7章__化学动力学_1-3_

合集下载

第7章 化学动力学(第二讲)

第7章 化学动力学(第二讲)

据气体分子运动理论,可推导出不同反应物分子和相同反
应物分子在单位时间和单位体积的碰撞数为:
ZX,Y
L2 1000
DX2,Y
8RT (
M
)
1 2
cX
cY
ZX,X
工科大学化学
2
L2 1000
d
2 X
(
8RT
M X
)
1 2
cX2
(L1 s1) (L1 s1)
rX,Y
dcB dt
L 1000
DX2 ,Y
工科大学化学
反应势能面图
势能面
工科大学化学
马鞍点(saddle point)
在势能面上,活化络合物 所处的位置T点称为马鞍点。该 点的势能与反应物和生成物所 处的稳定态能量R点和P点相比 是最高点,但与坐标原点一侧 和D点的势能相比又是最低点。
如把势能面比作马鞍的话, 则马鞍点处在马鞍的中心。从 反应物到生成物必须越过一个 能垒。
式中α是每一次链传递过程中产生的自由基数目。 根据稳态法可得:
dcR dt
k1cA
k2cRcA
k2cRcA kwcR
kgcR
0
工科大学化学
解上述方程得: cR
k2cA
k1cA
(1 )
kw
kg
所以支链反应的速率方程为:
r
dcP dt
k2cRcA
k1k2cA2
k2cA (1 ) kw
kg
验值相符,说明反应机理是正确的。
工科大学化学
2、 “稳态法”求直链反应速率方程
(Steady State Approximation) 假定反应进行一段时间后,体系基本上处于稳态, 各中间产物的浓度可认为保持不变,这种近似处理称为 稳态近似,一般活泼的中间产物可以采用稳态近似。

第07章 化学动力学基础

第07章 化学动力学基础

k的量纲:[c]-1[t]-1——与浓度有关。
2A → products
dc A 2 kcA dt
t dcA kdt 2 co cA 0 c
1 1 kt c c0
1 1 1 k ( ) t c c0
半衰期
1 1 1 k ( ) t c c0
1 1 1 1 t1 ( ) c k c0 kc0 0 2 2
Ea2
Ea1 E
A + BC 反应物
△H
AB + C 生成物 反应过程
活化能(Ea):活化 配合物与反应物分子 平均能量之差。
反应焓变: ΔH=Ea1-Ea2 。
§7.3 浓度对化学反应速率的影响
一、元反应和复合反应
元反应:由反应物微粒(分子、原子、离子或 自由基)在碰撞时一步直接生成产物的反应 (简单反应)。
半衰期(half life):反应物消耗一半所 需的时间。
c0 ln kt c c0 1 1 t 1 ln ln2 k c0 / 2 k 2
0.693 t1 k 2
一级反应半衰期为常数,与反应物的初始 浓度无关。
动力学方程图解
lnc
c0 ln kt c
lnc lnc0 kt
1 dcA 1 dcB 1 dcF 1 dcG ( ) ( ) ( ) ( ) a dt b dt f dt g dt
同一反应同一时刻,用不同物质浓度变化表示 反应速率时,数值可能不同,但意义相同。
二、以反应进度定义的反应速率
1 dξ 反应速率: = V dt
1 dnM 1 dcM V Mdt M dt
t
lgc与t呈线性关系:
斜率为-k,截距为lnc0

第七章 化学动力学 章末习题

第七章 化学动力学 章末习题

第七章 化学动力学章末总结一、内容提要1. 基本概念(1)化学动力学的研究对象研究化学反应的速率和机理以及影响速率的各种因素,如温度、浓度、压力、催化剂、介质和分子结构等。

(2)动力学曲线动力学曲线即反应物或生成物的浓度随时间的变化曲线。

(3)转化速率对应于指明的化学计量方程,反应进度ξ在t 时刻的变化率称为该反应的转化速率,用d dtξ表示,单位为1mol s - 。

(4)化学反应速率 单位体积内的转化率称为反应速率,1d r V dt ξ=。

(5)基元反应与非基元反应① 基元反应:反应物分子一经碰撞直接变成产物。

② 非基元反应:若反应物到产物,必须经过中间步骤称为非基元反应或复杂反应。

(6)反应的速率方程表示反应速率与浓度等参数之间的关系,或表示浓度等参数与时间的关系的方程称为反应的速率方程。

(7)速率系数速率方程中的比例系数称为速率系数或速率常数,用k 表示。

①k 的物理意义:数值上相当于反应物均为单位浓度时的反应速率。

②特点:A. k 数值与反应物的浓度无关。

在催化剂等其他条件确定时,k 的数值仅是温度的函数;B. k 的单位随着反应级数的不同而不同;C. k 的数值直接反映了反应速率的快慢。

(8)质量作用定律基元反应的速率与各反应物浓度的幂乘积成正比,其中各浓度项的方次即为反应方程中各物质的系数,这就是质量作用定律,它只适用于基元反应。

(9)反应级数在反应的速率方程中,所有浓度项方次的代数和称为该反应的级数,用n 表示。

n 可以是正数、负数、整数、分数或零,也有的反应无法说出其反应级数。

(10)反应分子数在基元反应中,反应物分子数之和称为反应分子数,其数值为1,2或3。

2. 具有简单级数反应的特点(1)零级反应定义:反应速率与反应物浓度的零次方成正比,即与反应物的浓度无关。

特点:微分式 0dx k dt= 积分式 0x k t = 线性关系 ~x t半衰期 1022a t k =0k 的单位 3m o l d m - 或 [ -1浓度][时间] (2)一级反应定义:反应速率与反应物浓度的一次方成正比。

