Back Handspring Robot – Target Dynamics-Based Control

合集下载

人形机器人中英文对照外文翻译文献

人形机器人中英文对照外文翻译文献

中英文对照翻译最小化传感级别不确定性联合策略的机械手控制摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。

下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。

在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。

本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。

选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。

目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。

在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。

这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。

关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。

1 引言各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。

在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。

移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。

每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程度的不确定性。

这些条件可能,有时不同当给定的操作正在执行的时候。

导致这种不确定性的主要的原因是来自机器人的运动参数和各种确定任务信息的差异所引起的。

非完整轮式移动机器人轨迹跟踪控制研究

非完整轮式移动机器人轨迹跟踪控制研究
t
考虑到机器人运动过程的动力学特性, 如果系统误差比较大, 控制律所产生的控制量
( c , c ) 有可能超出系统的最大速度( max, max ) 或系统的加速度超出系统允许范围( max ,
第3期
非完整轮式移动机器人轨迹跟踪控制 研究
37 9
max ) , 并且系统的速度或加速度太大将会引起机器人运动打滑, 为此, 在控制律中引入如下 控制策略, 从而保证机器人运动平滑.
a1 f ( k c ) ye , e 0. 取 Lyapunov 函数
V=
1 2
x
2 e
+
1 2
y
2 e
+
2 ay
1-
cos
e
2
( 5)
由于 ay > 0, 很明显 V ! 0, 当且仅当( x e , y e , e ) T = 0, V = 0( e ∀ [ - !, !) ) .
由( 4) 式和( 3) 式得:
c
otherw ise
3 实验分析
为了验证算法的有效性, 基于 MATLAB 对算法进行了仿真研究, 仿真过程中, 控制律的 参数选择十分重要, 参数 k 将影响双曲正切函数的平滑程度, 如果 k 值越大则f ∃( k c ) 更快 趋于零, f ( k c) 趋近于 % 1, 从控制律式( 7) 可以发现控制器的调节将变得非常简单. a1, ax 一般改变x 方向误差, ay 改变y 方向误差, a 改变角度误差, 虽然原理上只要 a1 、ax 、ay 、a 均为大于零, 都能保证系统收敛稳定, 但是, 太大的系数会使系统运动振荡较大, 系数太小会 使系统误差收敛速度变慢, 误差调节过程中参数间又是互相影响的. 试验中系统控制参数 ( a1, ax , ay , a , k ) 取为( 1, 2, 0. 2, 2, 5) . 为了保证机器人运动平滑, 我们选取

SmartClass Ethernet测试仪 用户手册

SmartClass Ethernet测试仪 用户手册

第1章
开始..................................................................................................... 1
装箱清单.............................................................. 2
底部面板介绍.......................................................... 7
启动设备.............................................................. 7
关闭设备.............................................................. 7
不能将此产品作为市政污染废料进行处理,并且根据当地国家相关规则单独收集 处理。在欧盟地区,所有从 JDSU 公司 2005.8.13 日之后购买的设备可以在设 备使用寿命完毕时返回处理。JDSU 公司确保所有返回的废弃设备能够以环境友 好型方式进行重新使用、回收或处理,这些操作都要符合所有国家和国际废料处 理标准。
SmartClass Ethernet 测试仪用户手册
v
目录
第2章 第3章
vi
数据输入屏 ....................................................................................................10 结果屏............................................................................................................10 使用键盘 ............................................................ 11 选择菜单选项或配置设置............................................................................... 11 返回到上一级菜单.......................................................................................... 11 输入数字值 ....................................................................................................11 输入文本 ........................................................................................................11

