九数竞赛试题(含答案)

合集下载

第15届WMO世界数学奥林匹克竞赛九年级数学复赛试题B卷(含答案)

第15届WMO世界数学奥林匹克竞赛九年级数学复赛试题B卷(含答案)

第15届WMO世界数学奥林匹克竞赛九年级数学复赛试题B卷(含答案)第15届WMO世界奥林匹克数学竞赛(中国区)选拔赛--------------------------------------------------------------------------------- 考生须知: 1. 每位考生将获得一份试卷。

考试期间,不得使用计算工具或手机。

2. 本卷共120分,选择题每小题4分,填空题每小题5分,解答题共5小题,共50分。

3. 请将答案写在本卷上。

考试完毕时,考卷及草稿纸会被收回。

4. 若计算结果是分数,请化至最简。

九年级地方晋级赛复赛B卷(本试卷满分120分,考试时间90分钟)一、选择题(每小题4分,共40分) 1.将4.31×10-5写成小数的形式,则其小数点后第四位数字是() A.0 B.1 C.3 D.4 2.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是() A.① B.② C.③ D.④ 3.如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2 倍.设点A′的对应点A的纵坐标是1.5,则点A′的纵坐标是() A.3 B.-3 C.-4 D.4 第2题图第3题图第4题图第5题图 4.如图,已知∠MON=60°,OP是∠MON的角平分线,点A是OP上一点,过点A作ON的平行线交OM于点B,AB=4.则直线AB与ON之间的距离是() A. B.2 C. D.4 5.如图,圆O为△ABC的外接圆,其中点D在弧AC上,且OD⊥AC,若∠A=36°,∠C= 60°,则∠BOD的度数为() A.132° B.144° C.156° D.162° 6.已知,其中A、B为常数,则4A-B的值为() A.7 B.9 C.13 D.5 7.如图,直线y1=kx+b过点A(0,2),且与直线y2=mx交于点P(1,m),则不等式组 mx>kx+b>mx-2的解集是() A.x>1 B.0<x <2 C.0<x<1 D.1<x<2 8.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为() A. B. C.1 D.第7题图第8题图第9题图 9.如图,已知AD∥BC,AB⊥AD,点E、F分别在射线AD、BC上,若点E与点B关于AC 对称,点E与点F关于BD对称,AB=1,则cos∠AGB 等于() A. B. C. D. 10.如图,已知在平面直角坐标系xOy中,O是坐标原点,点A是函数y= (x<0)图象上一点,AO的延长线交函数y= (x>0, k是不等于0的常数)的图象于点C,点A关于y轴的对称点为A′,点C关于x轴的对称点为C′,CC′交x轴于点B,连接AB、AA′、A′C′.若△ABC的面积等于6,则由线段AC,CC′,C′A′,A′A所围成的图形的面积等于() A.8 B.10 C.3 D.4二、填空题(每小题5分,共30分) 11.若2m=3,4n=8,则2m-2n 的值是____________. 12.如图,将边长为2的正方形ABCD沿直线l按顺时针方向翻滚,当正方形翻滚一周时,正方形的中心O所经过的路径长为____________.第12题图第13题图13.如图,抛物线y=ax2-4和y=-ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D.当四边形ACBD的面积为40时,a 的值为_____________. 14.m、n是两个连续自然数,且q=mn,p= ,则p的值是.(填“奇数”、“偶数”或“奇偶都可以”) 15.甲、乙、丙三个箱子原本各装有相同数量的小球,已知甲箱内的红球占甲箱内小球总数的,乙箱内没有红球,丙箱内的红球占丙箱内小球总数的.小荣将乙、丙两箱内的球全部倒入甲箱后,要从甲箱内取出一球,若甲箱内每个球被取出的机会相等,则小荣取出的球是红球的概率为_____________. 16.如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面三个结论:①GH⊥BE;②S正方形ABCD:S正方形ECGF=1:;③EM:MG=1:(1+ ),其中正确结论的序号为.三、解答题(共5小题,共50分) 17.请分别用配方法和因式分解法解方程:6x2+7x-3=0.(8分)配方法:因式分解法:18.已知a,b,c,d四个数成比例,且a,d为外项.试说明点(a,b),(c,d)和坐标原点O(0,0)在同一条直线上.(9分)19.如果有理数m可以表示成2x2-6xy+5y2(其中x、y是任意有理数)的形式,我们就称m为“世博数”.证明:两个“世博数”a、b(b≠0)之商也是“世博数”.(10分)20.如图,△ABC中,BD为AC边上的中线,BE平分∠CBD,AF⊥BE,分别交BC、BE、BD 于F、G、H.(1)求证:CF=2DH;(4分)(2)若AB=BC,cos∠BCA= ,DE=4,求HD的长.(6分) 21.在平面直角坐标系中,以D(-4,)为圆心的⊙D与y轴相切于点Q,与x轴交于A、 B两点,其中点B坐标为(-1,0).以CD为对称轴的抛物线与⊙D交于A、B两点,点 C坐标为(-4,9),CD与x轴交于点H.(1)求抛物线和直线AC的解析式;(3分)(2)P为直线AC上方抛物线上一点,当S△APC= S△AHC时,求点P坐标;(4分)(3)PM⊥AC于点M,PE⊥x轴于点E且与AC交于点N,△PMN 的周长为l,求l的最大值.(6分)。

九数试卷及答案

九数试卷及答案

九年级数学科考试题(总分:150分 时间:120分钟)一、选择题(每小题4分,共48分)1.二次根式3-x 有意义的条件是( )A .x ≤3 B. x <3 C. x >3 D. x ≥32.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( ) A .2 B. 1 C. 1或2 D. 0 3.下列等式:①3838-=-;②9494+=+; ③22223=-;④33313=⨯÷;⑤322322=。

其中成立的有( ) A .1个 B .2个 C .3个 D .4个4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是.( )A .1个B .2个C .3个D .4个 5.若12xx ,是一元二次方程2560xx -+=的两个根,则12x x +的值是( ) A . 5 B .1C .5-D .66. 如图,ABC △内接于⊙O ,点D 在半径OB 的延长线上,30BCD A ∠=∠=°.若⊙O 的半径长为1,求由弧BC 、线段CD 和BD 所围成的阴影部分面积(结果保留π和根号). A.23 -π31 B. 23 -π61C.33 -π61 D. 3 -π31 7.两个不透明的袋中都各装有一个红球和一个黄球两个球,它们除了颜色外都相同.现随机从两个袋中各摸出一个球,两个球的颜色是一红一黄的概率是( )A.34B.23C. 13D. 128.⊙O 内切于ABC △,切点分别为D E F ,,.已知50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,那么EDF ∠等于( ) A.40° B.55° C.65° D.70°DACDC9.将一个半径为5cm 面积为215cm π的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥容器的高为( ).A .3cm B. 2cm C. 5cm D. 4cm10.下列说法中,①平分弦的直径垂直于弦 ;②直角所对的弦是直径; ③相等的弦所对的弧相等; ④等弧所对的弦相等; ⑤圆周角等于圆心角的一半;⑥经过三个点一定可以作圆。

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(含解答)-

九年级数学竞赛综合训练题(1)(满分120分,考试时间120分)学校 班级 姓名一、选择题:(每小题5分,共30分)1.过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )条 (A )4 (B )3 (C )2 (D )1 2.方程13++x x -y=0的整数解有( )组 (A )1 (B )2 (C )3 (D )4 3.如图,若将图(a )的正方形剪成四块,恰能拼成图(b)的矩形,设a=1,则这个正方形的面积为( )(A )2537+ (B )253+(C )251+ (D )21(+)24.关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围是( )(A )-6<a <-211 (B )-6≤a <-211 (C )-6<a ≤-211 (D )-6≤a ≤-2115.已知四边形ABCD ,从下列条件:(1)AB ∥CD (2)BC ∥AD (3)AB =CD (4)BC =AD (5)∠A =∠C (6)∠B =∠D中任取其中两个,可以得出“四边形ABCD 是平行四边形”这一结论的情况有( )种(A )4 (B )9 (C )13 (D )15 6.已知x 、y 、z 都是实数,且x 2+y 2+z 2=1,则m=xy+yz+zx ( )(A)只有最大值 (B )只有最小值 (C )既有最大值又有最小值 (D )既无最大值又无最小值 二、填空题:(每小题5分,共30分)jab a b ⅠⅡⅢⅣⅣⅢⅡⅠ(b)(a)ba7.已知x=1313+-,y=1313-+, 则x 4+y 4等于 .8.甲、乙两商店某种铅笔标价都是1元,一天,让学生小王欲购这种铅笔,发现甲、乙两商店都让利优惠:甲店实行每买5枝送1枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需要花 元.9.若1≤p ≤20, 1≤q ≤10,且方程4x 2-px+q=0的两根均为奇数,则此方程的根为 . 10.在1、2、……,2003中有些正整数n ,使得x 2+x -n 能分解为两个整系数一次式的乘积,则这样的n 共有 个.11.已知如图所示,∠MON=40°,P 为∠MON 内一点,A 为OM 上一点,B 为ON 上一点,则当△PAB 的周长取最小值时,∠APB 的度数为 .12.若关于x 的方程rx 2-(2r+7)x+r+7=0的根是正整数,则整数r 的值可以是 .三、解答题:(每小题15分,共60分)13.已知a 、b 、c满足方程组2848a b ab c +=⎧⎪⎨-+=⎪⎩, 试求方程bx 2+cx-a=0的根.PNMBOA14.已知两个二次函数y1 和y2,当x=a(a>0)时,y1取得最大值5,且y2=25. 又y2的最小值为-2,y1+y2=x2+16x+13. 求a的值及二次函数y1、y2的解析式.15.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.ND CMAB16.如图所示,四边形ABCD 是矩形,甲、乙两人分别从A 、B 同时出发,沿矩形按逆时针方向前进,即按A →B →C →D →……顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由。

