初中数学八年级上册一次函数基础训练题

合集下载

5.5 一次函数的简单应用(一) 八年级数学上册基础训练 浙教版(Word版,含答案)

5.5  一次函数的简单应用(一) 八年级数学上册基础训练 浙教版(Word版,含答案)

5.5 一次函数的简单应用(一)1.已知直线y =ax +b 过点A (0,2),B (-3,0),则方程ax +b =0的解是(D ) A. x =2 B. x =0 C. x =-1 D. x =-3(第2题)2.如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象.下列结论中,错误的是(D )A .轮船的速度为20 km /hB .快艇的速度为40 km /hC .轮船比快艇先出发2 hD .快艇不能赶上轮船3.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系,从温度计上可以看出摄氏温度x (℃)与华氏温度y ( )有如下表所示的对应关系,则y 与x 之间的函数表达式是(B )A. y =65xB. y =1.8x +32C. y =0.56x 2+7.4x +32D. y =2.1x +264.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y (元)与练习本的本数x (本)之间的关系如图所示,那么在这个超市买10本以上练习本的优惠折扣是__七__折.(第4题)5.1号探测气球从海拔5 m处出发,以l m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升的时间为x(min)(0≤x≤50).(1)根据题意,填写下表:么高度?如果不能,请说明理由.(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【解】(2)两个气球能位于同一高度.根据题意,得x+5=0.5x+15,解得x=20.∴x+5=25.答:此时气球上升了20 min,都位于海拔25 m的高度.(3)当30≤x≤50时,由题意可知,1号气球所在位置的海拔始终高于2号气球.设两个气球在同一时刻所在位置的海拔相差y(m),则y=(x+5)-(0.5x+15)=0.5x-10.∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15.答:两个气球所在位置的海拔最多相差15 m.6.为迎接“五一”劳动节,某中学组织了甲、乙两个义务劳动小组,甲组x 人,乙组y 人,到“中华路”和“青年路”打扫卫生,根据打扫卫生的进度,学校随时调整两组人数,如果从甲组调50人去乙组,则乙组人数为甲组人数的2倍;如果从乙组调m 人去甲组,则甲组人数为乙组人数的3倍.(1)求出x 与m 之间的函数表达式.(2)问:当m 为何值时,甲组人数最少,最少是多少人?【解】 (1)由题意,得⎩⎪⎨⎪⎧2(x -50)=y +50,x +m =3(y -m ),整理,得⎩⎪⎨⎪⎧2x -y =150①,x -3y =-4m ②,①×3-②,得5x =450+4m , ∴x =45m +90.(2)∵x =45m +90,∴x 随m 的增大而增大.又∵x ,m ,y 均为正整数,∴当m =5时,x 取得最小值,最小值为45×5+90=94,此时y =2×94-150=38,符合题意.答:当m =5时,甲组人数最少,最少是94人.7.8个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这8个正方形分成面积相等的两部分,则该直线l 的函数表达式为(C ),(第7题))A. y =35xB. y =34xC. y =910x D. y =x【解】 设直线l 与8个正方形最上面的交点为A ,过点A 作AB ⊥y 轴于点B ,AC ⊥x 轴于点C. ∵正方形的边长为1,∴OB =3.∵经过原点的一条直线l 将这8个正方形分成面积相等的两部分, ∴易得S △ABO =5,∴12OB ·AB =5,∴AB =103, ∴OC =103,∴点A ⎝⎛⎭⎫103,3. 设直线l 的函数表达式为y =kx .将点A ⎝⎛⎭⎫103,3的坐标代入,得3=103k ,解得k =910. ∴直线l 的函数表达式为y =910x . 8.某海滩景区门票价格为80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(第8题)根据图象,回答下列问题: (1)a =__6__,b =__8__.(2)直接写出y 1,y 2与x 之间的函数表达式.(3)导游小王6月10日(非节假日)带A 旅游团,6月20日(端午节)带B 旅游团到该海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A ,B 两个旅游团各有多少人.【解】 (1)由y 1的图象过点(10,480),得到10人的费用为480元, ∴a =480800×10=6.由y 2的图象过点(10,800)和(20,1440),得到20人中后10人的费用为640元,∴b =640800×10=8.(2)设y 1=k 1x .∵函数图象过点(10,480), ∴10k 1=480,∴k 1=48.∴y 1=48x . 当0≤x ≤10时,设y 2=k 2x . ∵函数图象过点(10,800), ∴10k 2=800,∴k 2=80.∴y 2=80x ; 当x ≥10时,设y 2=kx +b .∵函数图象过点(10,800)和(20,1440),∴⎩⎪⎨⎪⎧10k +b =800,20k +b =1440,∴⎩⎪⎨⎪⎧k =64,b =160. ∴y 2=64x +160.∴y 2=⎩⎪⎨⎪⎧80x (0≤x ≤10),64x +160(x ≥10).(3)设B 团有n 人,则A 团有(50-n )人. 当0≤n ≤10时,48(50-n )+80n =3040, 解得n =20(不合题意,舍去).当n ≥10时,64n +160+48(50-n )=3040, 解得n =30. ∴50-n =20.答:A 团有20人,B 团有30人.(第9题)9.某农场急需氨肥8 t ,在该农场南北方向分别有A ,B 两家化肥公司,A 公司有氨肥3 t ,每吨售价750元;B 公司有氨肥7 t ,每吨售价700元,汽车每千米的运输费用b (单位:元/千米)与运输质量a (单位:t )的关系如图所示.(1)根据图象求出b 关于a 的函数表达式(写出自变量的取值范围).(2)若农场到B 公司的路程是农场到A 公司路程的2倍,农场到A 公司的路程为m (km ),设农场从A 公司购买x (t )氨肥,购买8 t 氨肥的总费用为y 元(总费用=购买铵肥的费用+运输费用),求出y 关于x 的函数表达式(m 为常数),并向农场建议总费用最低的购买方案.【解】 (1)当0≤a ≤4时,设b =ka . 把点(4,12)的坐标代入,得4k =12, 解得k =3. ∴b =3a .当a ≥4时,设b =ma +n .把点(4,12),(8,32)的坐标分别代入,得⎩⎪⎨⎪⎧4m +n =12,8m +n =32,解得⎩⎪⎨⎪⎧m =5,n =-8. ∴b =5a -8.∴b =⎩⎪⎨⎪⎧3a (0≤a ≤4),5a -8(a ≥4).(2)∵A 公司有氨肥3 t ,B 公司有氨肥7 t , ∴0≤x ≤3,0≤8-x ≤7,∴1≤x ≤3,∴y =750x +3mx +(8-x )×700+[5(8-x )-8]×2m =(50-7m )x +5600+64m .∴当m >507时,到A 公司买3 t ,到B 公司买5 t 费用最低;当m =507时,到A 公司或B 公司买费用一样;当m <507时,到A 公司买1 t ,到B 公司买7 t ,费用最低.10.已知直线y =kx +2k -4k -1(k ≠1),说明无论k 取任何不等于1的实数,此直线都经过某一定点,并求出此定点的坐标.【解】 ∵y =kx +2k -4k -1(k ≠1),∴(k -1)y =kx +2k -4, ∴ky -y =kx +2k -4,∴k (y -x -2)=y -4.∵当⎩⎪⎨⎪⎧y -x -2=0,y -4=0,即⎩⎪⎨⎪⎧x =2,y =4时,k (y -x -2)=y -4(k ≠1)恒成立,∴无论k 取任何不等于1的实数,此直线都经过某一定点,此定点的坐标为(2,4).。

初二数学一次函数基础练习题

初二数学一次函数基础练习题

初二数学一次函数基础练习题一、选择题1. 若直线y = 2x + 1与y轴的交点为A,与x轴的交点为B,则点A的坐标为:A) (-1, 0) B) (1, -1) C) (0, 1) D) (-1, 1)2. 若直线y = 3x + b与x轴的交点为C,与y轴的交点为D,则点D的坐标为:A) (0, b) B) (1, b) C) (b, 0) D) (b, 1)3. 已知函数y = kx + 4与x轴交于点E(-2, 0),与y轴交于点F(0, 4),则k的值为:A) 2 B) -2 C) 4 D) -44. 若直线y = 3x + c过点G(-3, 1),则常数c的值为:A) -8 B) -7 C) 7 D) 85. 若直线y = mx + n与直线y = 2x - 3相互垂直,则m的值为:A) 2 B) -2 C) 1/2 D) -1/2二、计算题1. 若直线y = 2x + 3与直线y = x - 1相交于点P,求点P的坐标。

2. 已知函数y = kx + 5与x轴交于点Q(3, 0),与y轴交于点R(0, 5),求k的值。

3. 若直线y = mx + n与直线y = 2x + 1平行,则m和n满足的关系是什么?4. 若函数y = ax + b与y轴平行,则a和b满足的关系是什么?5. 已知函数y = 3x + c与y = -2x + 4平行,则c的值为多少?三、应用题1. 一次函数的斜率为2,经过点P(1, 3),求函数的解析式及与x轴的交点坐标。

2. 一条直线经过点A(0,2)和点B(3, 0),写出这条直线的解析式。

3. 图书馆一共有100本书,每天借出x本书,图书馆还剩下y本书,建立数学模型表示图书馆剩余书的数量与借出书的关系。

4. 工厂生产某种产品,生产每一台需花费固定成本1500元,每生产一台产品,可获利70元。

建立成本和利润之间的一次函数关系。

5. 汽车行驶60公里耗油10升,行驶80公里耗油15升。

八年级数学上册一次函数专题卷(附答案)

八年级数学上册一次函数专题卷(附答案)

八年级数学上册一次函数专题卷(附答案)选择题(题型注释)n是常数且满足:m+n=6, mn=8那么该直线经过(B .第一■、二、三象限D .第一、二、四象限B C D3.如图,直线y=kx+b经过点A ( - 1, - 2)和点B ( - 2, 0),直线y=2x过点A,则不等式2x< kx+b v 0的解集为()A. xv— 2 B . - 2<x< - 1 C . - 2<x<0 D4.已知一次函数y =kx+5和y =k'x+7 ,假设在()A.第一象限B .第二象限C .第三象限D .第四象限5.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下列结论不正确的是()A.甲先到达终点 B .前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米(5题图)2.如图,A B, G D为。

0的四等分点,动点P从圆心O出发,沿O-C-D-O路线作匀速运动,设运动时间为t (s) . /APB=y(。

),则下列图象中表示y与t之间函数关系最恰当的是()评卷人得分.已知直线其中mA.第二、三、四象限C.第一、三、四象限1小时后,途中靠边停车接了半小时电—1<x< 0k>0且k <0,则这两个一次函数的交点O6.小李驾驶汽车以50千米/小时的速度匀速行驶话,然后继续匀速行驶.已知行驶路程 y (单位:千米)与行驶时间 t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为()A. 43.5B. 50C. 56D. 587 .在直角坐标系中,一直线 l 向下平移3个单位后所得直线 b 经过点A (0, 3),将直线b绕点A 顺时针旋转 60。

后所得直线经过点 B (- J 3, 0),则直线l 的函数关系式为()A. y= — 33 x B . y= - 33 x+6 C . y= - x D . y= -x+6_ _.£ 1A,# B. 5 C, 2 D, 2k111.如图,已知y =ax+b 和y =kx 的图象交于点 P,根据图象可得关于 X 、Y 的二元一次12 .如图,直线y i =x+b 与y 2=kx - 1相交于点P,点P 的横坐标为-1,则关于x 的不等式 x+b>kx - 1 的解集 .13 .函数y= " -3中,自变量 x 的取值范围是 .14 .如图,在直角坐标系中,点 A, B 分别在x 轴,y 轴上,点A 的坐标为(-1,0),/ ABO=30 ,线段PQ 的端点P 从点O 出发,沿^ OBA 的边按OH B-A-。

八年级一次函数基础训练题

八年级一次函数基础训练题

八年级一次函数基础训练题(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一次函数基础训练题(79中八年级)一、选择题:1.下列各曲线中不能表示y是x的函数是().A. B. C. D.2.下列函数(1)y=3πx;(2)y=8x-6;(3)y=1x;(4)y=12-8x;(5)y=5x2-4x+1中,是一次函数的有()个 B.3个 C.2个 D.1个3.使函数2x x的取值范围是()A.x<2 B.x>2 C.x≤2 D.x≥23.4.直线y=x+3与x轴的交点是()A.(﹣3,0) B.(0,﹣3) C.(0,3) D.(3,0)5.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()个个个个6.若一次函数y=(m﹣3)x+5的函数值y随x的增大而增大,则()>0 <0 >3 <37.一次函数y=(m﹣3)x﹣m的图象经过一、二、四象限,则m的取值范围是()<0 <3 <m<3 >08.已知一次函数y=kx+1,y随x的增大而增大,则该函数的图象一定经过()A.第一、二、三象限 B.第一、二、四象限 C.第一、三、四象限 D.第二、三、四象限9.已知y与x+1成正比,当x=2时,y=9;那么当y=﹣15时,x的值为()B.﹣4 D.﹣610.如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是()A. A比B先出发B. A、B两人的速度相同C. A先到达终点D. B比A跑的路程多11.已知等腰三角形的周长为20cm,将底边长y(cm)表示成腰长x(cm)的函数解析式为202y x=-,则其自变量x的取值范围是()A.0<x<10 B.5<x<10 C.一切实数 D.x>012.若一次函数y=3x-b的图象经过点P(1,-1),则该函数图象必经过点()A (-1,1)B (2,2)C (-2,2)D (2,一2)13.若点A(2,4)在函数2y kx=-的图象上,则下列各点在此函数图象上的是().A.(0,2-) B.(32,0) C.(8,20) D.(12,12)14.已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ). A . 4 B . 5 C . 6 D . 715.根据如图的程序,计算当输入3x =时,输出的结果y = .A .2B .4C .6D .8 二、填空题:16. 函数y=3x +5是由函数________向____平移___个单位长度而得来的.函数y=-2x -3是由函数_______向____平移___个单位长度而得来的. 17. 函数y=x -3的图象经过(0,___ ) ,( ___,-2) , y 随x 的增大而______. 18. 一次函数y=-2mx +(m 2-3m)的图象经过坐标原点,则m=________. 19. 函数y=kx +b 的图象平行于直线y=-2x ,与y 轴交于(0,3),则k=______,b=________.20.若直线y=kx+b 平行直线y=-3x+2,且过y 轴上的(0,-5)点,则k= ,b= .21.已知1(2)3n y m x -=-+是关于x 的一次函数,则m ,n . 22.直线23y x =-与x 轴的交点坐标是__________,与y 轴的交点坐标是__________.23.汽车行驶前,油箱中有油55升,已知每百千米汽车耗油10升,油箱中的余油量Q (升)与它行驶的距离s (百千米)之间的函数关系式为 ;为了保证行车安全,油箱中至少存油5升,则汽车最多可行驶____________千米.24.将正比例函数y=3x 的图象向右平移2个单位长度后,所得函数图象的解析式为___________。

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

(压轴题)初中数学八年级数学上册第四单元《一次函数》测试卷(包含答案解析)(3)