Glider Flying Handbook说明书

Glider Flying Handbook说明书

Glider Flying Handbook2013U.S. Department of TransportationFEDERAL AVIATION ADMINISTRATIONFlight Standards Servicei iPrefaceThe Glider Flying Handbook is designed as a technical manual for applicants who are preparing for glider category rating and for currently certificated glider pilots who wish to improve their knowledge. Certificated flight instructors will find this handbook a valuable training aid, since detailed coverage of aeronautical decision-making, components and systems, aerodynamics, flight instruments, performance limitations, ground operations, flight maneuvers, traffic patterns, emergencies, soaring weather, soaring techniques, and cross-country flight is included. Topics such as radio navigation and communication, use of flight information publications, and regulations are available in other Federal Aviation Administration (FAA) publications.The discussion and explanations reflect the most commonly used practices and principles. Occasionally, the word “must” or similar language is used where the desired action is deemed critical. The use of such language is not intended to add to, interpret, or relieve a duty imposed by Title 14 of the Code of Federal Regulations (14 CFR). Persons working towards a glider rating are advised to review the references from the applicable practical test standards (FAA-G-8082-4, Sport Pilot and Flight Instructor with a Sport Pilot Rating Knowledge Test Guide, FAA-G-8082-5, Commercial Pilot Knowledge Test Guide, and FAA-G-8082-17, Recreational Pilot and Private Pilot Knowledge Test Guide). Resources for study include FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, FAA-H-8083-2, Risk Management Handbook, and Advisory Circular (AC) 00-6, Aviation Weather For Pilots and Flight Operations Personnel, AC 00-45, Aviation Weather Services, as these documents contain basic material not duplicated herein. All beginning applicants should refer to FAA-H-8083-25, Pilot’s Handbook of Aeronautical Knowledge, for study and basic library reference.It is essential for persons using this handbook to become familiar with and apply the pertinent parts of 14 CFR and the Aeronautical Information Manual (AIM). The AIM is available online at . The current Flight Standards Service airman training and testing material and learning statements for all airman certificates and ratings can be obtained from .This handbook supersedes FAA-H-8083-13, Glider Flying Handbook, dated 2003. Always select the latest edition of any publication and check the website for errata pages and listing of changes to FAA educational publications developed by the FAA’s Airman Testing Standards Branch, AFS-630.This handbook is available for download, in PDF format, from .This handbook is published by the United States Department of Transportation, Federal Aviation Administration, Airman Testing Standards Branch, AFS-630, P.O. Box 25082, Oklahoma City, OK 73125.Comments regarding this publication should be sent, in email form, to the following address:********************************************John M. AllenDirector, Flight Standards Serviceiiii vAcknowledgmentsThe Glider Flying Handbook was produced by the Federal Aviation Administration (FAA) with the assistance of Safety Research Corporation of America (SRCA). The FAA wishes to acknowledge the following contributors: Sue Telford of Telford Fishing & Hunting Services for images used in Chapter 1JerryZieba () for images used in Chapter 2Tim Mara () for images used in Chapters 2 and 12Uli Kremer of Alexander Schleicher GmbH & Co for images used in Chapter 2Richard Lancaster () for images and content used in Chapter 3Dave Nadler of Nadler & Associates for images used in Chapter 6Dave McConeghey for images used in Chapter 6John Brandon (www.raa.asn.au) for images and content used in Chapter 7Patrick Panzera () for images used in Chapter 8Jeff Haby (www.theweatherprediction) for images used in Chapter 8National Soaring Museum () for content used in Chapter 9Bill Elliot () for images used in Chapter 12.Tiffany Fidler for images used in Chapter 12.Additional appreciation is extended to the Soaring Society of America, Inc. (), the Soaring Safety Foundation, and Mr. Brad Temeyer and Mr. Bill Martin from the National Oceanic and Atmospheric Administration (NOAA) for their technical support and input.vv iPreface (iii)Acknowledgments (v)Table of Contents (vii)Chapter 1Gliders and Sailplanes ........................................1-1 Introduction....................................................................1-1 Gliders—The Early Years ..............................................1-2 Glider or Sailplane? .......................................................1-3 Glider Pilot Schools ......................................................1-4 14 CFR Part 141 Pilot Schools ...................................1-5 14 CFR Part 61 Instruction ........................................1-5 Glider Certificate Eligibility Requirements ...................1-5 Common Glider Concepts ..............................................1-6 Terminology...............................................................1-6 Converting Metric Distance to Feet ...........................1-6 Chapter 2Components and Systems .................................2-1 Introduction....................................................................2-1 Glider Design .................................................................2-2 The Fuselage ..................................................................2-4 Wings and Components .............................................2-4 Lift/Drag Devices ...........................................................2-5 Empennage .....................................................................2-6 Towhook Devices .......................................................2-7 Powerplant .....................................................................2-7 Self-Launching Gliders .............................................2-7 Sustainer Engines .......................................................2-8 Landing Gear .................................................................2-8 Wheel Brakes .............................................................2-8 Chapter 3Aerodynamics of Flight .......................................3-1 Introduction....................................................................3-1 Forces of Flight..............................................................3-2 Newton’s Third Law of Motion .................................3-2 Lift ..............................................................................3-2The Effects of Drag on a Glider .....................................3-3 Parasite Drag ..............................................................3-3 Form Drag ...............................................................3-3 Skin Friction Drag ..................................................3-3 Interference Drag ....................................................3-5 Total Drag...................................................................3-6 Wing Planform ...........................................................3-6 Elliptical Wing ........................................................3-6 Rectangular Wing ...................................................3-7 Tapered Wing .........................................................3-7 Swept-Forward Wing ..............................................3-7 Washout ..................................................................3-7 Glide Ratio .................................................................3-8 Aspect Ratio ............................................................3-9 Weight ........................................................................3-9 Thrust .........................................................................3-9 Three Axes of Rotation ..................................................3-9 Stability ........................................................................3-10 Flutter .......................................................................3-11 Lateral Stability ........................................................3-12 Turning Flight ..............................................................3-13 Load Factors .................................................................3-13 Radius of Turn ..........................................................3-14 Turn Coordination ....................................................3-15 Slips ..........................................................................3-15 Forward Slip .........................................................3-16 Sideslip .................................................................3-17 Spins .........................................................................3-17 Ground Effect ...............................................................3-19 Chapter 4Flight Instruments ...............................................4-1 Introduction....................................................................4-1 Pitot-Static Instruments ..................................................4-2 Impact and Static Pressure Lines................................4-2 Airspeed Indicator ......................................................4-2 The Effects of Altitude on the AirspeedIndicator..................................................................4-3 Types of Airspeed ...................................................4-3Table of ContentsviiAirspeed Indicator Markings ......................................4-5 Other Airspeed Limitations ........................................4-6 Altimeter .....................................................................4-6 Principles of Operation ...........................................4-6 Effect of Nonstandard Pressure andTemperature............................................................4-7 Setting the Altimeter (Kollsman Window) .............4-9 Types of Altitude ......................................................4-10 Variometer................................................................4-11 Total Energy System .............................................4-14 Netto .....................................................................4-14 Electronic Flight Computers ....................................4-15 Magnetic Compass .......................................................4-16 Yaw String ................................................................4-16 Inclinometer..............................................................4-16 Gyroscopic Instruments ...............................................4-17 G-Meter ........................................................................4-17 FLARM Collision Avoidance System .........................4-18 Chapter 5Glider Performance .............................................5-1 Introduction....................................................................5-1 Factors Affecting Performance ......................................5-2 High and Low Density Altitude Conditions ...........5-2 Atmospheric Pressure .............................................5-2 Altitude ...................................................................5-3 Temperature............................................................5-3 Wind ...........................................................................5-3 Weight ........................................................................5-5 Rate of Climb .................................................................5-7 Flight Manuals and Placards ..........................................5-8 Placards ......................................................................5-8 Performance Information ...........................................5-8 Glider Polars ...............................................................5-8 Weight and Balance Information .............................5-10 Limitations ...............................................................5-10 Weight and Balance .....................................................5-12 Center of Gravity ......................................................5-12 Problems Associated With CG Forward ofForward Limit .......................................................5-12 Problems Associated With CG Aft of Aft Limit ..5-13 Sample Weight and Balance Problems ....................5-13 Ballast ..........................................................................5-14 Chapter 6Preflight and Ground Operations .......................6-1 Introduction....................................................................6-1 Assembly and Storage Techniques ................................6-2 Trailering....................................................................6-3 Tiedown and Securing ................................................6-4Water Ballast ..............................................................6-4 Ground Handling........................................................6-4 Launch Equipment Inspection ....................................6-5 Glider Preflight Inspection .........................................6-6 Prelaunch Checklist ....................................................6-7 Glider Care .....................................................................6-7 Preventive Maintenance .............................................6-8 Chapter 7Launch and Recovery Procedures and Flight Maneuvers ............................................................7-1 Introduction....................................................................7-1 Aerotow Takeoff Procedures .........................................7-2 Signals ........................................................................7-2 Prelaunch Signals ....................................................7-2 Inflight Signals ........................................................7-3 Takeoff Procedures and Techniques ..........................7-3 Normal Assisted Takeoff............................................7-4 Unassisted Takeoff.....................................................7-5 Crosswind Takeoff .....................................................7-5 Assisted ...................................................................7-5 Unassisted...............................................................7-6 Aerotow Climb-Out ....................................................7-6 Aerotow Release.........................................................7-8 Slack Line ...................................................................7-9 Boxing the Wake ......................................................7-10 Ground Launch Takeoff Procedures ............................7-11 CG Hooks .................................................................7-11 Signals ......................................................................7-11 Prelaunch Signals (Winch/Automobile) ...............7-11 Inflight Signals ......................................................7-12 Tow Speeds ..............................................................7-12 Automobile Launch ..................................................7-14 Crosswind Takeoff and Climb .................................7-14 Normal Into-the-Wind Launch .................................7-15 Climb-Out and Release Procedures ..........................7-16 Self-Launch Takeoff Procedures ..............................7-17 Preparation and Engine Start ....................................7-17 Taxiing .....................................................................7-18 Pretakeoff Check ......................................................7-18 Normal Takeoff ........................................................7-19 Crosswind Takeoff ...................................................7-19 Climb-Out and Shutdown Procedures ......................7-19 Landing .....................................................................7-21 Gliderport/Airport Traffic Patterns and Operations .....7-22 Normal Approach and Landing ................................7-22 Crosswind Landing ..................................................7-25 Slips ..........................................................................7-25 Downwind Landing ..................................................7-27 After Landing and Securing .....................................7-27viiiPerformance Maneuvers ..............................................7-27 Straight Glides ..........................................................7-27 Turns.........................................................................7-28 Roll-In ...................................................................7-29 Roll-Out ................................................................7-30 Steep Turns ...........................................................7-31 Maneuvering at Minimum Controllable Airspeed ...7-31 Stall Recognition and Recovery ...............................7-32 Secondary Stalls ....................................................7-34 Accelerated Stalls .................................................7-34 Crossed-Control Stalls ..........................................7-35 Operating Airspeeds .....................................................7-36 Minimum Sink Airspeed ..........................................7-36 Best Glide Airspeed..................................................7-37 Speed to Fly ..............................................................7-37 Chapter 8Abnormal and Emergency Procedures .............8-1 Introduction....................................................................8-1 Porpoising ......................................................................8-2 Pilot-Induced Oscillations (PIOs) ..............................8-2 PIOs During Launch ...................................................8-2 Factors Influencing PIOs ........................................8-2 Improper Elevator Trim Setting ..............................8-3 Improper Wing Flaps Setting ..................................8-3 Pilot-Induced Roll Oscillations During Launch .........8-3 Pilot-Induced Yaw Oscillations During Launch ........8-4 Gust-Induced Oscillations ..............................................8-5 Vertical Gusts During High-Speed Cruise .................8-5 Pilot-Induced Pitch Oscillations During Landing ......8-6 Glider-Induced Oscillations ...........................................8-6 Pitch Influence of the Glider Towhook Position ........8-6 Self-Launching Glider Oscillations During Powered Flight ...........................................................8-7 Nosewheel Glider Oscillations During Launchesand Landings ..............................................................8-7 Tailwheel/Tailskid Equipped Glider Oscillations During Launches and Landings ..................................8-8 Aerotow Abnormal and Emergency Procedures ............8-8 Abnormal Procedures .................................................8-8 Towing Failures........................................................8-10 Tow Failure With Runway To Land and Stop ......8-11 Tow Failure Without Runway To Land BelowReturning Altitude ................................................8-11 Tow Failure Above Return to Runway Altitude ...8-11 Tow Failure Above 800' AGL ..............................8-12 Tow Failure Above Traffic Pattern Altitude .........8-13 Slack Line .................................................................8-13 Ground Launch Abnormal and Emergency Procedures ....................................................................8-14 Abnormal Procedures ...............................................8-14 Emergency Procedures .............................................8-14 Self-Launch Takeoff Emergency Procedures ..............8-15 Emergency Procedures .............................................8-15 Spiral Dives ..................................................................8-15 Spins .............................................................................8-15 Entry Phase ...............................................................8-17 Incipient Phase .........................................................8-17 Developed Phase ......................................................8-17 Recovery Phase ........................................................8-17 Off-Field Landing Procedures .....................................8-18 Afterlanding Off Field .............................................8-20 Off-Field Landing Without Injury ........................8-20 Off-Field Landing With Injury .............................8-20 System and Equipment Malfunctions ..........................8-20 Flight Instrument Malfunctions ................................8-20 Airspeed Indicator Malfunctions ..........................8-21 Altimeter Malfunctions .........................................8-21 Variometer Malfunctions ......................................8-21 Compass Malfunctions .........................................8-21 Glider Canopy Malfunctions ....................................8-21 Broken Glider Canopy ..........................................8-22 Frosted Glider Canopy ..........................................8-22 Water Ballast Malfunctions ......................................8-22 Retractable Landing Gear Malfunctions ..................8-22 Primary Flight Control Systems ...............................8-22 Elevator Malfunctions ..........................................8-22 Aileron Malfunctions ............................................8-23 Rudder Malfunctions ............................................8-24 Secondary Flight Controls Systems .........................8-24 Elevator Trim Malfunctions .................................8-24 Spoiler/Dive Brake Malfunctions .........................8-24 Miscellaneous Flight System Malfunctions .................8-25 Towhook Malfunctions ............................................8-25 Oxygen System Malfunctions ..................................8-25 Drogue Chute Malfunctions .....................................8-25 Self-Launching Gliders ................................................8-26 Self-Launching/Sustainer Glider Engine Failure During Takeoff or Climb ..........................................8-26 Inability to Restart a Self-Launching/SustainerGlider Engine While Airborne .................................8-27 Self-Launching Glider Propeller Malfunctions ........8-27 Self-Launching Glider Electrical System Malfunctions .............................................................8-27 In-flight Fire .............................................................8-28 Emergency Equipment and Survival Gear ...................8-28 Survival Gear Checklists ..........................................8-28 Food and Water ........................................................8-28ixClothing ....................................................................8-28 Communication ........................................................8-29 Navigation Equipment ..............................................8-29 Medical Equipment ..................................................8-29 Stowage ....................................................................8-30 Parachute ..................................................................8-30 Oxygen System Malfunctions ..................................8-30 Accident Prevention .....................................................8-30 Chapter 9Soaring Weather ..................................................9-1 Introduction....................................................................9-1 The Atmosphere .............................................................9-2 Composition ...............................................................9-2 Properties ....................................................................9-2 Temperature............................................................9-2 Density ....................................................................9-2 Pressure ...................................................................9-2 Standard Atmosphere .................................................9-3 Layers of the Atmosphere ..........................................9-4 Scale of Weather Events ................................................9-4 Thermal Soaring Weather ..............................................9-6 Thermal Shape and Structure .....................................9-6 Atmospheric Stability .................................................9-7 Air Masses Conducive to Thermal Soaring ...................9-9 Cloud Streets ..............................................................9-9 Thermal Waves...........................................................9-9 Thunderstorms..........................................................9-10 Lifted Index ..........................................................9-12 K-Index .................................................................9-12 Weather for Slope Soaring .......................................9-14 Mechanism for Wave Formation ..............................9-16 Lift Due to Convergence ..........................................9-19 Obtaining Weather Information ...................................9-21 Preflight Weather Briefing........................................9-21 Weather-ReIated Information ..................................9-21 Interpreting Weather Charts, Reports, andForecasts ......................................................................9-23 Graphic Weather Charts ...........................................9-23 Winds and Temperatures Aloft Forecast ..............9-23 Composite Moisture Stability Chart .....................9-24 Chapter 10Soaring Techniques ..........................................10-1 Introduction..................................................................10-1 Thermal Soaring ...........................................................10-2 Locating Thermals ....................................................10-2 Cumulus Clouds ...................................................10-2 Other Indicators of Thermals ................................10-3 Wind .....................................................................10-4 The Big Picture .....................................................10-5Entering a Thermal ..............................................10-5 Inside a Thermal.......................................................10-6 Bank Angle ...........................................................10-6 Speed .....................................................................10-6 Centering ...............................................................10-7 Collision Avoidance ................................................10-9 Exiting a Thermal .....................................................10-9 Atypical Thermals ..................................................10-10 Ridge/Slope Soaring ..................................................10-10 Traps ......................................................................10-10 Procedures for Safe Flying .....................................10-12 Bowls and Spurs .....................................................10-13 Slope Lift ................................................................10-13 Obstructions ...........................................................10-14 Tips and Techniques ...............................................10-15 Wave Soaring .............................................................10-16 Preflight Preparation ...............................................10-17 Getting Into the Wave ............................................10-18 Flying in the Wave .................................................10-20 Soaring Convergence Zones ...................................10-23 Combined Sources of Updrafts ..............................10-24 Chapter 11Cross-Country Soaring .....................................11-1 Introduction..................................................................11-1 Flight Preparation and Planning ...................................11-2 Personal and Special Equipment ..................................11-3 Navigation ....................................................................11-5 Using the Plotter .......................................................11-5 A Sample Cross-Country Flight ...............................11-5 Navigation Using GPS .............................................11-8 Cross-Country Techniques ...........................................11-9 Soaring Faster and Farther .........................................11-11 Height Bands ..........................................................11-11 Tips and Techniques ...............................................11-12 Special Situations .......................................................11-14 Course Deviations ..................................................11-14 Lost Procedures ......................................................11-14 Cross-Country Flight in a Self-Launching Glider .....11-15 High-Performance Glider Operations and Considerations ............................................................11-16 Glider Complexity ..................................................11-16 Water Ballast ..........................................................11-17 Cross-Country Flight Using Other Lift Sources ........11-17 Chapter 12Towing ................................................................12-1 Introduction..................................................................12-1 Equipment Inspections and Operational Checks .........12-2 Tow Hook ................................................................12-2 Schweizer Tow Hook ...........................................12-2x。

