midas简支梁结构的建模实例 2

合集下载

MIDAS结构现浇支架案例建模过程

MIDAS结构现浇支架案例建模过程

MIDAS结构技术之预应力钢筋混凝土箱梁现浇支架例题一、项目简介某工程32m现浇简支梁全长32.6m,计算跨度31.1m,截面中心梁高3.05m,梁顶宽为12m,梁底宽5.5m,墩高9.85m,每片梁重836.8t。

箱梁正视图、断面图分别如图1.1、1.2所示。

图1.1 简支箱梁正视图图1.2 简支箱梁断面图现浇支架采用钢管柱+分配梁+贝雷梁结构体系,采用φ530x10钢管做受力支柱,单层贝雷片做受力纵梁。

为便于卸落支架,在钢管顶部设置一道砂筒(砂筒高为650mm),砂箱上采用2I45a作传力分配梁,贝雷片直接放置在2I45a分配梁上,贝雷片顶部I12.6分配梁,设置位置随侧模竖肋桁片,底模及侧模采用加工好的定型钢模,内模采用竹胶板和小方木构成的木模。

支架布置如图1.3、1.4所示。

对于本工程32.6m简支箱梁施工,由于地基条件较差、墩身高度受限,拟采用单层贝雷梁+分配梁+钢管柱结构支撑体系,中部支承采用斜柱。

图1.3 简支箱梁支架布置正视图图1.4 简支箱梁支架布置断面图设计参数如表1.1、1.2所示,荷载信息如表1.3所示。

表1.1 材料设计参数表表1.2 钢材设计强度值(N/mm2)表1.3 单片贝雷梁荷载信息统计表说明:1、考虑最不利荷载分担,翼缘板、腹板及中箱室区域的单片贝雷梁分别承担上部荷载的1/2、1/2、1/3,即计算单片贝雷梁荷载时,n取值分别为2、2、3;二、操作流程1、材料属性定义1.运行midas CIVIL;2.点击新建,打开新建项目;3.点击工具-单位系,对话框如右图2.1所示,单位系统选N、mm,其余保持默认值;4.点击确认;图2.15.主菜单选择特性-材料特性值,点击添加,弹出材料数据对话框如图2.2所示,材料号:1 名称:16Mn设计类型:用户定义规范:无弹性模量:2.06e+005(N/mm^2)泊松比:0.3线膨胀系数:1.2e-005(1/[C])容重:9.83e-005(N/mm^3)(适用)注意:此处对16Mn钢材的容重进行调整,是基于成片贝雷梁模型自重与实际自重不一致的原因,调整容重后,成片贝雷梁模型自重与实际自重一致。

midas简支梁步骤

midas简支梁步骤

midas简⽀梁步骤简⽀梁T梁桥建模与分析桥梁的基本数据:桥梁形式:单跨简⽀梁桥桥梁等级:I级桥梁全长:30m桥梁宽度:13.5m设计车道:3车道分析与设计步骤:1.定义材料和截⾯特性材料截⾯定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建⽴结构模型建⽴结构模型修改单元依存材料3.输⼊荷载恒荷载(⾃重和⼆期恒载)预应⼒荷载钢束特性值钢束布置形状钢束预应⼒荷载4.定义施⼯阶段5.输⼊移动荷载数据选择规范定义车道定义车辆移动荷载⼯况6.运⾏结构分析7.查看分析结果查看设计结果使⽤材料以及容许应⼒> 混凝⼟采⽤JTG04(RC)规范的C50混凝⼟>普通钢筋普通钢筋采⽤HRB335(预应⼒混凝⼟结构⽤普通钢筋中箍筋、主筋和辅筋均采⽤带肋钢筋既HRB系列) >预应⼒钢束采⽤JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应⼒钢筋抗拉强度标准值(fpk):1860N/mm^2预应⼒钢筋与管道壁的摩擦系数:0.3管道每⽶局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉⼒:抗拉强度标准值的75%>徐变和收缩条件⽔泥种类系数(Bsc): 5 (5代表普通硅酸盐⽔泥)28天龄期混凝⼟⽴⽅体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作⽤时混凝⼟的材龄:=t5天o混凝⼟与⼤⽓接触时的材龄:=t3天s相对湿度: %RH=70⼤⽓或养护温度: C=T20°构件理论厚度:程序计算适⽤规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝⼟收缩变形率: 程序计算荷载静⼒荷载>⾃重由程序内部⾃动计算>⼆期恒载桥⾯铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥⾯铺装层:厚度100mm的钢筋混凝⼟和80mm的沥青混凝⼟,钢筋混凝⼟的重⼒密度为25kN/m3, 沥青混凝⼟的重⼒密度为23kN/m3。