一、选择题1.一次函数y =2x +1的图像,可由函数y =2x 的图像( )A .向左平移1个单位长度而得到B .向右平移1个单位长度而得到C .向上平移1个单位长度而得到D .向下平移1个单位长度而得到 2.如果一条直线l 经过不同的三点(,)A a b ,(,)B b a ,(,)C a b b a --,那么直线l 经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限 3.在平面直角坐标系中,一次函数1y x =-的图象是( ) A . B . C . D . 4.如图,已知直线3:3l y x =,过点()0,1A 作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点1A ;过点1A 作y 轴的垂线交直线l 于点1B ,过点1B 作直线l 的垂线交y 轴于点2A ,…,按此作法继续下去,则点2020A 的坐标为( )A .()0,2020B .()0,4040C .()20200,2D .()20200,4 5.已知正比例函数y=kx ,且y 随x 的增大而减少,则直线y=2x+k 的图象是( ) A . B . C . D . 6.张师傅驾车从甲地到乙地、两地距500千米,汽车出发前油箱有25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶.已知油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图,以下四种说法:①加油前油箱中剩余油量y(升)与行驶时间t (小时)的外函数关系是825y t =-+;②途中加油21升;③汽车加油后还可行驶4小时;④汽车到达乙地时油箱中还余油6升.其中正确的个数是( )A .1个B .2个C .3个D .4个7.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .8.一次函数y kx b =+的图象如图所示,则下列说法:①0kb >;②若点(2,)A m -与(3,)B n 都在直线y kx b =+上,则m n >;③当0x >时,y b >.其中正确的说法是( )A .①②B .①③C .②③D .①②③ 9.一次函数y=3x ﹣6的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 10.同一平面直角坐标系中,一次函数y mx n =+与y nx m =+(,m n 为常数)的图象可能是A .B .C .D .11.一蓄水池中有水350m ,打开排水阀门开始放水后水池的水量与放水时间有如下关系:放水时间/分1 2 3 4 … 水池中水量/3m 48 46 44 42 … A .蓄水池每分钟放水32mB .放水18分钟后,水池中水量为314mC .蓄水池一共可以放水25分钟D .放水12分钟后,水池中水量为324m12.已知A 、B 两地相距810千米,甲车从A 地匀速前往B 地,到达B 地后停止.甲车出发1小时后,乙车从B 地沿同一公路匀速前往A 地,到达A 地后停止.设甲乙两车之间的距离为y(千米),甲车出发的时间为x (小时),y 与x 的关系如图所示,对于以下说法:①乙车的速度为90千米/时;②点F 的坐标为(9,540);③图中a 的值是13.5;④当甲乙两车相遇时,两车相遇地距A 地的距离为360千米.其中正确的结论是( )A .①②③B .①②④C .②③④D .①③④二、填空题13.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.14.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.15.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 16.若函数()224y m x m =-+-是关于x 的正比例函数,则常数m 的值是__________. 17.已知函数2(1)3k y k x =-+是一次函数,则k =_________.18.若式子23x x +-有意义,则x 的取值范围为______. 19.甲、乙两车分别从,A B 两地同时相向匀速行驶,当乙车到达A 地后,继续保持原速向远离B 地的方向行驶,而甲车到达B 地后立即掉头,并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地,设两车行驶的时间为()x h ,两车之间的距离为()y km ,y 与x 之间的函数关系如图所示,则,A C 两地相距________千米.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.在平面直角坐标系xOy 中,一次函数y =﹣x +6的图象分别交y 轴和x 轴于点A ,B ,交一次函数y =2x 的图象于点C .(1)求点C 的坐标;(2)求△OBC 的面积.22.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量23.在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第一象限,斜靠在两条坐标轴上,且点A (0,3),点C (1,0),BE ⊥x 轴于点E ,一次函数y x b =+经过点B ,交y 轴于点D .(1)求证△AOC ≌△CEB ;(2)求B 点坐标;(3)求ABD S ∆24.某地区的电力资源缺乏,未能得到较好的开发.该地区一家供电公司为了居民能节约用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图象如图所示.(1)月用电量为50度时,应交电费多少元?(2)当100x ≥时,求y 与x 之间的函数关系式;(3)月用电量为150度时,应交电费多少元?25.甲、乙两个探测气球分别从海拔5m 和15m 处同时出发,匀速上升60min .如图是甲、乙两个探测气球所在位置的海拔y (单位:m )与气球上升时间x (单位:min )的函数图象,已知甲气球的函数解析式为y=x+5(x≥0)(1)求乙气球在上升过程中y 关于x 的函数解析式;(2)当这两个气球的海拔高度相差15m 时,求上升的时间.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据一次函数图象平移规律,直接判断即可.【详解】解:∵一次函数图象向上平移m (m>0)个单位,常数项增加m ,∴函数y =2x 的图像向上平移1个单位可以得到y =2x +1的图像,故选:C .【点睛】本题考查了一次函数图象平移的规律,解题关键是掌握一次函数图象平移的规律:上加下减常数项,左加右减自变量.2.A解析:A【分析】一条直线l 经过不同的三点,先设直线l 表达式为:y kx m =+,,把三点代入表达式,用a,b 表示k 、m ,再判断即可.【详解】设直线l 表达式为:y kx m =+,将(,)A a b ,(,)B b a ,(,)C a b b a --代入表达式中,得如下式子:(1)(2)()(3)b ka m a kb mb a k a b m =+⎧⎪=+⎨⎪-=-+⎩, 由(1)-(2)得:()b a ka m kb m k a b -=+--=-,得1k =-,()b a k a b -=-与(3)相减,得0m =,直线l 为:y x =-.故选:A .【点睛】本题考查直线经过象限问题,涉及待定系数法求解析式,解方程组等知识,关键是掌握点在直线上,点的坐标满足解析式,会解方程组.3.A解析:A【分析】先确定一次函数解析式中k 与b 的符号,然后再利用一次函数图象及性质即可解答.【详解】解:一次函数y=1-x其中k=-1,b=1其图象为:.故选:A .【点睛】本题考查了一次函数的图象,掌握一次函数的图象与性质是解答本题的关键. 4.D解析:D【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2020坐标即可.【详解】解:∵直线l 的解析式为y =, ∴直线l 与x 轴的夹角为30.∵AB x 轴,∴30ABO ∠=︒.∵1OA =,∴2OB =.∴1A B ⊥直线l ,130BAO ∠=︒, ∴124A O OB ==,∴()10,4A .同理可得()20,16A ,…∴2020A 的纵坐标为20204,∴()202020200,4A .故选D .【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x 轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A 、A 1、A 2、A 3…的点的坐标是解决本题的关键. 5.D解析:D【详解】∵正比例函数y kx =,且y 随x 的增大而减少,0k .∴< 在直线2y x k =+中,200k ><,,∴函数图象经过一、三、四象限.故选D .6.C解析:C【分析】根据题意首先利用待定系数法求出函数解析式,进而利用图象求出耗油量以及行驶时间进行分析判断即可.【详解】解:①由题意得,图象过(0,25)(2,9),设加油前油箱中剩余油量y (升)与行驶时间t (小时)的函数关系是:y=kt+b ,∴2529bk b⎧⎨⎩+==,解得825kb⎧⎨⎩-==,∴加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系是:y=-8t+25,故①正确;②途中加油30-9=21(升),故②正确;③∵汽车耗油量为:(25-9)÷2=8升/小时,∴30÷8=3.75,∴汽车加油后还可行驶3.75小时,故③错误;④∵从甲地到乙地,两地相距500千米,加油前、后汽车都以100千米/小时的速度匀速行驶,∴需要:500÷100=5(小时)到达,∴汽车到达乙地时油箱中还余油30-8×(5-2)=6(升),故④正确;综上①②④正确.故选:C.【点睛】本题主要考查一函数应用以及待定系数法求一次函数解析式等知识,根据已知图象获取正确信息是解题的关键.7.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x<6),∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.8.B解析:B【分析】由图象经过第一,二,三象限,可得k>0,b>0,可判断A①,根据增减性,可判断②,由图象可直接判断③【详解】解:∵图象过第一,第二,第三象限,∴k>0,b>0,∴0kb >,①正确, y 随x 增大而增大,∵-2<3∴m <n ,②错误,又∵一次函数y kx b =+的图象与y 轴交于点(0,b ), 当0x >时,图像在第一象限,都在点(0,b )的上方,又是增函数,∴这部分图像的纵坐标y>b ,③正确,故①③正确故选:B .【点睛】本题考查一次函数图象上点的坐标特征,一次函数图象的性质,解题关键是灵活运用一次函数图象的性质.9.B解析:B【分析】分析:根据一次函数y=kx+b (k≠0,b 为常数)的性质可知,k>0时,y 随x 的增大而增大;b <0时,直线与y 轴相交于负半轴,据此即可判断一次函数所过象限.详解:∵一次函数y=3x−6中,3>0,−6<0,∴一次函数图象过一、三、四象限,故函数图象不过第二象限,故选B.点睛:此题考查一次函数的性质,直线y=kx+b (k≠0,b 为常数)图象时一条经过(-b k ,0)和(0,b )的直线.k 的正负决定直线的倾斜方向,k>0时,y 随x 的增大而增大,k<0时,y 随x 的增大而减小;b 的正负决定直线与y 轴交点的位置:b <0时,直线与y 轴相交于负半轴,b>0时,直线与y 轴相交于正半轴,b=0时,直线过原点.由此即可判断直线经过的象限,【详解】请在此输入详解!10.B解析:B【分析】根据一次函数的图像即可求解判断.【详解】由A,C 图像可得函数y=mx+n 过一,二,三象限,故m >0,n >0,故y=nx+m 也过一,二,三象限,故A,C 错误;由B,D 图像可得函数y=mx+n 过一三四象限,故m >0,n <0,故y=nx+m 过一,二,四象限,故B 正确,D 错误;故选B.此题主要考查一次函数的图像,解题的关键是熟知一次函数的性质.第II 卷(非选择题)请点击修改第II 卷的文字说明11.D解析:D【分析】根据题意可得蓄水量为502y t =-,从而进行判断即可; 【详解】设蓄水量为y 立方米,时间为t 分,则可得502y t =-, 蓄水池每分钟放水32m ,故A 不符合题意;放水18分钟后,水池中水量为35021814y m =-⨯=,故B 不符合题意; 蓄水池一共可以放水25分钟,故C 不符合题意;放水12分钟后,水池中水量为35021226y m =-⨯=,故D 符合题意;故答案选D .【点睛】本题主要考查了函数的表示方法,准确分析判断是解题的关键.12.D解析:D【分析】通过对运动过程及函数图象的分析可得:CD 段为甲车提前出发的1小时,即可求解甲车速度;DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米即可求出乙车速度,逐一判断即可求解.【详解】解:由图象可知CD 段为甲车提前出发的1小时,可得甲车速度为81075060km/h -=, DE 段为甲乙相向而行,在E 点时两车相遇,5小时的时间内共行驶750千米, ∴乙车的速度为7506090km/h 5-=,故①正确; 此时两车距A 地的距离为606360⨯=,故④正确; ∴甲车到达B 地时对应时间为810=13.5h 60, 乙车到达A 地时对应时间为81011090+=, ∴图中a 的值是13.5,故③正确;点F 的坐标为(10,600),故②错误;综上,正确的结论有①③④,故选:D .本题考查一次函数的应用,根据图象与题干分析出每一段的状态是解题的关键.二、填空题13.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.14.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】 本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质.15.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C (7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S 的最小值为2,最大值为3,解S =12|t ﹣3|×2﹣12|t ﹣3|×1=3,得t =9或﹣3,∵当S =2时,得t =7或﹣1,∴若S 的最小值为2,最大值为3,点C 的横坐标t 的取值范围为7≤t≤9或﹣3≤t≤﹣1; 故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.16.【分析】根据正比例函数的定义列出式子计算求出参数m 的值【详解】解:∵函数y=(m-2)x+4-m2是关于x 的正比例函数∴4-m2=0且m-2≠0解得m=-2或m=2(不符合题意舍去)故答案为:m=-解析:2m =-【分析】根据正比例函数的定义列出式子计算求出参数m 的值.【详解】解:∵函数y=(m-2)x+4-m 2是关于x 的正比例函数,∴4-m 2=0且m-2≠0,解得,m=-2或m=2(不符合题意,舍去).故答案为:m=-2.【点睛】本题考查的是正比例函数的定义,一般地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数.17.-1【分析】根据一次函数的定义即可求出k 的值【详解】解:∵是一次函数∴解得:;故答案为:【点睛】本题考查了一次函数的定义解题的关键是熟练掌握一次函数的定义进行解题解析:-1【分析】根据一次函数的定义,即可求出k 的值.【详解】解:∵2(1)3k y k x =-+是一次函数, ∴2110k k ⎧=⎨-≠⎩, 解得:1k =-;故答案为:1-.【点睛】本题考查了一次函数的定义,解题的关键是熟练掌握一次函数的定义进行解题. 18.x >-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x -3≠0再解即可【详解】由题意得:x+2≥0且x -3≠0解得:x >-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.19.300【分析】当x=0时y=300故此可得到AB两地的距离为3003小时后两车相遇从而可求得两车的速度之和然后依据5小时后两车的距离最大可知甲车到达B地用5小时从而可乙车的速度设甲乙两车出发后经过t解析:300【分析】当x=0时,y=300,故此可得到AB两地的距离为300,3小时后两车相遇,从而可求得两车的速度之和,然后依据5小时后两车的距离最大,可知甲车到达B地用5小时,从而可乙车的速度,设甲、乙两车出发后经过t小时同时到达C地,根据甲乙两车的路程相差300千米,列方程可求得t的值,最后根据乙的路程得到B、C之间的距离,则可得出A、C之间的距离.【详解】解:由图象可得:当x=0时,y=300,∴AB=300千米.∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时,设甲、乙两车出发后经过t小时同时到达C地,依题意可得60t-40t=300,解得t=15,∴B,C两地的距离=40×15=600千米,∴A,C两地的距离=600-300=300千米.故答案为:300.【点睛】本题以行程问题为背景,主要考查了一次函数的应用,解决问题的关键是根据函数图象理解题意,求得两车的速度,并根据两车行驶路程的数量关系列出方程.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x的图象经过第一三象限可得:k-1>0则k>1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)()2,4;(2)12【分析】(1)根据题意,将两个一次函数联立方程组,求出x 、y 的值,即可得到点C 的坐标; (2)根据一次函数可以得到点B 的坐标,再根据点C 的坐标,即可求得OBC ∆的面积.【详解】解:(1)由题意可得,26y x y x =⎧⎨=-+⎩, 解得24x y =⎧⎨=⎩, 一次函数6y x =-+的图象交一次函数2y x =的图象于点C ,∴点C 的坐标为(2,4);(2)一次函数6y x =-+的图象分别交y 轴和x 轴于点A ,B ,∴当0y =时,6x =,∴点B 的坐标为(6,0),6OB ∴=,点(2,4)C ,OBC ∴∆的面积是:64122⨯=, 即OBC ∆的面积是12.【点睛】本题考查的是一次函数的图像和性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)16010=-+y x(2)小于20升【分析】(1)根据题意,可以写出y与x的函数关系式,并写出x的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x,当y=0时,0=60-0.1x,得x=600,即y与x的函数关系式为y=60-0.1x(0≤x≤600);(2)y=60-0.1x,列表:x0600y600所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.23.(1)见解析;(2)B(4,1);(3)12【分析】(1)根据等腰直角三角形的性质,可得AC=BC,∠ACB=90°,根据余角的性质,可得∠OAC=∠BCE,根据AAS,可得答案;(2)根据全等三角形的性质,可得B点坐标;(3)先求得b的值,再根据三角形的面积公式,可得答案.【详解】(1)(1)证明:∵BE⊥CE∴∠BEC=90°∵△ABC是等腰直角三角形∴AC=BC,∠ACB=90°∴∠AOC=∠BEC=90°∵∠OAC + ∠ACO = 90°,∠ACO +∠BCE =90°,∴∠OAC =∠BCE .在Rt △AOC 和Rt △CEB 中,∠AOC =∠CEB∠OAC =∠BCEAC =BC∴△AOC ≌△CEB (AAS ).(2)∵△AOC ≌△CEB∴CE =AO =3,EB =OC =1∴B 点坐标(4,1)(3)将B 点坐标代入y =x +b 中可求b =-3∴D (0,-3)∴AD =6∴S △ABD =12AD•B x =12×6×4=12 【点睛】本题考查了一次函数综合题,利用余角的性质得出∠OAC=∠BCE 以及利用待定系数法求出b 值是解答本题的关键.24.(1)30元;(2) 1.480y x =-;(3)130元【分析】(1)求出0100x <≤时一次函数的解析式,即可求解;(2)当100x ≥时, y 与x 之间的函数关系式为y kx b =+,把点()()100,60,200,200代入求解即可;(3)把150x =代入解析式即可得到答案;【详解】 解:()10100x <≤时,35y x =月用电量为50度时,应交电费30元; ()2当100x ≥时,设y 与x 之间的函数关系式为y kx b =+,点()()100,60,200,200在函数y kx b =+的图象上,10060200200k b k b +=⎧∴⎨+=⎩解得 1.480k b =⎧⎨=-⎩, 即当100x ≥时,y 与x 之间的函数关系式为 1.480y x =-;()3当150x =时, 1.415080130y =⨯-=,即月用电量为150时,应交电费130元.【点睛】本题主要考查了一次函数的图象应用,准确分析计算是解题的关键.25.(1)y =12x+15(x≥0);(2)50min . 【分析】(1)根据图象中坐标,利用待定系数法求解;(2)根据分析可知:当x 大于20时,两个气球的海拔高度可能相差15m ,从而列方程求解【详解】解:(1)设乙气球的函数解析式为:y =k x+b ,分别将(0,15),(20,25)代入, 152520b k b =⎧⎨=+⎩, 解得:1215k b ⎧=⎪⎨⎪=⎩,∴乙气球的函数解析式为:y =12x+15(x≥0); (2)由初始位置可得:当x 大于20时,两个气球的海拔高度可能相差15m ,且此时甲气球海拔更高,甲气球的函数解析式为:y =x+5∴x+5﹣(12x+15)=15, 解得:x =50,∴当这两个气球的海拔高度相差15m 时,上升的时间为50min .【点睛】本题考查了一次函数的实际应用,解题的关键是结合实际情境分析函数图象. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y1-y2=0.5x-12(x≥4),①当y1-y2=0时,得0.5x-12=0,解得x=24,∴当购买24张票时,两种优惠方案付款一样多;②当y1-y2<0时,得0.5x-12<0,解得x<24,∴4≤x<24时,y1<y2,优惠方案1付款较少.③当y1-y2>0时,得0.5x-12>0,解得x>24,∴当x>24时,y1>y2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.。