HitbotStudio 黑豹 上位机使用说明书

HitbotStudio 黑豹 上位机使用说明书

7、CHitbotControl.m_get_j2()..................................................................................22 8、CHitbotControl.m_get_r()................................................................................... 22 9、CHitbotControl.m_get_x()................................................................................... 22 10、CHitbotControl.m_get_y().................................................................................22 11、CHitbotControl.m_get_z().................................................................................23 12、CHitbotControl.m_moveJ(pos_number,speed).......................................... 23 13、CHitbotControl.m_moveL(pos_number,speed)..........................................23 14、CHitbotControl.m_postion_move_angle(z, angle1, angle2, angleR, speed, blist)...................................................................................................................24 15、CHitbotControl.m_postion_move_xyz(type, x, y, z, speed, blist)........... 24 16、CHitbotControl.m_read_ioin_state("PortA_GP1")...................................... 24 17、CHitbotControl.m_read_ioout_state("PortA_GP1")................................... 25 18、CHitbotControl.m_single_joint_move(axis, distance, speed)..................25 19、CHitbotControl.m_stoped()............................................................................. 25 20、CHitbotControl.m_tcp_connect("127.0.0.1",7788)..................................... 26 21、CHitbotControl.m_tcp_recv()........................................................................... 26 22、CHitbotControl.m_tcp_send("send_data")................................................... 26 23、CHitbotControl.m_udp_connect(30020,"127.0.0.1",7799).......................27 24、CHitbotControl.m_udp_recv()......................................................................... 27 25、CHitbotControl.m_udp_send("send_data")................................................. 27 26、CHitbotControl.m_wait_stop().........................................................................28 27、CHitbotControl.m_xyz_move(direction, distance, speed)....................... 28

中英文对照阅读--为什么手指永远取代不了鼠标

中英文对照阅读--为什么手指永远取代不了鼠标

中英文对照阅读---为什么手指永远取代不了鼠标为什么手指永远取代不了鼠标体感技术不断发展之后,人们对体感控制器的期望越来越高。

但是,实测表明,这类产品目前还取代不了传统的鼠标,最近被寄予厚望的手势感应设备Leap Motion也不例外。

我中枪了。

我在桌子上朝空气又抓又砸又戳地比划了八秒钟,弗兰克•威尔提终于掏出手枪把我干掉了。

幸好这只是一场游戏,但是我却连一点取胜的机会都没有。

我的枪——在这场游戏中就是我的食指,一整天都没有击中任何东西。

这款射击游戏Fast Iron》只是最近上市的Leap Motion体感控制器的众多游戏应用里的一款。

Leap Motion是一种可以让用户通过手势控制电脑的外围设备.2012年5月,它刚刚发布的时候,的确带给人很多期待。

现在一年多过去了,这款79美元的设备也终于正式投放市场。

试用一周之后,以它目前的情况看,这种体感控制技术倒是说不出有什么问题。

安装Leap Motion体感控制器的过程出乎意料地简单。

我还以为必须得把这个体感控制器放在离屏幕一定距离的地方才行,要么就是必须得把这款设备放在一定的高度上,但事实证明这些都没必要。

而且也不必下载额外的软件,算是一款即插即玩型的设备,我通过一个USB接口就把它连接到了我的Mac上。

安装Leap Motion的软件也没什么难度,而且给人的感觉就是手势控制似乎很好掌握,似乎传感器可以很清楚地捕捉每个手指的运动。

但是软件的完善程度很不够,让我大跌眼镜——在我的Mac上运行的时候,它的全屏功能自行调节了所有其它应用窗口的大小,这一点非常讨厌。

而且图像也不太稳定,感觉就像分辨率很低一样。

想到这里,我心烦地摆了摆手,但是这款设备却没有探测到这个动作。

事后来看,这说明它灵敏度欠缺。

这个缺点可能会影响我对这款体感控制器的体验。

比如说,就在我选择能与这款设备兼容的软件的时候,我发现图像效果不佳反倒成了这款设备最小的问题。

这款设备有一个专门的Airspace Store 网络商城,主要销售各种第三方开发者针对这款设 He shot me. After a good eight seconds of flailing, grabbing, and poking at the air above my desk, Frank Welty finally unholstered his sidearm and put me out of my misery. Alas, it was only a game, but I never really stood a chance. My shooter, which in this case was my pointer finger, hadn't hit a damn thing all day.The game, Fast Iron, is just one of dozens of apps available for the newly launched Leap Motion Controller. A peripheral that lets users control their computer through hand gestures, this device showed plenty of promise when it was announced in May 2012. Now, more than a year later, the $79 product has come to market, and after a week of feeling it out, it's hard to point a finger at what exactly is wrong with gesture-based computing, at least in its current state.Setting up the Leap Motion Controller was unexpectedly easy. I had imagined having to input measurements like the controller's distance to the screen, or heeding requirements like keeping the device at a certain height, but none of that was necessary. Other than downloading a software suite, the peripheral was more-or-less plug-and-play, the unit powered and connected to my Mac via a USB cable.The Leap Motion software involved minimal hand-holding, and gave the impression that gesture-based controls would be easy to master, with the sensor seeming to pick up each finger and hand rotation cleanly. But the program's lack of finish caught my eye -- running on my Mac, the software's full-screen capability resized all my other applications windows (a huge annoyance), and its graphics looked choppy, almost like they were low-resolution. The device couldn't detect my hands shaking with worry over these concerns, but in hindsight, they were clear indicators of a lack of finish that would plague my experience with the controller.For example, as I continued pawing through the device's compatible software, poor graphics soon became the least of Leap Motion's problems. The company's Airspace Store, a proprietary app marketplace that sells third-party created software for the备开发的软件。

机器人服务行业智能机器人操作系统考核试卷

机器人服务行业智能机器人操作系统考核试卷
7.在ROS中,以下哪些工具可以用于可视化机器人模型?( )
A. rviz
B. gazebo
C. urdf_to_graphiz
D. xacro_to_urdf
8.以下哪些功能包与ROS中的导航相关?( )
A. move_base
B. amcl
C. gmapping
D. navfn
9. ROS中以下哪些功能包与机器人的路径规划有关?( )
B. roscore
C. rosnet
D. roswtf
20.以下哪些是ROS社区推荐的编程语言?( )
A. C++
B. Python
C. Lisp
D. Java
(注:以上试题内容仅供参考,实际考试内容以正式试卷为准。)
三、填空题(本题共10小题,每小题2分,共20分,请将正确答案填到题目空白处)
1. ROS的全称是_______。()
B. Real-time Operating System
C. Random Operating System
D. Robot Object-oriented System
2.以下哪项不是ROS的主要特性?( )
A.开源
B.跨平台
C.实时性
D.面向服务
3.在ROS中,用于描述机器人硬件接口的文件是:( )
2.描述ROS中话题(Topics)、服务(Services)和动作(Actions)通信的区别和特点,并给出一个实际应用场景中这三种通信方式的例子。(10分)
3.请解释URDF(Unified Robot Description Format)的作用,以及如何使用URDF和XACRO来描述一个简单的机器人模型。(10分)