第07章基元反应动力学习题及答案

第07章基元反应动力学习题及答案

第07章基元反应动力学习题及答案第07章基元反应动力学习题及答案3第七章 基元化学反应动力学习题及答案1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。

试求此反应在25℃条件下完成90%所需时间。

解:由题意知此反应为一级反应 111216.07.56932.06932.021-===h t kt k y1)11ln(=-h k y t 9.181216.0/)%9011ln(/)11ln(1=-=-=即完成90%所需时间为18.9h 。

2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ?解:k /S-1=5.4×1011exp[-122474/8.314×(150+273)] =4.055×10-4据题意:ktppt=0ln4t410005.454000101325101325ln-⨯=-t =1877S3. 双分子反应2A(g)−→−kB(g) + D(g),在623K 、初始浓度为0.400mol dm -3时,半衰期为105s,请求出(1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol -1, 573K 时的最大反应速率为多少? 解:(1) r = k [A]2 , t 0.5= 1/(2 k [A]0) , k = 0.012dm 3mol -1s -1 (2) 1/[A] – 1/[A]0 =2 k t , t = 945 s(3) ln(k/k ’)=(E a /R )(1/T ’-1/T ) , 573K 时k = 0.00223dm 3mol -1s -1,最大反应速率r max = k [A]02=3.6×10-4 moldm -3s -1.4. 450℃时实验测定气相反应3A + B →2C 的速率数据如下;实验 初压 / Pa 初速率-dp B / dt / (Pa/h) P A,0 P B,01. 100 1.00 0.0100 2. 200 1.00 0.0400 3. 400 0.50 0.0800 (1)若反应的速率方程为r = kP A x P B y ,求x 、y 及k 。

第7章化学动力学13

第7章化学动力学13

dcB dt
kcA cF
作用物浓度有关
▲ 非幂函数形式:
r 1 dcB kcA cF cX cY
B dt
1

k
' cA
c' F
c c ' ' ' XY
如式(7-6)
5. 反应级数与反应分子数 ▲ 反应级数
体现了各反应物浓度对反应速率的影响程度, α是A物对应的反应级数,体现了A物浓度对反 应速率的影响程度,… … 。 通常指总反应级数,即 n = α+β+γ+δ n:整数、分数、正数、负数或不能确定。
2. Pb(C2H5)4 = Pb + 4C2H5
3. H+ + OH― = H2O
r = 1.4×1011[H+][OH―]
4. CO(g)+ NO2(g)= CO2(g)+ NO(g)
r = k[NO2]2
下列说法是否正确 (1) 反应级数等于反应分子数 (2) 反应级数不一定是简单的正整数 (3) 具有简单级数的反应是基元反应 (4)不同反应若具有相同级数形式,一定具有相同的反应机理 (5) 反应分子数只能是正整数,一般不会大于3 (6)某化学反应式为A+B→C,则该反应为双分子反应。
r
1
B
dcB dt
kncBn
t1
2