(必考题)初中数学八年级数学上册第四单元《一次函数》测试(答案解析)(3)

(必考题)初中数学八年级数学上册第四单元《一次函数》测试(答案解析)(3)

一、选择题1.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t (分钟),所走路程为s (米),s 与t 之间的函数关系如图所示,则下列说法中,错误的是( )A .小明中途休息用了20分钟B .小明在上述过程中所走路程为7200米C .小明休息前爬山的速度为每分钟60米D .小明休息前后爬山的平均速度相等2.如图,一次函数y=kx+b 图象与x 轴的交点坐标是(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx+b=0的解为x=2.其中说法正确的是( )A .①和②B .①和③C .②和③D .①②③都正确 3.将直线y=-2x 向上平移后得到直线AB ,直线AB 经过点(1,4),则直线AB 的函数表达式为( )A .y=2x+2B .y=2x-6C .y=-2x+3D .y=-2x+6 4.如图1,在矩形ABCD 中,AB <BC ,点E 为对角线AC 上的一个动点,连接BE ,DE ,过E 作EF ⊥BC 于F .设AE =x ,图1中某条线段的长为y ,若表示y 与x 的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )A .线段BEB .线段EFC .线段CED .线段DE 5.已知正方形轨道ABCD 的边长为2,m 小明站在正方形轨道AD 边的中点M 处,操控一辆无人驾驶小汽车,小汽车沿着折线A B C D ---以每秒1m 的速度向点D (终点)移动,如果将小汽车到小明的距离设为,S 将小汽车运动的时间设为,t 那么()S m 与()t s 之间关系的图象大致是( )A .B .C .D . 6.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D . 7.函数1y x =-x 的取值范围是( ) A .1x >B .1≥xC .1x ≥-D .1x ≠ 8.下列函数中y 随x 的增大而增大,且图象与x 轴交点在y 轴左侧的是( ) A .21y x =- B .21y x =+ C .21y x =-+ D .21y x =-- 9.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A.B.C.D.10.雪橇手从斜坡顶部滑了下来,下图中可以大致刻画出雪橇手下滑过程中速度—时间变化情况的是()A.B.C.D.11.如图所示,小刚家,菜地,稻田在同一条直线上.小刚从家去菜地浇水,又去稻田除草,然后回家.如图反映了这个过程中,小刚离家的距离y与时间x之间的对应关系.如果菜地和稻田的距离为akm,小刚在稻田除草比在菜地浇水多用了bmin,则a,b的值分别为()A.1,8 B.0.5,12 C.1,12 D.0.5,812.已知点A(1,1y)和点B(a,2y)在y=-2x+b的图象上且1y>2y,则a的值可能是()A.2 B.0 C.-1 D.-2二、填空题13.小亮从家骑车上学,先经过一段平路到达A地后,再上坡到达B地,最后下坡到达学校,所行驶路程s(千米)与时间t(分钟)的关系如图所示.如果返回时,上坡、下坡、平路的速度仍然保持不变,那么他从学校回到家需要的时间是_______分钟.14.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.15.按如图所示的程序计算,当输入3x =时,则输出的结果为______.16.如图,在平面直角坐标系中,Rt ABC 的三个顶点分别是A(-3,2),B(0,4),C(0.2),在x 轴上有一点P ,使得PA+PB 的值最小,则点P 的坐标为______________17.已知在平面直角坐标系xOy 中,点A 的坐标为(﹣1,2),点B 的坐标为(1,1),点C (t ,0)是x 轴上的一个动点,设三角形ABC 的面积为S .(1)当S =2时,点C 的坐标为_____;(2)若S 的最小值为2,最大值为3,请直接写出点C 的横坐标t 的取值范围_____. 18.正比例函数y =kx 的图象经过点(2,3),则k =______.19.2x +有意义,则x 的取值范围为______.20.一次函数()1y k x =-的图象经过第一、三象限,则k 的取值范围为_______.三、解答题21.如图,,A B 两个长方体水箱放置在同一水平桌面上,开始时水箱A 中没有水,水箱B 盛满水,现以36/dm min 的流量从水箱B 中抽水注入水箱A 中,直至水箱A 注满水为止.设注水()t min ,水箱A 的水位高度为()yA dm ,水箱B 中的水位高度为()yB dm .根据图中数据解答下列问题(抽水水管的体积忽略不计)(1)注水t 分钟时,A 水箱中水的体积为 3dm(2)分别求出yA yB 、与t 之间的函数表达式;(3)当注水2分钟时,求出此时两水箱中水位的高度差.(4)当水箱A 与水箱B 中的水的体积相等时,求出此时两水箱中水位的高度差. 22.已知12y y y =+,其中1y 与3x -成正比例,2y 与21x +成正比例,且当0x =时,4y =-,当1x =-时,6y =-.(1)求y 与x 的函数关系式;(2)判断点()1,4A -是否在此函数图像上,并说明理由.23.如图,平面直角坐标系中,A (0,a ),B (b ,0),OC =OA ,且a ,b 满足|a ﹣8|+6b +=0(1)求直线AB 的表达式;(2)现有一动点P 从点B 出发,以1米/秒的速度沿x 轴正方向运动到点C 停止,设P 的运动时间为t ,连接AP ,过点C 作AP 的垂线交射线AP 于点M ,交y 轴于点N ,请用含t 的式子表示线段ON 的长度;(3)在(2)的条件下,连接BM ,当S △ABM :S △ACM =3:7时,求此时P 点的坐标.24.已知一次函数y =kx +b 的图像经过点(1,﹣4),且与正比例函数y =0.5x 的图像交于点(4,a).(1)求a、k、b的值;(2)画出函数y=kx+b与y=0.5x的图像;(3)求两函数图像与y轴围成的三角形的面积.25.疫情过后,地摊经济迅速兴起.小李以每千克2元的价格购进某种水果若干千克,销售一部分后,根据市场行情降价销售,销售额y(元)与销售量x(千克)之间的关系如图所示.(1)求降价后销售额y(元)与销售量x(千克)之间的函数表达式;(2)当销售量为多少千克时,小李销售此种水果的利润为150元?26.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA表示货车离甲地的距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地的距离y(千米)与时间x(时)之间的函数关系,请根据图象解答下列问题:(1)轿车到达乙地时,货车与甲地的距离是________千米;(2)在轿车行进过程中,轿车行驶多少时间两车相遇?(3)在轿车行进过程中,轿车行驶多少时间,两车相距15千米?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据函数图象可知,小明40分钟爬山2400米,40~60分钟休息,60~100分钟爬山(4800-2400)米,爬山的总路程为4800米,根据路程、速度、时间之间的关系进行解答即可.【详解】A 、小明中途休息的时间是:60-40=20分钟,故本选项正确;B 、小明在上述过程中所走路程为4800米,故本选项错误;C 、小明休息前爬山的速度为240040=60(米/分钟),故本选项正确; D 、因为小明休息后爬山的速度是4800240010060--=60(米/分钟),所以小明休息前后爬山的平均速度相等,故本选项正确;故选B .【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 2.D解析:D【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.【详解】解:由图象可知:图象过一、二、四象限,则0k <,0b >,当0k <时,y 随x 的增大而减小,故①,②正确,由图象得:与x 轴的交点为(2,0),则当2x =时0y =,故③正确,综上所述①②③都正确,故选:D .【点睛】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.3.D解析:D【分析】设直线AB 的解析式为y=kx+b ,根据平移时k 的值不变可得k=-2,把(1,4)代入即可求出b的值,即可得答案.【详解】设直线AB的解析式为y=kx+b,∵将直线y=-2x向上平移后得到直线AB,∴k=-2,∵直线AB经过点(1,4),∴-2+b=4,解得:b=6,∴直线AB的解析式为:y=-2x+6,故选:D.【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k值不变.4.D解析:D【分析】根据各个选项中假设的线段,可以分别由图象得到相应的y随x的变化的趋势,从而可以判断哪个选项是正确的.【详解】A、由图1可知,若线段BE是y,则y随x的增大先减小再增大,而由由大变小的距离小于由小变大的距离,在点A的距离是BA,在点C时的距离是BC,BA<BC,故选项A错误;B、由图1可知,若线段EF是y,则y随x的增大越来越小,故选项B错误;C、由图1可知,若线段CE是y,则y随x的增大越来越小,故选项C错误;D、由图1可知,若线段DE是y,则y随x的增大先减小再增大,而由由大变小的距离大于由小变大的距离,在点A的距离是DA,在点C时的距离是DC,DA>DC,故选项D正确;故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.5.D解析:D【分析】求出小汽车在AB、BC上运动时,MQ的表达式即可求解.【详解】解:设小汽车所在的点为点Q,①当点Q在AB上运动时,AQ=t,则MQ2=MA2+AQ2=1+t2,即MQ2为开口向上的抛物线,则MQ为曲线,②当点Q在BC上运动时,同理可得:MQ2=22+(1-t+2)2=4+(3-t)2,MQ为曲线;故选:D.【点睛】本题考查了动点图象问题,解题的关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.6.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.7.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.8.B解析:B【分析】根据一次函数的性质和各个选项中的函数解析式,可以判断哪个选项中的函数y随x的增大而增大,且图象与x轴交点在y轴左侧,本题得以解决.【详解】解:函数y=2x-1,y随x的增大而增大,与x轴的交点是(0.5,0),在y轴右侧,故选项A不符题意;函数y=2x+1,y随x的增大而增大,与x轴的交点是(-0.5,0),在y轴左侧,故选项B 符题意;函数y=-2x+1,y随x的增大而减小,与x轴的交点是(0.5,0),在y轴右侧,故选项C 不符题意;函数y=-2x-1,y随x的增大而减小,与x轴的交点是(-0.5,0),在y轴左侧,故选项D 不符题意;故选:B.【点睛】本题考查了一次函数的性质,解题的关键是明确题意,利用一次函数的性质解答.9.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=1×4×(6-x)=-2x+12(0<x<6),2∴B符合.故选:B.【点睛】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.10.A解析:A【分析】从下滑过程中速度与时间变化情况来看,速度随时间的增大而增大,不会保持不变,更不会减少,从而可得出结果.【详解】解:雪撬手从斜坡顶部滑下来,速度越来越快即速度随时间的增大而增大.符合条件的只有A .故选:A .【点睛】本题考查函数图象的判断,根据速度随时间的增大而增大确定函数图象是解题的关键. 11.D解析:D【分析】首先弄清横、纵坐标所表示的意义,然后根据各个特殊点来分段分析整个函数图象.【详解】解:此函数大致可分以下几个阶段:(1)0﹣12分种,小刚从家走到菜地;(2)12﹣27分钟,小刚在菜地浇水;(3)27﹣33分钟,小刚从菜地走到稻田地;(4)33﹣56分钟,小刚在稻田地除草;(5)56﹣74分钟,小刚从稻田地回到家;综合上面的分析得:由(3)的过程知,a =1.5-1=0.5(千米);由(2)(4)的过程知b =(56-33)-(27-12)=8(分钟).故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 12.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键.二、填空题13.5【分析】根据图象可知:小明从家骑车上学平路路程是1千米用3分钟;上坡的路程是1千米用6分钟则上坡速度是千米/分钟;下坡路长是2千米用3分钟因而速度是千米/分钟由此即可求出答案【详解】解:根据图象可 解析:5【分析】根据图象可知:小明从家骑车上学,平路路程是1千米,用3分钟;上坡的路程是1千米,用6分钟,则上坡速度是16千米/分钟;下坡路长是2千米,用3分钟,因而速度是23千米/分钟,由此即可求出答案. 【详解】解:根据图象可知:小明从家骑车上学,上坡的路程是1千米,用6分钟, 则上坡速度是16千米/分钟; 下坡路长是2千米,用3分钟, 则速度是23千米/分钟, 他从学校回到家需要的时间为:2÷16+1÷23+3=16.5(分钟). 故答案为:16.5.【点睛】 此题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 14.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 15.1【分析】根据x 的值选择函数关系式然后进行计算即可得解【详解】解:当x=3时y=-x+4=-3+4=1故答案为:1【点睛】本题考查了函数值的求解关键在于准确选择函数关系式解析:1【分析】根据x的值选择函数关系式然后进行计算即可得解.【详解】解:当x=3时,y=-x+4=-3+4=1,故答案为:1.【点睛】本题考查了函数值的求解,关键在于准确选择函数关系式.16.(-20)【分析】作点B关于x轴的对称点D连接AD则AD与x轴交点即为点P位置利用待定系数法求出AD解析式再求出点P坐标即可【详解】解:作点B 关于x轴的对称点D则点D坐标为(0-4)连接AD则AD与解析:(-2,0)【分析】作点B关于x轴的对称点D,连接AD,则AD与x轴交点即为点P位置,利用待定系数法求出AD解析式,再求出点P坐标即可.【详解】解:作点B关于x轴的对称点D,则点D坐标为(0,-4),连接AD,则AD与x轴交点即为点P位置.设直线AD解析式为y=kx+b(k≠0),∵点A、D的坐标分别为(-3,2),(0,-4),∴324k bb-+=⎧⎨=-⎩解得24 kb=-⎧⎨=-⎩∴直线AD解析式为y=-2x-4,把y=0代入y=-2x-4,解得x=-2,∴点P的坐标为(-2,0).【点睛】本题考查了将军饮马问题,根据题意作出点B 关于x 轴对称点D ,确定点P 位置是解题关键.17.或或【分析】(1)利用待定系数法求得直线AB 的解析式然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值即可解决问题【详解】解:(1)设直线AB 的解析式为y =kx+b ∵点A解析:()7,0或()1,0- 79t ≤≤或31t -≤≤-【分析】(1)利用待定系数法求得直线AB 的解析式,然后根据三角形的面积公式构建方程即可解决问题;(2)求得S =2和S =3时t 的值,即可解决问题.【详解】解:(1)设直线AB 的解析式为y =kx+b ,∵点A 的坐标为(﹣1,2),点B 的坐标为(1,1),∴-21k b k b +=⎧⎨+=⎩ , 解得1232k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为1322y x =-+, 令y =0,则x =3,∴直线AB 与x 轴的交点为(3,0),∵点C (t ,0)是x 轴上的一个动点,∴S △ABC =12|t ﹣3|×2﹣12|t ﹣3|×1=2, ∴|t ﹣3|=4,解得t =7或﹣1,∴C(7,0)或(﹣1,0),故答案为(7,0)或(﹣1,0);(2)若S的最小值为2,最大值为3,解S=12|t﹣3|×2﹣12|t﹣3|×1=3,得t=9或﹣3,∵当S=2时,得t=7或﹣1,∴若S的最小值为2,最大值为3,点C的横坐标t的取值范围为7≤t≤9或﹣3≤t≤﹣1;故答案为:7≤t≤9或﹣3≤t≤﹣1.【点睛】本题考查了三角形的面积,一次函数的应用等知识,解题的关键是学会用方程的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.18.【分析】将点(23)代入解析式即可求出答案【详解】将点(23)代入y=kx中得2k=3解得k=故答案为:【点睛】此题考查了正比例函数求值已知点的坐标即可将点的坐标代入解析式求出参数解析:3 2【分析】将点(2,3)代入解析式即可求出答案.【详解】将点(2,3)代入y=kx中,得2k=3,解得k=32,故答案为:3 2 .【点睛】此题考查了正比例函数求值,已知点的坐标即可将点的坐标代入解析式求出参数.19.x>-2且x≠3【分析】根据二次根式有意义的条件可得x+2≥0根据分式有意义的条件可得x-3≠0再解即可【详解】由题意得:x+2≥0且x-3≠0解得:x>-2且x≠3故答案为:x>-2且x≠3【点睛解析:x>-2,且x≠3.【分析】根据二次根式有意义的条件可得x+2≥0,根据分式有意义的条件可得x-3≠0,再解即可.【详解】由题意得:x+2≥0,且x-3≠0,解得:x>-2,且x≠3故答案为:x>-2,且x≠3.【点睛】本题考查了二次根式的性质和分式的意义,掌握二次根式及分式有意义的条件是解题的关键.20.【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答【详解】解:由正比例函数y=(k-1)x 的图象经过第一三象限可得:k-1>0则k >1故答案是:k >1【点睛】本题考查了一次函数图象与系数的解析:1k >【分析】根据正比例函数图象在坐标平面内的位置与系数的关系作答.【详解】解:由正比例函数y=(k-1)x 的图象经过第一、三象限,可得:k-1>0,则k >1.故答案是:k >1.【点睛】本题考查了一次函数图象与系数的关系,掌握正比例函数y=kx 的图象经过第一、三象限,则k >0;正比例函数y=kx 的图象经过第二、四象限,则k <0.三、解答题21.(1)6t ;(2)365yB t =-+;yA t =;(3)2.8dm ;(4)2dm ; 【分析】(1)根据题目中B→A 的速度求解即可;(2)根据A 的体积求出yA ,再根据长方体体积计算即可;(3)分别求出yA ,yB ,计算即可;(4)根据题意求出yB ,求出t ,即可得解;【详解】(1)∵注水t 分钟,水从B→A 以36/dm min , ∴()36A V t dm =; 故答案为6t ; (2)∵326A V yA t =⨯⨯=, ∴yA t =,又∵()5266yB t ⨯⨯-=,()1066yB t -=,365yB t =-+;(3)当2t =时,()2yA t dm ==,()33626 4.855yB t dm =-+=-⨯+=, ∴高度差()4.82 2.8dm =-=; (4)∵A 、B 水体积相等,∴B 箱中水抽走一半, ∴1525262yB ⨯⨯=⨯⨯⨯, ∴()3yB dm =,当3yB =时,3635t -+=, 5t =,当5t =时,()5yA t dm ==,∴高度差()532dm =-=.【点睛】 本题主要考查了一次函数的实际应用,准确计算是解题的关键.22.(1)24y x x =-+-;(2)在,理由见解析.【分析】(1)根据正比例函数的定义,设()113y k x =-;()2221k x y =+,代入当0x =和1x =-时的值,即可求出和1k 和2k ,即可得到函数解析式;(2)将1x =代入函数解析式中,得出y 的值,如果等于-4,则A 点在函数图像上,如果不等于-4则不在函数图像上.【详解】(1)由题意得:设()113y k x =-;()2221k x y =+ ∴()()12213y x k x k =-++, 由当0x =时,4y =-,当1x =-时,6y =-,得,()()()()12124030161311k k k k ⎧-=-++⎪⎨-=--++⎪⎩,解得1211k k =⎧⎨=-⎩ ∴y 与x 的函数关系式为24y x x =-+-;(2)当1x =时,21144y =-+-=-∴A 点在函数图像上.【点睛】本考查了正比例函数的定义,待定系数法求函数解析式,关键是掌握待定系数法. 23.(1)483y x =+;(2)6-t 或t ﹣6;(3)P (﹣1.8,0)【分析】(1)根据非负数的性质可得a 和b 的值,确定点A 和B 的坐标,利用待定系数法即可得出结论;(2)分两种情况:判断出△AOP ≌△CON ,即可得出结论;(3)先判断出BH :CM =3:7,进而判断出S △ABP :S △ACP =3:7,得出BP :CP =3:7,即可得出结论.【详解】解:(1)∵860a b -++=,∴80a -=,60b +=,∴a =8,b =6,∴A (0,8),B (﹣6,0),设直线AB 的表达式为:y kx m =+,则860m k m =⎧⎨-+=⎩,解得:438k m ⎧=⎪⎨⎪=⎩, ∴直线AB 的表达式为:483y x =+; (2)由(1)知,A (0,8),B (﹣6,0),∴OB =6,OA =8,∵OC =OA ,∴OC =8,∴C (8,0),①当点P 在x 轴负半轴时,即0≤t≤6时,如图1,由运动知,BP =t ,∴OP =6﹣t ,∵CM ⊥AP ,∴∠CMA =90°=∠AOP =∠AOC ,∵∠ANM =∠CNO ,∴∠OAP =∠OCN ,∵OA =OC ,∴△AOP ≌△CON (ASA ),∴ON =OP =6﹣t ;②当点P 在x 轴正半轴时,即6<t≤14,如图2,由运动知,BP =t ,∴OP =t ﹣6,同①的方法得,△AOP ≌△CON (ASA ),∴ON =OP =t ﹣6;(3)如图3,过点B 作BH ⊥AP 于H ,则S △ABM =12AM•BH ,S △ACM =12AM•CM , ∵S △ABM :S △ACM =3:7, ∴12AM•BH :12AM•CM =3:7, ∴37BH CM , ∵S △ABP =12AP•BH ,S △ACP =12A P•CM , ∴S △ABP :S △ACP =3:7,∵S △ABP =12BP•OA ,S △ACP =12CP•OA , ∴BP :CP =3:7,∴BP :BC =3:10,∵B (﹣6,0),C (8,0),∴BC =14,∴BP =4.2,∴OP =6﹣4.2=1.8,∴P (﹣1.8,0).【点睛】本题考查一次函数与三角形的综合动态问题,准确求取解析式,并根据题意适当分类讨论是解题关键.24.(1)a =2,k =2,b =-6;(2)答案见解析;(3)12.【分析】(1)直接把(4,a )代入y=0.5x 可求出a ,从而得到a 的值;把两点坐标代入y=kx+b 得到关于k 、b 的方程组,然后解方程组即可;(2)利用描点、连线,即可画出函数的图像;(3)先确定一次函数与y 轴的交点坐标,然后根据三角形面积公式求解.【详解】解:(1)把(4,a )代入y=0.5x 得a=2;把(1,-4)、(4,2)代入y=kx+b 得442k b k b +=-⎧⎨+=⎩, 解得:26k b =⎧⎨=-⎩; (2)函数图像如图所示:(3)一次函数解析式为y=2x-6,当x=0时,y=6-,,则一次函数与y 轴的交点坐标为(0,-6),所以这两个函数图象与y 轴所围成的三角形面积=164122⨯⨯=. 【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同.25.(1) 2.560(40)y x x =+>;(2)180千克【分析】(1)根据函数图象中的数据,可以得到降价后销售额y (元)与销售量x (千克)之间的函数表达式;(2)根据(1)中的函数关系式和题意,可以列出相应的方程,从而可以得到当销售量为多少千克时,小李销售此种水果的利润为150元.【详解】解:(1)设降价后销售额y (元)与销售量x (千克)之间的函数表达式是y kx b =+, AB 段过点(40,160),(80,260),∴4016080260k b k b +=⎧⎨+=⎩, 解得, 2.560k b =⎧⎨=⎩, 即降价后销售额y (元)与销售量x (千克)之间的函数表达式是 2.560(40)y x x =+>; (2)设当销售量为a 千克时,小李销售此种水果的利润为150元,2.5602150a a +-=,解得,180a =,答:当销售量为180千克时,小李销售此种水果的利润为150元.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 26.(1)270;(2)y =110x ﹣195;(3)2.4小时;(3)轿车行驶2.1小时或2.7小时,两车相距15千米.【分析】(1)根据函数图象中的数据,可以得到货车的速度和轿车到达乙地的时间,然后即可计算出轿车到达乙地时,货车与甲地的距离;(2)根据函数图象中的数据,可以得到线段CD 对应的函数表达式,OA 和CD 交点横坐标即为所求;(3)根据题意和函数图象中的数据,可以计算出在轿车行进过程,轿车行驶多少时间,两车相距15千米.【详解】解:(1)(1)由图象可得,货车的速度为300÷5=60(千米/小时),则轿车到达乙地时,货车与甲地的距离是60×4.5=270(千米),故答案为:270;(2)设线段CD对应的函数表达式是y=kx+b.∵点C(2.5,80),点D(4.5,300),∴2.580 4.5300k bk b+=⎧⎨+=⎩,解得110195 kb=⎧⎨=-⎩,即线段CD对应的函数表达式是y=110x﹣195,由图象可得:线段OA对应的函数解析式为y=60x,则60x=110x﹣195,解得:x=3.9,3.9﹣1.5=2.4答:轿车行驶2.4小时两车相遇;(3)当x=2.5时,两车之间的距离为:60×2.5﹣80=70.∵70>15,∴在轿车行进过程,两车相距15千米时间是在2.5~4.5之间,由图象可得:线段OA对应的函数解析式为y=60x,则|60x﹣(110x﹣195)|=15,解得:x1=3.6,x2=4.2.∵轿车比货车晚出发1.5小时,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),∴在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.答:在轿车行进过程,轿车行驶2.1小时或2.7小时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