轮式移动机器人系统设计与控制分析

轮式移动机器人系统设计与控制分析

大连理工大学硕士学位论文目录摘要………………………………………………………………………………………………………………IAbstract…………….……….....….……….…..….….….………………….......……………………….………II1绪论……………………………………………………………………………………l1.1课题研究的背景及意义………………………………………………………11.2移动机器人的发展历史及趋势………………………………………………l1.2.1国内外移动机器人的发展历史………………………………………11.2.2移动机器人的新发展与发展趋势……………………………………31.3本文主要研究内容………‰…………………………………………………32移动机器人的体系结构设计…………………………………………………………52.1移动机器人的机械结构设计和运动学模型建立……………………………52.1.1移动机器人的机械结构………………………………………………52.1.2移动机器人的运动学模型……………………………………………52.2移动机器人的控制系统设计…………………………………………………72.2.1主控制器模块…………………………………………………………72.2.2驱动模块………………………………………………………………92.2.3PLC模块……………………………………………………………..122.2.4相机姿态调整模块…………………………………………………..192.2.5测距模块……………………………………………………………一202.2.6通信模块……………………………………………………………一222.2.7电源模块………………………………………………………………253Back—Stepping算法在移动机器人轨迹跟踪中的研究……………………………263.1移动机器人路径规划与轨迹跟踪………………………………………….263.1.1路径规划………………………………………………………………263.1.2轨迹跟踪………………………………………………………………273.2Back—Stepping算法…………………………………………………………273.2.1基于Lyapunov稳定性的最优状态反馈控制器…………………….283.2.2Back—Stepping算法的设计思想……………………………………..293.3Back—Stepping算法在基于运动学模型的轨迹跟踪中的实现……………3l3.4实验结果及分析…………………………………………………………….343.5本章小结…………………………………………………………………….364连续曲率曲线路径在局部路径规划中的研究……………………………………..37轮式移动机器人系统设计及控制研究4.1局部路径规划中的连续曲率曲线的建立………………………………….374.1.1直角坐标系中连续曲率曲线的建立方法……………………………374.1.2连续曲率曲线算法在移动机器人局部路径规划中的实现…………414.2实验结果及分析…………………………………………………………….434.3本章小结…………………………………………………………………….455基于模糊控制算法的移动机器人直线轨迹跟踪………………………………….465.1模糊控制理论……………………………………………………………….465.1.1模糊控制的概念……………………………………………………一465.1.2模糊控制的优点……………………………………………………一465.2模糊控制系统……………………………………………………………….475.2.1模糊控制系统的组成………………………………………………..475.2.2模糊控制器的设计…………………………………………………..485.3模糊控制算法在移动机器人轨迹跟踪中的实现………………………….495.3.1输入输出量模糊语言及其隶属度的建立…………………………一505.3.2模糊控制规则的设定………………………………………………。

人机服务接触体验的影响因素

人机服务接触体验的影响因素

第44卷 第12期 包 装 工 程2023年6月 PACKAGING ENGINEERING77收稿日期:2022–01–05基金项目:国家自然科学基金(71942005);国家重点研发计划(2018AAA0101702) 作者简介:饶培伦(1970—),男,博士,教授,主要研究方向为人因工程、人机交互。

饶培伦1,雷心2(1.清华大学,北京 100084;2.浙江工业大学 管理学院,杭州 310023)摘要:目的 人工智能与机器人技术的进步推动着智能机器人进入服务业,加速了服务业的数字化、个性化、智能化发展。

随着服务机器人进入人类社会,人与服务机器人的交互(HSRI )研究也在从“以技术为中心”向“以人为中心”过渡。

在这样的背景下,对HSRI 相关研究进行综述,从人、机、服务接触三个方面梳理HSRI 的影响因素。

方法 通过收集与整理相关文献,阐述服务机器人的定义与特征,梳理了人的因素、机器人属性、服务接触特征三个方面的影响因素。

结果 人机服务接触的三大影响因素为机器人属性(包括机器人的拟人化、性别、种族与文化、可用性、透明度、形体与呈现)、人的因素(包括人的年龄、性别、文化、人格特质、技术就绪指数、对机器人负面态度)、服务接触特征(包括服务场所、机器人参与度、顾客参与度、失误后果严重性、有形与无形、认知分析型与情感社交型)。

结论 建议HSRI 研究综合考虑人、机、服务接触三个方面影响因素,关注智能服务机器人的发展和应用阶段,更重要的是在社会伦理道德的框架下进行机器人的设计与研发。

关键词:服务机器人;智能机器人;人–机器人交互;服务接触中图分类号:F27;TB472 文献标识码:A 文章编号:1001-3563(2023)12-0077-12 DOI :10.19554/ki.1001-3563.2023.12.008Influencing Factors of Human-Robot Service Encounter ExperienceRAU Pei-luen Patrick 1, LEI Xin 2(1.Tsinghua University, Beijing 100084, China;2.School of Management, Zhejiang University of Technology, Hangzhou 310023, China)ABSTRACT: The progress of artificial intelligence and robot technology promotes the intelligent robots to enter the ser-vice industry, accelerating the digital, personalized and intelligent development of the service industry. As service robots become increasingly prevalent in the human society, the research on human service robot interaction (HSRI) is shifting from a "technology-centric" focus to a more "human-centric" approach. Under such a background, the work aims to re-view the research on HSRI and sort out the influencing factors of HSRI from human, robot and service encounter. Through literature collection and arrangement, the definition and characteristics of service robots were expounded and the influencing factors from human factors, robot attributes and service encounter characteristics were organized. The three influencing factors of HSRI were robot attributes (including anthropomorphic design, gender, race and culture, usability, transparency, embodiments and presence), human factors (including age, gender, culture, personality traits, technology readiness index, negative attitudes towards the robot) and service encounter characteristics (including service location, robot involvement, customer involvement, severity of failure consequences, tangible versus intangible, cognitive-analytic versus emotional-social). Finally, the research on HSRI should comprehensively consider three aspects of human factors, robot attributes, and service encounter characteristics, pay attention to the development and application stages of service robots, and design and develop service robots within the framework of social ethics. KEY WORDS: service robot; intelligent robot; human-robot interaction; service encounter78 包装工程 2023年6月服务机器人是集机械、信息、材料、生物医学等多学科交叉的战略性技术,它的出现是服务行业的重要变革之一。

基于自适应Backstepping方法的无人飞艇纵向受限控制

基于自适应Backstepping方法的无人飞艇纵向受限控制

数 ; 制变 量 b X 是 时变 的且 为依 赖 于 X的一 个 已 控 () 知连 续 函数 ;( t为 时 变 的外 部 干 扰 且 满 足 不 等 d x,)
式 I ( t I ( ; ( ) 光 滑 已知 函数 ; 为 未 d x,) ≤p ) p X 为 知常 数.
根据 无人 飞艇 的作 动 器 实 际 运 行情 况 , 制输 控
sr tg s d sg e tae y wa e i n d.Th e u t h w ha h mprv d c n ta n d fih o r lc n et tv l a k e e r s ls s o t tt e i o e o sr i e g tc nto a f i ey tc l l  ̄c t e e tr a i — ay n it r n e a d t e s t r to n u o sr i to ma e is i Th e h x e n ltme v r i g d su ba c n h au ain i p tc n tan fun nn d ar hp. ed — sr d h ih a equc l b a n d t r c her fr n e sg a tt e p th n n l .T e p o o e o — ie eg tc n b ik y o t i e o ta k t ee e c in lo’h i i g a g e h r p s d c n c sr i e i h o to sa fe tv o to c me fru tan d f g tc nr li n efc ie c n rls he o nma e is p l nn d arhi .

制 刖 允
由于无人 飞艇 在安 全监 控 、 灾情 获 取 、 通 管制 交 和军 事侦 察 等方 面有 着广 泛 的实 际应用 以及 发 展前

移动机器人开发技术(激光SLAM)第10课 机器人的定位及控制

移动机器人开发技术(激光SLAM)第10课 机器人的定位及控制
激光
视觉
IMU
光电编码器
...
建立全局地图
机器人定位
路径规划
移动控制
速度控制
转向控制
之前内容
本讲内容
我在哪? 我要去哪里? 我该如何去?