2n1 1
(1

n)kn
c n 1
B B,0

K c1n n B,0
ln t1 (1 n) ln cB,0 ln Kn
r
1
B
dcB dt

kn

第七章 化学动力学习题

第七章 化学动力学习题

第七章化学动力学习题一、填空题1. 基元反应A+2B =2C, 反应物的消耗速度率和产物的生成速率的速率常数分别为k 、k 和k ,则三者之间的关系为k = .2. 已知反应2A --> P, A 的半衰期与其初始浓度成正比,此反应为 级.3. 催化剂可加快反应速率的主要原因是降低活化能或 .4. 质量作用定律表述为: .5. 某一级反应,在20 ℃时反应物浓度减少为原来的一半需要用10分钟, 此反应的速率常数为 .6. 催化剂只能改变 而不能改变 .7. 反应aA →产物, 若为一级反应,以 对时间t 作图可得直线;若为二级反应,以 对t 作图可得直线.8. 某对行反应在室温下的正、逆反应速率常数和平衡常数分别为k、k'和K;加入催化剂后,正、逆反应的速率常数和平衡常数分别为k 、k '和K .已知k =10k,则k '= k'及K = K.9. 基元反应2Br·───> Br , k 为用Br·浓度表示的反应速率常数. Br 的生成速率d[Br ]/dt = .10. 某一级反应的半衰期t = 0.01 s,则其反应速率常数k = .二、选择题1. 下列反应中有可能是基元反应的是反应 .A. 2NH ─────-> N + 3HB. CH I + HI───> CH + IC. Pb( C H ) ──> Pb + 4C H ·D. 2H + 2O ────> H O2. 某反应速率常数为0.099 min ,反应物初浓度为0.2 mol.dm , 则反应物的半衰期为 .A. 1.01 min;B. 4.04 min;C. 7.0 min;D. 50.5 min.3. 某反应 a A ──> P, 分别以A 的初浓度[A] = 0.05 mol/L 和[A] = 0.10 mol/L 进行反应, 测得半衰期分别为15 min和30 min, 此反应为 级反应.A. 零,B. 一,C. 1.5,D. 二4. 某反应 a A ──> P, 分别以A 的初浓度[A] = 1.0 mol/L 和[A] = 0.10 mol/L 进行反应, 测得半衰期分别为 1 min 和10 min, 此反应为 级反应.A. 零,B. 一,C. 二,D. 三5. 反应A ─-> P 的速率常数为k =6.93 min . 反应物浓度由0.50 mol/L降到0.25mol/L 所需的时间为 min.A. 0.1,B. 0.2,C. 1.0,D. 106. 反应A + 2 B ─-> P, 以A 的浓度变化和B 的浓度变化表示的速率常数分别为k 和k , 则 .A. 2 k = k ,B. k = 2 k ,C. k = k ,D. k = k7. 反应A + 2 B ─-> P, 以A 的浓度变化和B 的浓度变化表示的反应速率分别为v 和v , 则 .A. v = 2 v ,B. v = 2 v ,C. v = v ,D. v = v8. 某反应的速率常数k = 3.0 mol .dm .min , 此反应为 级反应.A. 零,B. 0.5,C. 1.5,D. 二9. 反应a A ─-> P 的速率常数为0.02 min , 反应物A 的初浓度[A] =1.0 mol.dm .反应的半衰期为 min.A. 25,B. 34.7,C. 41,D. 5010. 某化学反应方程式2A ─> P, 则表明该反应为 .A. 二级反应,B. 双分子反应,C. 基元反应,D. 以上都无法确定三、计算题1. 在恒容容器中发生一级反应4A ─> B+6C (各组分可视为理想气体),反应开始时只有A,压力为13.3 kPa,在1000 K时, 反应40分钟, 测得压力为20 kPa.(1)求反应速率常数k(1000K);(2)若800K时, k(800K) =3.5×10 min ,求活化能Ea.2.某温度下物质A 与等量物质B 混合,反应到1000秒时, A 已反应掉一半.计算反应2000秒后, A 的转化率:(1) 按零级反应计算;(2) 按对A 为一级,对B 为零级计算;(3) 按对A 及B 均为一级计算.3. 反应A+B→P. A 与B 按等摩尔比混合,反应10分钟后, A 反应掉75 %.计算15分钟后, A 反应掉多少?(1)按一级反应; (2)按二级反应; (3)按零级反应.4. 某反应的速率常数为:温度25 ℃35 ℃k 3.46×10 s 1.35×10 s计算该反应的活化能与指前因子.5. 某物质A 的分解反应为一级反应,当初浓度为0.1 mol.dm 时, 经50分钟分解20 %.求:(1) 反应速率常数k;(2) 半衰期t ;(3) 起始浓度为0.02 mol.dm 时,分解20 %所需时间.。

第七章化学动力学

第七章化学动力学

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应速率的定义3.化学反应的速率方程4.具有简单级数的反应5.几种典型的复杂反应6.温度对反应速率的影响7.链反应 重点1.重点掌握化学反应速率、反应速率常数及反应级数的概念2.重点掌握一级和二级反应的速率方程及其应用3.重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。

4.重点理解阿罗尼乌斯方程的意义并会应用。

明确活化能及指前因子的定义 难点1.通过实验建立速率方程的方法2.稳态近似法、平衡近似法及控制步骤的概念及其运用3.复杂反应的特征及其有关计算 教学方式1.采用CAI 课件与黑板讲授相结合的教学方式。

2.合理运用问题教学或项目教学的教学方法。

教学过程第7.1节化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。

例如合成氨的反应,223()3()2()N g H g NH g ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。

但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。

因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。

研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。

一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。

化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。

二、化学动力学的研究对象 化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。

7章化学动力学习题课

7章化学动力学习题课
上一页 下一页
D Ea E2 1 ( E1 ) 2 2E4
选择题
4.任何化学反应的半衰期与初始浓度[M]0,速 率常数k的关系是( )
A 与k,[M]0均有关系 B 与[M]0有关,与k无关 C 与k有关 D 与[M]0无关,与k有关
上一页 下一页
计算题
1.在一恒容均相体系中,某化合物分解50%所
所以 kB,(p) (700K) 21.70103 Pa1 h1 3.4103 Pa1 h1
上一页 下一页
计算题
(iii)因为pA,0:pB,0=1:2,所以反应过程中始终保持pA:pB=1:2,
即pB=2pA,于是有:

dpA dt

kA,(p) pA 2 pA
kA,(c) (RT )1n及
ln
kA,2 kA,1

Ea R
1 (

T1
1 )
T2
ln kA,p (800K) 800KR Ea ( 1 1 ) kA,p (700K) 700KR R 700K 800K
于是
Ea

R
ln
kA,p kA,p
(800K) (700K)

800KR 700KR
760
同理,在757℃时
k2

RT
t p 1 0 2

0.0821030 212 360

0.842mol1 dm3 S1
760
上一页 下一页
计算题
ln K2 Ea ( T2 T1) K1 R T1 T2
Ea R ( T2 T1 ) ln k2 T2 T1 k1
kA (473K) 7.40102 dm3 mol min1