迈达斯Midas_civil_梁格法建模实例

迈达斯Midas_civil_梁格法建模实例
徐变系数: 程序计算
混凝土收缩变形率: 程序计算
荷载
静力荷载
>自重
由程序内部自动计算
>二期恒载
桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等
具体考虑:
桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。每片T梁宽2.5m,所以铺装层的单位长度质量为:
> 混凝土
采用JTG04(RC)规范的C50混凝土
>普通钢筋
普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)
>预应力钢束
采用JTG04(S)规范,在数据库中选Strand1860
钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)
钢束类型为:后张拉
图7. 跨中等截面
模型/材料和截面特性/ 截面
数据库/用户> 截面号(3); 名称(端部变截面右)
截面类型>变截面>PSC-工形
尺寸
对称:(开)
拐点: JL1(开)
尺寸I
S1-自动(开),S2-自动(开),S3-自动(开),T-自动(开)
HL1:0.20;HL2:0.06 ;HL2-1: 0;HL3:1.28;HL4:0.17;HL5:0.29
(0.08×25+0.06×23)×2.5=8.45kN/m2.
护墙、栏杆和灯杆荷载:以3.55kN/m2计。
二期恒载=桥面铺装+护墙、栏杆和灯杆荷载=8.45+3.55=12kN/m2。
>预应力荷载
分成正弯矩钢束和负弯矩钢束
典型几束钢束的具体数据:

midas简支梁结构的建模实例

midas简支梁结构的建模实例

.4ຫໍສະໝຸດ 扩展• 再施加满跨均布荷载10kN/m。 • 通过定义荷载工况:均布荷载,然后施加
梁单元荷载,进行计算。
.
5
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
简支梁结构的建模实例
结构特点
P=100kN
混凝土简支梁,C40混凝土,L=10m 截面为1.0X1.0m
.
1
建模步骤
• 1)启动程序,进入文件菜单,点击新项目
• 2)将窗口下方的单位小窗口tonf改为kN
• 3)进行模型菜单的材料和截面特性,点击材料, 添加,混凝土,数据中的C40,确认。
• 4)同一菜单下,点击截面,添加,长方形截面, 输入名称梁、点击用户,输入H、B。
• 5)在模型菜单下,点击节点,建立,在坐标中, 输入0,0,0,在复制中输入,次数10次,距离, 1,0,0,表示以1m为间距,重复10次,生成11各 节点。然后点击适用。关闭。
.
2
建模步骤
• 6)在模型菜单下,点击单元,建立,注意看单元 类型、材料号、截面号等信息,鼠标点在节点连 接框中,然后在图形窗口中鼠标依次点击相邻的 节点,即可看见生成单元。全部单元生成完毕后, 关闭单元菜单。
• 9)在荷载菜单下,点击结点荷载,注意查看荷载 工况名称为刚才定义的集中力,然后选择模型中 间的6号节点、在Fz框中填写-100kN,然后点击 适用,后关闭。
• 至此,模型,边界,荷载均定义了,可以求解了。 • 10)点击分析菜单下的运行分析,运行无错误后,
进入结果菜单,对结果的位移,内力,反力等项 目进行查看。 • 按理论,跨中弯矩为100/40=25kN/m
• 7)在模型菜单下,点击边界条件下的一般支撑, 然后选择模型最左端的1号节点,在dx,dy,dz和 Rx约束对应的小框中点击打钩,然后适用,再选 择模型最右端的11号节点,同样在dy,dz对应窗口 中打钩。然后适用,然后关闭。

midas截面几何性质计算2

midas截面几何性质计算2

看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。

总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的):1、预制梁(板梁、T梁、箱梁)这一类也可分为简支梁和简支转连续2、现浇梁(主要是箱梁)首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧)在计算之前,请大家先看一下截面这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!!支点采用计算方法为为偏压法(刚性横梁法)mi=P/n±P×e×ai/(∑ai x ai)跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β)mi=P/n±P×e×ai×β/(∑ai x ai)β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii)其中:∑It---全截面抗扭惯距Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后L---计算跨径G---剪切模量G=0.4E 旧规范为0.43EP---外荷载之合力e---P对桥轴线的偏心距ai--主梁I至桥轴线的距离在计算β值的时候,用到了上次课程/thread-54712-1-1.html我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯,或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的:简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。

