k,使得上式的化简结果为x2?求出所有知足条件的k的值.假设不能,请说明理由24.(2016•大庆)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.25.给出三个多项式:①2x2②2x2+12x+4;③2x2﹣4x请你把其中任意两个多项式进行加法运算(写出所有可能的结果),并把每一个结果因式分解.参考答案与解析一.选择题1.【分析】先把各个多项式分解因式,即可得出结果.解:∵a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,∴结果中不含有因式a+1的是选项C;应选:C.2.【分析】利用因式分解的概念,把一个多项式化为几个整式的积的形式,这种变形叫做把那个多项式因式分解,也叫做分解因式,进而判定得出即可解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;应选:B.3.【分析】别离将多项式mx2﹣m与多项式x2﹣2x+1进行因式分解,再寻觅它们的公因式.解:mx2﹣m=m(x﹣1)(x+1),x2﹣2x+1=(x﹣1)2,多项式mx2﹣m与多项式x2﹣2x+1的公因式是(x﹣1).应选:A.4.【分析】第一将原式分解因式,进而得出其公因式即可.解:∵x2﹣4x+3=(x﹣1)(x﹣3)与x2+2x﹣3=(x﹣1)(x+3),∴公因式为x﹣c=x﹣1,故c=1.应选:C.5.【分析】原式利用完全平方公式分解即可.解:x2﹣6x+9=(x﹣3)2,应选A6.【分析】A、原式利用平方差公式分解取得结果,即可做出判定;B、原式利用完全平方公式分解取得结果,即可做出判定;C、原式提取公因式取得结果,即可做出判定;D、原式提取公因式取得结果,即可做出判定.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,应选D7.【分析】第一提取公因式2a,进而利用完全平方公式分解因式即可.解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2.应选:C.8.【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.解:原式=x2﹣(y2+2y+1),=x2﹣(y+1)2,=(x+y+1)(x﹣y﹣1).应选A.9.【分析】依照平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确信甲与丙,再把甲与丙相加即可求解解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.应选:A.10.【分析】利用因式分解的方式,别离判定得出即可.解;A、x2+y2,无法因式分解,故A选项错误;B、x2﹣y,无法因式分解,故B选项错误;C、x2+x+1,无法因式分解,故C选项错误;D、x2﹣2x+1=(x﹣1)2,故D选项正确.应选:D.11.【分析】运用多项式乘以多项式的法那么求出(x+1)(x﹣3)的值,对照系数能够取得a,b的值.解:∵(x+1)(x﹣3)=x•x﹣x•3+1•x﹣1×3=x2﹣3x+x﹣3=x2﹣2x﹣3∴x2+ax+b=x2﹣2x﹣3∴a=﹣2,b=﹣3.应选:B.12.【分析】对(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,即可取得结论.解:∵(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),∵x﹣y,x+y,a+b,a﹣b四个代数式别离对应爱、我,宜,昌,∴结果呈现的密码信息可能是“爱我宜昌”,应选C.二.填空题13.【分析】第一提取公因式ab,进而将已知代入求出即可.解:∵ab=2,a﹣b=﹣1,∴a2b﹣ab2=ab(a﹣b)=2×(﹣1)=﹣2.故答案为:﹣2.14.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).15.【分析】子是四项时,应考虑运用分组分解法进行分解.此题前两项、后两项都有公因式,且分解后还能继续分解,故使前两项一组,后两项一组.解:x2﹣xy+xz﹣yz,=(x2﹣xy)+(xz﹣yz),=x(x﹣y)+z(x﹣y),=(x﹣y)(x+z).16.【分析】利用多项式乘法去括号,得出关于n的关系式进而求出n的值.解:∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.17.【分析】由于a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,那么有(a+b)(a﹣b)=,分解因式可得a=b,依此可得2021|a﹣b|=20210,再依照零指数幂的计算法那么计算即可求解解:∵a2+1=,b2+1=,两式相减可得a2﹣b2=﹣,(a+b)(a﹣b)=,[ab(a+b)+1](a﹣b)=0,∴a﹣b=0,即a=b,∴2021|a﹣b|=20210=1.故答案为:1.18.【分析】第一依照a2﹣a﹣1=0取得a2﹣a=1,从而利用a3﹣a2﹣a+2021=a(a2﹣a)﹣a+2021代入求值即可.解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2021=a(a2﹣a)﹣a+2021=a﹣a+2021=2021,故答案为:2021.三.解答题19.(1)【分析】第一提取公因式(3x﹣y),进而分解因式得出答案;解:原式=(3x﹣y)(x﹣y+2x)=(3x﹣y)(3x﹣y)=(3x﹣y)2;(2)【分析】第一提取公因式(a﹣b),进而分解因式得出答案;解:原式=(a﹣b)[(x﹣y)+(x+y)]=2x (a﹣b).(3)【分析】第一利用多项(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】第一提取公因式2a,再进一步运用完全平方公式;解:(1)2a3﹣4a2b+2ab2,=2a(a2﹣2ab+b2),=2a(a﹣b)2;(5)【分析】二次运用平方差公式分解因式即可.(2)x4﹣y4,=(x2+y2)(x2﹣y2),=(x2+y2)(x+y)(x﹣y).20.【分析】此题需先将2x3﹣5x2﹣6x+k解成x﹣3,再利用分组分解法进行因式分解,即可求出另一个因式;解:设另一个因式为2x2﹣mx﹣,∴(x﹣3)(2x2﹣mx﹣)=2x3﹣5x2﹣6x+k,2x3﹣mx2﹣x﹣6x2+3mx+k=2x3﹣5x2﹣6x+k,2x3﹣(m+6)x2﹣(﹣3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴k=9,∴另一个因式为:2x2+x﹣3.21.【分析】依照例题个式子的关系,两个中二次三项式x2﹣4x+m的二次项系数是1,因式是(x+3)的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子2x2+3x﹣k的二次项系数是2,因式是(2x﹣5)的一次项系数是2,那么另一个因式的一次项系数必然是1,利用待定系数法,就能够够求出另一个因式.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)那么2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)22.【分析】将原式提取公因式xy,进而将已知代入求出即可.解:∵xy=﹣3,x+y=2,∴x2y+xy2=xy(x+y)=﹣3×2=﹣6.23.【分析】将y=kx代入进而利用使得上式的化简结果为x2,即可得出关于k的等式求出答案.解:将y=kx代入上式得:(3x﹣kx)2=[(3﹣k)x]2=(3﹣k)2 x2;令(3﹣k)2=1,3﹣k=±1,解得:k=4或2.24.【分析】先提取公因式ab,再依照完全平方公式进行二次分解,然后代入数据进行计算即可得解.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.25.【分析】求①+②的和,可得4x2+16x,利用提公因式法,即可求得答案;求①+③的和,可得4x2﹣4,先提取公因式4,再依照完全平方差进行二次分解;求②+③的和,可得4x2+8x+4,先提取公因式4,再依照完全平方公式进行二次分解.解:①+②得:2x2+4x﹣4+2x2+12x+4=4x2+16x=4x(x+4);①+③得:2x2+4x﹣4+2x2﹣4x=4x2﹣4=4(x+1)(x﹣1);②+③得:2x2+12x+4+2x2﹣4x=4x2+8x+4=4(x2+2x+1)=4(x+1)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 因式分解单元测试
一、选择题(每小题4分,共40分)
1、下列从左边到右边的变形,是因式分解的是( )
A 、29)3)(3(x x x -=+- ;
B 、))((23n m n m m mn m -+=-;
C 、)1)(3()3)(1(+--=-+y y y y ;
D 、z yz z y z z y yz +-=+-)2(2242; 2、下列多项式中能用平方差公式分解因式的是( )
A 、22)(b a -+;
B 、mn m 2052-;
C 、22y x --;
D 、92+-x ; 3、多项式3222315520m n m n m n +-的公因式是( )
A 、5mn ;
B 、225m n ;
C 、25m n ;
D 、25mn ; 4、如果2592
++kx x 是一个完全平方式,那么k 的值是( )
A 、 15 ;
B 、 ±5;
C 、 30;
D 、 ±30; 5、下列多项式能分解因式的是 ( )
A 、a 2
-b ; B 、a 2
+1; C 、a 2
+ab+b 2
; D 、a 2
-4a+4; 6、若E p q p q q p ⋅-=---232)()()(,则E 是( )
A 、p q --1;
B 、p q -;
C 、q p -+1;
D 、p q -+1; 7、下列各式中不是完全平方式的是( )
A 、21664m m -+;
B 、2242025m mn n ++;
C 、2224m n mn -+;
D 、221124964mn m n ++; 8、把多项式)2()2(2
a m a m -+-分解因式等于(