5 第七章 化学反应动力学基础

5 第七章 化学反应动力学基础

A P S
k1 k2
假设每一步反应都是一级反应,则
dc rA k1 c A dt dcP rP k1 c A k 2 c P dt dcS rS k2c P dt
反应开始时
c A c A,0
cP 0
k1t
cS 0
c A c A, 0 e

E愈大,反应速率对温度就愈敏感。
k A exp E RT
E 1 ln k ln A R T
lnk
E1 1 ln k1 ln A1 R T
2
1
E2 1 ln k2 ln A2 R T
E1>E2
o
1 T
例如, E=4l.87 J/mol 0℃时,为使反应速率提高一倍,需将反应温度提高11℃。 E=167,500 J/mol 0℃,提高3℃,反应速率提高一倍。 (3)E一定,同一反应,温度越低,反应速度对温度就 越敏感 例如,E=4l.87 J/mol 0℃ 为使反应速率提高一倍需将反应温度提高11℃ 1000℃ 提高273℃
dnA
A

dnB
B

dnS
S

dnR
R
ni ni 0 ξ νi
dnA=dξ· A,
1 d A V dt rA
r 1 d V dt
(3)反应转化率
组 份A反 应 掉 的 摩 尔 数 xA 组 份A的 起 始 摩 尔 数
xA
n A, 0 n A n A, 0

有机物的二聚反应:如乙烯、丙稀、异丁烯及环戊二烯的 二聚反应等; 加成反应:烯烃的加成反应等; NaClO3的分解,乙酸乙酯的皂化,碘化氢、甲醛的热分解 等。

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应

第七章化学动力学主要内容1.化学动力学的任务和目的2.化学反应

第七章化学动力学主要内容1. 化学动力学的任务和目的2. 化学反应速率的定义3. 化学反应的速率方程4. 具有简单级数的反应5. 几种典型的复杂反应6. 温度对反应速率的影响7. 链反应重点1. 重点掌握化学反应速率、反应速率常数及反应级数的概念2. 重点掌握一级和二级反应的速率方程及其应用3. 重点掌握复杂反应的特征,了解处理对行反应、平行反应和连串反应的动力学方法。

4. 重点理解阿罗尼乌斯方程的意义并会应用。

明确活化能及指前因子的定义难点1. 通过实验建立速率方程的方法2. 稳态近似法、平衡近似法及控制步骤的概念及其运用3. 复杂反应的特征及其有关计算教学方式1. 采用CAI课件与黑板讲授相结合的教学方式。

2. 合理运用问题教学或项目教学的教学方法。

教学过程第7.1节 化学动力学研究的内容和方法热力学讨论了化学反应的方向和限度,从而解决了化学反应的可能性问题,但实践经验告诉我们,在热力学上判断极有可能发生的化学反应,实际上却不一定发生。

例如合成氨的反应,223()3()2()N g H g NH g + ,在298.15K 时,按热力学的结论,在标准状态下此反应是可以自发进行的,然而人们却无法在常温常压下合成氨。

但这并不说明热力学的讨论是错误泊,实际上豆科植物就能在常温常压下合成氨,只是目前还不能按工业化的方式实现,这说明化学反应还存在一个可行性的问题。

因此,要全面了解化学反应的问题,就必须了解化学变化的反应途径----反应机理,必须引入时间变量。

研究化学反应的速率和各种影响反应速率的因素,这就是化学动力学要讨论的主要内容。

一、化学热力学的研究对象和局限性:研究化学变化的方向、能达到的最大限度以及外界条件对平衡的影响。

化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?例如:热力学只能判断这两个反应都能发生,但如何使它发生,热力学无法回答。

二、化学动力学的研究对象化学动力学研究化学反应的速率和反应的机理以及温度、压力、催化剂、溶剂和光照等外界因素对反应速率的影响,把热力学的反应可能性变为现实性。

第07章--基元反应动力学--习题及答案

第07章--基元反应动力学--习题及答案

第七章 基元化学反应动力学习题及答案1. N 2O 5在25℃时分解反应的半衰期为5.7h, 且与N 2O 5的初始压力无关。

试求此反应在25℃条件下完成90%所需时间。

解:由题意知此反应为一级反应 111216.07.56932.06932.021-===h t kt k y1)11ln(=- h k y t 9.181216.0/)%9011ln(/)11ln(1=-=-=即完成90%所需时间为18.9h 。