初二上册一次函数练习题

初二上册一次函数练习题

初二上册一次函数练习题一. 选择题(每题4分,共40分)1. 下列不属于一次函数的是:A. y = 5x - 3B. y = -2x^2 + 4x - 1C. y = 0.5x + 2D. y = -22. 若函数y = 2x - 1,那么当x = 3时,对应的y值是:A. -4B. 4C. 5D. -53. 函数y = -0.5x + 3图像与x轴交于点:A. (6, 0)B. (0, -3)C. (3, 0)D. (-3, 0)4. 若平行于y轴的直线与函数y = kx + 4相交于点(2,6),则k的值为:B. 3C. -2D. -35. 函数y = -x + 2的图像在x轴上的截距为:A. 1B. 2C. -1D. -26. 已知直线y = 3x + b与x轴的交点为(4, 0),则常数b的值为:A. -3B. 3C. -4D. 47. 若直线y = mx + 4与函数y = x + 5的图像相交于点(-3, 2),则直线的斜率m为:A. -1B. 1C. 28. 函数y = -2x + 4与x轴的交点为:A. (4, 0)B. (0, 2)C. (-4, 0)D. (0, -4)9. 若函数y = kx + 2过点(3, 5),则k的值为:A. 1B. 2C. -1D. -210. 函数y = 0.5x - 3与y轴的交点为:A. (-3, 0)B. (0, -3)C. (3, 0)D. (0, 3)二. 解答题1. 画出函数y = 2x - 3的图像,并通过图像求出它与x轴的交点坐标。

解:(请在此处画出函数图像,并标出交点坐标)解答:函数y = 2x - 3的图像如上所示。

通过图像可知,该函数与x 轴的交点坐标为(-1.5, 0)。

2. 求函数y = 3x + 2与函数y = -2x + 1的交点坐标。

解:(请在此处书写计算过程,并给出交点坐标)解答:我们需要求解方程3x + 2 = -2x + 1。

初二上数学一次函数练习题

初二上数学一次函数练习题

初二上数学一次函数练习题一. 填空题1. 已知线性函数y = 3x - 2,求当x = 2时的函数值y = ______。

2. 若函数y = ax + 3在x = 4处的函数值为7,则a的值为______。

3. 设函数y = kx + 4的图像与x轴交于点(2, 0),则k的值为______。

4. 若函数y = 2x + b在x = 3处的函数值为5,则b的值为______。

5. 若函数y = 2x - 3在x = -1处的函数值为-5,则函数在x = 1处的函数值为______。

6. 设函数y = mx - n的图像与y轴交于点(0, -3),则n的值为______。

7. 若函数y = 5x - 2在x = k处的函数值为7,求k的值为______。

8. 已知函数y = ax + 1在x = 3处的函数值为4,求a的值为______。

9. 设函数y = -2x + n的图像与x轴交于点(4, 0),则n的值为______。

10. 若函数y = 3x + b在x = -2处的函数值为1,则b的值为______。

二. 解方程1. 解方程3x - 4 = 5。

2. 解方程2(3x - 1) + 5 = 7x。

3. 解方程4(2x + 1) - 3(x - 2) = 5(1 - x)。

4. 解方程2(3 - x) - 3(2x - 1) = 1。

5. 解方程5(2x - 1) + 4 = 3(4x + 2) - 10。

三. 判断题1. 当a = 3时,线性函数y = ax - 4的图像与y轴交于点(-4, 0)。

( )2. 若函数y = mx + 5在x = 3处的函数值为-2,则m的值为8。

( )3. 若函数y = 4x + 3在x = -2处的函数值为-5,则函数在x = 2处的函数值为11。

( )4. 当a = -1时,线性函数y = ax + 4的图像与x轴交于点(-4, 0)。

( )5. 若函数y = 2x - 1在x = -2处的函数值为-3,则函数在x = 3处的函数值为7。

八年级上册数学一次函数测试题及答案

八年级上册数学一次函数测试题及答案

一次函数测试题之老阳三干创作一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

2、若函数y= -2x m+2是正比例函数,则m 的值是。

3、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

4、已知y 与x 成正比例,且当x =1时,y =2,则当x=3时,y=____。

5、点P (a ,b )在第二象限,则直线y=ax+b 不经过第象限。

6、已知一次函数y=kx-k+4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达式是______________。

7、已知点A(-21,a), B(3,b)在函数y=-3x+4的象上,则a 与b的大小关系是____。

8、地面气温是20℃,如果每升高100m,气温下降6℃,则气温t(℃)与高度h (m )的函数关系式是__________。

9、一次函数y=kx+b 与y=2x+1平行,且经过点(-3,4),则表达式为: 。

10、写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。

二、选择题11、下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x 中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个12、下面哪个点不在函数32+-=x y 的图像上( )(A )(-5,13) (B )(0.5,2) (C )(3,0) (D )(1,1)13、直线y=kx+b 在坐标系中的位置如图,则( ) (第13题图)(A )1,12k b =-=- (B )1,12k b =-= (C )1,12k b ==-(D )1,12k b ==14、下列一次函数中,随着增大而减小而的是 ( )(A )x y 3= (B )23-=x y (C )x y 23+= (D )23--=x y15、已知一次函数y=kx+b 的图象如图所示,则k ,b 的符号是( )(A) k>0,b>0 (B) k>0,b<0(C) k<0,b>0 (D) k<0,b<0(第15题图)16、函数y=(m+1)x-(4m-3)的图象在第一、二、四象限,那么m的取值范围是( )(A )34m < (B )314m -<< (C )1m <- (D )1m >-17、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h (厘米)与燃烧时间t (时)的函数关系的图象是( )(A) (B) (C )(D )18、下图中暗示一次函数y =mx+n 与正比例函数y =m nx(m ,n 是常数,且mn<0)图像的是( ).三、计算题19、已知一个正比例函数和一个一次函数的图象相交于点A(1,4),且一次函数的图象与x 轴交于点B(3,0)(1)求这两个函数的解析式;(2)画出它们的图象;20、已知y -2与x 成正比,且当x=1时,y= -6(1)求y 与x 之间的函数关系式 (2)若点(a ,2)在这个函数图象上,求a 的值21、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y=12 x 的图象相交于点(2,a),求 (1)a 的值(2)k ,b 的值(3)这两个函数图象与x 轴所围成的三角形的面积。

八年级数学上册一次函数基础练习

八年级数学上册一次函数基础练习

一次函数 基础练习一、选择题(每题4分,共32分)1.下列是关于变量x 与y 的四个关系式:①y=x ;②y 2=x ;③2x 2-y=0;④2x-y 2=0.•其中y 是x 的函数有( )A .①②④B .①③C .①②③D .②③④ 2.一次函数y =x -1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限3.要把直线y =32x -2的图象变为直线y =32(x +4)的图象,则下列平移方法正确的是( )A .向上平移8个单位B .向下平移8个单位C .向上平移6个单位D .向下平移6个单位 4.次函数y kx k =-,若y 随着x 的增大而减小,则该函数的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限 5.下列说法错误的是( ).A .正比例函数也是一次函数B .一次函数不一定是正比例函数C .不是正比例函数就不是一次函数D .一次函数的图象也有可能过原点 6.已知正比例函数(1)y m x =-的图象上有两点A (1x ,1y ),B (2x ,2y ),且当12x x > 时,12y y >,则m 的取值范围是( )A .0m <B .0m >C .1m <D .1m >7.如右图,一次函数y=kx+b 的图象经过A 、B 两点,则kx+b>0的解集是( ) A .x>0 B .x>2 C .x>-3 D .-3<x<28. 小王于上午8时从甲地出发去相距50千米的乙地.下图中,折线OABC 是表示小王离开甲地的时间t (时)与路程s (千米)之间的函数关系的图象.根据图象给出的信息,下列判断中,错误的是().A.小王11时到达乙地B.小王在途中停了半小时C.与8:00-9:30相比,小王在10:00-11:00前进的速度较慢D.出发后1小时,小王走的路程少于25千米一、填空题(每题4分,共32分)1.在函数1-=xy中,自变量x的取值范围是_________________.2.过点(0,2)且与直线y=-x平行的直线是____.3.一次函数的图象过点(1,2),且y随x的增大而增大, 则这个函数解析式是___.4. 已知点(—4,y1),(2,y2)都在直线y= —12x+2上,则y1,y2大小关系为5. 已知一次函数y kx b=+的图象经过点(25)A,和点B,点B是一次函数21y x=-的图象与y轴的交点,则这个一次函数的解析式是.6.已知一次函数y=-x+a与y=x+b的图象相交于点(m,8),则a+b=_________.7. 一次函数y= -2x+4的图象与x轴交点坐标是,与y轴交点坐标是图象与坐标轴所围成的三角形面积是.8.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.三、解答题(共56分)1.(12分)已知函数y=(2m+1)x+m -3 (1) 若函数图象经过原点,求m的值(2) 若函数图象与y轴的交点坐标为(0,-2),求m的值(3)若函数的图象平行直线y=3x –3,求m的值(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.(5)若这个一次函数的图象不经过第二象限,求m的取值范围。