第七届“学用杯”全国知识应用竞赛九年级数学初赛试题(A) 人教新课标版

第七届“学用杯”全国知识应用竞赛九年级数学初赛试题(A) 人教新课标版

第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷(本卷满分150分,考试时间120分钟)温馨提示:亲爱的同学们,这份试卷将记录你的自信、沉着与智慧.愿你能够放松心情,认真审题,缜密思考,细心演算,交一份满意的答卷.一、选择题(每小题6分,共30分)1.校园内一个半径为10米的圆形草坪,如图1,一部分学生为走“捷径”,走出了一条小路AB.通过计算可知,这些学生踩坏了花草,其实仅仅少走了(假设2步为1米,结果保留整数)()A.4步B.5步C.6步D.7步2.小红的妈妈做了一个矩形枕套(长、宽不等),又在枕套四周镶上了相同宽度的花边,如图2所示,关于两个矩形,下列说法正确的是()A.两个矩形相似B.两个矩形不一定相似C.两个矩形一定不相似D.无法判断两个矩形是否相似3.如图3,方台村为了抽取水库的水来浇灌山上的果木树,准备在山坡上建一个抽水泵站.已知山坡上有A、P、Q三处可供选择,且测得A到水库C的距离为50m,P到C的距离为40m,Q到C的距离为35m,山坡的坡角∠ACB=15°.由于大气压的影响,此种水泵的实际吸水扬程AB不能超过10m,否则无法抽取水库的水,则水泵站应建在(sin15°=0.258 8,cos15°=0.965 9,tan15°=0.267 9)()A.A处B.P处C.Q处D.A、P、Q均可4.宏光学校有一面积为100米2的正方形展厅,计划铺满统一大小的正方形地板砖,现市场上有大、小两种规格产品:大地板砖对角线长为50cm,每块0.8元;小地板砖对角线长为40cm,每块0.6元,甲公司的优惠办法是:凡购买大地板砖700块以上者给予9折优惠,凡购买小地板砖1 000块以上者给予7折优惠;乙公司的优惠办法是:凡购买700元以上者,不管购买大块还是小块均按8折优惠.在质量、服务条件相同的情况下,为使学校支付的费用最少,请你为该校选择最佳购买方案()A.到甲公司购买大块地板砖B.到乙公司购买大块地板砖C.到甲公司购买小块地板砖D.到乙公司购买小块地板砖5.如图4,在某条公路上,从里程数8m开始到4 000m止,每隔8m将树与灯按图中的规则设立:在里程数8m处种一棵树,在16m处立一盏灯,在24m处种一棵树(相邻的树与树、树与灯之间的距离都是8米)……,且每两盏灯之间的距离相等.依此规则,下列里程数800m~824m之间树与灯的排列顺序中正确的是()二、填空题(每小题6分,共30分)6.王强毕业于农业技术职业学校,毕业后采用大棚栽培技术种植了一亩地的良种西瓜,第一年这亩地产西瓜625个,为了估计这亩地的收成,王强在西瓜大批上市前随机摘下10个成熟的西瓜,称重如下:西瓜质量(单位:千克)西瓜个数(单位:个) 1 2 3 2 1 1根据以上信息可以估计这亩地的西瓜质量约是千克.7.你是否用电脑进行过图案设计?图5(1)是小明在电脑上设计的小房子,然后他又进行变化,得到图5(2);小亮也在电脑上设计了一个图案,如图5(3),如果小亮也按小明变化图形时的规律对图5(3)进行变化,得到的图案是(画出简图).8.某希望小学刚刚建起,田径场还没建好,秋季运动会时,临时设置简易跑道如图6所示,两端由两个半圆组成,一周约250米,在一次400米跑比赛中,第一道从起点A要跑一圈半到终点C.第二道终点不变,且中途不准抢道(每道宽1米).为公平起见,第二跑道起点B应比第一跑道向前移动.9.自行车轮胎安装在前轮上行驶6 000千米后报废,若安装在后轮上只能行驶4 000千米.为了行驶尽可能远的路程,如果采用当自行车行驶一定路程后将前、后轮胎调换使用的方法,那么安装在自行车上的一对新轮胎最多可行驶千米.10.已知,如图7,斜坡PQ坡度为41:3i ,坡脚Q旁的点N处有一棵大树MN.近中午的某个时刻,太阳光线正好与斜坡PQ垂直,光线将树顶M的影子照射在斜坡PQ上的点A处.如果AQ=4米,NQ=1米,则大树MN的高度为.三、解答题(本大题共60分)11.(本题10分)判断决策:三个无线电厂家在广告中都声称,它们的半导体收音机产品在正常情况下,产品的平均寿命是8年,商品检验部门为了检查他们宣传的真实性,对三个厂家出售的半导体收音机寿命进行了抽样统计,结果如下(单位:年):甲厂:3、4、5、5、5、7、9、10、12、13、15;乙厂:3、3、4、5、5、6、8、8、8、10、11;丙厂:3、3、4、4、4、8、9、10、11、12、13;请你利用所学统计知识,对上述数据进行分析并回答以下问题:(1)这三个厂家的广告,分别利用了哪一种反映数据集中趋势的特征数?(2)如果你是顾客,应选购哪个厂家的产品?为什么?12.(本题15分)方案设计:东风汽车租赁公司共有30辆出租汽车,其中甲型汽车20辆,乙型汽车10辆.现将这30辆汽车租赁给A、B两地的旅游公司,其中20辆派往A地,10辆派往B地,两地旅游公司与汽车租赁公司商定每天价格如下表:(1)设派往A地的乙型汽车x辆,租赁公司这30辆汽车一天共获得的租金为y(元),求y与x之间的函数解析式,并写出自变量x的取值X围;(2)若要使租赁公司这30辆汽车一天所获得的租金总额不低于26 800元,请你说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这30辆汽车每天获得的租金最多,请你为租赁公司提出合理的分派方案.13.(本题15分)实践应用:下承式混凝土连续拱圈梁组合桥,其桥面上有三对抛物线形拱圈.图8(1)是其中一个拱圈的实物照片,据有关资料记载此拱圈高AB为(含拱圈厚度和拉杆长度),横向分跨CD为.(1)试在示意图(图8(2))中建立适当的直角坐标系,求出拱圈外沿抛物线的解析式;(2)在桥面M(BC的中点)处装有一盏路灯(P点),为了保障安全,规定路灯距拱圈的距离PN不得少于1.1m,试求路灯支柱PM的最低高度.(结果精确到0.1m)14.(本题20分)归纳猜想:同学们,让我们一起进行一次研究性学习:(1)如图9,已知正三角形ABC的中心为O,半径为R,将其沿直线l向右翻滚,当正三角形翻滚一周时,其中心O经过的路程是多少?(2)如图10,将半径为R的正方形沿直线l向右翻滚,当正方形翻滚一周时,其中心O经过的路程是多少?(3)猜想:把正多边形翻滚一周,其中心O所经过的路程是多少(R为正多边形的半径,可参看图11)?请说明理由.(4)进一步猜想:任何多边形都有一个外接圆,若将任意圆内接多边形翻滚一周时,其外心所经过的路程是否是一个定值(R为多边形外接圆的半径)?为什么?请以任意三角形为例说明(如图12).通过以上猜想你可得到什么样的结论?请写出来.四、开放题(本题30分)15.杨子晚报报道《你家用“峰谷电”合不合算?》:“峰谷电”的含义是这样的,每天8∶00到22∶00用电每千瓦时是0.56元(峰电);22∶00至次日8∶00每千瓦时是0.28元(谷电).注:平时居民用电每千瓦时是0.52元.(1)根据你家的平时用电情况,算一算,你家用这样的“峰谷电”合算吗?(2)请根据“峰谷电”的使用,编拟一道数学实际应用问题,并给出解题过程,注明用的什么数学知识.第七届“学用杯”全国数学知识应用竞赛九年级初赛试题(A)卷参考答案一、选择题(每小题5分,共30分)1.B 2.C 3.C 4.C 5.D二、填空题(每小题5分,共30分)6.3 1257.8.2π米9.4 80010.8米三、解答题(每小题15分,共60分)11.解:(1)因为甲厂的收音机寿命的平均数是8年,众数是5年,中位数是7年;乙厂的收音机寿命的平均数约是6.45年,众数是8年,中位数是6年;丙厂的收音机寿命的平均数约是7.36年,众数是4年,中位数是8年. ················ 6分 所以,甲厂选用平均数,乙厂选用众数,丙厂选用中位数; ··········· 8分(2)因为甲厂收音机的平均寿命比乙厂、丙厂的都高,因此,顾客应选购甲厂的产品.··········· 10分12.解:(1) 1 000(20)900800600(10)26 000100(010)y x x x x x x =-+++-=+≤≤;·········· 6分(2)依题意,得26 00010026 800x +≥,又因为010x ≤≤,∴810x ≤≤.因为x 是整数,∴x =8,9,10,方案有3种. ················ 9分 方案1:A 地派甲型车12辆,乙型车8辆;B 地派甲型车8辆,乙型车2辆;方案2:A 地派甲型车11辆,乙型车9辆;B 地派甲型车9辆,乙型车1辆;方案3:A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ········ 12分(3)∵26 000100y x =+是一次函数,且1000k =>,∴y 随x 的增大而增大. ∴当10x =时,这30辆车每天获得的租金最多.∴合理的分配方案是A 地派甲型车10辆,乙型车10辆;B 地派甲型车10辆. ··· 15分13.(1)如右图,以A 为坐标原点,BA 所在直线为y 轴建立直角坐标系xAy ,因拱圈外沿所在的抛物线过原点,且以y 轴为对称轴,故可设抛物线解析式为:2y ax =, ··············· 4分由题意抛物线过点(2010)D -,,代入得140a =-,故拱圈外沿抛物线的解析式为: 2140y x =-. ······························· 8分 (2)设(10)N k -,,则:21(10) 2.5(m)40k =-⨯-=-,∴107.5(m)MN k =+=, ························· 12分 ∴7.5 1.18.6PM MN PN =++=≥(m ),即路灯支柱PM 的最低高度为.(其余解法可类似给分). ············ 15分14.解:(1)当正三角形ABC 向右翻滚一周时,其中心O 经过的路线是三条等弧,所以其中心O 经过的路程为:120π32π180R R ⨯=. ·················· 3分 (2)中心O 经过的路程为90π42π180R R ⨯=. ················· 6分 (3)当n 边形向右翻滚一周时,其中心O 经过的路线是n 条等弧,这些弧的半径为R ,所对的圆心角为360n ,所以中心O 经过的路程为360π2π180R n n R ⨯=. ······· 10分 (4)是定值2πR ,理由如下:在△ABC 中,设A B C αβγ∠=∠=∠=,,,△ABC 的外接圆⊙O 的半径为R ,把△ABC 沿直线l 向右翻滚一周时,其外心O 经过的路线是三条弧,当AC 边与直线l 重合时,C 与C '重合,A 与A '重合,B 与B '重合,连接CO 、C O '',则ACO A C O '''∠=∠,所以180OCO ACA γ''∠=∠=-,所以(180)π180R l γ-=,同理,另两条弧长分别为:(180)π180R α-,(180)π180R β-,所以外心O 所经过的路程为2πR . ········ 16分 通过以上猜想可得结论为:把圆内接多边形翻滚一周时,多边形的外心所经过的路程是一个定值. ······························· 20分四、开放题(本题30分)15.(1)答案不惟一,可选择自己家每月(或平均每天)的用电情况,计算说明.只要合理即可得分.(本小问10分);(2)答案不惟一,本小问共20分,编写题目合理可得10分,再写出解题过程,并说明所用数学知识可得20分,以下题目可参考.题1:(用一元一次方程知识编拟)某户居民今年二月份起使用“峰谷电”,三月份经记录这两个月使用“谷电”150千瓦时,已知两月共付电费112元.问该居民使用“峰谷电”多少千瓦时?费用比原来节约了多少?(“峰谷电”中,“峰电”是8∶00到22∶00用电,“谷电”是22∶00到次日8∶00,下同)题2:(用二元一次方程知识编拟)某户居民今年三月份使用“峰谷电”,付电费112元,比原来节约了60.8元,问该户居民使用“峰电”,“谷电”各多少千瓦时?题3:(用不等式知识编拟)某户居民今年三月份使用电量300千瓦时,当“峰电”占总电量的多少时,使用“峰谷电”才合算?题4:(用函数知识编拟)某户居民今年三月份起使用“峰谷电”,平均每天使用“峰电”8千瓦时,写出三月份(31天)该户居民的电费(y元)与每天“谷电”的用电量x(千瓦时)之间的函数关系式.。