①矩形部分(不计中肋):计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2)其中:t,t1,t2为各板厚度h,b为板沿中心线长度h为上下板中心线距离It1= 4×((8.096+7.281)/2)^2×1.34^2/(2×1.401/0.603+8.097/0.22+7.281/0.2)=5.454 m4②悬臂部分计算公式: It2=∑Cibiti3其中:ti,bi为单个矩形截面宽度、厚度Ci为矩形截面抗扭刚度系数,按下式计算:Ci=1/3×(1-0.63×ti/bi + 0.052×(ti/bi)^5)=1/3×(1-0.63×0.26/2.2+0.052×(0.26/2.2)^5)=0.309It2=2×0.309×2.2×0.26^3=0.0239 m4③截面总的抗扭惯距It= It1+ It2=5.454+0.0239=5.4779 m4大家可以用midas计算对比一下看看简化计算和实际能差多少??先计算一下全截面的抗弯和中性轴,下面拆分主梁需要用的到采用<<桥梁博士>>V2.9版中的截面设计模块计算全截面抗弯惯距,输出结果如下:<<桥梁博士>>---截面设计系统输出文档文件: D: \27+34+27.sds文档描述: 桥梁博士截面设计调试任务标识: 组合截面几何特征任务类型: 截面几何特征计算------------------------------------------------------------截面高度: 1.55 m------------------------------------------------------------计算结果:基准材料: JTJ023-85: 50号混凝土基准弹性模量: 3.5e+04 MPa换算面积: 7.37 m2换算惯矩: 2.24 m4中性轴高度: 0.913 m沿截面高度方向5 点换算静矩(自上而下):主截面:点号: 高度(m): 静矩(m××3):1 1.55 0.02 1.16 1.773 0.775 1.834 0.388 1.585 0.0 0.0------------------------------------------------------------计算成功完成结果:I全= 2.24 m4 中性轴高度H=0.913m下面来讲一下主梁拆分的原则:将截面划分为τ梁和I梁,保持将两截面中性轴与全截面中性轴位置一致。

迈达斯midascivil 梁格法建模实例

迈达斯midascivil 梁格法建模实例

北京迈达斯技术有限公司目录概要 (2)设置操作环境........................................................................................................... 错误!未定义书签。

定义材料和截面....................................................................................................... 错误!未定义书签。

建立结构模型........................................................................................................... 错误!未定义书签。

PSC截面钢筋输入 ................................................................................................... 错误!未定义书签。

输入荷载 .................................................................................................................. 错误!未定义书签。

定义施工阶段. (59)输入移动荷载数据................................................................................................... 错误!未定义书签。

输入支座沉降........................................................................................................... 错误!未定义书签。