2.异丙烯醚气相异构化成丙烯酮的反应是一级反应,其反应速率系(常)数与温度的关系为:k /s -1 =5.4×1011exp(-122 474 J ·mol -1/RT ),150℃下,反应开始时只有异丙烯醚,其压力为101 325 Pa ,问多长时间后,丙烯酮的分压可达54 kPa ?解:k /S -1=5.4×1011exp[-122474/8.314×(150+273)]=4.055×10-4据题意:kt p p t=0lnt 410005.454000101325101325ln-⨯=-t =1877S3. 双分子反应2A(g)−→−k B(g) + D(g),在623K 、初始浓度为0.400mol dm -3时,半衰期为105s,请求出 (1) 反应速率系数k(2) A(g)反应掉90%所需时间为多少?(3) 若反应的活化能为140 kJ mol-1, 573K时的最大反应速率为多少? 解:(1) r = k[A]2 , t0.5= 1/(2 k[A]0) , k = 0.012dm3mol-1s-1(2) 1/[A]– 1/[A]0 =2 k t, t = 945 s(3) ln(k/k’)=(E a/R)(1/T ’-1/T) , 573K时k = 0.00223dm3mol-1s-1,最大反应速率r max = k[A]02=3.6×10-4 moldm-3s-1.4. 450℃时实验测定气相反应3A + B→2C的速率数据如下;实验初压 / Pa 初速率-dpB/ dt / (Pa/h)PA,0 PB,01. 100 1.00 0.0100 2. 200 1.00 0.0400 3. 400 0.50 0.0800(1)若反应的速率方程为r = kPA x PBy,求x、y及k。

无机化学第七章化学动力学基础

无机化学第七章化学动力学基础
反应历程
反应历程
H2O2+2Br-+2H+2H2O+Br2是下列基元反应构成 H++H2O2H3O2+ H3O2+H++H2O2 H3O2++Br-H2O+HOBr(慢反应) HOBr+H++Br-H2O+Br2 因速度决定步骤为慢反应,即v=k[H3O2+][Br-] 但初态时并没有H3O2+只有H2O2、Br-、H+,我们需要变换一下H3O2+ 因H++H2O2H3O2+为快反应,在溶液中立刻就达到了平衡
求该反应的反应级数m+n和速度常数k?
浓度对化学反应速率的影响
浓度对化学反应速率的影响
解:由速度方程v=k[CO]m·[Cl2]n 得:v1=k[CO]m·[Cl2]1n v2=k[CO]m·[Cl2]2n
v=k[CO]·[Cl2]3/2 m+n=2.5 即 对CO为一级
对Cl2为1.5级
基元反应的速度方程
恒温下,基元反应的反应速度与各反应物浓度系数次方的乘积成正比。也称为质量作用定律
对: aA + bB dD+eE
则: v=k[A]a·[B]b
如:
对于反应 H2O2+2Br-+2H+2H2O+Br2的速度方程不能写成v=k[H2O2][H+]2[Br-]2,因其不是一个五元反应。
一步完成的化学反应称基元反应,由一个基元反应构成的化学反应称为简单反应;由两个或三个基元反应构成的化学反应称为非基元反应或复杂反应。
7-4 反应历程
反应历程
如:H2O2+2Br-+2H+2H2O+Br2 是由下列一系列基元反应构成

物理化学核心教程(第二版)思考题习题答案—第7章 化学动力学

物理化学核心教程(第二版)思考题习题答案—第7章 化学动力学

第七章化学反应动力学一.基本要求1.掌握化学动力学中的一些基本概念,如速率的定义、反应级数、速率系数、基元反应、质量作用定律和反应机理等。

2.掌握具有简单级数反应的共同特点,特别是一级反应和a = b的二级反应的特点。

学会利用实验数据判断反应的级数,能熟练地利用速率方程计算速率系数和半衰期等。

3.了解温度对反应速率的影响,掌握Arrhenius经验式的4种表达形式,学会运用Arrhenius经验式计算反应的活化能。

4.掌握典型的对峙、平行、连续和链反应等复杂反应的特点,学会用合理的近似方法(速控步法、稳态近似和平衡假设),从反应机理推导速率方程。

学会从表观速率系数获得表观活化能与基元反应活化能之间的关系。

5.了解碰撞理论和过渡态理论的基本内容,会利用两个理论来计算一些简单反应的速率系数,掌握活化能与阈能之间的关系。

了解碰撞理论和过渡态理论的优缺点。

6.了解催化反应中的一些基本概念,了解酶催化反应的特点和催化剂之所以能改变反应速率的本质。

7.了解光化学反应的基本定律、光化学平衡与热化学平衡的区别,了解光敏剂、量子产率和化学发光等光化反应的一些基本概念。

二.把握学习要点的建议化学动力学的基本原理与热力学不同,它没有以定律的形式出现,而是表现为一种经验规律,反应的速率方程要靠实验来测定。

又由于测定的实验条件限制,同一个反应用不同的方法测定,可能会得到不同的速率方程,所以使得反应速率方程有许多不同的形式,使动力学的处理变得比较复杂。

反应级数是用幂函数型的动力学方程的指数和来表示的。

由于动力学方程既有幂函数型,又有非幂函数型,所以对于幂函数型的动力学方程,反应级数可能有整数(包括正数、负数和零)、分数(包括正分数和负分数)或小数之分。

对于非幂函数型的动力学方程,就无法用简单的数字来表现其级数。

对于初学者,要求能掌握具有简单级数的反应,主要是一级反应、a = b的二级反应和零级反应的动力学处理方法及其特点。

物理化学 第七章动力学

物理化学 第七章动力学

第十一章 化学动力学§化学反应的反应速率及速率方程1.反应速率的定义非依时计量学反应: 若某反应不存在中间物,或虽有中间物,但其浓度甚微可忽略不计,则此类反应将在整个反应过程中符合一定的计量式。