初中数学经典竞赛几何题20道及答案

初中数学经典竞赛几何题20道及答案
【详解】
解:∵四边形ABCD是矩形,
∴∠A=∠D=∠BCD=90°,
∵EF⊥BE,
∴∠BEF=90°,
∴∠BEF+∠BCF=180°,
∴B,C,F,E四点共圆,
∴∠EBF=∠ECF,∵∠BEF=∠D=90°,
∴△BEF∽△CDE,
∴ = ,
∵∠ABE+∠AEB=90°,∠AEB+∠DEF=90°,
∴∠DEF=∠ABE,
(1)求y关于x的函数关系式,并写出x的取值范围;
(2)在点O运动的过程中,△EFD的周长是否发生变化?如果发生变化,请用x的代数式表示△EFD的周长;如果不变化,请求出△EFD的周长;
(3)以点A为圆心,OA为半径作圆,在点O运动的过程中,讨论⊙O与⊙A的位置关系,并写出相应的x的取值范围.
参考答案
A. B. C. D.
6.如果一个三角形的三边长分别为1,k,3,则化简 的结果是()
A.-5 B.1 C.13 D.19-4k
7.已知:如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+MN的最小值为( )
A.8B.10C.11D.12
第II卷(非选择题)
请点击修改第II卷的文字说明
二、填空题
8.如图,在矩形ABCD中,点E是边AD上的点,EF⊥BE,交边CD于点F,联结CE、BF,如果tan∠ABE= ,那么CE:BF=_____.
9.如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过点O作OE⊥BD交BC于点E,若△CDE的周长为10,则平行四边形ABCD的周长为____.
∵BD=AD,
∴AD=DC,
∵∠CDA=90°,
∴∠ACD=45°,

人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)