midas-civil简支梁模型计算

midas-civil简支梁模型计算

Midas-Civil简支梁模型计算Midas-Civil是一个基于计算机的桥梁设计软件,具有多种桥梁设计和分析工具。

在本文中,我们将讨论如何使用Midas-Civil计算简支梁模型。

简支梁模型简支梁是一种常见的梁型结构,它在两端被限制为旋转的模型。

可以用于建筑物、桥梁等结构中。

在设计过程中,需要确定梁的材料、截面形状、荷载等参数。

Midas-Civil简介Midas-Civil是一种现代化的、通用的结构分析和设计软件,可用于桥梁、高速公路、地铁、隧道和其他结构的设计和分析。

它提供了强大的计算功能和交互式的图形用户界面,可以轻松地进行设计,建模,分析和结果展示。

建立简支梁模型首先,我们需要打开Midas-Civil软件并建立一个新模型。

在导航栏中选择“File”>“New”>“Bridge”,并选择“Simple Span”模型。

然后在“Geometry”选项卡中选择简支梁,并输入梁的长度、高度、宽度和荷载等参数。

在输入完参数之后,点击“Run Analysis”进行模拟计算。

此时,软件会计算出简支梁的荷载、应变和变形等结果。

这些结果可以通过图表和报告进行呈现和分析。

结果分析Midas-Civil提供了多种图表和报告,可以用于对结果进行分析。

荷载分析荷载分析图可以显示各个截面在荷载作用下的应力分布。

它可以帮助工程师确定是否需要更改梁的材料或截面形状。

变形分析变形分析图可以显示梁各个部位的变形情况。

它可以帮助工程师确定梁的强度和稳定性,并优化设计。

应力云图应力云图可以显示荷载和内力在梁结构中的传递和分布情况。

它可以帮助工程师确定梁的强度和稳定性,并指导材料选择和截面设计。

本文简要介绍了如何使用Midas-Civil进行简支梁模型的计算。

Midas-Civil是一个功能强大的结构分析和设计软件,可以轻松地进行设计,建模,分析和结果展示。

通过对计算结果的分析,工程师可以确定梁的强度和稳定性,并进行优化设计。

midas_civil简支梁模型计算

midas_civil简支梁模型计算

第一讲简支梁模型的计算1.1工程概况20米跨径的简支梁,横截面如图1-1所示。

图1-1横截面1.2迈达斯建模计算的一般步骤第一步:建立结点前第二步:建立单元处第三步:定义材料和截面理第四步:定义边界条件第五步:定义荷载工况第六步:输入荷载第七步:分析计算后处理第八步:查看结果1.3具体建模步骤第01步:新建一个文件夹,命名为Model01,用于存储工程文件。

这里,在桌面的“迈达斯”文件夹下新建了它,目录为C:\Documentsand 桌面迈达斯模型01。

第02步:启动MidasCivil.exe,程序界面如图1-2所示。

图1-2程序界面第03步:选择菜单“文件(F)->新项目(N)”新建一个工程,如图1-3所示。

图1-3新建工程第04步:选择菜单“文件(F)->保存(S)”,选择目录C:\Documentsand桌面迈达斯模型01,输入工程名“简支梁.mcb”。

如图1-4所示。

图1-4保存工程第05步:打开工程目录C:\Documentsand 桌面迈达斯模型01,新建一个excel文件,命名为“结点坐标”。

在excel里面输入结点的x,y,z坐标值。

如图1-5所示。

图1-5结点数据第06步:选择树形菜单表格按钮“表格->结构表格->节点”,将excel里面的数据拷贝到节点表格,并“ctrl+s”保存。

如图1-6所示。

图1-6建立节点第07步:打开工程目录桌面迈达斯模型01,再新建一个excel文件,命名为“单元”。

在excel里面输入单元结点号。

如图1-6所示。

图1-6单元节点第08步:选择树形菜单表格按钮“表格->结构表格->单元”,将excel里面的数据拷贝到单元表格的“节点1、节点2”列,并“ctrl+s”保存。

如图1-7所示。

图1-7建立单元第09步:单击树形菜单的菜单按钮,选择“结构分析->模型->材料和截面特性->材料”,弹出材料和截面对话框,如图1-8所示。

midas_civil简支梁模型计算【范本模板】

midas_civil简支梁模型计算【范本模板】

第一讲 简支梁模型的计算1。

1 工程概况20米跨径的简支梁,横截面如图 1—1 所示。

1.2 迈达斯建模计算的一般步骤1.3 第 01 步:新建一个文件夹,命名为 Model01,用于存储工程文件.这里,在桌面的“迈达斯”文件夹下新建了它,目录为 C:\Documents and Settings\Administrator\桌面\迈达斯\模型 01。

第 02 步:启动 Midas Civil.exe ,程序界面如图 1-2 所示.图 1-1 横截面 理处 前 第五步:定义荷载工况第六步:输入荷载 第四步:定义边界条件第三步:定义材料和截面第二步:建立单元第一步:建立结点图1—2 程序界面第03 步:选择菜单“文件(F)->新项目(N)"新建一个工程,如图1—3 所示。

图1-3 新建工程第04 步:选择菜单“文件(F)—〉保存(S)”,选择目录C:\Documents andSettings\Administrator\桌面\迈达斯\模型01,输入工程名“简支梁.mcb”。

如图1—4 所示。

图1—4 保存工程第05 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,新建一个excel 文件,命名为“结点坐标”。