机器人控制系统
北邮移动机器人与智能技术实验室 编
第10课 机器人的移动控制
2.1 机器人控制系统结构
机器人控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统: 非线性系统。引起机器人非线性因素很多,机器人的结构、传动件、驱动元件等都会引起系统的非线性。 多节点组成的一个多变量控制系统,且各节点间具有耦合作用。 是一个时变系统,其动力学参数随着运动位置的变化而变化。 是一个最优化系统,根据环境和任务要求选择最优化输出
行动
五官
传感器
大脑
处理器
大脑
处理器
外设
身体
人类
机器
最优化处理
目标识别
控制
数据处理
计算
流程
自主系统的目标是在无人干预的环境中工作。系统需要能够理解自身及周围环境,才能确定要采取的路径,以及让系统遵循该路径所要 下达的正确命令。
自主系统模型
感知
决策
行动
流程
真实的世界环境
多传感器
传感器标定及数据融合
局部地图
2
自主系统模型
机器人控制系统
第10课 机器人的移动控制
北邮移动机器人与智能技术实验室 编
3
机器人移动模型
4
控制数据的通信模型
5
控制机器人移动
6
误差修正与精确控制
1
自主系统模型
北邮移动机器人与智能技术实验室 编

diffusion policy—基于扩散模型的机器人动作生成策略

diffusion policy—基于扩散模型的机器人动作生成策略

diffusion policy—基于扩散模型的机器人动作生成策

Diffusion Policy是基于扩散模型的机器人动作生成策略,其主要目标是学习一个概率模型,将无噪声的原始动作逐步向有噪声的动作进行转换。

通过训练,该策略能够学习到一个最佳的噪声水平,使得机器人能够更好地适应复杂的环境并执行任务。

相比于传统的基于强化学习的策略,Diffusion Policy在解决高维度、连续动作空间的问题上更具优势。

基于扩散模型的机器人动作生成策略主要包括以下步骤:
1. 初始化:设置一个随机的初始状态,并选择一个随机的初始动作。

2. 重复采样:重复以下步骤直到满足终止条件:
a. 根据当前状态和策略生成一个动作。

b. 将该动作应用到环境中,并获取新的状态和奖励。

c. 根据新的状态和奖励更新策略。

3. 终止:输出最终的策略和奖励。

基于扩散模型的机器人动作生成策略的优势在于:
1. 能够处理高维度的连续动作空间,使得机器人能够更好地适应复杂的环境和任务。

2. 通过逐步引入噪声,使得机器人能够逐步探索未知的状态和动作,从而更好地适应环境。

3. 可以与深度学习技术相结合,利用深度神经网络来表示策略,提高策略的表示能力和泛化能力。

基于扩散模型的机器人动作生成策略的应用场景包括但不限于:智能家居、医疗服务、工业自动化、农业自动化等领域。

该策略具有广泛的应用前景,将会成为未来机器人领域的一个重要研究方向和发展趋势。

基于YOLOv5与迁移学习的目标检测和机械臂抓取位姿估计

基于YOLOv5与迁移学习的目标检测和机械臂抓取位姿估计

2024年第48卷第3期Journal of Mechanical Transmission基于YOLOv5与迁移学习的目标检测和机械臂抓取位姿估计李万艳1阮观强2张振东3(1 上海东海职业技术学院机电学院,上海200241)(2 上海电机学院机械学院,上海201306)(3 上海理工大学机械学院,上海200093)摘要针对传统机器学习算法视觉识别准确率低、运行时间缓慢等问题,研究针对家庭场景中机器人做家务的场景,利用RGB图像信息为输入,完成对目标物体的抓取位姿估计。

以目标检测模型YOLOv5s为基础,利用其轻便、速度快的优点,结合数据增强以及迁移学习搭建网络架构,搭建家庭场景数据集;将少量训练样本进行数据增强后,利用迁移学习将模型在目标数据集上训练,同时微调参数,将目标物体的定位信息通过坐标变换转换为机械臂的抓取位姿,控制机械臂最终以固定抓取姿态完成抓取任务;最后,通过搭建实验平台,操纵UR5机械臂进行实际抓取实验,验证了算法的有效性。

提出的基于目标检测的方法速度快、实时性高、误/漏识别率小于2%,应用在机械臂抓取上可以高效地完成任务。

关键词YOLOv5s 机械臂位姿估计目标检测迁移学习Target Detection and Robotic Arm Grasp Pose Estimation Based on YOLOv5and Transfer LearningLi Wanyan1Ruan Guanqiang2Zhang Zhendong3(1 School of Mechanical and Electrical Engineering, Shanghai Donghai Vocational & Technical College, Shanghai 200241, China)(2 School of Mechanical Engineering, Shanghai Dianji University, Shanghai 201306, China)(3 School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)Abstract For traditional machine learning algorithms, visual recognition algorithms have low recogni‑tion accuracy and slow running time. This research studies the scene of the robot doing housework in the fam‑ily scene, and uses the RGB image information as input to complete the grasping pose estimation of the target object. Based on the object detection model YOLOv5s, the network architecture is built by combining data en‑hancement and transfer learning with its advantages of lightweight and fast speed.After building a family scene data set to enhance the data of a small number of training samples, the model is trained on the target da‑ta set using transfer learning, and the parameters are fine-tuned at the same time. The positioning informa‑tion of the target object is transformed into the grasping pose of the robotic arm through coordinate transforma‑tion, and the robotic arm is controlled to finally complete the grasping task with a fixed grasping posture. Fi‑nally, the effectiveness of the algorithm is verified by building an experimental platform and manipulating the UR5 robotic arm to carry out actual grasping experiments. The proposed method based on target detection is fast, has high real-time performance, and has a false/missed recognition rate of less than 2%. The application in the robotic arm can efficiently complete the task.Key words YOLOv5s Robotic arm Pose estimation Target detection Transfer learning0 引言当今社会人口老龄化进程不断加速,人力成本显著增加,使用机械臂代替人力作业的应用变得愈加广泛。

一种小型固定翼无人机弹射系统的设计

一种小型固定翼无人机弹射系统的设计

基金项目:哈尔滨理工大学省级大学生创新创业训练计划项目(201910214021)一种小型固定翼无人机弹射系统的设计李国利,王瀚,胡晓航,钟艳(哈尔滨理工大学,哈尔滨150080)摘要:为了解决小型固定翼无人机在复杂地面状况或快艇上等无法完成滑跑起飞动作场景的快速起飞的问题,文中使用SoildWorks三维建模、MATLAB数学矩阵等软件,设计出一种小型固定翼弹射系统,以实现小型固定翼无人机在上述场景的快速起飞。

首先根据小型固定翼无人机的最小起飞速度和质量计算出弹射起飞所需要的能量,再由这种无人机所能承受的最大推力计算出最短发射距离,从而确定出整个发射平台的主要参数,进而完成发射平台的三维建模,并利用分析软件对发射平台的关键构件进行强度校核和刚度校核,确保平台发射无人机的可靠性和具有足够长时间的使用寿命。

关键词:固定翼无人机;弹射系统;弹射动力;三维建模中图分类号:V 279.2;TH 122文献标志码:A 文章编号:1002-2333(2021)06-0043-04Design of a Small Fixed-wing UAV Ejection SystemLI Guoli,WANG Han,HU Xiaohang,ZHONG Yan(Harbin University of Science and Technology,Harbin 150080,China)Abstract:In order to solve the problem that the small fixed-wing UAV cannot complete the fast take-off of the rolling take -off action scene under complex ground conditions or on a speedboat,this paper uses SoildWorks 3D modeling,MATLAB mathematical matrix and other software to design a small fixed-wing ejection system to realize the rapid take-off of small fixed-wing UAVs in the above scenarios.The energy required for ejection and takeoff is calculated based on the minimum take-off speed and weight of the small fixed-wing UAV,and then the shortest launch distance from the maximum thrust that the UAV can withstand is calculated,thereby determining the main launch platform parameter.Then the three-dimensional modeling of the launch platform is built,and the analysis software is used to check the strength and rigidity of the key components of the launch platform to ensure the reliability of the platform's launch UAV and a long enough service life.Keywords:fixed-wing UAV;ejection system;ejection power;3D modeling0引言在科学技术不断进步的今天,无人机的应用可谓前景大好,不论在军事还是民用领域,无人机都发挥着极其重要的作用。

基于手势识别的3D人机交互系统

基于手势识别的3D人机交互系统

基于手势识别的3D人机交互系统作者:陈敬宇徐金罗容张乐乐姜哲来源:《现代信息科技》2023年第22期收稿日期:2023-04-04DOI:10.19850/ki.2096-4706.2023.22.019摘要:随着计算机视觉技术的发展,人与计算机的信息交互也是必不可少的一部分。

因新冠病毒的传播,“隔空”操作的方式得到多元化发展。

该系统通过单目摄像头捕捉手部位置信息,基于MediaPipe框架构建手部模型并完成手势识别功能,达到“隔空”操控鼠标的效果,此外为展示更真实,该系统基于Unity软件实现实时的手部3D效果展示。

该系统手势识别效率较高,达到了良好的性能及视觉效果。

关键词:MediaPipe;虚拟鼠标;Unity3D;手势识别中图分类号:TP391.4;TP311 文献标识码:A 文章编号:2096-4706(2023)22-0088-043D Human-computer Interaction System Based on Gesture RecognitionCHEN Jingyu, XU Jin, LUO Rong, ZHANG Lele, JIANG Zhe(College of Computer and Information Engineering,Xinjiang Agriculture University,Urumqi 830052, China)Abstract: With the development of computer vision technology, the information interaction between human and computer is also an indispensable part. Due to the spread of COVID-19 virus,the “empty space” operation has bee n diversified. The system captures the hand position information through a monocular camera, uses the MediaPipe framework to build the hand model and complete the gesture recognition function,so as to achieve the effect of controlling the mouse from “empt y space”. In order to display more realistically, the system realizes real-time hand 3D effect display based on Unity software. The system has high efficiency of gesture recognition and achieves good performance and visual effect.Keywords: MediaPipe; virtual mouse; Unity3D; gesture recognition0 引言随着计算机视觉技术的迅速发展,人机交互的方式越来越丰富,其应用也更深入生活。

如何使用堆叠自动编码器进行特征融合(九)

如何使用堆叠自动编码器进行特征融合(九)