人教版 九年级数学 竞赛专题:代数最值问题(含答案)【例1】当x 变化时,分式12156322++++x x x x 的最小值是 .【例2】已知1≤y ,且12=+y x ,则223162y x x ++的最小值为( )A.719 B. 3 C. 727 D. 13 【例3】()21322+-=x x f ,在b x a ≤≤的范围内最小值2a ,最大值2b ,求实数对(a ,b ).【例4】(1)已知211-+-=x x y 的最大值为a ,最小值b ,求22b a +的值. (2)求使()168422+-++x x 取得最小值的实数x 的值.(3)求使2016414129492222+-+++-++y y y xy x x 取得最小值时x ,y 的值.【例5】如图,城市A 处位于一条铁路线上,而附近的一小镇B 需从A 市购进大量生活、生产用品,如果铁路运费是公路运费的一半,问:该如何从B 修筑一条公路到铁路边,使从A 到B 的运费最低?【例6】(1)设r x ,1+r x ,…,k x (r k >),为k -r +1个互不相同的正整数,且x r +x r +1+…+x k =2019,求k 的最大可能值.(2)a ,b ,c 为正整数,且432c b a =+,求c 的最小值.(能力训练A 级1.已知三个非负数a ,b ,c ,满足3a +2b +c =5和2a +b -3c =1,若m =3a +b -7c ,则m 的最小值为___________,最大值为 .2.多项式p =2x 2-4xy +5y 2-12y +13的最小值为 .3.已知x ,y ,z 为实数,且x +2y -z =6,x -y +2z =3,那么x 2+y 2+z 2的最小值为 . 4.若实数a ,b ,c ,满足a 2+b 2+c 2=9,则代数式(a -b )2+(b -c )2+(c -a )2的最大值为 ( ) 5.已知两点A (3,2)与B (1,-1),点P 在y 轴上且使P A +PB 最短,则P 的坐标是( )A.(0,21-) B.(0,0) C.(0,611) D.(0,41-)6.正实数x ,y 满足1=xy ,那么44411y x +的最小值为( ) A.21 B. 85 C. 1 D. 45E.27.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y (件)与销售单价x (元/件)可近似看作一次函数b kx y +=的关系(如图所示).(1)根据图象,求一次函数b kx y +=的解析式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S 元. ①试用销售单价x 表示毛利润;②试问:销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销量是多少?8.方程()()06122=-+-+m x m x 有一根不大于1-,另一根不小于1,(1)求m 的取值范围;(2)求方程两根平方和的最大值与最小值.9.已知实数a ,b 满足122=++b ab a ,求22b ab a +-的最大值与最小值.10.已知a ,b ,c 是正整数,且二次函数c bx ax y ++=2的图象与x 轴有两个不同的交点A ,B ,若点A ,B 到原点的距离都小于1,求a +b +c 的最小值.11.某单位花50万元买回一台高科技设备,根据对这种型号设备的跟踪调查显示:该设备投入使用后,若将养护和维修的费用均摊到每一天,则有结论:第x 天应付的养护与维修费为()⎥⎦⎤⎢⎣⎡+-500141x 元.(1)如果将设备从开始投入使用到报废所需的养护与维修费及购买设备费用的总和均摊到每一天,叫作每天的平均损耗,请你将每天的平均损耗y (元)表示为使用天数x (天)的函数.(2)按照此行业的技术和安全管理要求,当此设备的平均损耗达到最小值时,就应当报废,问:该设备投入使用多少天应当报废?B 级1.a ,b 是正数,并且抛物线b ax x y 22++=和a bx x y ++=22都与x 轴有公共点,则22b a +的最小值是 .2.设x ,y ,z 都是实数,且满足x +y +z =1,xyz =2,则z y x ++的最小值为 . 3.如图,B 船在A 船的西偏北45°处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离为 km .4.若a ,b ,c ,d 是乘积为1的四个正数,则代数式a 2+b 2+c 2+d 2+ab +bc +ac +ad +bd +cd 的最小值为( )A. 0B. 4C. 8D. 105.已知x ,y ,z 为三个非负实数,且满足3x +2y +z =5,x +y -z =2. 若s =2x +y -z ,则s 的最大值与最小值的和为( )A. 5B.423 C. 427 D. 4356.如果抛物线()112----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值为( )A.1B.2C.3D.47.某商店将进货价每个10元的商品按每个18元售出时,每天可卖出60个,商店经理到市场上做了一番调查后发现,若将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每降低1元,则日销量就增加10个,为获得每日最大利润,此商品售价应定为每个多少元?8.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是p (万元)和q (万元),它们与投入资金x (万元)的关系有经验公式:x q x p 53,51==.今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得多大的利润?9.已知为x ,y ,z 为实数,且5=++z y x ,3=++zx yz xy ,试求z 的最大值与最小值.10.已知三个整数a ,b ,c 之和为13,且bca b =,求a 的最大值和最小值,并求出此时相应的b 与c 值.11.设x 1,x 2,…,x n 是整数,并且满足: ① -1≤x i ≤2,i =1,2,…,n ② x 1+x 2+…+x n =19 ③ x 12+x 22+…+x n 2=99求x 13+x 23+…+x n 3的最大值和最小值.12.已知x 1,x 2,…,x 40都是正整数,且x 1+x 2+…+x 40=58,若x 12+x 22+…+x 402的最大值为A ,最小值为B ,求A +B 的值.参考答案例1. 4 提示:原式=112-62-+)(x . 例2. B 提示:由-1≤y ≤1有0≤x ≤1,则z =2x 2+16x +3y 2=14x 2+4x +3是开口向上,对称轴为71-=x 的抛物线.例3. 分三种情况讨论:①0≤a <b ,则f (x )在a ≤x ≤b 上单调递减,∴f (a )=2b ,f (b )=2a ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b a a b 解得⎩⎨⎧==31b a ②a <b ≤0,则f (x )在a ≤x ≤b 上单调递增,∴f (a )=2a ,f (b )=2b ,即⎪⎪⎩⎪⎪⎨⎧+-=+-=213222132222b b a a 此时满足条件的(a ,b )不存在. ③a <0<b ,此时f (x )在x =0处取得最大值,即2b =f (0)=213,b =413,而f (x )在x =a 或x =b 处取最小值2a .∵a <0,则2a <0,又∵f (b )=f (413)=021341321-2>+⨯)(,∴f (a )=2a ,即2a =2132-2+a ,则⎪⎩⎪⎨⎧=--=413172b a 综上,(a ,b )=(1,3)或(17-2-,413) 例4. (1)121≤≤x ,y 2 = 21+216143-2+-)(x .当x =43时,y 2取得最大值1,a =1; 当21=x 或x =1时,y 2取得最小值21,b =22.故a 2+b 2=23.(2) 如图,AB =8,设AC =x ,则BC =8- x ,AD =2,CD =42+x ,BE =4,CE =16)-8(2+x BF =AD =2.10)24(816)8(4222222=++=+=≥+=+-++EF DF DE CE CD x x当且仅当D ,C ,E 三点共线时,原式取最小值.此时△EBC ∽△DAC ,有224===DA EB CA BC ,从而x =AC =3831=AB .故原式取最小值时,x =38. (3)如图, 原式=[]2222222)24()13()32()01(032--0y x y x -+-+-+-+-+)()(=AB +BC +CD ≥AD ,其中A (-2,0),B (0,3x ),C (1,2y ),D (3,4),并且当点B ,C 在线段AD 上时,原式取得最小值,此时5423=x ,5432=y .例5. 由S =ay m y n a 2)(22+--,得an -S +2ay =a 22n y -,两边平方,经整理得0)()(4322222=+-+-+m a S an y S an a y a .因为关于y 的一元二次方程有实数解,所以[][]0)(34)(422222≥+-⨯--m a S an a S an a ,可化为2223-m a an S ≥)(.∵S >an ,∴am an S 3-≥,即am an S 3+≥,故S 最小=am an 3+.例6(1)设x 1≥1,x 2≥2,x k ≥k ,于是1+2+…+k ≤x 1+x 2+…+x k = 2019,即120192k(k )+≤ k (k +1)≤4006,∵62×63=3906<4006<4032=63×64,∴k ≤62. 当x 1=1,x 2=2,…x 61=61,x 62=112时,原等式成立,故k 的最大可能值为62.(2) 若取⎩⎨⎧=+=-222ba cb ac ,则2)1(2+=b b c 由小到大考虑b ,使2)1(+b b 为完全平方数.当b =8时,c 2=36,则c =6,从而a =28.下表说明c 没有比6更小的正整数解.显然,表中c 4-x 3的值均不是完全平方数,故cA 级1.57- 111- 2.1 3.14 提示:y =5-x ,z =4-x ,原式=3(x -3)2+14. 4.A 提示:原式=27-(a +b +c )2. 5.D 6.C 7.(1)y =-x +1000(500≤x ≤800) (2)①S =(x -500)(-x +1000)=-x 2+1500x -500000(500≤x ≤800);②S -(x -750)2+62500,即销售单价定为750时,公司可获最大毛利润62500元,此时销量为250件. 8.(1)-4≤m ≤2 (2)设方程两根为x 1,x 2,则x 12+x 22=4(m -34)2+1034,由此得x 12+x 22最小值为1034,最大值为101. 9.设a 2-ab +b 2=k ,又a 2+ab +b 2=1②,由①②得ab =12(1-k ),于是有(a +b )2=12(3-k )≥0,∴k ≤3,从而a +b =.故a ,b 是方程t 2t +12k -=0的两实根,由Δ≥0,得133k ≤≤. 10.设A (x 1,0),B (x 2,0),其中 x 1,x 2是方程ax 2+bx +c =0的两根,则有x 1+x 2=b a -<0,x 1x 2=ca>0,得x 1<0,x 2<0,由Δ=b 2-4ac >0,得b >|OA |=|x 1|<1,|OB |=|x 2|<1,∴-1<x 1<0,-1<x 2<0,于是ca=x 1x 2<1,c <a .由于a 是正整数,已知抛物线开口向上,且当x =-1时,对应的二次函数值大于0,即a -b +c >0,a +c >b .又a ,b ,c 是正整数,有a +c ≥b+1,从而a +c ,则211,12>≥,于是a >4,即a ≥5,故b≥b ≥5.因此,取a =5,b =5,c =1,y =5x 2+5x +1满足条件,故a +b +c 的最小值为11. 11.(1)该设备投入使用x 天,每天平均损耗为y =11111[500000(0500)(1500)(2500)(500)]4444x x -+⨯++⨯++⨯++++=11(1)[500000500x ]42x x x -++⨯=500000749988x x ++. (2)y =500000749988x x ++7749999988≥=.当且仅当5000008xx =,即x =2000时,等号成立.故这台设备投入使用2000天后应当报废.B 级 1.20 提示:a 2-8b ≥0,4b 2-4a ≥0,从而a 4≥64b 2≥64a ,a ≥4,b 2≥4. 2.4 提示:构造方程. 3. 提示:设经过t 小时后,A ,B 船分别航行到A 1,B 1,设AA 1=x ,则BB 1=2x ,B 1A 1=4.D 提示:a 2+b 2≥2ab ,c 2+d 2≥2cd ,∴a 2+b 2+c 2+d 2≥2(ab +cd )≥.∴ab +cd ≥2,同理bc +ad ≥2,ac +bd ≥2. 5.A 提示:x =s -2≥0,y =5-43s ≥0,z =1-13s ≥0,解得2≤s ≤3,故s 的最大值与最小值的和为5. 6.A 提示:|AB ,C (2125,24k k k -++-),ABC S =k 2+2k +5=(k +1)2+4≥4. 7.设此商品每个售价为x 元,每日利润为S 元.当x ≥18时,有S =[60-5(x -18)](x -10)=-5(x -20)2+500,即当商品提价为20元时,每日利润为500元;当x ≤18时,S =[60+10(18-x )](x -10)=-10(x -17)2+490,即当商品降价为17元时,每日利润最大,最大利润为490元,综上,此商品售价应定为每个20元. 8.设对甲、乙两种商品的资金投入分别为x ,(3-x )万元,设获取利润为s ,则s 15x =s -15x 两边平方,经整理得x 2+(9-10s )x +25s 2-27=0,∵关于x 的一元二次方程有实数解,∴(9-10s )2-4×(25s 2-27)≥0,解得1891.05180s ≤=,进而得x =0.75(万元),3-x =2.25(万元).即甲商品投入0.75万元,乙商品投入2.25万元,获得利润1.05万元为最大. 9.y =5-x -z ,代入xy +yx +zx =3,得x 2+(z -5)x +(z 2-5z +3)=0.∵x 为实数,∴Δ=(z -5)2-4(z 2-5z +3)≥0,解得-1≤z ≤133,故z 的最大值为133,最小值为-1. 10.设b c x a b==,则b =ax ,c =ax 2,于是,a +b +c =13,化为a (x 2+x +1)=13.∵a ≠0,∴x 2+x +1-13a =0 ①.又a ,b ,c 为整数,则方程①的解必为有理数,即Δ=52a-3>0,得到1≤a ≤523,为有理数,故1≤a ≤16.当a =1时,方程①化为x 2+x -12=0,解得x 1=-4,x 2=3. 故a min =1,b =-4,c =16 或a min =1,b =3,c =9.当a =16时,方程①化为x 2+x +316=0.解得x 1=-34,x 2=-14.故a min =16,b =-12,c =9;或a min =16,b =-4,c =1. 11.设x 1,x 2,…,x n 中有r 个-1,s 个1,t 个2,则219499r s t r s t -++=⎧⎨++=⎩,得3t +s =59,0≤t ≤19.∴x 13+x 23+…+x n 3=-r +s +8t =6t +19.∴19≤x 13+x 23+…+x n 3≤6×19+19=133.∴在t =0,s =59,r =40时,x 13+x 23+…+x n 3取得最小值19;在t =19,s =2,r =21时,x 13+x 23+…+x n 3取得最大值133. 12.∵把58写成40个正整数的和的写法只有有限种,∴x 12+x 22+…+x 402的最大值和最小值存在.不妨设x 1≤x 2≤…≤x 40.若x 1>1,则x 1+x 2=(x 1-1)+(x 2+1),且(x 1-1)2+(x 2+1)2=x 12+x 22+2(x 2-x 1)+2>x 12+x 22.于是,当x 1>1时,可以把x 1逐步调整到1,此时,x 12+x 22+…+x 402的值将增大.同理可以把x 2,x 3,…,x 39逐步调整到1,此时x 12+x 22+…+x 402的值将增大.从而,当x 1,x 2,…,x 39均为1,x 40=19时,x 12+x 22+…+x 402取得最大值,即A =22239111+++个+192=400.若存在两个数x i ,x j ,使得x j -x i ≥2(1≤i <j ≤40),则(x i +1)2+(x j -1)2=x i 2+x j 2-2(x i -x j -1)<x i 2+x j 2.这表明,在 x 1,x 2,…,x 40中,若有两个数的差大于1,则把较小的数加1,较大的数减1此时,x 12+x 22+…+x 402的值将减小,因此,当x 12+x 22+…+x 402 取得最小值时,x 1,x 2,…,x 40中任意两个数的差都不大于1. 故 当x 1=x 2=…=x 22=1,x 23=x 24=…=x 40=2时,x 12+x 22+…+x 402取得最小值,即222111+++22个222222+++⋯+=94从而,A+B=494.。