八年级上册数学一次函数基础性练习题

八年级上册数学一次函数基础性练习题

八年级上册数学一次函数基础性练习题一次函数基础训练1 姓名: 日期:1、在函数① y=2x ②y=-3x+1 ③x y 2=中, x 是自变量, y 是x 的函数, 一次函数有_____________,正比例函数有_____________。

2、函数432+=x y 的图像与x 轴交点坐标为________,与y 轴的交点坐标为____________。

3、函数y=2x-1与x 轴交点坐标为______ ,与y 轴交点坐标为____,与两坐标轴围成的三角形面积是______。

4、(1)对于函数y =5x+6,y 的值随x 值的减小而________。

(2)对于函数x y 3221-= , y 的值随x 值的_______而增大。

5、若直线y=kx+b 和直线y=-x 平行,与y 轴交点的纵坐标为-2,则直线的解析式为_______.6、如果一次函数y=kx-3k+6的图象经过原点,那么k 的值为________。

7、已知y-1与x 成正比例,且x=-2时,y=4,那么y 与x 之间的函数关系式为_________________。

8、直线y =kx+b 过点(1,3)和点(-1,1),则bk =__________。

9、若函数y =kx+b 的图像经过点(-3,-2)和(1,6)求k 、b 及函数关系式。

10、已知一次函数 y=(6+3m )x+n-4,求:(1)m 为何值时,y 随x 的增大而减小? (2)n 为何值时,函数图象与y 轴交点在x 轴的下方? (3)m, n 分别为何值时,函数图象经过 (0,0).11、在直角坐标系中,一次函数y =kx +b 的图像经过三点A (2,0)、B (0,2)、C (m ,3),求这个函数的关系式,并求m 的值。

一次函数基础训练21、下列关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2、下列各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(3、下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 4、点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( )A. 1y >2yB. 1y < 2yC. 1y =2yD.不能确定5、直线63+=x y 与两坐标轴围成的三角形的面积是( )A.4B.5C.6D.76直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )A. 1b >2bB. 1b <2bC. 1b =2bD.不能确定7、一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h(cm)与燃烧时间t(小时)的函数关系用图像表示为( )8、平分坐标轴夹角的直线是( )A.1+=x yB.1+-=x yC.1-=x yD.x y -=9、弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm10、对于函数63-=x y ,与x 轴交点坐标是 ,与y 轴交点坐标是11、若y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,则这个一次函数的关系式 .12、若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_________.。

初二上数学一次函数练习题

初二上数学一次函数练习题

初二上数学一次函数练习题【初二上数学一次函数练习题】一次函数是初中数学中的基础知识之一,也是数学建模中常用的数学模型之一。

通过练习一次函数的相关题目,可以巩固对于一次函数的理解和运用。

以下是一些初二上数学一次函数练习题,希望对你的学习有所帮助。

1. 某公司的月工资总额与员工的收入比例有关,假设员工的月收入为x,月工资总额为y,则可以建立如下的一次函数关系:y = 0.2x + 5000。

根据这个关系回答以下问题:a) 假设一个员工的月收入为8000元,那么该公司的月工资总额是多少?b) 如果该公司的月工资总额为15000元,那么员工的月收入是多少?c) 如果该公司的月工资总额为9000元,员工的月收入满足什么条件?2. 某商场豆浆机的价格与年龄之间存在一次函数关系。

已知一年前该豆浆机的价格为300元,现在的价格为250元。

根据这个关系回答以下问题:a) 设豆浆机年龄为x年,价格为y元,建立对应的一次函数关系。

b) 根据一次函数关系,求出现在豆浆机的年龄。

c) 如果现在的豆浆机价格为200元,求出相应的年龄。

3. 一台车自车站出发,以每小时60公里的速度匀速行驶。

根据这个情况回答以下问题:a) 设车行驶时间为x小时,行驶距离为y公里,建立对应的一次函数关系。

b) 根据一次函数关系,求出行驶2.5小时的距离。

c) 如果行驶的距离为300公里,求出相应的时间。

4. 某手机品牌的市场占有率随时间的增长而变化,已知在2010年时市场占有率为10%,而在2020年时市场占有率为30%。

根据这个情况回答以下问题:a) 设年份为x,市场占有率为y,建立对应的一次函数关系。

b) 根据一次函数关系,求出2015年的市场占有率。

c) 如果市场占有率为50%,求出相应的年份。

以上是初二上数学一次函数的练习题,通过解答这些题目可以加深对一次函数的理解,希望能够帮助你提高数学水平。

在解答题目的过程中,要注意清晰地表达数学关系和运算步骤,以确保解题过程的准确性。

(必考题)初中数学八年级数学上册第四单元《一次函数》测试卷(含答案解析)(4)

(必考题)初中数学八年级数学上册第四单元《一次函数》测试卷(含答案解析)(4)

一、选择题1.A ,B 两地相距12千米,甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图的折线OPQ 和线段EF 分别表示甲乙两人与A 地的距离y 甲、y 乙与他们所行时间x(h)之间的函数关系,且OP 与EF 交于点M ,下列说法:①y 乙=-2x+12;②线段OP 对应的y 甲与x 的函数关系式为y 甲=18x ;③两人相遇地点与A 地的距离是9km ;④经过38小时或58小时时,甲乙两个相距3km .其中正确的个数是( )A .1个B .2个C .3个D .4个2.已知一次函数()20y kx k =-≠的函数值y 随x 的增大而减小,则函数()20y kx k =-≠ 的图象大致是( )A .B .C .D .3.已知正比例函数()0y kx k =≠的函数值随的增大而增大,则一次函数1y x k =+的图象大致是( )A .B .C .D .4.下列各图分别近似地刻画了现实生活中两变量之间的变化关系,其中,能大致刻画张老师从住家小区单元的2楼坐电梯到5楼(中途不停)中高度与时间关系的变化图是( )A .B .C .D .5.如图,直线l:33y x,过点A(0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为( )A .(0,20154)B .(0, 20144)C .(0, 20153)D .(0, 20143)6.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时; ③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t=或154其中正确的结论有()A.1个B.2个C.3个D.4个7.弹簧大家了解吗?弹簧挂上物体后会伸长。

(典型题)初中数学八年级数学上册第四单元《一次函数》测试题(答案解析)(1)

(典型题)初中数学八年级数学上册第四单元《一次函数》测试题(答案解析)(1)

一、选择题1.一个物体自由下落时,它所经过的距离h (米)和时间t (秒)之间的关系我们可以用5h t =来估算.假设物体从超过10米的高度自由下落,小明要计算这个物体每经过1米所需要的时间,则经过第5个1米时所需要的时间最接近( ) A .1秒 B .0.4秒C .0.2秒D .0.1秒 2.当2x =-时,函数23y x =+的值等于( )A .1-B .0C .1D .7 3.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小 4.弹簧大家了解吗?弹簧挂上物体后会伸长。