在excel 里面输入结点的x,y,z 坐标值。

如图1-5 所示。

图1-5 结点数据第06 步:选择树形菜单表格按钮“表格->结构表格—>节点”,将excel 里面的数据拷贝到节点表格,并“ctrl+s”保存.如图1-6 所示。

图1-6 建立节点第07 步:打开工程目录C:\Documents and Settings\Administrator\桌面\迈达斯\模型01,再新建一个excel 文件,命名为“单元”.在excel 里面输入单元结点号。

如图1-6 所示。

图1-6 单元节点第08 步:选择树形菜单表格按钮“表格-〉结构表格->单元”,将excel 里面的数据拷贝到单元表格的“节点1、节点2"列,并“ctrl+s"保存。

midas_悬臂梁和简支梁模型的建立

midas_悬臂梁和简支梁模型的建立

北京迈达斯技术有限公司目录建立模型○1设定操作环境 (2)定义材料 (6)输入节点和单元 (7)输入边界条件 (12)输入荷载 (14)运行结构分析 (16)查看反力 (17)查看变形和位移 (17)查看内力 (18)查看应力 (21)梁单元细部分析(Beam Detail Analysis) (23)表格查看结果 (24)建立模型○2设定操作环境 (29)建立悬臂梁 (30)输入边界条件 (31)输入荷载 (31)建立模型○3建模 (33)输入边界条件 (34)输入荷载 (35)建立模型○4建立两端固定梁 (37)输入边界条件 (38)输入荷载 (40)建立模型○5○6○7○8简要本课程针对初次使用MIDAS/Civil 的技术人员,通过悬臂梁、简支梁等简单的例题,介绍了MIDAS/Civil 的基本使用方法和一些基本功能。

包含的主要内容如下。

1. MIDAS/Civil 的构成及运行模式2. 视图(View Point)和选择(Select)功能3. 关于进行结构分析和查看结果的一些基本知识(GCS, UCS, ECS 等)4. 建模和分析步骤(输入材料和截面特性、建模、输入边界条件、输入荷载、结构分析、查看结果)使用的模型如图1所示包含8种类型,为了了解各种功能分别使用不同的方法输入。

图1. 分析模型○1 ○2 ○3 ○4 ○5 ○6 ○7 ○8 6@2 = 12 m截面 : HM 440×300×11/18材料 : Grade3 悬臂梁、两端固定梁 简支梁建立模型○1设定操作环境首先建立新项目( 新项目),以‘Cantilever_Simple.mcb ’ 为名保存( 保存)。

文件 / 新项目文件 / 保存( Cantilever_Simple )单位体系是使用tonf(力), m(长度)。

1. 在新项目选择工具>单位体系2. 长度 选择‘m ’, 力(Mass) 选择‘tonf(ton)’3. 点击工具 / 单位体系长度>m ; 力>tonf本例题将主要使用图标菜单。

迈达斯简支梁桥计算模型以及支座模拟

迈达斯简支梁桥计算模型以及支座模拟

简支梁桥计算模型以及支座模拟简支梁计算示意图在现实状况中简支梁桥两端一般会采用支座或者直接放在墩柱台上,两端支承约束作用是一样的。

最理想做法是采用弹性连接模拟支座各个方向的约束刚度作用,但是计算模型边界条件为什么可以简化成铰支座约束自由度?首先回到结构力学中关于简支梁的定义,两端支座仅提供竖向约束,而不提供转角约束的支承结构。

简支梁为梁桥结构力学简化模型,属于静定结构,两端受铰支座约束,主要承受正弯矩作用,体系温变、混凝土收缩徐变、张拉预应力、支座沉降都不会在梁中产生附加内力。

有人说为了保证两端约束一致,考虑到支座主要是竖向支承作用,两端都采用可动铰结,只关注竖向挠度问题,那这样结构就没有水平约束,成为几何可变体系,不再是稳定结构。

另一方面如果两端都为固定铰支座,那么水平方向的约束就多了一个,变成超静定结构,结构在环境影响(体系温变、混凝土收缩徐变,预应力张拉)或变形影响(如支座沉降、组成材料尺寸偏差)下,结构内部会产生应力。

对于两端都是橡胶支座的梁桥在计算时可简化为一端固定铰结,另一端可动铰结的简支梁模型,三个约束刚好是无多余约束的稳定结构,按照简支梁简化模型进行结构受力计算,这样方便力学分析,虽然两端约束有所差异,但分析的结果与实际相符。