那么,这类反应就称为非依时计量学反应 某反应的化学计量式:B B0B ν=∑对非依时计量学反应,反应进度ξ定义为:B B d d /n ξν=转化速率为:B B d /d (1/)(d /d )t n t ξξν==& 反应速率为:B B /(1/)(d /d )r V V n t ξν==& 即用单位时间单位体积内化学反应的反应进度来定义反应速率。

对非依时计量学反应,此定义与用来表示速率的物质B 的选择无关,与化学计量式的写法有关。

对于恒容反应,反应速率可表示为:B B (1/)(d /d )r c t ν= 对任何反应: E F G H e f g h +=+G E F Hd d d d 1111d d d d c c c c re tf tg th t=-=-==2.基元反应 定义:如果一个化学反应,反应物分子在碰撞中相互作用直接转化为生成物分子,这种反应称为基元反应。

基元反应为组成一切化学反应的基本单元。

例如:2222C +M =2C +M C +H =HC +H H +C =HC +C 2C +M =C +Mg g化学反应方程,除非特别注明,一般都属于化学计量方程,而不代表基元反应。

反应机理:反应机理又称为反应历程。

在总反应中,连续或同时发生的所有基元反应称为反应机理,在有些情况下,反应机理还要给出所经历的每一步的立体化学结构图。

3. 基元反应的速率方程--质量作用定律、反应分子数(1)反应分子数:基元反应方程式中各反应物分子个数之和,称为反应分子数。

(2)质量作用定律:对于基元反应,反应速率与反应物浓度的幂乘积成正比。

幂指数就是基元反应方程中各反应物的系数。

这就是质量作用定律,它只适用于基元反应。

中南大学物化课后习题答案-7--章-化学动力学

中南大学物化课后习题答案-7--章-化学动力学

第7章化学动力学1.以氨的分解反应2NH3==== N2+3H2为例,导出反应进度的增加速率与,,之间的关系,并说明何者用于反应速率时与选择哪种物质为准无关。

解:∴,,2.甲醇的合成反应如下:CO+2H2 ===== CH3OH已知,求,各为多少?(答案:2.44,4.88mol·dm-3·h-1)解:,3.下列复杂反应由所示若干简单反应组成,试根据质量作用定律写出以各物质为准的速率方程式。

(1) (2)(3) (4)解:(1) ,,(2)(3)(4)4.理想气体反应 2N 2O 5 → 4NO 2+O 2,在298.15 K 的速率常数k 是1.73×10-5s-1,速率方程为。

(1)计算在298.15K 、、12.0 dm 3的容器中,此反应的和即各为多少?(2)计算在(1)的反应条件下,1s 内被分解的N 2O 5分子数目。

(答案:(1)7.1×10-8,-1.14×10-7md·dm -3·s -1 (2)1.01×1018 )解:(1) mol·dm -3mol·dm-3·s-1∴mol·dm-3·s-1(2)1.4×10-7×12.0×6.022×1023=1.01×1018个分子5.已知每克陨石中含238U 6.3×10-8g,He为20.77×10st1:chmetcnv UnitName="cm"SourceValue="6" HasSpace="False" Negative="True" NumberType="1" TCSC="0">-6cm3(标准状态下),238U的衰变为一级反应:238U → 206Pb+84He由实验测得238U的半衰期为=4.51×109 y,试求该陨石的年龄。

物理化学第七章 化学动力学

物理化学第七章 化学动力学

第七章 物理化学电子教案积分法 微分法 半衰期法 孤立法一级反应 对峙反应e上一内容 f下一内容平行反应连续反应 链反应2返回”回主目录化学动力学的任务和目的化学热力学的研究对象和局限性 研究化学变化的方向、能达到的最大限度以及 外界条件对平衡的影响。

化学热力学只能预测反应 的可能性,但无法预料反应在何种条件下能够发 生?反应的速率如何?反应的机理如何?例如:1 3 N2 + H2 ⎯⎯ → N H 3 (g ) 2 2 1 H2 + O2 ⎯⎯ → H 2 O (l) 2Δ r G / kJ ⋅ mol m−1−16.63 −237.19热力学只能判断这两个反应都能发生,但如何使它发 生,热力学无法回答。

e上一内容 f下一内容 ”回主目录2返回化学动力学的任务和目的化学动力学的研究对象 化学动力学研究化学反应的速率和反应的机理以及 温度、压力、催化剂、溶剂和光照等外界因素对反应 速率的影响,把热力学的反应可能性变为现实性。

例如: 动力学认为: 1 3 N 2 + H 2 → NH 3 (g) 需一定的T,p和催化剂 2 2 1 H 2 + O 2 → H 2 O(l) 点火,加温或催化剂 2e上一内容 f下一内容 ”回主目录2返回化学动力学的应用药物在体内的代谢、吸收、分布、排泄等与 化学动力学有关。

•药代动力学 药物的疗效、分解失效、稳定性预测等涉及 化学动力学知识。

•药效动力学 • 研究进展:生物反应机理、工业生产工艺研究 • 研究进展:人工固氮 、人工固碳、光解水e上一内容 f下一内容”回主目录2返回11.1 反应速率及其测定速度 速率 值。