测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x0 1 2 3 4 5 y 10 10.5 11 11.5 12 12.5 下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .y 与x 的关系表达式是y =0.5xD .所挂物体质量为7kg 时,弹簧长度为13.5cm5.一辆货车从A 地开往B 地,一辆小汽车从B 地开往A 地,同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s (千米),货车行驶的时间为t (小时),s 与t 之间的函数关系如图所示,下列说法:①A 、B 两地相距60千米:②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米;⑤出发2小时,小货车离终点还有80千米,其中正确的有A .5个B .4个C .3个D .2个6.如图1,在矩形ABCD 中,动点E 从点B 出发,沿BADC 方向运动至点C 处停止,设点E 运动的路程为x ,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则矩形ABCD 的周长为( )A .20B .21C .14D .77.如图,矩形ABCD 中,AB=2,BC=4,P 为矩形边上的一个动点,运动路线是A→B→C→D→A ,设P 点经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y ,则选项图象能大致反映y 与x 的函数关系的是( )A .B .C .D . 8.函数1y x =-自变量x 的取值范围是( ) A .1x > B .1≥x C .1x ≥- D .1x ≠9.点(),P x y 在第一象限,且6x y +=,点A 的坐标为()4,0,设OPA ∆的面积为S ,则下列图像中,能反映S 与x 之间的函数关系式的是( )A .B .C .D .10.下列各图象中,y 不是..x 的函数的是( )A .B .C .D .11.一次函数y=kx+b ,当k >0,b <0时,它的图象是( )A .B .C .D . 12.已知点()12,y -,()20,y ,()34,y 是直线5y x b =-+上的三个点,则1y ,2y ,3y 的大小关系是( ).A .123y y y >>B .123y y y <<C .132y y y >>D .132y y y <<二、填空题13.如图,点A (6,0),B (0,2),点P 在直线y =-x -1上,且∠ABP =45°,则点P 的坐标为_____________14.已知一次函数y =kx +3(k >0)的图象与两坐标轴围成的三角形的面积为3,则一次函数的表达式为_____.15.函数y =2x +3的图像向下平移6个单位得到的函数为_____.16.若一次函数(1)2=-+-y m x m 的图象经过第二、三、四象限,则m 的取值范围是_______.17.6月13日,“2020重庆国际车展”如期开幕.哥哥和弟弟相约从家里出发去看车展,弟弟先出发,匀速前往会场,2分钟后哥哥按照相同的路线出发,6分钟后追上弟弟,这时他发现忘了带相机,于是立即提速50%并按原路返回家中拿相机.哥哥回到家花5分钟找到相机后,立即以返回时的速度前往会场,最后两人同时到达.哥哥变速前后均保持匀速运动,两人相距的路程y (米)与哥哥出发的时间x (分)之间的关系如图所示,则他们的家到场的路程为__________米.18.函数y 2x -x 的取值范围是_____. 19.某书定价40元,如果一次购买20本以上,超过20本的部分打八折.试写出付款金额y (单位:元)与购书数量x (单位:本)之间的函数关系____.20.若长方形的周长为24cm ,一边为cm x ,面积为2cm y ,则y 与x 的关系式为y =__________.三、解答题21.如图1,对于平面内的点A 、P ,如果将线段PA 绕点P 逆时针旋转90°能得到线段PB ,就称点B 是点A 关于点P 的“旋垂点”.(1)在平面直角坐标系xOy 中,点()3,1S -关于原点O 的“旋垂点”是 ;(2)如图2,90AOB ∠=︒,OC 平分AOB ∠,将直角三角板的直角顶点P 放在OC 上,两直角边分别交OA 、OB 于点M 、N ,试说明:点N 是点M 关于点P 的“旋垂点”;(3)如图3,直线3y kx =+与x 轴交于点P ,与y 轴交于点Q ,点Q 关于点P 的“旋垂点”记为点(),T m n ,若点P 在x 轴上,且03OP <<,点T 的横坐标m 满足21m -<≤-,求k 的取值范围.22.小明骑自行车保持匀速从甲地到乙地,到达乙地后,休息了一段时间,然后以相同的速度原路返回,停在甲地.设小明出发x (min )后,到达距离甲地y (m )的地方,图中的折线表示的是y 与x 之间的函数关系.(1)甲、乙两地的距离为 ,a = ;(2)求小明从乙地返回甲地过程中,y 与x 之间的函数关系式;(3)在小明从甲地出发的同时,小红从乙地步行至甲地,保持100m/min 的速度不变,到甲地停止.小明从甲地出发多长时间,与小红相距200米?23.平面直角坐标系xOy 中,点P 的坐标为(2,2)m m +-.(1)试判断点P 是否在一次函数4y x =-的图象上.(2)分别在图中作出一次函数4y x =-和142y x =-+的图象,若142y x =-+的图象与x 轴、y 轴分别相交于点,A B 点,若点P 在AOB 的内部,求m 的取值范围. 24.一辆汽车的油箱中现有汽油60升,汽车行驶时正常的耗油量为0.1升/千米.油箱中的油量y (升)随行驶里程x (千米)的变化而变化.(假定该汽车不加油,能工作至油量为零)(1)求y 关于x 的函数表达式(2)利用图象说明,当行驶里程超过400千米后油箱内的汽油量25.已知直线y kx b =+经过点()1,1、()1,3-两点,求这条直线的表达式.26.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据第5个1米时所需要的时间等于经过5米所用时间与经过4米所用时间的差计算即可.【详解】解:经过第5个1米的时间差为:541t t -==, 0.80.9≈,10.90.1∴-=,故选D .【点睛】本题考查了无理数的估算,熟练掌握估算的基本策略和基本方法是解题的关键. 2.A解析:A【分析】把2x =-代入解析式即可.【详解】解:把2x =-代入23y x =+得,2(2)31y =⨯-+=-,故选:A .【点睛】本题考查了求一次函数的函数值,解题关键是把自变量的值代入后能准确熟练计算. 3.D解析:D【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断.【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确.故选:D .【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.4.C解析:C【分析】由表中的数据进行分析发现:物体质量每增加1kg ,弹簧长度y 增加0.5cm ;当不挂重物时,弹簧的长度为10cm ,然后逐个分析四个选项,得出正确答案.【详解】解:A 、y 随x 的增加而增加,x 是自变量,y 是因变量,故A 选项不符合题意; B 、物体质量每增加1kg ,弹簧长度y 增加0.5cm ,故B 选项不符合题意;C 、y 与x 的关系表达式是y=0.5x+10,故C 选项符合题意;D 、由C 知,则当x=7时,y=13.5,即所挂物体质量为7kg 时,弹簧长度为13.5cm ,故D 选项不符合题意;故选:C .【点睛】本题考查了函数的概念,能够根据所给的表进行分析变量的值的变化情况,得出答案. 5.C解析:C【分析】根据图象中t =0时,s =120可得A 、B 两地相距的距离,进而可判断①;根据图象中t =1时,s=0的实际意义可判断②;由图象t=1.5和t=3的实际意义,得到货车和小汽车的速度,从而可判断③;根据路程=速度×时间分别计算出货车与小汽车出发1.5小时后的路程,进而可判断④;先求出出发2小时货车行驶的路程,进而可计算出小货车离终点的距离,于是可判断⑤,于是可得答案.【详解】解:由图象可知,当t=0时,货车、汽车分别在A、B两地,s=120,所以A、B两地相距120千米,故①错误;当t=1时,s=0,表示出发1小时,货车与小汽车相遇,故②正确;根据图象知,汽车行驶1.5小时达到终点A地,货车行驶3小时到达终点B地,故小汽车的速度为:120÷1.5=80(千米/小时),货车的速度为:120÷3=40(千米/小时),∴小汽车的速度是货车速度的2倍,故③正确;出发1.5小时货车行驶的路程为:1.5×40=60(千米),小汽车行驶1.5小时达到终点A 地,即小汽车1.5小时行驶路程为120千米,所以出发1.5小时,小汽车比货车多行驶了60千米,故④正确;出发2小时,货车行驶了40×2=80(千米),离终点还有120-80=40(千米),故⑤错误.∴正确的说法有②③④三个.故选:C.【点睛】此题主要考查了一次函数的应用,属于常考题型,正确理解题意、读懂图象信息、熟练掌握路程、速度与时间的关系是解题的关键,6.C解析:C【分析】分点E在AB段运动、点E在AD段运动时两种情况,分别求解即可.【详解】解:当点E在AB段运动时,y=12BC×BE=12BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=12×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选C.【点睛】本题考查的是动点图象问题,涉及到一次函数、图形面积计算等知识,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.7.B解析:B【分析】根据题意可以分别表示出各段的函数解析式,从而可以根据各段对应的函数图象判断选项的正误即可.【详解】由题意可得,点P到A→B的过程中,y=0(0≤x≤2),故选项C错误,点P到B→C的过程中,y=12⨯2(x-2)=x-2(2<x≤6),故选项A错误,点P到C→D的过程中,y=12⨯2⨯4=4(6<x≤8),故选项D错误,点P到D→A的过程中,y=12⨯2(12-x)=12-x(8<x≤12),由以上各段函数解析式可知,选项B正确,故选B.【点睛】本题考查动点问题的函数图象,明确题意,写出各段函数对应的函数解析式,明确各段的函数图象是解题关键.8.B解析:B【分析】根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得x-1≥0,解得x≥1.故选:B.【点睛】本题考查函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.9.B解析:B【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【详解】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6-x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=12×4×(6-x)=-2x+12(0<x <6), ∴B 符合.故选:B .【点睛】本题考查的是一次函数的图象,在解答此题时要注意x ,y 的取值范围.10.B解析:B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 11.C解析:C【解析】试题根据题意,有k >0,b <0,则其图象过一、三、四象限;故选C .12.A解析:A【分析】结合题意,根据一次函数图像的性质分析,即可得到答案.【详解】∵直线5y x b =-+上,y 随着x 的增加而减小,且204-<<∴123y y y >>故选:A .【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.二、填空题13.(3-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD 求出点D 坐标证得AD 的中点K 求出其坐标求出直线BK 的解析式直线BK 与直线的交点即为点P 利用方程组即可求得P 坐标【详解】设直线AB 解析式为y =解析:(3,-4)【分析】将线段BA 绕点B 顺时针旋转90°得到BD ,求出点D 坐标,证得AD 的中点K ,求出其坐标,求出直线BK 的解析式,直线BK 与直线1y x =--的交点即为点P ,利用方程组即可求得P 坐标.【详解】设直线AB 解析式为y =kx +b ,将点A (6,0),B (0,2)代入上式得:0=62k b b+⎧⎨=⎩ 解得:1=32k b ⎧-⎪⎨⎪=⎩,∴直线AB 解析式:123y x =-+ 将线段BA 绕点B 顺时针旋转90°得到BD ,设直线BD 解析式为3y x n =+∵点B (0,2)在直线BD 上,∴直线BD 解析式为32y x =+,∵BD =AB==设点D (x ,32x +BD ==整理得:24x =解得:12x =-或22x =(舍去)∴2324y =-⨯+=-则点D (﹣2,﹣4)设AD 与BP 交于点K ,∵AB =BD ,∠ABP =45°,∠ABD =90°∴BK 是△ABD 的中线,又A (6,0)∴K 是AD 的中点,坐标为(2,﹣2)直线BK 与直线1y x =--的交点即为点P ,设直线BK 的解析式为y kx b =+,将点B 和点K 代入得:222b k b =⎧⎨-=+⎩解得:22b k =⎧⎨=-⎩∴直线BK 的解析式为22y x =-+,由221y x y x =-+⎧⎨=--⎩解得:34x y =⎧⎨=-⎩ ∴P 点坐标为(3,-4)故答案为:(3,-4).【点睛】本题考查一次函数图象上点的坐标的特征,等腰三角形的性质,待定系数法求解析式,解题的关键是学会作辅助线解决问题.14.【分析】根据三角形的面积公式求出OB 把点B 的坐标代入一次函数解析式计算得到答案【详解】解:一次函数y =kx+3与y 轴的交点A 的坐标为(03)则OA =3如图由题意得×OB×3=3解得OB =2则点B 的坐 解析:332y x =+ 【分析】根据三角形的面积公式求出OB ,把点B 的坐标代入一次函数解析式计算,得到答案.【详解】解:一次函数y =kx +3与y 轴的交点A 的坐标为(0,3),则OA =3,如图,由题意得,12×OB ×3=3, 解得,OB =2,则点B 的坐标为(﹣2,0),∴﹣2k +3=0,解得,k =32, ∴一次函数的表达式为y =32x +3, 故答案为:y =32x +3. 【点睛】 本题考查的是一次函数图象上点的坐标特征、三角形的面积计算,掌握一次函数图象与坐标轴的交点的求法是解题的关键.15.y=2x-3【分析】根据上加下减从而得解【详解】解:函数y=2x+3的图象向下平移6个单位得到的函数为y=2x+3-6即y=2x-3故答案是:y=2x-3【点睛】本题主要考查了求一次函数解析式及图象解析:y=2x-3.【分析】根据“上加下减”,从而得解.【详解】解:函数y=2x+3的图象向下平移6个单位得到的函数为y=2x+3-6,即y=2x-3. 故答案是:y=2x-3.【点睛】本题主要考查了求一次函数解析式及图象的变换,属于基础题.16.【分析】由一次函数经过第二三四象限可得:m -1<0m -2<0将两个不等式联立解不等式组即可【详解】由题意得:解得:m<1故答案为:m<1【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系解析:1m <【分析】由一次函数经过第二、三、四象限可得:m -1<0,m -2<0,将两个不等式联立,解不等式组即可.【详解】由题意得:1020m m -<⎧⎨-<⎩, 解得:m <1.故答案为:m <1.【点睛】本题主要考查不等式组的求解以及一次函数图像与系数的关系,掌握不等式组的解法,熟记一次函数图像与系数的关系是解题关键.17.2040【分析】设弟弟哥哥出发时的速度分别为哥哥返回时提速的速度为根据路程=速度时间利用哥哥的运动轨迹信息建立式子求出弟弟所用的时间和速度即可求解【详解】设弟弟哥哥出发时的速度分别为哥哥返回时提速的 解析:2040【分析】设弟弟,哥哥出发时的速度分别为1V ,2V ,哥哥返回时提速的速度为V ,根据路程=速度⨯时间,利用哥哥的运动轨迹信息建立式子求出弟弟所用的时间和速度即可求解.【详解】设弟弟,哥哥出发时的速度分别为1V ,2V ,哥哥返回时提速的速度为V则:22(150%) 1.5V V V =+=∵哥哥出发6分钟后追上弟弟∴12(26)6V V +=,即2143V V =,12V V = ∵哥哥返回时用时为:264V V ÷=分钟,取相机用了5分钟∴哥哥出发至返回取相机共用时为:64515++=分钟由图象可知,当哥哥找到相机出发追赶弟弟时,弟弟离家的距离为1020米则:112151020V V +=解得:160V =米/分钟,214803V V ==米/分钟,21.5120V V ==米/分钟, ∴哥哥找到相机再追上弟弟需要用时:11020()10206017V V ÷-=÷=分钟, ∴弟弟从家到会场共用时:21517=34++∴他们家到会场的路程为:134********V =⨯=米故答案为:2040米【点睛】本题主要考查了一次函数的图像应用,解题的关键是根据图像找到数量关系列式求解. 18.x≥2【分析】根据被开方数大于等于0分母不等于0列式进行计算即可得解【详解】解:根据题意得x ﹣2≥0且x≠0解得x≥2且x≠0所以自变量x 的取值范围是x≥2故答案为x≥2【点睛】本题考查的知识点为:解析:x ≥2.【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.【详解】解:根据题意得,x ﹣2≥0且x ≠0,解得x ≥2且x ≠0,所以,自变量x的取值范围是x≥2.故答案为x≥2.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.19.【分析】分类:当0≤x≤20用数量乘以单价得到付款金额y;当x>20用20的金额加上超过20本的金额得到付款金额【详解】解:当0≤x≤20y=40x;当x >20y=40×20+40×08(x-20)解析:40(020)32+160(20)x xyx x≤≤⎧=⎨>⎩【分析】分类:当0≤x≤20,用数量乘以单价得到付款金额y;当x>20,用20的金额加上超过20本的金额得到付款金额.【详解】解:当0≤x≤20,y=40x;当x>20,y=40×20+40×0.8(x-20)=32x+160;即y=() 40020 32160(20) x xx x⎧≤≤⎨+⎩>故答案为y=() 40020 32160(20)x xx x⎧≤≤⎨+⎩>.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.注意:函数解析式是等式.函数解析式中,通常等式的右边的式子中的变量是自变量,等式左边的那个字母表示自变量的函数.20.【分析】首先利长方形周长公式表示出长方形的另一边长然后利用长方形的面积公式求解即可【详解】∵长方形的周长为24cm其中一边长为xcm∴另一边长为:(12-x)cm∵长方形面积为∴y与x的关系式为y=解析:212x x-+【分析】首先利长方形周长公式表示出长方形的另一边长,然后利用长方形的面积公式求解即可.【详解】∵长方形的周长为24cm,其中一边长为xcm,∴另一边长为:(12-x)cm,∵长方形面积为2cmy,∴y与x的关系式为y=x(12−x)=-x2+12x.故答案为:y=-x2+12x【点睛】本题考查函数关系式,理解长方形的边长、周长以及面积之间的关系是关键.三、解答题21.(1)()1,3--;(2)见解析;(3)332k -<≤-. 【分析】(1)由“旋垂点”的定义可直接进行求解;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,根据题意易得PD=PE ,∠PMD=∠PNE ,进而可证△PDM ≌△PEN ,然后可得PM=PN ,则问题可求解;(3)过点T 作TA ⊥x 轴,根据题意易证△APT ≌△OQP ,则有AP=OQ ,进而可得AP=OQ=3,3OP k =-,然后可得33m k=--,最后问题可求解. 【详解】解:(1)如图,过点S 作SA ⊥x 轴,过点P 作PB ⊥x 轴,由“旋垂点”可得:△SAO ≌△PBO ,∴OB=OA ,PB=SA ,∵点()3,1S -,∴PB=1,OB=3,∴点()1,3P --,故答案为()1,3--;(2)过点P 分别作PD ⊥OA ,PE ⊥OB ,如图所示:∵OC 平分∠AOB ,∴PD=PE ,∵∠AOB=∠MPN=90°,∴由四边形内角和定理得:∠PMO+∠PNO=180°,∵∠PMO+∠PMD=180°,∴∠PMD=∠PNE ,∵∠PDM=∠PEN=90°,∴△PDM ≌△PEN (AAS ),∴PM=PN ,∴点N 是点M 关于点P 的“旋垂点”;(3)过点T 作TA ⊥x 轴,如图所示:∴PQ=PT ,∵∠APT+∠APQ=90°,∠APQ+∠PQO=90°,∴∠APT=∠OQP ,∴△APT ≌△OQP (AAS ),∴AP=OQ ,令y=0时,则03kx =+,解得:3x k=-,当x=0时,则3y =,∴AP=OQ=3,3OP k =-, ∴OA=AP-OP=33k +, ∴33m k=--, ∵21m -<≤-,0k <, ∴3231k -<--≤-, 解得:332k -<≤-. 【点睛】本题主要考查一次函数与几何综合及一元一次不等式组的解法,熟练掌握一次函数与几何综合及一元一次不等式组的解法是解题的关键.22.(1)2000m ,14;(2)y =﹣200x +4800;(3)6小时或223小时或23小时 【分析】(1)根据图象可知甲、乙两地的距离为2000m ,根据以相同的速度原路返回,可知a =24﹣10=14;(2)设y 与x 解析式为y =kx +b ,把(14,2000)与(24,0)代入求出k 与b 的值,即可确定出解析式;(3)先求出小明骑自行车的速度,再根据题意列方程解答即可.【详解】解:(1)由图象可知,甲、乙两地的距离为2000m ;a =24﹣10=14;故答案为:2000m ,14;(2)设y 与x 之间的函数关系式为y =kx +b ,把(14,2000)与(24,0)代入得:142000240k b k b +=⎧⎨+=⎩, 解得:k =﹣200,b =4800,则y 与x 之间的函数关系式为y =﹣200x +4800;(3)小明骑自行车的速度为:2000÷10=200(m/min ),根据题意,得(200+100)x =2000﹣200或(200+100)x =2000+200或200(x ﹣4)=4000﹣200,解得x =6或x =223或x =23, 答:小明从甲地出发6小时或223小时或23小时,与小红相距200米. 【点睛】本题考查一次函数的应用、待定系数法求一次函数的解析式、解一元一次方程、解二元一次方程组,理解题意,能从图象中获得有效信息是解答的关键.23.(1)在;(2)作图见解析,1023m <<【分析】(1)把点P 的坐标代入函数解析式,观察等式是否成立即可.(2)根据题意得出m+2>0,m-2>0,()12242m m -<-++,解不等式组即可求得. 【详解】解:(1)∵当x=m+2时,y=m+2-4=m-2,∴点P (m+2,m-2)在函数y=x-4图象上.(2)函数图象如图所示,在142y x =-+中, 令x=0,则y=4,令y=0,则x=8,∴A (8,0),B (0,4),点P 在AOB 的内部,则()202012242m m m m ⎧⎪+>⎪->⎨⎪⎪-<-++⎩,解得:1023m <<. 【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,图象上的点的坐标适合解析式.24.(1)16010=-+y x (2)小于20升 【分析】(1)根据题意,可以写出y 与x 的函数关系式,并写出x 的取值范围;(2)根据(1)中的函数解析式和画函数图象的方法,可以画出相应的函数图象,结合图象进行解答即可.【详解】解:(1)由题意可得,y=60-0.1x ,当y=0时,0=60-0.1x ,得x=600,即y 与x 的函数关系式为y=60-0.1x (0≤x≤600);(2)y=60-0.1x ,列表:x0 600 y60 0所以,当行驶里程超过400千米后油箱内的汽油量小于20升.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 25.2y x =-+【分析】把()1,1、()1,3-两点代入解析式,用待定系数法求解析式.【详解】解:依题意把点()1,1、()1,3-分别代入y kx b =+得:13k b k b +=⎧⎨-+=⎩解之得:12k b =-⎧⎨=⎩∴该直线的表达式为2y x =-+.【点睛】本题考查了待定系数法求解析式,解题关键是熟练运用待定系数法求解析式. 26.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当购买24张票时,两种优惠方案付款一样多;②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案1付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,∴当x >24时,y 1>y 2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x 的取值,再进一步讨论.。

八上 一次函数基础训练题

八上   一次函数基础训练题

八上 一次函数基础训练题(一)1、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有______ _ 正比例函数有_____ _,2.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。

请你举出一个满足上述条件的函数 (用关系式表示) 3、函数 432+=x y 的图像与x 轴交点坐标为________,与y 轴的交点坐标为____________。

4.函数y=2x-1与x 轴交点坐标为_______ ,与y 轴交点坐标为____ , 与两坐标轴围成的三角形面积是_____ _.5、(1)对于函数y =5x+6,y 的值随x 值的减小而__ _。

(2)对于函数 x y 3221-=, y 的值随x 值的___ _而增大。

6.若直线y=kx+b 和直线y=-x 平行,与y 轴交点的纵坐标为-2,则直线的解析式为_______. 7,如果一次函数y=kx-3k+6的图象经过原点,那么k 的值为________。

8.已知y-1与x 成正比例,且x=-2时,y=4,那么y 与x 之间的函数关系式为________。

9.直线y =kx+b 过点(1,3)和点(-1,1),则b k =__________。

10.若函数y =kx+b 的图像经过点(-3,-2)和(1,6)求k 、b 及函数关系式。

11、已知一次函数 y=(6+3m )x+n-4,求:(1)m 为何值时,y 随x 的增大而减小? (2)n 为何值时,函数图象与y 轴交点在x 轴的下方? (3)m, n 分别为何值时,函数图象经过 (0,0).12、在直角坐标系中,一次函数y =kx +b 的图像经过三点A (2,0)、B (0,2)、C (m ,3),求这个函数的关系式,并求m 的值。

13、已知一次函数的图像经过点A (2,-1)和点B ,其中点B 是另一条直线321+-=x y 与y 轴的交点,求这个一次函数的表达式。

一次函数习题集锦(含答案)

一次函数习题集锦(含答案)