A 、))(2(2
m m a +-; B 、))(2(2
m m a --; C 、m(a-2)(m-1); D 、m(a-2)(m+1);
9、已知多项式c bx x ++2
2分解因式为)1)(3(2+-x x ,则c b ,的值为(

A 、1,3-==c b ;
B 、2,6=-=c b ;
C 、4,6-=-=c b ;
D 、6,4-=-=c b
10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b ).把余下的部分剪拼成一个矩形(如图).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A 、))((22b a b a b a -+=-
B 、2
222)(b ab a b a ++=+ C 、2
222)(b ab a b a +-=- D 、)(2
b a a ab a -=-
二、填空题(每空3分,满分301、24m 2
n +18n 的公因式是________________;
2、分解因式x (2-x )+6(x -2)=_________________;(x 2
+y 2)2
-4x 2y 2
=________________; 3、x 2

254y 2=(x +5
2
y )·( ____ );
4、在括号前面填上“+”或“-”号,使等式成立: (1)22)()(y x x y -=
-; (2))2)(1()2)(1(--=--x x x x 。

5、223x xy y -+加上 可以得到2()x y -;
6、如果22220,
5,a b ab a b ab a b +==-+=
+=
则,;
7、简便计算:。

-=
2271.229.7 三、完成下列各题(每小题4分,共24分) 1、分解因式(4×4=16分)
①9632a ab a -+ ②121x 2-144y
2
③()()x y y y x x --- ④()()742
2
a x y
b y x ---
2、不用计算器求出下列式子的值(4×2=8分)
(1)、2005
52200574200526...⨯+⨯-⨯; (2)、910102004
2005⨯-
四、(6分)已知一个矩形的面积是2
12120300(0)m m m ++>,长与宽的比是4:3,求这个矩形的周长。

答案
一、选择题 BDBDD CCCDA 二、填空题
1、6n
2、(x -2)(6-x ); (x -y )2
(x +y )2
; 3、25
x y - 4、+ + 5、xy 6、0,10 7、45.8
三、1、3(321)a a b -+;(1112)(1112)x y x y -+;()()x y x y -+;2
()(74)x y a b -- 2、2005,—10
2005

四、2
12120300m m ++=[][]4(5)3(5)m m ++
所以长为4(5)m +,宽为3(5)m +,周长为1470m +。

相关文档
最新文档