在机器学习和深度学习领域,特征融合是一个非常重要的概念。

特征融合能够将不同特征之间的信息进行整合和提取,从而得到更加丰富和有用的特征表示。

而堆叠自动编码器(stacked autoencoder)作为一种深度学习模型,在特征融合中发挥着重要的作用。

本文将探讨如何使用堆叠自动编码器进行特征融合,并分析其原理和实现方法。

堆叠自动编码器是一种由多个自动编码器组成的深度学习模型。

自动编码器是一种无监督学习模型,其基本结构包括编码器和解码器两部分。

编码器将输入数据映射到隐藏层表示,解码器则将隐藏层表示映射回原始输入。

通过训练自动编码器,可以学习到数据的有效表示,从而实现特征的提取和重构。

在堆叠自动编码器中,多个自动编码器被堆叠在一起,形成一个深度网络结构。

这样的深度结构能够学习到更加抽象和高级的特征表示,有助于提高模型的性能和泛化能力。

同时,堆叠自动编码器还可以用于特征融合,将不同层次的特征进行整合和提取。

特征融合是指将不同特征进行整合和提取,得到更加丰富和有用的特征表示。

在机器学习任务中,往往会使用多种不同类型的特征,如图像特征、文本特征、时间序列特征等。

这些不同类型的特征往往具有不同的表示形式和语义含义,因此需要进行融合和整合,从而得到更加全面和准确的特征表示。

堆叠自动编码器可以用于特征融合的原因在于其深度网络结构和自适应学习能力。

由于堆叠自动编码器是由多个自动编码器组成的深度网络,因此可以学习到更加抽象和高级的特征表示。

这些高级特征表示能够包含不同层次和语义的信息,有助于对不同类型的特征进行整合和融合。

同时,堆叠自动编码器还具有自适应学习能力,能够根据数据的特点和分布自动学习到适合的特征表示,从而实现特征融合的效果。

在实际应用中,使用堆叠自动编码器进行特征融合的方法可以分为以下几个步骤。

首先,将不同类型的特征分别输入到堆叠自动编码器的不同层次中,分别学习到不同层次的特征表示。

然后,利用堆叠自动编码器的解码器部分将学习到的特征表示映射回原始特征空间。

整理的一些nbu命令及用法

整理的一些nbu命令及用法

整理的⼀些nbu命令及⽤法整理的⼀些nbu命令及⽤法(5.0)(⼀)Backup command and resultavailable_media.cmd :显⽰系统可⽤的备份介质,C:\Program Files\VERITAS\NetBackup\bin\goodies>available_media.cmdmedia media robot robot robot side/ ret size statusID type type # slot face level KBytes----------------------------------------------------------------------------DataStore poolNetBackup poolNone pooltpcleanNAMEtpclean - manages tape drive cleaningSYNOPSIS/usr/openv/volmgr/bin/tpclean -L/usr/openv/volmgr/bin/tpclean -C drive_name/usr/openv/volmgr/bin/tpclean -M drive_nameDESCRIPTIONtpclean allows you to monitor Media Manager tape drive usage and optionally configure tape drives to be automatically cleaned (except drives in ACS, LMF, ODL, RSM, or TLH robots; or shared (SSO) drives).#tpclean -LDrive Name Type Mount Time Frequency Last Cleaned Comment********** **** ********** ********** ************ *******qsci_drv0 qscsi 0.0 0 N/Arob_A_drv1 8mm* 11.4 30 14:33 05/29/924mm_drv5 4mm 5.6 10 13:01 06/02/92dlt_drv6 dlt 3.0 0 N/AThe following example sets the cleaning frequency for the drive named qsci_drv0 to 25 hours. The drive will be flagged as needing cleaning after 25 hours of mount time has occurred.tpclean -F qsci_drv0 25check_coverage.cmd⽐较⼰备份镜像和实际备份内容的差异C:\Program Files\VERITAS\NetBackup\bin\goodies>check_coverage.cmdFile System Backup Coverage Report (UNIX and WindowsNT/2000/XP/95/98/Me only) -----------------------------------------------------------------------------Key: * - Policy is not activeUNCOVERED - Mount Point not covered by an active policyMULTIPLE - Mount Point covered by multiple active policiesCLIENT: seaskyDrive Letter Backed Up By Policy Notes------------ ------------------- -----C:\ UNCOVEREDD:\ UNCOVEREDE:\ UNCOVEREDF:\ UNCOVEREDG:\ UNCOVEREDH:\ UNCOVEREDSystem_State:\ UNCOVEREDC:\Program Files\VERITAS\NetBackup\bin\goodies>supportnow.exe整理的⼀些nbu命令及⽤法(5.0)(⼆)Vmpool显⽰,增加,修改,删除卷池C:\Program Files\VERITAS\Volmgr\bin>vmpoolUsage: vmpool [-h volume_database_host]{-listall [-b] |-listscratch |-add "" |-change "" |-delete-set_scratch-unset_scratch}C:\Program Files\VERITAS\Volmgr\bin>vmpool -listall========================================================= ==========pool number: 0pool name: Nonedescription: the None pool (for anyone)pool host: ANYHOSTpool user: ANYpool group: NONE========================================================= ======================= pool number: 1pool name: NetBackupdescription: the NetBackup poolpool host: ANYHOSTpool user: 0 ()pool group: NONE========================================================= ======================= pool number: 2pool name: DataStoredescription: the DataStore poolpool host: ANYHOSTpool user: 0 ()pool group: NONEbpconfig显⽰或修改全局设置(modify or displays the netbackup global configuration attributes)C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpconfig*NULL* 10 12 1 2 28 0 0 0 0 1 24 1 0 2C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpconfig ?bpconfig: unrecognized option ?USAGE: bpconfig [-cd seconds] [-ha hours] [-kl days] [-kt days][-ma [address]] [-mdtm drives][-sto seconds] [-mj number][-period hours] [-ppi 0|1] [-prep hours] [-to seconds][-max_copies 2...10][-tries times] [-wi minutes] [-v] [-M master_server,...]bpconfig [-L|-l|-U [-v] [-M master_server,...]]C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpconfig -L -M SeaSkyMail Admin: *NULL*Wakeup Interval: 10 minutesMax Jobs/Client: 1Backup Tries: 2 in 12 hoursKeep Logs: 28 daysMax drives/master: 0Compress DB Files: (not enabled)Media Mnt Timeout: 0 minutes (unlimited)Postprocess Image: immediatelyDisplay Reports: 24 hours agoKeep TIR Info: 1 daysPrep Interval: 4 hours (default)Max Backup Copies: 2整理的⼀些nbu命令及⽤法(5.0)(三)Vmadm基于字符的卷管理⼯具,为了⽣效vmadm所做的任何更改, media manager volume daemon –VMD必须激活, C:\Program Files\VERITAS\Volmgr\bin>vmdvmadd往卷库中增加卷C:\Program Files\VERITAS\Volmgr\bin>vmaddmissing media typeUsage: vmadd -m -mt[-h ] [-verbose][-b ] [-rt ][-rn ] [-rh ][-rc1 ] [-rc2 ][-p ] [-mm | -n ][-op ] [-d ""]vmchange修改卷配置信息C:\Program Files\VERITAS\Volmgr\bin>vmchange.exeNo change mode specifiedUsage:(Change volume-group residence)vmchange.exe [-h ]-vg_res -rt -rn-rh -v(Change volume residence)vmchange.exe [-h ]-res -m -mt -rt-rn -rh -v-rc1 [-rc2 ](Change volume expiration date)vmchange.exe [-h ]-exp mm/dd/yy hh:mm:ss -m(Change barcode for a volume)vmchange.exe [-h ]-barcode -m[-rt ](Change media description)vmchange.exe [-h ]-d "" -m(Associate this volume with a different pool) vmchange.exe [-h ]-p -m(Change volume's maximum mount count) vmchange.exe [-h ]-maxmounts -m(Change volume's number of mounts count / cleanings) vmchange.exe [-h ]-n -m(Change volume's media type)vmchange.exe [-h ]-new_mt -m(Change volume's robot type)vmchange.exe [-h ]-new_rt -m -rn(Change volume group)vmchange.exe [-h ]-new_v[-m | -b -mt -rt ](Change a volume's vault name)vmchange.exe [-h ]-vltname -m(Change the date a volume was sent to the vault) vmchange.exe [-h ]-vltsent mm/dd/yy hh:mm:ss -m(Change the date when a volume returns from the vault) vmchange.exe [-h ]-vltreturn mm/dd/yy hh:mm:ss -m(Change a volume's vault slot number)vmchange.exe [-h ]-vltslot -m(Change a volume's vault session id)vmchange.exe [-h ]-vltsession -m(Eject ACS, TLM, or TLH volumes)vmchange.exe -api_eject -map -w[-h ]-res -ml -rt-rn -rh [-v ](Get robot information for TL8 or TLD)vmchange.exe -res -robot_info -verbose-rn -rt -rh(Eject TL8 or TLD volumes)vmchange.exe -res -multi_eject -w -verbose-rn -rt -rh-ml(Inject TL8 or TLD volumes)vmchange.exe -res -multi_inject -w -verbose-rn -rt -rh整理的⼀些nbu命令及⽤法(5.0)(四)vmcheckXXXX报告机械臂带库的介质组分C:\Program Files\VERITAS\Volmgr\bin>vmcheckxxx.exe Usage: vmcheckxxx -rt robot_type -rn robot_number [-rh robot_control_host] [-h volume_database_host] [[-if inventory_filter_value] [-if inventory_filter_value] ...] [-full] [-list]vmdelete删除卷C:\Program Files\VERITAS\Volmgr\bin>vmdelete.exemissing media ID or volume group to deleteUsage: vmdelete.exe [-h ][-m | -v ]vmquery查寻卷C:\Program Files\VERITAS\Volmgr\bin>vmquery.exeUsage: vmquery.exe [-h ,...,-h ] [-b | -w]{-a |-m |-v |-rn |-rt |-mt |-p |-pn |-res|-assignbyid|-deassignbyid}CAUTION: The act of unassigning volumes may lead to inconsistencies between the application media database and volume database,leading to the possibility for data loss. You must expire themedia from an application interface.C:\Program Files\VERITAS\Volmgr\bin>vmquery -aVmupdate清点机械壁带库的介质组分并更新卷数据库C:\Program Files\VERITAS\Volmgr\bin>vmupdateUsage: vmupdate -rt robot_type -rn robot_number[-rh robot_control_host] [-h volume_database_host][[-if inventory_filter_value] [-if inventory_filter_value] ...][-full] [-recommend] [-interactive][-involgrp volume_group] [-outvolgrp volume_group][-mt media_type] [-p pool_name] [-use_barcode_rules] [-use_seed] [-mp media_id_prefix] [-no_sides][-no_format_optical] [-overwrite_labels] [-empty_map]整理的⼀些nbu命令及⽤法(5.0)(五)配置磁带命令C:\Program Files\VERITAS\Volmgr\bin>tpconfig