数学八年级上册一次函数练习题一、试试你的身手(每小题3分,共24分) 1.正比例函数12y x =-中,y 值随x 的增大而 . 2.已知y=(k-1)x+k 2-1是正比例函数,则k = .3.若y+3与x 成正比例,且x=2时,y=5,则x=5时,y= . 4.直线y=7x+5,过点( ,0),(0, ).5.已知直线y=ax-2经过点(-3,-8)和12b ⎛⎫ ⎪⎝⎭,两点,那么a= ,b= . 6.写出经过点(1,2)的一次函数的解析式为 (写出一个即可). 7.在同一坐标系内函数112y x =+,112y x =-,12y x =的图象有什么特点 .8.下表中,y 是x二、相信你的选择(每小题3分,共24分)1.下列函数中是正比例函数的是( )A .8y x=B .28y =C .2(1)y x =-D .y = 2.下列说法中的两个变量成正比例的是( ) A .少年儿童的身高与年龄 B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长C 与它的半径r3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数y=|x |+3不是一次函数D .在y=kx+b(k 、b 都是不为零的常数)中, y-b 与x 成正比例 4.一次函数y=-x-1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )6.如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( ) A .322y x =- B .122y x =- C .122y x =+ D .322y x =+7.若函数y=kx+b(k、b都是不为零的常数)的图象如图2所示,那么当y>0时,x的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限三、挑战你的技能(共30分)1.(10分)某函数具有下列两条性质:(1) 它的图象是经过原点(0,0)的一条直线;(2) y的值随x的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10分)已知一次函数y=kx+b的图象经过A(2,4)、B(0,2)两点,且与x轴相交于C点.(1)求直线的解析式.(2)求△AOC的面积.3.(10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共22分)1.(11分)如图3,在边长为2的正方形ABCD的一边BC上的点P从B点运动到C点,设PB=x,梯形APCD的面积为S.(1)写出S与x的函数关系式;(2)求自变量x的取值范围;(3)画出函数图象.2.(11分)小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.(2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?参考答案一、1.减小2.1-3.174.57-,5 5.2,1-6.略(答案不惟一) 7.三条直线互相平行8.22y x =+,表格从左到右依次填2-,0,4 二、1.D 2.D 3.A 4.A 5.D6.A7.D8.B三、1.y x =-(答案不惟一) 2.(1)2y x =+ (2)43.(1)正比例函数的解析式为y x =-.一次函数的解析式为4y x =+ (2)图略; (3)4四、1.(1)4S x =-; (2)02x <<; (3)图略 2.(1)8(040)5y x x =≤≤; (2)50千克;(3)36元一次函数 测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。

八上 一次函数 基础检测卷含答案

八上  一次函数 基础检测卷含答案

第五章一次函数基础检测卷一、选择题(本赶题共12小题.每小越2分,共24分)1. 已知水池的容量为50米3,每小时灌水量为n米3;灌满水所需时间为t时,那么t与n 之间的函数关系式是( )A. t=50nB. t=50-n.C. t=50nD.t=50+n2. 下列函数中,正比例函数是( )A.y=25xB.y=215x-C.y=245x D. y=25x-3.一次函数y=4x+6的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D.第四象限4. 下列各点.在一次函数y=2x+6的图象上的是( ) A.(- 5.4) B.(- 3.5, 1) C.(4, 20) D.(- 3.0)5.已知一次函数y=32x m+和y=12x n-+的图象都经过点A(-2,0).且与y轴分别交于点B、C,那么∆ABC的面积是( ) A.0 B. 3 C.4 D. 66. 要从y=43x的图像得到直线y=423x+,就要将直线y=43x( )A. 向上平移23个单位 B. 向下平移23个单位C.向上平移2个单位 D. 向下平移2个单位7. 已知一次函数y=(m-1)x+1.的图像上两点A(x1,y1)、B(x2,y2),当x1>x2时,有y1< y2,那么m的取值范围是( )A. m>0B. m<0C. m>1D. m<18. 图中的图象(折线ABCDDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离s( 千米)与行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车载行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为千米/小时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少。

其中正确的说法共有( )A. l个B.2个 C. 3个D.4个9. 已知一次函数y=kx + b, 若当x增加3时,y减少2,则k的值是( )A.-23B.-32C.23D.3210. 已知一次函数y=kx + b的图象(如图);当x<0时,y的取值范围是( )A. y>0B. y<0C.-2<y<0 D. y<-211. 直线y=-x +2和直线y=x -2的交点P 的坐标是 ( )A. P(2, 0)B. P(<2,0) C .P(0,2) D. P(0, -2)12.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流景注水,下面能大致表示水的最大深度h 与时间t 直接爱你的关系的图像的是 ( )二. 填空题(本大题共8小题,每小题2分,共1 6分)13. 为了加强公民的节水意识,某市制定了如下用水收费标准;每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨l.8元收费。

8年级数学上册一次函数测试题

8年级数学上册一次函数测试题

8年级数学上册一次函数测试题努力做八年级数学试题就是光,成功就是影。

没有光哪儿来影?下面小编给大家分享一些8年级数学上册一次函数测试题,大家快来跟小编一起看看吧。

8年级数学上册一次函数试题一、选择题1.下列函数关系中表示一次函数的有( )①y=2x+1 ② ③ ④s=60t ⑤y=100﹣25x.A.1个B.2个C.3个D.4个2.下列函数中,图象经过原点的为( )A.y=5x+1B.y=﹣5x﹣1C.y=﹣D.y=3.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.( ,﹣ )C.( ,﹣ )D.(﹣, )4.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )A.2B.﹣2C.±2D.任意实数5.如图,线段AB对应的函数表达式为( )A.y=﹣ x+2B.y=﹣ x+2C.y=﹣x+2(0≤x≤3)D.y=﹣ x+20(06.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1A.y1>y2B.y1>y2>0C.y17.已知函数y=3x+1,当自变量x增加m时,相应函数值增加( )A.3m+1B.3mC.mD.3m﹣18.两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下列图中的( )A. B. C. D.9.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是( )A. B.C. D.10.甲从P地前往Q地,乙从Q地前往P地.设甲离开P地的时间为t(小时),两人距离Q地的路程为S(千米),图中的线段分别表示S 与t之间的函数关系.根据图象的信息,下列说法正确的序号是( )①甲的速度是每小时80千米; ②乙的速度是每小时50千米;③乙比甲晚出发1小时; ④甲比乙少用2.25小时到达目的地; ⑤图中a的值等于 .A.①②③④⑤B.①③④⑤C.①③⑤D.①③二、填空题11.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x值的增大而增大.请你举出一个满足上述条件的函数.(用关系式表示)12.函数直线y=2x﹣3的图象与x轴交点坐标为,与y轴的交点坐标为(0,﹣3),与两坐标轴围成的三角形面积是.13.当m= 时,函数y=(2m﹣1)x3m﹣2+3是一次函数,y随x的增大而.14.如图,将直线OP向下平移3个单位,所得直线的函数解析式为.15.若y﹣1与x成正比例,且当x=﹣2时,y=4,那么y与x之间的函数关系式为.16.汽车油箱中余油量Q(升)与它的行驶时间t(小时)之间为如图所示的一次函数关系,则其解析式为.17.现有A和B两家公司都准备向社会公开招聘人才,两家公司的招聘条件基本相同,只有工资待遇有如下的区别:A公司,年薪三万元,每年加工龄工资200元;B公司,半年薪一万五千元,每半年加工龄工资50元.试问:如果你参加这次招聘,从经济收入的角度考虑,你觉得选择公司更加有利.18.如图OA、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8秒钟后,甲超过了乙,其中正确的说法是(填上正确序号).三、解答题(共66分)19.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?20.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.21.已知直线l1的表达式为y=2x﹣1,直线l1和l2交于点(﹣2,a),且与y轴交点的纵坐标为7.(1)求直线l2的表达式;(2)求直线l1,l2与x轴所围成的三角形面积.22.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是.23.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?24.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式.(2)两种租书方式每天的收费是多少元?(x<100)25.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y 轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.8年级数学上册一次函数测试题参考答案一、选择题1.下列函数关系中表示一次函数的有( )①y=2x+1② ③ ④s=60t ⑤y=100﹣25x.A.1个B.2个C.3个D.4个【考点】一次函数的定义.【分析】根据一次函数的定义条件进行逐一分析即可.【解答】解:①y=2x+1是一次函数;②y= 自变量次数不为1,不是一次函数;③y= ﹣x是一次函数;④s=60t是正比例函数,也是一次函数;⑤y=100﹣25x是一次函数.故选D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.2.下列函数中,图象经过原点的为( )A.y=5x+1B.y=﹣5x﹣1C.y=﹣D.y=【考点】一次函数图象上点的坐标特征.【分析】根据原点坐标的特点对四个函数的解析式进行逐一检验即可.【解答】解:∵原点的坐标为(0,0),A、错误,把x=0代入函数y=5x+1得,y=1;B、错误,把x=0代入函数y=﹣5x﹣1得,y=﹣1;C、正确,把x=0代入函数y=﹣得,y=0;D、错误,把x=0代入函数y= 得,y=﹣ .故选C.【点评】此题比较简单,考查的是原点坐标的特点及一次函数图象上点的坐标特点.3.如图,点A的坐标为(1,0),点B在直线y=﹣x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.( ,﹣ )C.( ,﹣ )D.(﹣, )【考点】坐标与图形性质;垂线段最短;等腰直角三角形.【专题】计算题.【分析】线段AB最短,说明AB此时为点A到y=﹣x的距离.过A点作垂直于直线y=﹣x的垂线AB,由题意可知:△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,有OC=BC= ,故可确定出点B的坐标.【解答】解:过A点作垂直于直线y=﹣x的垂线AB,∵点B在直线y=﹣x上运动,∴∠AOB=45°,∴△AOB为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则OC=BC= .作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为( ,﹣ ).故选:B.【点评】动手操作很关键.本题用到的知识点为:垂线段最短.4.若y=(m﹣2)x+(m2﹣4)是正比例函数,则m的取值是( )A.2B.﹣2C.±2D.任意实数【考点】正比例函数的定义.【专题】待定系数法.【分析】正比例函数的一般式y=kx,k≠0,所以使m2﹣4=0,m﹣2≠0即可得解.【解答】解:根据题意得: ;得:m=﹣2.故选B.【点评】考查了正比例函数的定义,比较简单.5.如图,线段AB对应的函数表达式为( )A.y=﹣ x+2B.y=﹣ x+2C.y=﹣x+2(0≤x≤3)D.y=﹣ x+20(0【考点】待定系数法求一次函数解析式.【专题】计算题.【分析】由坐标系得出A与B的坐标,设线段AB对应的函数解析式为y=kx+b,把A与B坐标代入求出k与b的值,即可得到结果.【解答】解:由题意得:A(0,2),B(3,0),设线段AB对应的函数解析式为y=kx+b,把A与B坐标代入得:,解得:,则所求函数解析式为y=﹣x+2(0≤x≤3),故选C【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.6.点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1A.y1>y2B.y1>y2>0C.y1【考点】一次函数图象上点的坐标特征.【分析】根据一次函数y=kx+b(k≠0,k,b为常数),当k<0时,y随x的增大而减小解答即可.【解答】解:根据题意,k=﹣4<0,y随x的增大而减小,因为x1y2.故选A.【点评】本题考查了一次函数的增减性,比较简单.7.已知函数y=3x+1,当自变量x增加m时,相应函数值增加( )A.3m+1B.3mC.mD.3m﹣1【考点】一次函数的定义.【分析】将x+m作为x代入函中时,则函数值为y=3×(x+m)+1,与原函数相比较可得出答案.【解答】解:∵当自变量为x时,函数值为y=3x+1∴当自变量为x+m时,函数值为y=3×(x+m)+1∴增加了3×(x+m)+1﹣(3x+1)=3m故选B.【点评】本题需注意应先给定自变量一个值,然后让自变量增加x,让相应的函数值相减即可.8.两条直线y1=ax+b与y2=bx+a在同一坐标系中的图象可能是下列图中的( )A. B. C. D.【考点】一次函数的图象.【分析】首先设定一个为一次函数y1=ax+b的图象,再考虑另一条的a,b的值,看看是否矛盾即可.【解答】解:A、如果过第一二四象限的图象是y1,由y1的图象可知,a<0,b>0;由y2的图象可知,a<0,b>0,两结论不矛盾,故正确;B、如果过第一二四象限的图象是y1,由y1的图象可知,a<0,b>0;由y2的图象可知,a>0,b>0,两结论相矛盾,故错误;C、如果过第一二四象限的图象是y1,由y1的图象可知,a<0,b>0;由y2的图象可知,a<0,b<0,两结论相矛盾,故错误;D、如果过第二三四象限的图象是y1,由y1的图象可知,a<0,b<0;由y2的图象可知,a>0,b>0,两结论相矛盾,故错误.故选A.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.9.下列各个选项中的网格都是边长为1的小正方形,利用函数的图象解方程5x﹣1=2x+5,其中正确的是( )A. B. C. D.【考点】一次函数与一元一次方程;一次函数的性质.【专题】推理填空题.【分析】把x=0代入解析式求出直线与y轴的交点,再根据k的值判断y随x的增大而增大还是减小即可判断选项.【解答】解:5x﹣1=2x+5,∴实际上求出直线y=5x﹣1和 y=2x+5的交点坐标,把x=0分别代入解析式得:y1=﹣1,y2=5,∴直线y=5x﹣1与y轴的交点是(0,﹣1),y=2x+5与y轴的交点是(0,5),选项A、B、C、D都符合,∴直线y=5x﹣1中y随x的增大而增大,故选项D错误;∵直线y=2x+5中y随x的增大而增大,故选项C错误;当x=2时,y=5x﹣1=9,故选项B错误;选项A正确;故选A.【点评】本题主要考查对一次函数的性质,一次函数与一元一次方程的关系等知识点的理解和掌握,能根据一次函数与一元一次方程的关系进行说理是解此题的关键.10.甲从P地前往Q地,乙从Q地前往P地.设甲离开P地的时间为t(小时),两人距离Q地的路程为S(千米),图中的线段分别表示S 与t之间的函数关系.根据图象的信息,下列说法正确的序号是( )①甲的速度是每小时80千米; ②乙的速度是每小时50千米;③乙比甲晚出发1小时; ④甲比乙少用2.25小时到达目的地; ⑤图中a的值等于 .A.①②③④⑤B.①③④⑤C.①③⑤D.①③【考点】一次函数的应用.【分析】观察图象知 PQ=300千米,甲用时3.75小时,乙用时5小时.根据速度=路程÷时间求解;a的值即是两函数图象交点的纵坐标,通过求两直线解析式解方程组求交点坐标.【解答】解:根据题意结合图象知PQ=300千米.①甲的速度=300÷3.75=80,故正确;②乙的速度=300÷(6﹣1)=60,故错误;③乙比甲晚出发1小时,故正确;④甲比乙少用5﹣3.75=1.25小时到达目的地,故错误;⑤因为甲的图象过(0,300)、(3.75,0),故其解析式为S甲=300﹣80t;同理,乙的图象过(1,0)、(6,300),其解析式为S乙=60t﹣60.当300﹣80t=60t﹣60时,t= .此时a=60× ﹣60= .故正确.故选C.【点评】此题考查一次函数及其图象的应用,读取相关信息是关键.二、填空题11.某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y的值随x值的增大而增大.请你举出一个满足上述条件的函数y=2x(答案不唯一) .(用关系式表示)【考点】正比例函数的性质.【专题】开放型.【分析】直接根据正比例函数的性质即可得出结论.【解答】解:设正比例函数的解析式为y=kx(k≠0),∵y的值随x值的增大而增大,∴k>0,∴此函数的解析式可以为y=2x(答案不唯一).故答案为:y=2x(答案不唯一).【点评】本题考查的是正比例函数的性质,熟知正比例函数的解析式为y=kx(k≠0)中,当k>0时,y的值随x值的增大而增大是解答此题的关键.12.函数直线y=2x﹣3的图象与x轴交点坐标为(\frac{3}{2},0) ,与y轴的交点坐标为(0,﹣3),与两坐标轴围成的三角形面积是\frac{9}{4} .【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据x轴上点的坐标特征计算函数值为0时的自变量的值即可得到直线与x轴交点坐标,然后根据三角形面积公式计算直线与两坐标轴围成的三角形面积.【解答】解:当y=0时,2x﹣3=0,解得x= ,则直线与x轴交点坐标为( ,0),所以直线与两坐标轴围成的三角形面积= × ×3= .故答案为( ,0), .【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.13.当m= 1 时,函数y=(2m﹣1)x3m﹣2+3是一次函数,y 随x的增大而增大.【考点】一次函数的性质;一次函数的定义.【专题】计算题.【分析】根据一次函数的定义,令3m﹣2=1即可,再根据一次函数的增减性解答即可.【解答】解:①y=(2m﹣1)x3m﹣2+3是一次函数,所以3m﹣2=1,m=1;②当m=1时,k=2m﹣1=1≠0,故m=1,k=1>0,y随x的增大而增大.【点评】在y=kx+b中,若它为一次函数,应满足k≠0,x的次数为1.14.如图,将直线OP向下平移3个单位,所得直线的函数解析式为y=2x﹣3 .【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:设直线OP的解析式为y=kx,由题意得(1,2)在直线OP上.解得k=2.∴直线OP的解析式为y=2x,向下平移3个单位所得直线的函数解析式为:y=2x﹣3.故填y=2x﹣3.【点评】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.15.若y﹣1与x成正比例,且当x=﹣2时,y=4,那么y与x之间的函数关系式为y=﹣\frac{3}{2}x+1 .【考点】待定系数法求一次函数解析式.【分析】根据正比例函数的定义得到y﹣1=kx,再把x=﹣2,y=4代入可求出k得到y=﹣x+2,然后把y=4代入可计算出对应的x 的值.【解答】解:根据题意设y﹣1=kx,把x=﹣2,y=4代入得4﹣1=﹣2k,解得k=﹣,所以y﹣1=﹣ x,即y=﹣ x+1,故答案为y=﹣ x+1.【点评】本题考查了待定系数法求一次函数解析式:(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;(3)解方程或方程组,求出待定系数的值,进而写出函数解析式.16.汽车油箱中余油量Q(升)与它的行驶时间t(小时)之间为如图所示的一次函数关系,则其解析式为Q=﹣5t+60 .【考点】待定系数法求一次函数解析式.【专题】探究型.【分析】根据一次函数的图象得出A、B两点的坐标,再设出一次函数的解析式,把A、B两点的坐标代入求解即可.【解答】解:∵A(0,60),B(4,40),设Q(升)与它的行驶时间t(小时)之间的函数关系式为Q=kt+b,∵A、B两点在一次函数Q=Kt+b的图象上,∴ ,解得,∴余油量Q(升)与它的行驶时间t(小时)之间的关系式为:Q=﹣5t+60.故答案为:Q=﹣5t+60.【点评】本题考查的是用待定系数法求一次函数的关系式,先根据函数图象得出A、B两点的坐标是解答此题的关键.17.现有A和B两家公司都准备向社会公开招聘人才,两家公司的招聘条件基本相同,只有工资待遇有如下的区别:A公司,年薪三万元,每年加工龄工资200元;B公司,半年薪一万五千元,每半年加工龄工资50元.试问:如果你参加这次招聘,从经济收入的角度考虑,你觉得选择 B 公司更加有利.【考点】一次函数的应用.【专题】应用题.【分析】根据已知条件分别列出第一年,第二年,第n年的收入,然后进行比较得出结论.【解答】解:分别列出第一年、第二年、第n年的实际收入(元)第一年:A公司30000,B公司15000+15050=30050;第二年:A公司30200,B公司15100+15150=30250;第n年:A公司30000+200(n﹣1),B公司:[15000+100(n﹣1)]+[15000+100(n﹣1)+50],=30050+200(n﹣1),由上可以看出B公司的年收入永远比A公司多50元.故选择B公司有利.【点评】本题是一次函数的运用试题,考查了学生根据已知意义列代数式比较大小,是一综合列举比较题.18.如图OA、AB分别表示甲、乙两名同学运动的一次函数图象,图中s和t分别表示运动路程和时间,已知甲的速度比乙快,下列说法:①射线AB表示甲的路程与时间的函数关系;②甲的速度比乙快1.5米/秒;③甲让乙先跑12米;④8秒钟后,甲超过了乙,其中正确的说法是②③④(填上正确序号).【考点】函数的图象.【分析】根据函数的图象分别对每一项进行分析即可.【解答】解:①射线AB表示乙的路程与时间的函数关系,故本选项错误,②甲的速度比乙快1.5米/秒,故本选项正确,③∵点B的坐标是(0,12),∴甲让乙先跑12米,故本选项正确,④∵射线AB与射线OB交于(8,64),∴8秒钟后,甲超过了乙,故本选项正确,其中正确的说法是:②③④.故答案为:②③④.【点评】此题考查了函数的图象,关键是理解函数图象横纵坐标表示的意义,通过观察图象获得必要的信息.三、解答题(共66分)19.已知y=(m+1)x2﹣|m|+n+4(1)当m、n取何值时,y是x的一次函数?(2)当m、n取何值时,y是x的正比例函数?【考点】一次函数的定义;正比例函数的定义.【分析】(1)根据一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,据此求解即可;(2)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,据此求解即可.【解答】解:(1)根据一次函数的定义,得:2﹣|m|=1,解得m=±1.又∵m+1≠0即m≠﹣1,∴当m=1,n为任意实数时,这个函数是一次函数;(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,解得m=±1,n=﹣4,又∵m+1≠0即m≠﹣1,∴当m=1,n=﹣4时,这个函数是正比例函数.【点评】本题主要考查了一次函数与正比例函数的定义,比较简单.一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.20.已知函数y=2x﹣1.(1)在直角坐标系中画出这函数的图象;(2)判断点A(﹣2.5,﹣4),B(2.5,4)是否在函数y=2x﹣1的图象上;(3)当x取什么值时,y≤0.【考点】一次函数的图象;一次函数图象上点的坐标特征.【专题】计算题;作图题.【分析】(1)用两点法画出函数的图象即可,确定两点时一般是选取函数与x、y轴的交点,选好点后经过描点,连线即可得出函数的图象;(2)判定A、B是否在函数y=2x﹣1的图象上,只要将其坐标代入函数中看函数是否成立即可,成立即在函数的图象上,反之不在上面;(3)要使y≤0,那么表达式2x﹣1≤0,解出的不等式的解集就是y≤0时,x的取值范围.【解答】解:(1)函数y=2x﹣1与坐标轴的坐标为(0,﹣1)( ,0),描点即可,如图所示;(2)将A、B的坐标代入函数式中,可得出A点不在直线y=2x﹣1的图象上,B点在直线y=2x﹣1的图象上,A代入函数后发现﹣2.5×2﹣1=﹣6≠﹣4,因此A点不在函数y=2x﹣1的图象上,然后用同样的方法判定B是否在函数的图象上;(3)当y≤0时,2x﹣1≤0,因此x≤ .【点评】本题主要考查了函数的图象的画法,及图象上的点的坐标特征,看某点是否在函数上,只需将点的坐标代入函数中看看函数是否成立即可.21.已知直线l1的表达式为y=2x﹣1,直线l1和l2交于点(﹣2,a),且与y轴交点的纵坐标为7.(1)求直线l2的表达式;(2)求直线l1,l2与x轴所围成的三角形面积.【考点】两条直线相交或平行问题.【专题】计算题.【分析】(1)先利用直线l1的表达式y=2x﹣1确定直线l1和l2交于点(﹣2,﹣5),然后利用待定系数法求出直线l2的表达式;(2)先根据x轴上点的坐标特征求出直线l1,l2与x轴的交点坐标,然后根据三角形面积公式求解.【解答】解:(1)把(﹣2,a)代入y=2x﹣1得2×(﹣2)﹣1=a,解得a=﹣5,则直线l1和l2交于点(﹣2,﹣5),设直线l2的表达式为y=kx+b,把(﹣2,﹣5),(0,7)代入得,解得,所以直线l2的表达式为y=6x+7;(2)当y=0时,2x﹣1=0,解得x= ,则直线l1与x轴的交点坐标为( ,0);当y=0时,6x+7=0,解得x=﹣,则直线l2与x轴的交点坐标为(﹣,0);所以直线l1,l2与x轴所围成的三角形面积= •( + )•5= .【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.22.一次函数y=kx+4的图象经过点(﹣3,﹣2),则(1)求这个函数表达式;(2)建立适当坐标系,画出该函数的图象;(3)判断(﹣5,3)是否在此函数的图象上;(4)把这条直线向下平移4个单位长度后的函数关系式是y=2x .【考点】一次函数图象与几何变换;一次函数的图象;一次函数图象上点的坐标特征;待定系数法求一次函数解析式.【专题】计算题.【分析】(1)待定系数法即可求解;(2)根据函数解析式即可画出图象;(3)把点代入即可判断是否在直线解析式上;(4)根据上加下减的规律即可得出答案;【解答】解:(1)∵一次函数y=kx+4的图象经过点(﹣3,﹣2),∴﹣3k+4=﹣2,∴k=2,∴函数表达式y=2x+4;(2)图象如图:(3)把(﹣5,3)代入y=2x+4,∵﹣10+4=﹣6≠3,∴(﹣5,3)不在此函数的图象上;(4)∵把这条直线向下平移4个单位,∴函数关系式是:y=2x;故答案为:y=2x.【点评】本题考查了一次函数图象与几何变换及待定系数法求函数解析式,属于基础题,关键是掌握用待定系数法求一次函数的解析式.23.科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?【考点】一次函数的应用.【分析】(1)利用在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米,代入解析式求出即可;(2)根据某山的海拔高度为1200米,代入(1)中解析式,求出即可.【解答】解:(1)设y=kx+b(k≠0),则有:,解之得,∴y=﹣ ;(2)当x=1200时,y=﹣×1200+299=260.6(克/立方米).答:该山山顶处的空气含氧量约为260.6克/立方米.【点评】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,正确求出一次函数解析式是解题关键.24.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租书,租书金额y(元)与租书时间x(天)之间的关系如下图所示.(1)分别写出用租书卡和会员卡租书金额y(元)与租书时间x(天)之间的关系式.(2)两种租书方式每天的收费是多少元?(x<100)【考点】一次函数的应用.【分析】(1)观察图象可知,用租书卡的金额与租书时间之间的函数图象经过点(0,0)和(100,50),为正比例函数,可设其函数关系式为y=kx,用会员卡租书的金额与租书时间之间的函数图象是一次函数,可设其函数关系式为y=ax+b,分别使用待定系数法求解即可;(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元;用会员卡的方式租书,每天租书的收费为(50﹣20)÷100=0.3元.【解答】解:(1)观察图象可知,用租书卡设其函数关系式为y=kx,∵函数图象经过点(0,0)和(100,50),∴50=k•100,解得k= ,即:函数关系式为y= x;用会员卡租书可设其函数关系式为y=ax+b,∵图象经过点(0,20)和(100,50),∴ ,解得:,即:函数关系式为y= x+20;(2)用租书卡的方式租书,每天租书的收费为50÷100=0.5元;用会员卡的方式租书,每天租书的收费为(50﹣20)÷100=0.3元.【点评】本题主要考查了一次函数的图象及使用待定系数法求函数表达式,关键是正确读图,根据函数图象设出解析式.25.已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CD∥y 轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示)②若矩形CDEF的面积为60,请直接写出此时点C的坐标.【考点】一次函数综合题.【分析】(1)设直线l1的表达式为y=k1x,它过(18,6)可求出k1的值,进而得出其解析式;设直线l2的表达式为y=k2x+b,由于它过点A(0,24),B(18,6),故把此两点坐标代入即可求出k2,b的值,进而得出其解析式;(2)①因为点C在直线l1上,且点C的纵坐标为a,故把y=a代入直线l1的表达式即可得出x的值,进而得出C点坐标,由于CD∥y轴,所以点D的横坐标为3a,再根据点D在直线l2上即可得出点D的纵坐标,进而得出结论;②先根据CD两点的坐标用a表示出CF及CD的值,由矩形的面积为60即可求出a的值,进而得出C点坐标.【解答】解:(1)设直线l1的表达式为y=k1x,它过(18,6)得18k1=6 k1=∴y= x设直线l2的表达式为y=k2x+b,它过点A(0,24),B(18,6)得解得,∴直线l2的表达式为:y=﹣x+24;(2)①∵点C在直线l1上,且点C的纵坐标为a,∴a= x x=3a,∴点C的坐标为(3a,a),∵CD∥y轴∴点D的横坐标为3a,∵点D在直线l2上,∴y=﹣3a+24∴D(3a,﹣3a+24)②∵C(3a,a),D(3a,﹣3a+24)∴CF=3a,CD=﹣3a+24﹣a=﹣4a+24,。