简支梁桥模型边界条件模拟一、采用自由度模拟边界条件一端固定铰接(约束Dx、Dy、Dz、Rx、Rz,释放Ry),一端可动铰接(约束Dy、Dz、Rx、Rz,释放Dx、Ry)。

二、采用弹性连接模拟边界条件首先“在支座底端建立节点,并将所有的支座底节点按固结约束”,这是一种模拟实际情况的建模方法。

在墩顶处结构是全约束的(D-ALL,R-all),即墩顶支座底在各个方向没有位移和转角。

然后“复制支座底节点到支座高度位置生成支座顶部节点,并将支座底节点与复制生成的顶部节点用“弹性连接”中的“一般类型”进行连接,并按实际支座刚度定义一般弹性连接的刚度”建立支座效应,三个方向的刚度值则是由实际工程中支座的类型和尺寸来确定。

【Midas】迈达斯CIVIL梁格法实例

【Midas】迈达斯CIVIL梁格法实例

旗开得胜概要 (2)设置操作环境 (6)定义材料和截面 (7)建立结构模型 (11)PSC截面钢筋输入 (13)输入荷载 (19)定义施工阶段 (33)输入移动荷载数据 (39)输入支座沉降 (43)运行结构分析 (45)查看分析结果 (46)PSC设计 (64)11概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC 设计的方法。

本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m 。

图1. 简支变连续分析模型1桥梁的基本数据为了说明采用梁格法分析一般梁桥结构的分析的步骤,本例题采用了比较简单的分析模型——预应力T梁,可能与实际桥梁设计的内容有所不同。

本例题的基本参数如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:332=96m桥梁宽度:15m设计车道:3车道图2. T型梁跨中截面图图3. T梁端部截面图1旗开得胜分析与设计步骤预应力混凝土梁桥的分析与设计步骤如下。

1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料特性3.输入PSC截面钢筋4.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载温度荷载系统温度节点温度单元温度温度梯度梁截面温度5.定义施工阶段6.输入移动荷载数据1。

【Midas】迈达斯CIVIL梁格法实例

【Midas】迈达斯CIVIL梁格法实例

旗开得胜概要 (2)设置操作环境 (6)定义材料和截面 (7)建立结构模型 (11)PSC截面钢筋输入 (13)输入荷载 (19)定义施工阶段 (33)输入移动荷载数据 (39)输入支座沉降 (43)运行结构分析 (45)查看分析结果 (46)PSC设计 (64)11概要梁格法是目前桥梁结构分析中应用的比较多的在本例题中将介绍采用梁格法建立一般梁桥结构的分析模型的方法、施工阶段分析的步骤、横向刚度的设定以及查看结果的方法和PSC 设计的方法。

本例题中的桥梁模型如图1所示为一三跨的连续梁桥,每跨均为32m 。

图1. 简支变连续分析模型1桥梁的基本数据为了说明采用梁格法分析一般梁桥结构的分析的步骤,本例题采用了比较简单的分析模型——预应力T梁,可能与实际桥梁设计的内容有所不同。

本例题的基本参数如下:桥梁形式:三跨连续梁桥桥梁等级:I级桥梁全长:332=96m桥梁宽度:15m设计车道:3车道图2. T型梁跨中截面图图3. T梁端部截面图1旗开得胜分析与设计步骤预应力混凝土梁桥的分析与设计步骤如下。

1.定义材料和截面特性材料截面定义时间依存性材料(收缩和徐变)时间依存性材料连接2.建立结构模型建立结构模型修改单元依存材料特性3.输入PSC截面钢筋4.输入荷载恒荷载(自重和二期恒载)预应力荷载钢束特性值钢束布置形状钢束预应力荷载温度荷载系统温度节点温度单元温度温度梯度梁截面温度5.定义施工阶段6.输入移动荷载数据1选择规范定义车道定义车辆移动荷载工况7.支座沉降定义支座沉降组定义支座沉降荷载工况8.运行结构分析9.查看分析结果10.PSC设计PSC设计参数确定PSC设计参数PSC设计材料PSC设计截面位置运行设计查看设计结果1使用材料以及容许应力> 混凝土采用JTG04(RC)规范的C50混凝土>普通钢筋普通钢筋采用HRB335(预应力混凝土结构用普通钢筋中箍筋、主筋和辅筋均采用带肋钢筋既HRB系列)>预应力钢束采用JTG04(S)规范,在数据库中选Strand1860钢束(φ15.2 mm)(规格分别有6束、8束、9束和10束四类)钢束类型为:后张拉钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.3管道每米局部偏差对摩擦的影响系数:0.0066(1/m)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%>徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2长期荷载作用时混凝土的材龄:=t5天o混凝土与大气接触时的材龄:=t3天s相对湿度: %RH=701旗开得胜1大气或养护温度: C °20=T 构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算荷载静力荷载>自重由程序内部自动计算>二期恒载桥面铺装、护墙荷载、栏杆荷载、灯杆荷载等具体考虑:桥面铺装层:厚度80mm的钢筋混凝土和60mm的沥青混凝土,钢筋混凝土的重力密度为25kN/m3, 沥青混凝土的重力密度为23kN/m3。