九年级数学竞赛辅导系列 讲座一 数练习试题

九年级数学竞赛辅导系列 讲座一 数练习试题

轧东卡州北占业市传业学校数学竞赛辅导系列讲座一 —数1、 计算:1111(12)(123)(12320)2320+++++++++++.2、 如果5555555555555554444666666233322n ++++++++⨯=+++,那么n=_______. 3、 HY 训基地购置苹果慰问学员,苹果总数用八进制表示为abc ,七进制表示为cba ,那么苹果总数用十进制表示为_______.4、 实数a 满足|2012|2013a a a --=,那么a -20212的值是〔 〕A 、2021B 、2012C 、2021D 、20215、设分数13(13)56n n n -≠+不是最简分数,那么正整数n 的最小值可以是〔 〕A 、84B 、68C 、45D 、1156、数272-1能被500与600之间的假设干整数整除,试找出三个这样的整数,它们是________. 7、n 是自然数,19n+14与10n+3都是某个不等于1的自然数d 的倍数,那么d=________. 8、设71a=,那么3a 3+12a 2-6a -12=〔 〕A 、24B 、25C 、10D 、129、a 、b 是正整数,且满足2⎛⎝是整数,那么这样的有序数对〔a ,b 〕共有____对. 10、设n 是大于1909的正整数,使得19092009n n--为完全平方数的n 的个数有〔〕个A 、3B 、4C 、5D 、611、设a n 表示数n 4的末位数,那么a 1+a 2+…+a 2021=________.12、如果对于某一特定范围内x 的任意允许值,p=|1-2x|+|1-3x|+…+|1-10x|为定值,那么定值为〔 〕A 、2B 、3C 、4D 、513、假设1,2,3xy yz zxx y y z z x===+++,那么x=______. 14、试求|x -1|+|x -2|+|x -3|+…+|x -2021|的最小值.15、p 、q 均为素数,且满足5p 2+3q=59,那么以p+3,1-p+q ,2p+q -4为边长的三角形是〔 〕A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形16、假设x 1、x 2 、x 3 、x 4 、x 5为互不相等的正奇数,满足(2005-x 1)(2005-x 2)(2005-x 3)(2005-x 4)(2005-x 5)=242,那么x 12+x 22+x 32+x 42+x 52的末尾数字是〔 〕A 、1B 、3C 、5D 、717、在数1、2、3、…、2021、2021前面任意添加上“+〞或“-〞进行计算,所得可能的最小非负数是________.18、设a 、b 、c 为实数,2222,2,2362xa b y b c z c a πππ=-+=-+=-+,x 、y 、z 中至少有一个值〔 〕A 、大于0B 、等于0C 、不大于0D 、小于019、今天是星期日,假设明天算第1天,那么第13+23+…+20213天是星期_____.20、()()()⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+++++=201313121201321.11)(2f f f f f f x x f 则=.21、四个互不相等的正数x、y、m、n中,x最小,n最大,且x:y=m:n,试比较x+n与y+m的大小,并证明你的结论.2210099++23、设x>0,y>0=的值.2425、设a、b、c为有理数.26=0<x<y,那么满足上述等式的整数对(x,y)的个数有多少?27、设11980100S=++++[S]表示不超过S的最大整数,试求S.28、x、y是整数,并且13|(9x+10y),求证:13|(4x+3y).29、假设a、b是整数,且7|(a+b),7|(2a-b),求证:7|(5a+2b).30、正整数p、q都大于1,且2121,p qq p--都是整数,求p+q.31、当n是正整数时,n4-6n2+25是质数还是合数?证明你的结论.32、a是自然数,问a4-3a2+9是质数还是合数?证明你的结论.33、试求出一个四位数,它是一个完全平方数,并且它的前两位数字相同,后两位数字也相同.34、设a、b、c、d是正整数,并且a2+b2=c2+d2,证明a+b+c+d一定是合数.35、你能找到三个正整数a、b、c,使得关系式(a+b+c)(a-b+c)(a+b-c)(b+c-a)=3388成立吗?如果能找到,请举一例;如果找不到,请说明理由.36、一个正整数a,假设将其数字重新排列,可得到一个新的正整数b,如果a恰好是b的3倍,我们称a 是一个“希望数〞.〔1〕请你举例:“希望数〞一定存在;〔2〕请你证明:如果a 、b 都是“希望数〞,那么ab 一定是729的倍数.37、将自然数1、2、3、…、21这21个数,任意地放在一个圆周上,证明:一定有相邻的三个数,它们的和不小于33.38、设x =a 是x 的小数局部,b 是-x 的小数局部,求333ab ab ++的值.39、设a 、b 都是整数,求证:a ,b ,a 2+b 2,a 2-b 2中一定有一个被5整除.40、假设一个数能够表示成2222xxy y ++(x ,y 是整数)的形式,那么称该数为“好数〞〔1〕试判断29是否为好数; 〔2〕写出80,81,…,100中的好数; 〔3〕如果m ,n 都是好数,证明mn 也是好数.41、有三堆小石子的个数分别是19、8、9,现在进行如下的操作:每次从三堆中的任意两堆中取出1个石子,然后把这两个石子都加到另一堆中,试问能否进过假设干次这样的操作后,使得〔1〕三堆的石子数分别是2、12、22? 〔2〕三堆的石子数都是12?如能到达要求,请用最小的操作次数完成它,如不能到达,请说明理由.注:每次操作可用如下方式表示,比方从第一、二堆中各取出一个石子,加到第三堆上,可表示为〔19,8,9〕→〔18,7,11〕等等.42为无理数.43、p 为大于3的质数,证明p 的平方被24除的余数是1.44、M 是一个四位的完全平方数,假设将M 的千位数字减少3而各位数字增加3可以得到另一个完全平方数,那么M=_________.45、在“□1□2□3□4□5□6□7□8□9”的小方格中填上“+〞或“-〞号,如果可以使其代数和为n ,就称数n 是“可被表出的数〞,否那么,就称数n 是“不可被表出的数〞〔如1是可被表出的数,这是因为1+2-3-4+5+6-7-8+9是1的一种可被表出的方法〕. 〔1〕求证:7是可被表出的数,而8是不可被表出的数; 〔2〕求25可被表出的不同方法种数.46、是否存在:用0,1,2,…,9这十个数字组成几个数,使它们的和恰好为100,每个数字都用一次并且只能用一次.47、设〔x 〕表示不超过实数x 的最大整数.那么在平面直角坐标系xoy 中满足〔x 〕〔y 〕=2021的所有点〔x ,y 〕组成的图形的面积 . 48、201321,,,a a a 是一列互不相等的正整数.假设任意改变这2021个数的顺序,并201321,b,,b b 记为.那么数()()()201320132211b a b a b a M ---= 的值必为 .49、〔1〕证明:由2021个1和0组成的自然数不是完全平方数;〔2〕试说明:存在最左边2021位都是1的形如11…1﹡﹡…﹡的自然数〔﹡代表阿拉伯数码〕是完全平方数.。

九年级(上)数学竞赛试题 含答案

九年级(上)数学竞赛试题 含答案

九年级数学一、选择题(每小题5分,共30分)1.已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( )A .9B .±3C .3D . 52.某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )A .13B .19C .12D .23 3.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB的长为a 的值是( ) A.B.2+C.D.24.已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y=k 成立的x 值恰好有三个,则k 的值为( )A .0B .1C .2D .35.方程1)1(32=-++x x x 的所有整数解的个数是( )个 (A )2 (B )3 (C )4 (D )56.如图,在平面直角坐标系xOy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1).y 轴上一点P (0,2)绕点A 旋转180°得点P 1,点P 1绕点B 旋转180°得点P 2,点P 2绕点C 旋转180°得点P 3,点P 3绕点D 旋转180°得点P 4,……,重复操作依次得到点P 1,P 2,…, 则点P 2010的坐标是( ). (A )(2010,2) (B )(2010,2-) (C )(2012,2-) (D )(0,2)二、填空题(每小题5分,共30分) 7.当x 分别等于20051,20041,20031,20021,20011,20001,2000,2001,2002,2003,2004,2005时,计算代数式221x x +的值,将所得的结果相加,其和等于 .8.已知a =5-1,则2a 3+7a 2-2a -12 的值等于 .9.△ABC 的三边长a 、b 、c 满足8=+c b ,52122+-=a a bc ,则△ABC 的周长等于 .10.如图,点A B ,为直线y x =上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x=(x >0)于C D ,两点. 若2BD AC =,则224OC OD - 的值为 .11.如图,直径AB 为6阴影部分的面积是 .12.如图,一次函数的图象过点P (2,3),交x 轴的正半轴与A ,交y 轴的正半轴与B ,则△AOB 面积的最小值是 . 三、解答题(每小题15分,共60分)13、在实数范围内,只存在一个正数是关于x 的方程k x x kx x +=-++3132的解,求实数k 的取值范围.(第10题)(第11题)DB14.阅读下面的情境对话,然后解答问题(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt ∆ABC 中, ∠ACB =90°,AB =c ,AC =b ,BC =a ,且b >a ,若Rt ∆AB C 是奇异三角形,求a :b :c ;(3)如图,AB 是⊙O 的直径,C 是上一点(不与点A 、B 重合),D 是半圆 ⌒ABD 的中点,CD 在直径AB 的两侧,若在⊙O 内存在点E 使得AE =AD ,CB =CE .○1求证:∆ACE 是奇异三角形; ○2当∆ACE 是直角三角形时,求∠AOC 的度数.15.如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.16.设k 为正整数,证明:(1)、如果k 是两个连续正整数的乘积,那么256k +也是两个连续正整数的乘积; (2)、如果256k +是两个连续正整数的乘积,那么k 也是两个连续正整数的乘积.参考答案一、选择题1.C 2.A 3.B 4.D 5. C 6. B6.解:由已知可以得到,点1P ,2P 的坐标分别为(2,0),(2,2-). 记222 )P a b (,,其中222,2a b ==-. 根据对称关系,依次可以求得:322(42)P a b --,--,422(2)P a b ++,4,522(2)P a b ---,,622(4)P a b +,. 令662(,)P a b ,同样可以求得,点10P 的坐标为(624,a b +),即10P (2242,a b ⨯+), 由于2010=4⨯502+2,所以点2010P 的坐标为(2010,2-). 二、填空题7.6 8.0 9.12 10.6. 11.6π 12.1212.解:设一次函数解析式为y kx b =+,则32k b =+,得32b k =-,令0y =得bx k=-,则OA =b k-. 令0x =得y b =,则OA =b .2221()21(32)2141292124]212.AOB b S b kk kk k k∆=⨯-⨯-=⨯--+=⨯-=⨯+≥ 所以,三角形AOB 面积的最小值为12.三、解答题13、原方程可化为0)3(322=+--k x x ,①(1)当△=0时,833-=k ,4321==x x 满足条件; (2)若1=x 是方程①的根,得0)3(13122=+-⨯-⨯k ,4-=k .此时方程①的另一个根为21,故原方程也只有一根21=x ;(3)当方程①有异号实根时,02321<+-=k x x ,得3->k ,此时原方程也只有一个正实数根;(4)当方程①有一个根为0时,3-=k ,另一个根为23=x ,此时原方程也只有一个正实根。

九年级奥数题及答案解析

九年级奥数题及答案解析

【导语】数学奥林匹克活动的蓬勃发展,极⼤地激发了⼴⼤少年⼉童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的⼀项有益活动。

以下是为您整理的相关资料,希望对您有⽤。

排列组合问题: 1.有五对夫妇围成⼀圈,使每⼀对夫妇的夫妻⼆⼈动相邻的排法有() A768种B32种C24种D2的10次⽅中 解: 根据乘法原理,分两步: 第⼀步是把5对夫妻看作5个整体,进⾏排列有5×4×3×2×1=120种不同的排法,但是因为是围成⼀个⾸尾相接的圈,就会产⽣5个5个重复,因此实际排法只有120÷5=24种。