(完整版)八年级上册数学一次函数测试题及答案(3),推荐文档

(完整版)八年级上册数学一次函数测试题及答案(3),推荐文档

答案 一、填空 1、y=-2x 2、-1 3、3 4、6 5、三 6、y=6x-2 7、a>b 8、t=-0.06h+20 9、y=2x+10 10、y=-3x 或 y=-2x-1 等。 二、选择题 11、B 12、C 13、B 14、D 15、D 16、C 17、D 18、C
三、计算题
19(1)y=4x,y=x+3,(2)略
10、点 P(a,b)在第二象限,则直线 y=ax+b 不经过第
象限。
三、计算题
11、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是(0,-2),那么这个一次函数的表达
19、已知一个正比例函数和一个一次函数的图象相交于点 A(1,4),且一次函数的图象与 x 轴
式是______我____去____。人也就有人!为UR扼腕入站内信不存交在于点向B(3,你0) 偶同意调剖沙龙课反倒是龙卷风前一天
(1)求 y 与 x 之间的函数关系式
(2)若点(a,2)在这个函数图象上,求 a 的值
1 21、已知一次函数 y=kx+b 的图象经过点(-1, -5),且与正比例函数 y= 2x 的图象相交于点 (2,a),求 (1)a 的值 (2)k,b 的值 (3)这两个函数图象与 x 轴所围成的三角形的面积。
收费 1.8 元,超计划部分每吨按 2.0 元收费。
(1)写出该单位水费 y(元)与每月用水量 x(吨)之间的函数关系式:_________________
①当用水量小于等于 3000 吨
;②当用水量大于 3000 吨

(2)某月该单位用水 3200 吨,水费是
元;若用水 2800 吨,水费
元。
(3)若某月该单位缴纳水费 9400 元,则该单位用水多少吨?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数基础训练题
一、选择题(每小题3分,共27分) 1.下列说法中正确的是
( )
A .一次函数是正比例函数
B .正比例函数包括一次函数
C .一次函数不包括正比例函数
D .正比例函数是一次函数
2.下列函数中是正比例函数的是 ( )
A .矩形面积固定,长和宽的关系
B .正方形的面积和边长的关系
C .三角形的面积一定,底边和底边上的高之间的关系
D .匀速运动中,速度固定时,路程和时间的关系
3.已知y 与x 成正比例,如果x=2时,y=1,那么x=3时,y 为 ( )
A .
32
B .2
C .3
D .0 4.当x=3时,函数y=px-1与函数y=x+p 的值相等,则p 的值是 ( )
A .1
B .2
C .3
D .4
5.下列函数:①y=8x ;②y=-
8
x
;③y=2x 2;④y=-2x+1.其中是一次函数的个数为 ( ) A .0 B .1 C .2 D .3 6.已知关于x 的一次函数y=m(x-n)的图象经过第二、三、四象限,则有 ( )
A .m >0,n >0
B .m <0,n >0
C .m >0,n <0
D .m <0,n <0 7.在一次函数y=kx+3中,当x=3时,y=6,则k 的值为 ( ) A .-1 B .1 C .5 D .-5 8.过点(2,3)的正比例函数解析式是 ( )
A .y=
2
3
x B .y=
6x C .21y x =-
D .y=32
x
9.如图14-2-1所示,档可能是一次函数y=px-(p-3)的图象的是
( )
二、填空题(每小题3分,共27分)
10.对于函数y=(m-3)x+m+3,当m=__________时,它是正比例函数;当m___________时,
它是一次函数.
11.一次函数y=px+2,请你补充一个条件___________,使y 随x 的增大而减小. 12.已知y 与x 成正比例函数,当x=
14时,y=56,则此函数的解析式为__________,当y=1
2
时,x=_____________.
13.若函数y=x+a-1是正比例函数,则a=_____________.
14.如果直线y=mx+n 经过第一、二、三象限,那么mn_________0(填“>”“<”或“=”) 15.一次函数y=-3x-5的图象与正比例函数__________的图象平行,且与y 轴交于点
__________. 16.已知一次函数y=px+m 的图象过点(-2,3)和(1,0)两点,则一次函数解析式为__________. 17.已知点P (m ,4)在直线y=2x-4上,则直线y=mx-8经过第_____________象限. 18.一次函数y=ax-b 图象不经过第二象限,则a_____________,b__________. 三、解答案(每小题4分,共12分)
19.下列函数中,哪些是一次函数?哪些是正比例函数? (1)y=-
3
x ; (2)y=-
8x

(2)y=8x 2+x(1-8x); (3)y=1+8x .
20.已知一次函数y=(5-m)x+3m 2-75.问:m 为何值时,它的图象经过原点?
21.已知一次函数y=mx+n 的图象如图14-2-2所示. (1)求m ,n 的值;
(2)在直角坐标系内画出函数y=nx+m 的图象.。

相关文档
最新文档