迈达斯 MIDAS 算例02 毕业设计第二阶段-悬臂梁桥分析与设计

迈达斯 MIDAS 算例02 毕业设计第二阶段-悬臂梁桥分析与设计

湖南大学土木工程学院2009年4月目录1.概要 (1)2. 设置操作环境 (4)3. 定义材料和截面 (5)4. 建立结构模型 (14)5. 非预应力钢筋输入 (29)6. 输入荷载 (30)7. 定义施工阶段 (42)8. 输入移动荷载数据 (48)9. 运行结构分析 (52)10. 查看分析结果 (52)11. PSC设计 (62)12. RC设计 (70)附录:关于温度荷载和支座沉降的模拟 (79)1. 概要本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。

墩为钢筋混凝土双柱桥墩,墩高15m。

(注:本例题并非实际工程,仅作为软件功能介绍的参考例题。

)在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。

通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、普通钢筋的输入方法、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法、PSC设计及RC设计数据的输入方法和查看设计结果的方法等。

图1. 分析模型桥梁概况及一般截面桥梁形式:三跨混凝土悬臂梁桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁,挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。

预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力截面形式如下图2. 跨中箱梁截面图3. 墩顶箱梁截面梁桥分析与设计的一般步骤1. 定义材料和截面2. 建立结构模型3. 输入非预应力钢筋4. 输入荷载①.恒荷载②.钢束特性和形状③.钢束预应力荷载5. 定义施工阶段6. 输入移动荷载数据①.选择移动荷载规范②.定义车道③.定义车辆④.移动荷载工况7. 运行结构分析8. 查看分析结果9. PSC设计(预应力混凝土梁)10. RC设计(普混梁和柱)PSC设计参数确定RC设计参数的确定运行设计运行RC梁设计/运行RC柱设计查看设计结果表格和图形查看设计结果表格和图形输出PSC设计计算书输出RC设计计算书使用的材料❑混凝土主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土❑钢材采用JTG04(S)规范,在数据库中选Strand1860荷载❑恒荷载自重,在程序中按自重输入,由程序自动计算❑预应力钢束(φ15.2 mm×31)截面面积: Au = 4340 mm2孔道直径: 130 mm钢筋松弛系数(开),选择JTG04和0.3(低松弛)超张拉(开)预应力钢筋抗拉强度标准值(fpk):1860N/mm^2预应力钢筋与管道壁的摩擦系数:0.25管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm)锚具变形、钢筋回缩和接缝压缩值:开始点:6mm结束点:6mm张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa❑徐变和收缩条件水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥)28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2t5天长期荷载作用时混凝土的材龄:=ot3天混凝土与大气接触时的材龄:=s相对湿度: %RH70=构件理论厚度:程序计算适用规范:中国规范(JTG D62-2004)徐变系数: 程序计算混凝土收缩变形率: 程序计算❑移动荷载适用规范:公路工程技术标准(JTG B01-2003)荷载种类:公路I级,车道荷载,即CH-CD2. 设置操作环境打开新文件(新项目),以 ‘混凝土悬臂梁’ 为名保存(保存)。