Usage:(Display device configuration)tpconfig -dtpconfig -dltpconfig -ltpconfig -lsavdbhost(Add drive)tpconfig -add -drive -type -path[-asciiname ] [-index ] [-shared [yes|no]][-cleanfreq ] [-comment ] [-drstatus [UP|DOWN]][-robot -robtype ] [-noverify][-robdrnum | -VendorDrvName ][-ACS -LSM -PANEL -DRIVE ](Update drive)tpconfig -update -drive[-type ] [-path ] [-noverify][-newasciiname ] [-shared [yes|no]][-cleanfreq ] [-comment ] [-drstatus [UP|DOWN]][-robot -robtype ][-robdrnum | -VendorDrvName ][-ACS -LSM -PANEL -DRIVE ](Delete drive)tpconfig -delete -drivetpconfig -multiple_delete -drive ::(Add robot)tpconfig -add -robot -robtype -robpath [-vdbhost ] tpconfig -add -robot -robtype-port -bus -target -lun[-vdbhost ]tpconfig -add -robot -robtype -cntlhost [-vdbhost ] (Update robot)tpconfig -update -robot[-robtype ] [-robpath |-port -bus -target -lun |-cntlhost ] [-vdbhost ](Delete robot)tpconfig -delete -robottpconfig -multiple_delete -robot ::(Update standalone drive volume database host) tpconfig -savdbhostcan be one of the following:"4mm", for 4mm tape drives"8mm", for 8mm tape drives"8mm2", for 8mm tape drives (2)"8mm3", for 8mm tape drives (3)"dlt", for DLT tape drives"dlt2", for DLT tape drives (2)"dlt3", for DLT tape drives (3)"hcart", for half-inch tape drives"hcart2", for half-inch tape drives (2)"hcart3", for half-inch tape drives (3)"qscsi", for quarter-inch tape drivesis the system's name for the drive."Tape0" for examplecan be one of the following:"acs", for Automated Cartridge System robotic libraries "rsm", for Removable Storage Manager robotic libraries "tl4", for Tape Library 4mm robotic libraries"tl8", for Tape Library 8mm robotic libraries"tld", for Tape Library DLT robotic libraries"tlh", for Tape Library Half-inch robotic libraries "tlm", for Tape Library Multimedia robotic libraries"ts8", for Tape Stacker 8mm robotic libraries "tsd", for Tape Stacker DLT robotic libraries整理的⼀些nbu命令及⽤法(5.0)(六)tpreq请求挂卷及和指定的驱动名相关链C:\Program Files\VERITAS\Volmgr\bin>tpreq.exeFile Name and media ID must be specifiedUsage: tpreq -m media_id [-a (r/w)] [-d density] [-p poolname] [-f] filenametpunmount.exe从⽬录中移⾛磁带⽂件,并移⾛磁带卷从驱动器中C:\Program Files\VERITAS\Volmgr\bin>tpunmount.exeUsage: tpunmount [-f] filename [-force]Do_not_eject_standalone option is specified in the vm.confVmrule管理微码C:\Program Files\VERITAS\Volmgr\bin>vmruleUsage: vmrule [-h volume_database_host]{-listall [-b] |-add "" |-change "" | -delete}bpbakcup往备份服务器上备份⽂件C:\Program Files\VERITAS\NetBackup\bin\goodies>bpbackupSpecify either a listfile or a list of files on the command line.USAGE: bpbackup [-p policy] [-s schedule] [-k "keyword phrase"][-L progress_log [-en]] [-S master_server...][-t policy_type] [-w [hh:mm:ss]]-f listfile | filenamesbpbackup -i [-p policy] [-s schedule] [-k "keyword phrase"][-h hostname] [-L progress_log [-en]] [-S master_server...][-t policy_type] [-w [hh:mm:ss]]EXIT STATUS 144: invalid command usageBpbackupdb备份⽬录信息C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpbackupdb -help USAGE: bpbackupdb [{-dpath disk_path} |{-tpath tape_device_path [-m media_ID]} |{-opath optical_device_path [-m media_ID]}][-nodbpaths] [-v] [path...]bpdbjobs[/color和NBU job数据库交互C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpdbjobs -help bpdbjobs: [-report] [-M ][-file ] [-append] [ -vault | -lvault | -all_columns ] bpdbjobs: -summary [-M ][-file ] [-append] [ -U | -L | -all_columns ]bpdbjobs: -delete [-M ] bpdbjobs: -cancel [-M ] bpdbjobs: -cancel_all [-M ][-M ]bpdbjobs: -clean [-M ][-keep_hours ] or [-keep_days ][-keep_successful_hours ] or [-keep_successful_days ] [-verbose]= [ 3..720 ] = [ 1..30 ]bpdbjobs: -versionbpdbjobs: -helpbpduplicate创建⼀个备份拷贝整理的⼀些nbu命令及⽤法(5.0)(七)bperror显⽰NBU状态及trouleshoot信息从NBU错误⽬录中得到C:\Program Files\VERITAS\NetBackup\bin\admincmd>bperrorUSAGE: bperror {-S|-statuscode status_code}[-r|-recommendation] [-p|-platform Unx|NTx] [-v]bperror [-all|-problems|-media|{-backstat [-by_statcode]}][-L|-l|-U] [-columns ncols][-d mm/dd/yyyy HH:MM:SS|-hoursago hours] [-e mm/dd/yyyy HH:MM:SS] [-client client_name] [-server server_name] [-jobid job_id][-M master_server,...] [-v]bperror [-s {severity[+]}|severity ...] [-t type ...][-L|-l|-U] [-columns ncols][-d mm/dd/yyyy HH:MM:SS|-hoursago hours] [-e mm/dd/yyyy HH:MM:SS] [-client client_name] [-server server_name] [-jobid job_id][-M master_server,...] [-v]Valid values for ncols:40 or moreValid values for severity:ALL, DEBUG, INFO, WARNING, ERROR, CRITICALValid values for type:ALL, ARCHIVE, BACKSTAT, BACKUP, GENERAL,MEDIADEV, RETRIEVE, SECURITYBpexpdate改变备份介质⽬录的过期⽇期C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpexpdate.exe bpexpdate: -m -d [-host ] [-force][-M ]bpexpdate: -deassignempty [-m ] [-host ] [-force][-M ]bpexpdate: -backupid -d [-client ] [-copy ] [-force][-M ]bpexpdate: -recalculate [-backupid ] [-copy ][-d ] [-client ][-policy ] [-ret ] [-sched ][-M ]legal values for sched: 0=full,1=differential incr,2=user,3=arch4=cumulative incrbpimport引⼊备份C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpimport -helpbpimport: -create_db_info -id [-server ] [-L [-en]] [-passwd] [-local]bpimport: [-l] [-p] [-pb] [-PD] [-PM] [-v] [-local] [-client ][-M master_server][-Bidfile ][-backup_copy ][-st ] [-sl ] [-L [-en]][-policy ] [-s ] [-e ][-pt ] [-hoursago ] [-cn ][-backupid ] [-id ]FULL, INCR, CINC, UBAK, UARC, NOT_ARCHIVEValid values for policy_type:Standard Apollo-wbak NetWare MS-Windows-NTOS/2 AFS整理的⼀些nbu命令及⽤法(5.0)(⼋)Bplabel往磁带介质上写标签C:\Program Files\VERITAS\NetBackup\bin\admincmd>bplabel External media ID and density must be specifiedUsage: bplabel -m media_ID -d density [-o] [-p volume_pool_name] [-n drive_name | -u device_number]bplist列出备份及归档的⽂件C:\Program Files\VERITAS\NetBackup\bin\admincmd>bplist -help USAGE: bplist [-A | -B] [-C client] [-S master_server][-t policy_type] [-k policy] [-keyword "keyword phrase"][-F] [-R [n]] [-b | -c | -u] [-l] [-r] [-T] [-I] [-PI][-unix_files | -nt_files] [-Listseconds] [-flops file_options][-s mm/dd/yyyy [HH:MM:SS]] [-e mm/dd/yyyy [HH:MM:SS]] [filename] bppldelete删除策略C:\Program Files\VERITAS\NetBackup\bin\admincmd>bppldelete bppldelete: [-verbose] [-M ]bppllist列出备份策略C:\Program Files\VERITAS\NetBackup\bin\admincmd>bppllist -help bppllist: [] [-L|-l|-U] [-verbose] [-allpolicies][-M ][-hwos][-byclient ] [-keyword "keyword phrase"]bpmediafreeze,unfreeze,suspend,unsuspendC:\Program Files\VERITAS\NetBackup\bin\admincmd>bpmedia bpmedia: operation not specified-freeze|-unfreeze|-suspend|-unsuspend -m [-h ] [-v] -movedb -m -newserver [-oldserver ] [-v]bpmedialist显⽰介质状态C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpmedialist -help USAGE: bpmedialist [-mlist] [-U|-l|-L] [-m media_id] [-rl ret_level][-d density] [-p pool_name][-h host_name | -M master_server...] [-v]bpmedialist -summary [-U|-L] [-brief] [-p pool_name][-h host_name | -M master_server...] [-v]bpmedialist -mcontents -m media_id [-U|-l|-L] [-d density][-h host_name | -M master_server...] [-v]bpmedialist -count -rt robot_type -rn robot_number [-d density][-U|-l] [-h host_name | -M master_server...] [-v]管理及显⽰策略信息C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpplinfoUSAGE: bpplinfo policy_name -L|-l|-U [-v] [-M master_server,...]bpplinfo policy_name -set|-modify [-v] [-M master_server,...][-active | -inactive] [-pt policy_type][-ut] [-ef effective_time][-residence label][-pool label][-priority priority][-rfile flag] [-blkincr flag][-multiple_streams flag] [-keyword "keyword phrase"][-encrypt flag][-collect_tir_info value] [-compress flag][-crossmp flag] [-disaster flag] [-follownfs flag][-policyjobs max_jobs(0=unlimited)]Valid values for policy_type:Standard Apollo-wbak NetWare MS-Windows-NTOS/2 AFS整理的⼀些nbu命令及⽤法(5.0)(九)Bprecover恢复相关的nbu⽬录-l -dpath [-v]-l -opath [-v]-r [ALL|image_number] -m media_ID -d density [-stdout] [-dhost ] [-v]-r [ALL|image_number] -tpath [-stdout] [-dhost][-v]-r [ALL|image_number] -dpath [-stdout] [-dhost] [-v]-r [ALL|image_number] -opath [-stdout] [-dhost][-v]还原⽂件C:\Program Files\VERITAS\NetBackup\bin\admincmd>bprestore USAGE: bprestore [-A | -B] [-K] [-l | -H | -y] [-r] [-T] [-L progress_log [-en]] [-R rename_file] [-C client][-D client] [-S master_server] [-t policy_type][-p policy] [-k "keyword phrase"] [-cm] [-md][-td temp_dir] [-BR be_redirection_path] [-F file_options][-s mm/dd/yyyy [HH:MM:SS]] [-e mm/dd/yyyy [HH:MM:SS]] [-w [hh:mm:ss]] -f listfile | filenamesEXIT STATUS 144: invalid command usageBpstuadd创建nbu storage unit group or a storage unitC:\Program Files\VERITAS\NetBackup\bin\admincmd>bpstuadd USAGE: bpstuadd -group group_name [stunit name] orUSAGE: bpstuadd -label storage_unit_label-path path_nameor-density density_type [-rt robot_type -rn robot_number] [-host host_name][-cj max_jobs][-odo on_demand_only][-mfs max_fragment_size][-maxmpx mpx_factor][-nh NDMP_attach_host][-M master_server,...]Valid values for mpx_factor: 1..32max_fragment_size in MB:For removable media, 0 if unlimited or greater than 50 For disk, between 20 and 2000 (2GB)Bpstudel删除storage unitC:\Program Files\VERITAS\NetBackup\bin\admincmd>bpstudel bpstudel: -label [-verbose][-M ]orbpstudel: -group[-M ]整理的⼀些nbu命令及⽤法(5.0)(⼗)bpstulist列出storage unitC:\Program Files\VERITAS\NetBackup\bin\admincmd>bpstulist -help bpstulist: unrecognized option -help bpstulist: -label [-L|-l|-U] [-g|-go] [-verbose][-M ]bpstulist: -group [-verbose][-M ]bpverify验证创建的备份C:\Program Files\VERITAS\NetBackup\bin\admincmd>bpverify -help bpverify: [-l] [-p] [-pb] [-v] [-local] [-client ] [-st ] [-sl ] [-L [-en]][-policy ] [-s mm/dd/yyyy HH:MM:SS] [-e mm/dd/yyyy HH:MM:SS] [-M master_server][-Bidfile ][-backup_copy ][-pt ] [-hoursago ][[-cn ] | [-primary]][-backupid ] [-id ]Valid values for sched_type:FULL, INCR, CINC, UBAK, UARC, NOT_ARCHIVEValid values for policy_type:Standard Apollo-wbak NetWare MS-Windows-NT提供密码验证的服务C:\Program Files\VERITAS\NetBackup\bin\admincmd>vopied -helpUsage: vopied-standalone-debug-portnum number-max_time seconds-log_dir path-severity maskbpclntcmdC:\Program Files\VERITAS\NetBackup\bin>bpclntcmd.exe /?bpclntcmd.exe: unrecognized option /?bpclntcmd.exe: -svbpclntcmd.exe: -pnbpclntcmd.exe: -selfbpclntcmd.exe: -hnbpclntcmd.exe: -serverbpclntcmd.exe: -ipbpclntcmd.exe: -gethostnamebpclntcmd.exe: -is_local_hostC:\Program Files\VERITAS\NetBackup\bin>bpclntcmd.exe -gethostnamewind-bhvit8vzqwC:\Program Files\VERITAS\NetBackup\bin>bpclntcmd.exe -sv5.0GAC:\Program Files\VERITAS\NetBackup\bin>bpclntcmd.exe -pnexpecting response from server wind-bhvit8vzqwwind-bhvit8vzqw wind-bhvit8vzqw 10.168.123.9 2218C:\Program Files\VERITAS\NetBackup\bin>bpclntcmd.exe -selfgethostname() returned: wind-bhvit8vzqwhost wind-bhvit8vzqw: /doc/0ef05915866fb84ae45c8d8d.html at 10.168.123.9 (0x97ba80a) checkhname: aliases:。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems September 28 - October 2, 2004, Sendai, Japan
Back Handspring Robot – Target Dynamics-Based Control
Sang-Ho Hyon Naoto Yokoyama Takashi Emura
Dept. of Bioengineering & Robotics Dept. of Bioengineering. & Robotics Dept. of Bioengineering & Robotics Tohoku University Tohoku University Tohoku University Sendai 980-8579, Japan Sendai 980-8579, Japan Sendai 980-8579, Japan Email: sangho@ Email: emura@emura.mech.tohoku.ac.jp
0-7803-8463-6/04/$20.00 ©2004 IEEE
248
TABLE I R OBOT PARAMETERS
Link0
Mass [kg] Link length [m] *Position of C.M. [m] 0.135 0.09 0.074 260
Link1
0.626 0.13 0.031 1200Joint 2源自ψ1Joint 1 h
critical to gymnastic motion associated with high speed rotation. It can also be used for balancing task. Our control strategy is to impose some target dynamics that describe gymnastic motions and realize them by model matching controller. We expect the use of global physical quantities such as center of mass, or angular momentum allow even simple target dynamics to generate complex gymnastic motions of multi-body system. II. ROBOT MODEL A. Mechanical model development Figure 1 shows a newly developed planar gymnastic robot. The robot has four links, serially connected by three joints. Each joint is actuated by geared servomotor (Maxon 20 W) through a timing belt. The total reduction ratio is 10.8. Most of the mechanical parts are machined out of aluminum frame. Overall height of the robot is 0.46 m and the total weight is about 1.74 kg. Physical parameters are summarized in Table 1. The controller is implemented and runs in real time on a Linux PC (PentiumIII 500MHz). The control period is 1.3 ms. Servomotors are driven by DC servo-drivers with the torque control mode. Commanded signal to the servodriver is fed by DA converter and joint angles are obtained by the encoders mounted to servomotors via digital I/O. All the interface is provided by a ISA-bus interface board. The robot does not carry the computer and servo-drivers because it is at prototype stage. Also, gyro is not installed because the motion is too fast. To detect the ground contact of the robot, touch switches are attached to the floor. B. Mathematical model representation Figure 2 shows the definition of mathematical model. To derive equations of motion for stance phase and flight phase at once, generalized coordinates includes absolute position. That is, the generalized coordinates are defined as the position of the toe, (x 0 , z0 ), and the angles, ψ = (ψ0 , ψ1 , ψ2 , ψ3 ), where ψ0 is the attitude of the link 0 (foot), and ψ 1 , ψ2 and ψ3 are the angles of joint 1 (ankle), joint 2 (knee) and joint 3 (hip) respectively. We assume the foot does not bounce back, nor slip the ground (inelastic impulsive impact) This assumption is required to introduce impulse equation. As shown in Fig. 3, a back handspring motion is composed of successive phase transitions; Stance 1 (standing on the feet) → Flight 1 → Touchdown 2 → Stance 2 (standing on the head) → Touchdown 1 → · · ·. It is similar to the phase transition of running motion. Motions of the touchdown phases are
I. I NTRODUCTION Realization of complex and fast motion task is important and attractive area of research. It enhances the mobility of humanoid robots and also contributes to good understanding of motor control of human. Gymnastic motion is included in such interesting motion tasks. This paper reports on a gymnastic robot, which can perform jumping, somersault, and back handspring (Fig. 1). There are some related studies on gymnastic robots. Raibert and his co-workers succeeded in jumping and somersault control of a 3D biped robot [1] [2]. Since the robot has telescopic leg, jumping or flipping is rather easy to realize by some intuitive controllers. However, it becomes impossible to derive such a intuitive controllers when the robot has articulated multi-link structure and highly nonlinear dynamics. On the other hand, Arikawa succeeded in jumping control of five-link robot by solving numerically two-point boundary problem to obtain joint trajectories and applying high-gain local feedback control to each joint [3]. When human performs gymnastic motion, learning and its feed-forward control may plays dominant role. However, as long as the learning is based on sensory information, feedback controllers can give important insights into the learning mechanism, especially when the motion is generated only by feedback controller. Moreover, feedback controllers have their own advantages over feed-forward ones; a robustness against sudden change of environment is the one of them. In this context, there are some successful examples of high bar robot by using real-time feedback controllers. Spong and Yamakita realized swing up and balancing control [4][5]. Nakanishi succeeded in brachiating control of a two-link robot [6]. Recently Yamakita
相关文档
最新文档