例如: Velocity Rate 是矢量,有方向性。

是标量 ,无方向性,都是正R ⎯⎯ →Pd[R] <0 dt d[P] >0 dt速度速率e上一内容−d[R] d[P] = >0 dt dtf下一内容 ”回主目录2返回平均速率− ([R ]2 − [R]1 ) rR = t 2 − t1 ([P]2 − [P]1 ) rp = t 2 − t1它不能确切反映速率的变 化情况,只提供了一个平 均值,用处不大。

考研物化 第七章化学动力学答案

考研物化 第七章化学动力学答案

(B) rA = k1cA - k-1cB , (C) rA = k1cA2 + k-1cB , (D) rA = - k1cA2 + k-1cB,
rB = k-1cB + k2cC ; rB = k-1cB - k2cC ; rB = k1cA2 - k-1cB - k2cC 。
20.反应 A + B → C + D 的速率方程为 r = k[A][B] ,则反应:
(A) 是二分子反应 ; (C) 不是二分子反应 ;
(B) 是二级反应但不一定是二分子反应 ; (D) 是对 A、B 各为一级的二分子反应 。
21.基元反应 A + B 2D,A 与 B 的起始浓度分别为 a 和 2a,D 为 0,则体系各物 质浓度(c)随时间变化示意曲线为:
A k1 B,B+D ⎯⎯k2 → J
度有利于生成更多的产物。
12.若反应(1)的活化能为 E1,反应(2)的活化能为 E2,且 E1 > E2,则在同一温度下 k1 一 定小于 k2。
13.若某化学反应的 ΔrUm < 0,则该化学反应的活化能小于零。 14.对平衡反应 A Y,在一定温度下反应达平衡时,正逆反应速率常数相等。
15.平行反应
度有何关系?
(A) 无关 ; (B) 成正比 ;
(C) 成反比 ;
(D) 平方成反比 。
2A k1 B ⎯⎯k2 → C
19.恒容下某复杂反应(取单位体积)的反应机理为:
k−1
,分别以 A
和 B 反应物的浓度变化来计算反应速率,其中完全正确的一组是:
(A) rA = k1cA2
, rB = k2cB ;
25.某温度时,平行反应
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征:① k2与浓度单位有关, 单位:(浓度)-1(时间)-1 (与纯2级一样); ② ln(cA/cF) 与t 呈线性关系 (与纯2级不同) ; ③ A和F无统一的半衰期 (与纯2级不同) 。
二、反应实例
1. 零级反应
纯0级:r =k0
cB – cB,0 =k0νBt , cB = k0νBt + cB,0
构成化学反应的最基本反应步骤称为元反应;
即:由作用物粒子直接反应生成产物粒子的反应。
两个以上的元反应构成的总(包)反应称为非元反
应或复杂反应。
3. 反应机理(历程) 一个总包化学反应中所包含的元反应按序排 列就构成该总包化学反应的机理(历程)。
4. 反应速率方程 r = f(cA, cB,... …,cN,T) 一般指定温度,则 r = f(cA, cB,... …,cN)—— 反应速率方程
1 dcB kcA cF cX cY r ' ' ' ' B dt 1 k ' cA cF cX cY
如式(7-6)
5. 反应级数与反应分子数 ▲ 反应级数 体现了各反应物浓度对反应速率的影响程度,
α是A物对应的反应级数,体现了A物浓度对反
应速率的影响程度,… … 。
通常指总反应级数,即 n = α+β+γ+δ
第七章
化 学 动 力 学
§1 化学动力学的任务与概况
一、化学动力学的任务
化学热力学研究(战略问题——可能性): 化学反应自动进行的方向、限度及平衡条件。 化学动力学研究(战术问题——可行性) : 化学反应进行的速率、机理和影响速率的因素。
H2(g) + 0.5O2(g) ==== H2O(l)
1 d cB a f r kcA cF B dt
rA rF rX rY r a f x y kA kF kX kY k a f x y
k:反应速率常数 kB :反应速率常数
反应: H2+ I2 === 2HI
①I2 → 2I
k1
r1 k1cI
②2I → I2
n:整数、分数、正数、负数或不能确定。
元反应级数一定是正整数;
复杂反应级数各种情况都可能。P359
▲ 反应分子数
元反应中直接参与反应所需的最少粒子(分
子)数,是元反应方程式中各作用物的计量系
数之和。
单分子反应,双分子反应,三分子反应
对元反应而言,反应分子数 = 反应级数 ;
对复杂反应无反应分子数可言。
1 2
(2)混 n 级反应
cB , 0 const ,则令 xB cB, 0 cB 若 | B |
如元反应
A + F → 产物,
若cA,0 = cF,0,化为纯 2 级:
dcA dcF 2 2 r k2cA或 k2cF dt dt
若cA,0 ≠ cF,0,则为混 2 级,
幂函数速率方程
一、n 级反应动力学方程
有反应:aA + eE + fF →产物
设产物浓度对速率无影响,
则:
c
产物
1 dcB r kcA cE cF B dt
作用物
t
(1)纯 n 级反应
cA , 0 cE , 0 cF, 0 const ,则 若 a e f 1 d cB n r k n cB B dt
素蜕变反应,化合物水解反应(准一级反应)。
一级反应的积分速率方程
分离变量,得
dcA kA dt cA
等式两边,时间由t = 0 t = t ,相应的组分A的浓度由 cA = cA,0 cA = cA ,积分则有
dcA cA , 0 cA
cA