必看最经典梁格——midas空心板梁桥梁桥法工程实例

必看最经典梁格——midas空心板梁桥梁桥法工程实例

空心板梁桥工程实例1几何尺寸空心板梁几何尺寸见图4.1.1至图4.1.3。

图4.1.2 边板截面(cm)图4.1.3 中板截面(cm)2主要技术指标(1) 结构形式:装配式先张法预应力混凝土简支空心板梁(2) 计算跨径:16m(3) 斜交角度:0度(4) 汽车荷载:公路-Ⅱ级(5) 结构重要性系数:1.03 计算原则(1) 执行《公路桥涵设计通用规范》(JTG D60-2004)和《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)。

(2) 6厘米厚现浇C50混凝土不参与结构受力,仅作为恒载施加。

(3) 温度效应,均匀温升降均按20摄氏度考虑;温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)第4.3.10条的规定取值。

(4) 按A 类部分预应力混凝土构件设计。

(5) 边界条件:圆形板式橡胶支座约束用弹性支承进行模拟,弹簧系数SDx=SDy=1890 KN/m;SDz=9.212E+05KN/m;SRx=078E+09KN.m/rad; 4主要材料及配筋说明 (1) 空心板选用C50混凝土(2) 预应力钢绞线公称直径mm s2.15φ,1根钢绞线截面积2139mm A p =,抗拉强度标准值Mpa f pk 1860=,锚具变形总变形值为12mm。

横截面预应力筋和普通钢筋布置见图4.4.1和图4.4.2。

预应力筋有效长度见表4.4.1图4.4.1边板钢筋钢绞线布置图(cm) 图4.4.2 中板钢筋钢绞线布置图(cm) 图中N9筋(实心黑点)为普通钢筋,其余为钢绞线。

表4.4.1 16米空心板预应力筋有效长度表注:表中构造有效长度指施工设计图中预应力筋的有效长度。

计算有效长度指考虑预应力传递长度影响后结构分析采用的预应力筋有效长度;计算有效长度=构造有效长度-预应力传递长度。

5施工阶段说明空心板梁施工阶段共划分为5个,各阶段工作内容见表4.5.1表4.5.1 空心板梁施工阶段划分说明施工阶段 施工天数 工 作 内 容 说 明1 10 预制空心板梁并放张预应力筋2 60 预制场存梁60天3 15 安装空心板4 30 现浇防撞护墙和桥面铺装5 3650 考虑10年的收缩徐变影响6建模主要步骤与要点(1) 定义材料与截面定义材料可通过路径:【模型】/【截面和材料特性】/【材料】来实现,见图 4.6.1和图4.6.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

midas简支梁结构的建模实例 2
• 8)在荷载菜单下,点击静力荷载工况,名称中添 集中力,类型中添恒载、材料号、然后点击添加, 后关闭。
• 9)在荷载菜单下,点击结点荷载,注意查看荷载 工况名称为刚才定义的集中力,然后选择模型中 间的6号节点、在Fz框中填写-100kN,然后点击 适用,后关闭。
• 至此,模型,边界,荷载均定义了,可以求解了。 • 10)点击分析菜单下的运行分析,运行无错误后,
进入结果菜单,对结果的位移,内力,反力等项 目进行查看。 • 按理论,跨中弯矩为100/40=25kN/m
midas简支梁结构的建模实例 2
结构特点 P=1为1.0X1.0m
midas简支梁结构的建模实例 2
• 1)启动程序,进入文件菜单,点击新项目
• 2)将窗口下方的单位小窗口tonf改为kN
• 3)进行模型菜单的材料和截面特性,点击材料, 添加,混凝土,数据中的C40,确认。
• 4)同一菜单下,点击截面,添加,长方形截面, 输入名称梁、点击用户,输入H、B。
• 5)在模型菜单下,点击节点,建立,在坐标中, 输入0,0,0,在复制中输入,次数10次,距离, 1,0,0,表示以1m为间距,重复10次,生成11各 节点。然后点击适用。关闭。
midas简支梁结构的建模实例 2
• 6)在模型菜单下,点击单元,建立,注意看单元 类型、材料号、截面号等信息,鼠标点在节点连 接框中,然后在图形窗口中鼠标依次点击相邻的 节点,即可看见生成单元。全部单元生成完毕后, 关闭单元菜单。
• 7)在模型菜单下,点击边界条件下的一般支撑, 然后选择模型最左端的1号节点,在dx,dy,dz和 Rx约束对应的小框中点击打钩,然后适用,再选 择模型最右端的11号节点,同样在dy,dz对应窗口 中打钩。然后适用,然后关闭。
相关文档
最新文档