第⼆步每⼀对夫妻之间⼜可以相互换位置,也就是说每⼀对夫妻均有2种排法,总共⼜2×2×2×2×2=32种 综合两步,就有24×32=768种。

2若把英语单词hello的字母写错了,则可能出现的错误共有() A119种B36种C59种D48种 解: 5全排列5*4*3*2*1=120 有两个l所以120/2=60 原来有⼀种正确的所以60-1=59 容斥原理问题: 1.有100种⾚贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的⾷品种类的值和最⼩值分别是() A43,25B32,25C32,15D43,11 解:根据容斥原理最⼩值68+43-100=11 值就是含铁的有43种 2.在多元智能⼤赛的决赛中只有三道题.已知:(1)某校25名学⽣参加竞赛,每个学⽣⾄少解出⼀道题;(2)在所有没有解出第⼀题的学⽣中,解出第⼆题的⼈数是解出第三题的⼈数的2倍:(3)只解出第⼀题的学⽣⽐余下的学⽣中解出第⼀题的⼈数多1⼈;(4)只解出⼀道题的学⽣中,有⼀半没有解出第⼀题,那么只解出第⼆题的学⽣⼈数是() A,5B,6C,7D,8 解:根据“每个⼈⾄少答出三题中的⼀道题”可知答题情况分为7类:只答第1题,只答第2题,只答第3题,只答第1、2题,只答第1、3题,只答2、3题,答1、2、3题。

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)

全国大学生数学竞赛预赛试题(1-9届)第三届全国大学生数学竞赛预赛试题一. 计算下列各题(共3小题,每小题各5分,共15分)(1).求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭; (2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e ⎧=+⎪⎨=-⎪⎩,求22d ydx。

二.(10分)求方程()()2410x y dx x y dy +-++-=的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=。

四.(17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)取上侧,∏是S 在(),,Px y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S的正法向的方向余弦。

计算:(1)(),,S zdS x y z ρ⎰⎰;(2)()3S z x y z dS λμν++⎰⎰六.(12分)设f(x)是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛。

七.(15分)是否存在区间[]0,2上的连续可微函数f(x),满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、?请说明理由。

九年级数学竞赛试题(含答案)

九年级数学竞赛试题(含答案)

初三数学竞赛试题(本卷满分:120分,时间:120分钟)一、选择题(每小题5分、共40分)1、如果多项式200842222++++=b a b a p ,则p 的最小值是( )(A) 2005 (B) 2006 (C) 2007 (D) 20082、菱形的两条对角线之和为L,面积为S,则它的边长为( ). (A)2124L S - (B)2124L S + (C)21S L 42- (D)21S L 42+3、方程1)1(32=-++x x x 的所有整数解的个数是( )(A )5个 (B )4个 (C )3个 (D )2个 4、已知梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于O ,△AOD 的面积为4, △BOC 的面积为9,则梯形ABCD 的面积为( )(A )21 (B )22 (C )25 (D )26 5、方程|xy |+|x+y|=1的整数解的组数为( )。

(A )8 (B) 6 (C) 4 (D) 2 6、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。

其中正确的说法是( )(A) ①② (B) ①③ (C) ②④ (D )③④7、一名模型赛车手遥控一辆赛车,先前进1m ,然后,原地逆时针方向旋转角a(0°<α<180°)。

被称为一次操作.若五次操作后,发现赛车回到出发点,则角α为 ( )(A) 7 2° (B )108°或14 4° (C )144° (D ) 7 2°或144°8、如图,已知圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切.若⊙A、⊙B、⊙C 的半径分别为a 、b 、c(0<c<a<b),则a 、b 、c 一定满足的关系式为 ( ) (A )2b=a+c (B )=b c a +(C )b ac 111+= (D)ba c 111+=二、填空题(每小题5分,共30分)9、已知a ﹑b 为正整数,a=b-2005,若关于x 方程x 2-ax+b=0有正整数解,则a 的最小值是________. 10、如图,在△ABC 中,AB=AC, AD ⊥BC, CG ∥AB, BG 分别交AD,AC 于E,F.若b a BE EF =,那么BEGE等于 .A BCG F E D11、已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x1,0),且1<x1<2,与y 轴正半轴的交点在(0,2)的下方,下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1.其中正确的结论是_____________.(填写序号)12、如图,⊙O 的直径AB 与弦EF 相交于点P ,交角为45°, 若22PF PE +=8,则AB 等于 .13、某商铺专营A ,B 两种商品,试销一段时间,总结得到经营利润y 与投人资金x(万元)的经验公式分别是yA=x 71,yB=x 73。

湖南省怀化市沅陵县2020届九年级上学期知识竞赛数学试题(含答案)

湖南省怀化市沅陵县2020届九年级上学期知识竞赛数学试题(含答案)