t
0
k A dt
因kA为常数,积分后得
2
dcI
2
rI2
dcI2 dt
(
dcI2 dt
)1 (
dcI2 dt
) 2 k2cI2 k1cI 2
dcI dcI dcI dcI 2 2 rI ( )1 ( )2 ( )3 2k1cI 2k2cI 2k3cI cH dt dt dt dt
2
2
(2)复杂反应速率方程
求kA。这是一级反应的第三 个特征。 图 {t} 一级反应的ln{cA}~{t}关系
ln{cA}
3. 二级反应 最多,常考 4. 三级反应 5. 分数级数反应级负级数反应 见教材自学
3 二级反应

① 二级反应的积分速率方程 (i) 反应物只有一种的情况 若实验确定某反应物A的反应速率与A的物质的量浓度的 二次方成正比,即为二级反应,其微分速率方程可表述为
(1)质量作用定律——元反应速率方程
在一定温度下, r ∝ (c作用物)n,
aA + fF → xX + yY
dcA a f rA kA cA cF dt dcF a f rF kFcA cF dt dcX a f rX kX cAcF dt dcY a f rY kY cAcF dt
[例2] 某气相反应在400K时的kp= 10-3(kPa)-1· -1, s 则同温下kc= ? 解:反应为几级? pV=nRT p=(n/V)RT=cRT
1 dcB 2 rc kc cB B dt 1 dpB RT dcB 2 2 2 rp k p pB k p ( RT ) cB B dt B dt
整理移项
dcB k c dt
n B n B
积分
n dc B B k n c B dt
c = f (t)
★n=1
cB ln k1 Bt cB, 0


cB cB,0e
1 2
k1 Bt
cB,0 exp(k1 Bt )
cB 1 cB,0 2
ln 2 0.693 时,t t B k1 B k1
反应级数是从宏观上描述浓度对反应速率的影 响;反应分子数是从微观上描述反应的特征。
6. 反应速率常数
k
温度、介质、催化剂、器壁性质 、… ...
单位与反应级数、浓度单位有关,表7-1;
[例1] 某反应的速率方程为:r = k(cA)m , cA的单
位是mol· -3,时间的单位是s,则k的单位是( ). dm (a) mol(1-m) · 3(m-1)·-1, (b) mol-m · 3m·-1, dm s dm s (c) mol(m-1) · 3(1-m)·-1, (d) molm · -3m·-1, dm s dm s 注意:r 的单位是mol· -3·-1, dm s
dcB rB dt
对恒容反应:
dcB rB dt
| B | dcB rB B dt
严格定义为反应进度随时间的变化率—(dξ/dt)
1 d 1 dcB rB r V dt B dt | B |
对反应 aA + fF →xX + yY而言:
1 dcA 1 dcF 1 dcX 1 dcY r a dt f dt x dt y dt
dcA dxA r k2cA cF k2 (cA , 0 xA )(cF , 0 xA ) dt dt dxF k2 (cA , 0 xF )(cF , 0 xF ) dt
cA,0 cA ln (cA , 0 cF , 0 )k2t ln cF cF,0
cA , 0 1 t ln kA cA
一级反应的积分速率方程
一级反应的特征
(i) 由式
dcA k A cA dt
可知,一级反应的kA的单位为[t]-1
1 cA,0 ln (ii) 由式 t kA cA
当由
1 cA , 0 cA cA , 0 2
时,所需时间用t1/2表示,叫反应的
非基元反应
aA + fF → xX + yY
▲ 幂函数形式: r 1 dcB kc c c c A F X Y B dt 许多反应 0, 0
1 dcB 则: r kcA cF B dt
▲ 非幂函数形式:

反应速率只与作 用物浓度有关
特征:①k1与浓度单位无关, 单位:(时间)-1 ; ②lncB 与t 呈线性关系,斜率 = νBk1 ; ③t1/2与νBk1有关,与cB,0无关。
如元反应:
A →产物
dcA r k1cA dt

lncA
ln(cA,0 /cA)
t
1级反应A物浓度与时间关系示意图
t
B 1
ln cA, 0 ln cA k1t
反应可在有限时间内完成。气相催化反应。
混0级:CO在Pt催化剂(700K)的氧化反应
pO dpCO r k dt pCO
2
零级反应反应特征
1) 反应速率不变。 ko的单位:浓度· 时间1 2) 以c t作图,为直线。 斜率ko,截距c0,可用来求ko。
2. 一级反应
热分解反应,有机物分子重排反应,放射性元
B 2
1 1 2 k 2t cA cA , 0
1 t 2k2cA , 0
1 2
★n=n
1 1 n -1 (1 n)kn Bt n 1 cB cB, 0
2n 1 1 n t K n c1, 0 B n 1 (1 n)kn BcB, 0
过渡状态理论
分子反应动态学
1.宏观反应动力学:从宏观的角度研究反应的机 理和动力学行为,各种宏观因素对速率的影响。
相关文档
最新文档