2019年初中学科知识竞赛数学试卷第Ⅰ卷(填空题)一.填空题(共12小题,满分60分,每小题5分)1.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为.2.若关于x的不等式组有且只有四个整数解,则实数a的取值范围是.3.要使关于x的方程﹣=的解为负数,则m的取值范围是.4.已知|m﹣2018|+m=,则m+20182的值是.5.若实数a、b满足a+b2=2,则a2+5b2的最小值为.6.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于.7.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.8.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.9.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.10.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是.(11题图)(12题图)12.如图,半径为2cm,圆心角为90°的扇形OAB的上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在上从点A运动到点B 时,内心I所经过的路径长为.第Ⅱ卷(非选择题)二.解答题(共7小题,满分90分,13-15题每小题10分,16-19题每题15分)13.已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).(1)求证:不论m为何值,方程总有实数根;(5分)(2)当m为何整数时,方程有两个不相等的正整数根?(5分)14.某电器超市根据市场需求,计划采购A、B两种型号的电风扇共40台.该超市准备采购这两种电风扇的金额不少于9000元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知A、B两种型号的电风扇的进价和售价如下表:(1)该电器超市这两种型号的电风扇有哪几种采购方案?(3分)(2)该电器超市如何采购能获得最大利润?(3分)(3)据市场调查,每台A型电风扇的售价将会提高a元(a>0),每台B型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价﹣进价)(4分)15.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2分)(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(4分)(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.(4分)16.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(3分)(2)连接EF,求∠EFC的正切值;(5分)(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.(7分)17.如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.(1)求证:CD是⊙O的切线;(4分)(2)若=,求∠E的度数;(5分)(3)连结AD,在(2)的条件下,若CD=2,求AD的长.(6分)18.如图1:在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠F AE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(4分)(2)设AB=12,求线段FC的长.(5分)(3)如图2:过AE中点G的直线分别交AB、CD于P、Q;求的值.(6分)19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2分)(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;(5分)②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.(8分)参考答案一.填空题(共12小题)1.已知直角三角形的两边x,y的长满足|x﹣4|+=0,则第三边的长为3或.【解答】解:∵|x﹣4|+=0,∴x=4,y=5,①x、y是直角边时,第三边为.②当y=5是斜边时,第三边为3,故答案为3或2.若关于x的不等式组有且只有四个整数解,则实数a的取值范围是12<a ≤14.【解答】解:解①得x>2,解②得x<a,∴2<x,∵不等式组有且只有四个整数解,即3,4,5,6;∴6<a≤7,即12<a≤14.故答案为12<a≤14.3.要使关于x的方程﹣=的解为负数,则m的取值范围是m>﹣1且m≠3.【解答】解:去分母得:x2﹣1﹣x2﹣2x=m即﹣2x﹣1=m解得x=根据题意得:<0解得:m>﹣1∵x+2≠0,x﹣1≠0∴x≠﹣2,x≠1,即≠﹣2,≠1∴m≠±3,故答案是:m>﹣1且m≠3.4.已知|m﹣2018|+m=,则m+20182的值是2017.【解答】解:∵2017﹣m≥0,∴m≤2017.∴由|m﹣2018|+m=得到:2018﹣m+m=,则=2018,∴m+20182=m+2017﹣m=2017.故答案是:2017.5.若实数a、b满足a+b2=2,则a2+5b2的最小值为4.【解答】解:∵a+b2=2,∴b2=2﹣a,a≤2,∴a2+5b2=a2+5(2﹣a)=a2﹣5a+10=(a﹣)2+,当a=2时,a2+5b2可取得最小值为4.故答案为:4.6.已知实数m满足m2﹣3m+1=0,则代数式m2+的值等于9.【解答】解:∵m2﹣3m+1=0,∴m2=3m﹣1,∴m2+=3m﹣1+=3m﹣1+=====9,故答案为:9.7.如图,边长为1的正方形ABCD中,点E是对角线BD上的一点,且BE=BC,点P在EC上,PM⊥BD于M,PN⊥BC于N,则PM+PN=.【解答】解:连接BP,作EF⊥BC于点F,则∠EFB=90°,由正方形的性质可知∠EBF=45°,∴△BEF为等腰直角三角形,又根据正方形的边长为1,得到BE=BC=1,在直角三角形BEF中,sin∠EBF=,即BF=EF=BE sin45°=1×=,又PM⊥BD,PN⊥BC,∴S△BPE+S△BPC=S△BEC,即BE×PM+×BC×PN=BC×EF,∵BE=BC,PM+PN=EF=;故答案为:.8.如图,AB是⊙O的弦,AB=4,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是2.【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=4,∴AD=4,∴MN=AD=2,故答案为:2.9.如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.【解答】解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC=S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.10.如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为 2.8.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.11.如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a≥0,其中所有正确的结论是②④⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.12.如图,半径为2cm,圆心角为90°的扇形OAB的上有一运动的点P.从点P向半径OA引垂线PH交OA于点H.设△OPH的内心为I,当点P在上从点A运动到点B 时,内心I所经过的路径长为cm.【解答】解:如图,连OI,PI,AI,∵△OPH的内心为I,∴∠IOP=∠IOA,∠IPO=∠IPH,∴∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣(∠HOP+∠OPH),而PH⊥OA,即∠PHO=90°,∴∠PIO=180°﹣(∠HOP+∠OPH)=180°﹣(180°﹣90°)=135°,又∵OP=OA,OI公共,而∠IOP=∠IOA,∴△OPI≌△OAI,∴∠AIO=∠PIO=135°,所以点I在以OA为弦,并且所对的圆周角为135°的一段劣弧上;过A、I、O三点作⊙O′,如图,连O′A,O′O,在优弧AO取点P,连P A,PO,∵∠AIO=135°,∴∠APO=180°﹣135°=45°,∴∠AO′O=90°,而OA=2cm,∴O′O=OA=×2=,∴弧OA的长==(cm),所以内心I所经过的路径长为cm.故答案为:cm.二.解答题(共7小题)13.已知关于x的方程mx2﹣(m+3)x+3=0(m≠0).(1)求证:不论m为何值,方程总有实数根;(5分)(2)当m为何整数时,方程有两个不相等的正整数根?(5分)【解答】解:(1)当m=0时,方程为﹣3x+3=0,其解为x=1;当m≠0时,∵△=[﹣(m+3)]2﹣4m×3=m2﹣6m+9=(m﹣3)2,∵(m﹣3)2≥0即△≥0,∴不论m为何值,方程总有实数根.(2)(mx﹣3)(x﹣1)=0x1=,x2=1,∵方程有两个不相等的正整数根,∴m=114.某电器超市根据市场需求,计划采购A、B两种型号的电风扇共40台.该超市准备采购这两种电风扇的金额不少于9000元,但不超过9100元,且所采购的这两种电风扇可以全部销售完,现已知A、B两种型号的电风扇的进价和售价如下表:型号A B进价(元/台)200250售价(元/台)240300(1)该电器超市这两种型号的电风扇有哪几种采购方案?(3分)(2)该电器超市如何采购能获得最大利润?(3分)(3)据市场调查,每台A型电风扇的售价将会提高a元(a>0),每台B型电风扇售价不会改变,该电器超市应该如何采购才可以获得最大利润?(注:利润=售价﹣进价)(4分)【解答】解:(1)设该电器超市采购A、B两种型号的电风扇的台数分别为x台、(40﹣x)台,9000≤200x+250(40﹣x)≤9100,解得,18≤x≤20∵x为正整数∴x=18或19或20,∴40﹣x=22或21或20,∴该电器超市共有3种采购方案:①购买A型电风扇18台、B型电风扇22台;②购买A型电风扇19台、B型电风扇21台;③购买A型电风扇20台、B型电风扇20台;(2)方案①的利润为:(240﹣200)×18+(300﹣250)×22=720+1100=1820(元);方案②的利润为:(240﹣200)×19+(300﹣250)×21=760+1050=1810(元);方案③的利润为:(240﹣200)×20+(300﹣250)×20=800+1000=1800(元);∴能获得最大利润的购买方案是方案①:购买A型电风扇18台、B型电风扇22台.(3)利润为:(240﹣200+a)x+(300﹣250)×(40﹣x)=40x+ax+2000﹣50x=(a﹣10)x+2000,当0<a<10时,a﹣10<0∴x越小,利润越大,∴能获得最大利润的购买方案是方案①:购买A型电风扇18台、B型电风扇22台;当a=10时,a﹣10=0,∴3种方案的利润相同;当a>10时,a﹣10>0∴x越大,利润越大∴能获得最大利润的购买方案是方案③:购买A型电风扇20台、B型电风扇20台.15.如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2分)(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM 的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(4分)(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.(4分)【解答】解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,2),Q3(1,﹣2),Q4(1,).16.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(3分)(2)连接EF,求∠EFC的正切值;(5分)(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.(7分)【解答】解:(1)∵OA=3,OB=4,∴B(4,0),C(4,3),∵F是BC的中点,∴F(4,),∵F在反比例y=函数图象上,∴k=4×=6,∴反比例函数的解析式为y=,∵E点的坐标为3,∴E(2,3);(2)∵F点的横坐标为4,∴F(4,),∴CF=BC﹣BF=3﹣=∵E的纵坐标为3,∴E(,3),∴CE=AC﹣AE=4﹣=,在Rt△CEF中,tan∠EFC==,(3)如图,由(2)知,CF=,CE=,,过点E作EH⊥OB于H,∴EH=OA=3,∠EHG=∠GBF=90°,∴∠EGH+∠HEG=90°,由折叠知,EG=CE,FG=CF,∠EGF=∠C=90°,∴∠EGH+∠BGF=90°,∴∠HEG=∠BGF,∵∠EHG=∠GBF=90°,∴△EHG∽△GBF,∴=,∴,∴BG=,在Rt△FBG中,FG2﹣BF2=BG2,∴()2﹣()2=,∴k=,∴反比例函数解析式为y=.17.如图,AB为⊙O的直径,C,G是⊙O上两点,过点C的直线CD⊥BG于点D,交BA 的延长线于点E,连接BC,交OD于点F,且BC平分∠ABD.(1)求证:CD是⊙O的切线;(4分)(2)若=,求∠E的度数;(5分)(3)连结AD,在(2)的条件下,若CD=2,求AD的长.(6分)【解答】证明:(1)连接OC,∵OC=OB,BC平分∠ABD,∴∠OCB=∠OBC,∠OBC=∠DBC,∴∠DBC=∠OCB,∴OC∥BD,∴∠BDC=∠ECO,∵CD⊥BD,∴∠BDC=90°,∴∠ECO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)由(1)知,OC∥BD,∴∠OCF=∠DBF,∠COF=∠BDF,∴△OCF∽△DBD,∴,∵=,∴,∵OC∥BD,∴△EOC∽△EDB,∴,∴,设OE=2a,EB=3a,∴OB=a,∴OC=a,∵∠OCE=90°,OC=OE,∴∠E=30°;(3)∵∠E=30°,∠BDE=90°,BC平分∠DBE,∴∠EBD=60°,∠OBC=∠DBC=30°,∵CD=2,∴BC=4,BD=6,∵,∴OC=4,作DM⊥AB于点M,∴∠DBM=90°,∵BD=6,∠DBM=60°,∴BM=3,DM=3,∵OC=4,∴AB=8,∴AM=5,∵∠DMA=90°,DM=3,∴AD==.18.如图1:在正方形ABCD中,E是BC的中点,点F在CD上,∠BAE=∠F AE.(1)指出线段AF、BC、FC之间有什么关系,证明你的结论.(4分)(2)设AB=12,求线段FC的长.(5分)(3)如图2:过AE中点G的直线分别交AB、CD于P、Q;求的值.(6分)【解答】解:(1)AF=BC+FC,证明如下:如图1,过E作EM⊥AF交AF于点M,∵∠BAE=∠F AE,∴BE=ME,在Rt△ABE和Rt△AME中,,∴Rt△ABE≌Rt△AME(HL),∴AM=AB=BC,ME=BE=EC,在Rt△MFE和Rt△CFE中,,∴Rt△MFE≌Rt△CFE(HL),∴MF=FC,∴AF=AM+MF=BC+FC;(2)设FC=x,由(1)可知MF=x,AM=AD=AB=12,则DF=12﹣x,AF=12+x,在Rt△AFD中,由勾股定理可得:AD2+DF2=AF2,即122+(12﹣x)2=(12+x)2,解得x=3,即FC=3;(3)如图2,过G作RS∥BC,交AB于点R,交CD于点S,∵G为AE中点,∴R为AB中点,∴RG=BE=BC,GS=RS﹣RG=BC﹣RG=BC﹣BC=BC,∵AB∥CD,∴===.19.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2分)(2)点D为直线AC上方抛物线上一动点,①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;(5分)②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.(8分)【解答】解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)①如图,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交于AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,﹣a2﹣a+2),∴M(a,a+2),∵B(1,0),∴N(1,),∴==(a+2)2+;∴当a=﹣2时,的最大值是;②∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴P A=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=﹣,点D的横坐标为﹣2或﹣.。

2017年上海市大同杯九年级数学竞赛闵行区初赛试题

2017年上海市大同杯九年级数学竞赛闵行区初赛试题

2017年闵行区初三数学竞赛 (上海市初三数学竞赛选拔赛)一、填空题1. 因式分解:422434x x y y ++=______________.2. 对某个正整数,求其各位数字的平方和,称为对该数作了一次“操作”,那么对2017作2017次“操作”所得的是______________.3. 直线l 与反比例函数12y x=的图像交于A 、B 两点,与x 轴、y 轴交于C 、D 两点,且与直线32y x =平行,若点C 、D 恰好是线段AB 的两个三等分点,则直线l 的表达式为______________.4. 如果等腰三角形一腰上的高与该腰所对底角的平分线 的夹角为12°,则此等腰三角形的顶角度数为_________.5. 如图,一个5×5×5的正方体,先在它的前后方向正中 央开凿一个“十字形”的孔(打通),再在它的上下方向正 中央也开凿一个“十字形”的孔(打通),最后在它的左右 方向正中央也开凿一个“十字形”的孔(打通),这样得到 一个被凿空了的几何体,则所得几何体的体积为 .6. 如图,在△ABC 中,∠C =90°,点D 、E 、F 分别在边AB 、AC 上,若AD =DE =EF =FB =1,BC,则边AB 的长为______________.7. 平面直角坐标系中点(4,0),(0,3),(3,6)和(8,2),如果直线l 到其中两个点的距离相等,且其到另两个点的距离也相等,则满足条件的直线l 共有______________条.8. 如图,点E 、F 分别位于正方形ABCD 边AD 和边AB 延长线上,且DE =BF ,EF 与AC 交于点G ,如果AC ∶EF =3∶4,那么AG ∶GC =______________. 9. 有A 、B 、C 、D 四个人,各自对某个两位数用两句话表述:A :“用2除余1,用3除余2.”B :“用4除余3,用5除余4.”C :“用6除余5,用7除余6.”D :“用8除余7,用9除余8.”已知四个人每人都只说对了一句话,而另一句是错的,则这个两位数是______________. 10. 将1,2,3,4,5,6,7排成一列,其排法数为7!=5040种.排列需使数列中恰好有一项比其前一项小,则在5040种排列中满足条件的个数是______________. 二、解答题11.某厂一只计时钟要69分钟才能使分针与时针相遇一次,如果每小时付给工人计时工资G F EDCB A FE DC BA12.设c b a >>,1222=++=++c b a c b a ,试求b a +的取值范围.13.如图,正方形ABCD 的边长为1,沿过其中心O 的直线将该正方形折叠,折痕为EF ,折叠后重合部分为五边形EFPQR ,求五边形EFPQR 面积的最小值.14.如图一个10×10的网格,联结其中某些单位正方形的对角线,要求所得对角线均无公共点,那么这样的对角线最多有多少条?2017年闵行区初三数学竞赛 (上海市初三数学竞赛选拔赛)一、填空题1. 因式分解:422434x x y y ++=______________. 解:()()222222x xy y xxy y ++-+2. 对某个正整数,求其各位数字的平方和,称为对该数作了一次“操作”,那么对2017作2017次“操作”所得的是______________. 解:1453. 直线l 与反比例函数12y x=的图像交于A 、B 两点,与x 轴、y 轴交于C 、D 两点,且与直线32y x =平行,若点C 、D 恰好是线段AB 的两个三等分点,则直线l 的表达式为______________. 解:332y x =±4. 如果等腰三角形一腰上的高与该腰所对底角的平分线的夹角为12°,则此等腰三角形的顶角度数为_________. 解:44或765. 如图,一个5×5×5的正方体,先在它的前后方向正中 央开凿一个“十字形”的孔(打通),再在它的上下方向正 中央也开凿一个“十字形”的孔(打通),最后在它的左右 方向正中央也开凿一个“十字形”的孔(打通),这样得到 一个被凿空了的几何体,则所得几何体的体积为 . 解:766. 如图,在△ABC 中,∠C =90°,点D 、E 、F 分别在边AB 、AC 上,若AD =DE =EF =FB =1,BC,则边AB 的长为______________.1 G FEDCBAFEDC BA7. 平面直角坐标系中点(4,0),(0,3),(3,6)和(8,2),如果直线l 到其中两个点的距离相等,且其到另两个点的距离也相等,则满足条件的直线l 共有______________条. 解:98. 如图,点E 、F 分别位于正方形ABCD 边AD 和边AB 延长线上,且DE =BF ,EF 与AC 交于点G ,如果AC ∶EF =3∶4,那么AG ∶GC =______________. 解:1∶89. 有A 、B 、C 、D 四个人,各自对某个两位数用两句话表述:A :“用2除余1,用3除余2.”B :“用4除余3,用5除余4.”C :“用6除余5,用7除余6.”D :“用8除余7,用9除余8.”已知四个人每人都只说对了一句话,而另一句是错的,则这个两位数是______________. 解:5510. 将1,2,3,4,5,6,7排成一列,其排法数为7!=5040种.排列需使数列中恰好有一项比其前一项小,则在5040种排列中满足条件的个数是______________. 解:120二、解答题11.某厂一只计时钟要69分钟才能使分针与时针相遇一次,如果每小时付给工人计时工资40元,超过规定时间的加班每小时应付计时工资60元,工人按此计时钟所示做完8小时工作(8小时为规定工作时间),那么工厂应付工人工资多少元?解:346元(标准时钟每72011分钟分针与时针重合一次,所以工厂的时钟显示8小时折合标准时间为506分钟,工资为34元)12.设c b a >>,1222=++=++c b a c b a ,试求b a +的取值范围. 解:413a b <+<(用韦达定理构造以a 、b 为根的方程,由判别式得:113c -<<;再由()()()()000a cbc a c c b c a c b c -+->⎧>⎧⎪⇔⇒<⎨⎨>-->⎩⎪⎩)13.如图,正方形ABCD的边长为1,沿过其中心O的直线将该正方形折叠,折痕为EF,折叠后重合部分为五边形EFPQR,求五边形EFPQR面积的最小值.1(1=2AER DPQS S S--△△五边形,设法证四个小三角形全等或周长均为1,当小三角形为等腰直角三角形时,面积最大,此时五边形面积最小)14.如图一个10×10的网格,联结其中某些单位正方形的对角线,要求所得对角线均无公共点,那么这样的对角线最多有多少条?解:55(存在性:L型构造,即左第一列与下第一行共19条,左第三列与下第三行共15条,左第五列与下第五行共11条,左第七列与下第七行共7条,左第九列与下第九行共3条,共55条。

浙教版-学年度九年级数学竞赛试卷1(含解析)

浙教版-学年度九年级数学竞赛试卷1(含解析)

绝密★启用前浙教版2018-2019学年初三数学竞赛试卷1题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.若交换代数式中的任意两个字母,代数式不变,则称这个代数式为完全对称式,如a+b+c就是一个完全对称式.已知三个代数式:①a(b+c)+b(a+c)+c(a+b);②a2bc+b2ac+c2ab;③a2+b2+c2﹣ab﹣bc﹣ac.其中是完全对称式的()A.只有①②B.只有①③C.只有②③D.有①②③2.已知2x﹣3﹣2y=0(x>0),则的值是()A.B.C.D.3.已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m,,的大小关系是()A.B.C.D.4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在5.x、y都是正数,且成反比例,当x增加a%时,y减少b%,则b的值为()A.a B.C.D.6.如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.B.C.D.7.某寺院有甲、乙、丙三口铜钟.甲钟每4s敲响一声,乙钟每5s敲响一声,丙钟每6s敲响一声.新年到来时,三口钟同时敲响且同时停敲,某人共听到365声钟响.若在此期间,甲、乙、丙三口钟敲响的次数分别为x次、y次、z次,则x+y+z=()A.365 B.484 C.585 D.4658.记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数的“理想数”.已知a1,a2,…,a500的“理想数”为2004,那么8,a1,a2,…,a500的“理想数”为()A.2004 B.2006 C.2008 D.2010第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共6小题,4*6=24)9.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是.10.在一次剪纸活动中,小聪依次剪出6张正方形纸片拼成如图所示的图形,若小聪所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③面积相等,那么正方形⑤的面积为.11.方程x2﹣4x+3a2﹣2=O在区间[﹣1,1]上有实根.则实数a的取值范围是.12.设△ABC的重心为G,且AG=6,BG=8,CG=10.则S△ABC=.13.设二次函数y=x2+2ax+(a<0)的图象顶点为A,与x轴交点为B、C,当△ABC为等边三角形时,a的值为.14.如图,边长为1的正三角形ANB放置在边长为MN=3,NP=4的长方形MNPQ内,且NB在边NP上.若正三角形在长方形内沿着边NP、PQ、QM、MN翻转一圈后回到原来起始位置,则顶点A在翻转过程中形成轨迹的总长是(保留π).评卷人得分三.解答题(共8小题,64分)15.(6分)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.16.(6分)已知四边形ABCD两条对角线互相垂直,点O是对角线的交点,∠ACD=60°,∠ABD =45°,点A到CD的距离是6,点D到AB的距离是8,求四边形ABCD的面积S.17.(6分)已知a、b、c满足方程组,试求方程bx2+cx﹣a=0的根.18.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.19.(10分)如图所示,四边形ABCD是矩形,甲、乙两人分别从A、B同时出发,沿矩形按逆时针方向前进,即按A→B→C→D→…顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由.20.(10分)已知当﹣1<x<O时,二次函数y=x2﹣4mx+3的值恒大于1,求m的取值范围.21.(12分)已知在矩形ABCD中,AB=4,BC=,O为BC上一点,BO=,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)22.(14分)已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC 交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.若交换代数式中的任意两个字母,代数式不变,则称这个代数式为完全对称式,如a+b+c就是一个完全对称式.已知三个代数式:①a(b+c)+b(a+c)+c(a+b);②a2bc+b2ac+c2ab;③a2+b2+c2﹣ab﹣bc﹣ac.其中是完全对称式的()A.只有①②B.只有①③C.只有②③D.有①②③【分析】根据完全对称式的含义,把式子中任意两个字母交换,根据乘法的交换律和加法的交换律即可求出答案.【解答】解:根据完全对称式的含义:把a(b+c)+b(a+c)+c(a+b)中任意两个字母交换,如a 和c交换得到:c(b+a)+b(c+a)+a(c+b)=a(b+c)+b(a+c)+c(a+b),交换其它的任意的两个字母也和原式相等,∴①正确;根据完全对称式的含义:把a2bc+b2ac+c2ab中任意两个字母交换,如b和c交换得到:a2cb+c2ab+b2ac =a2bc+b2ac+c2ab,交换其它的任意的两个字母也和原式相等∴②正确;根据完全对称式的含义:把a2+b2+c2﹣ab﹣bc﹣ac中任意两个字母交换,如b和a交换得到:b2+a2+c2﹣ba﹣ac﹣bc=a2+b2+c2﹣ab﹣bc﹣ac,交换其它的任意的两个字母也和原式相等,∴③正确.故选:D.【点评】本题主要考查对对称式和轮换对称式的理解和掌握,能熟练地根据完全对称式的含义进行判断是解此题的关键.2.已知2x﹣3﹣2y=0(x>0),则的值是()A.B.C.D.【分析】先把所给方程用十字相乘法因式分解,求出x,y之间的关系,然后代入分式化简求值.【解答】解:原方程得2()﹣3﹣2=0.令=t,则方程变形为2t2﹣3t﹣2=0,即(2t+1)(t﹣2)=0,解得t1=2,t2=﹣(舍去),故=4.将x=4y代入分式,得=.故选:D.【点评】本题考查的是用因式分解法解方程,求出x,y之间的关系,然后代入分式化简求值.3.已知mn<0且1﹣m>1﹣n>0>n+m+1,那么n,m,,的大小关系是()A.B.C.D.【分析】根据条件设出符合条件的具体数值,根据负数小于一切正数,两个负数比较大小,两个负数绝对值大的反而小即可解答.【解答】解:∵mn<0,∴m,n异号,由1﹣m>1﹣n>0>n+m+1,可知m<n,m+n<﹣1,m<0,0<n<1,|m|>|n|,|m|>2,假设符合条件的m=﹣4,n=0.2则=5,n+=0.2﹣=﹣则﹣4<﹣<0.2<5故m<n+<n<.故选:D.【点评】此题主要考查了实数的大小的比较,解答此题的关键根据已知条件分析出n,m的符号,绝对值的大小,再设出符合条件的数值比较大小,以简化计算.4.设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2﹣6x﹣3y的最大值是()A.B.18 C.20 D.不存在【分析】由2x+y=6,得y=6﹣2x,代入u=4x2+3xy+y2﹣6x﹣3y,根据x≥0,y≥0,求出x的取值范围即可求出答案.【解答】解:由已知得:y=6﹣2x,代入u=4x2+3xy+y2﹣6x﹣3y,整理得:u=2x2﹣6x+18,而x≥0,y=6﹣2x≥0,则0≤x≤3,u=2+18﹣,当x=0或x=3时,u取得最大值,u max=18,故选:B.【点评】本题考查了二次函数的最值,难度不大,关键是先求出x的取值范围再根据配方法求最值.5.x、y都是正数,且成反比例,当x增加a%时,y减少b%,则b的值为()A.a B.C.D.【分析】根据x、y都是正数,且成反比例,可设y=,xy=k,当x增加a%时,y减少b%,则(1+a%)x(1﹣b%)y=k,继而即可得出答案.【解答】解:根据题意,可设y=,则xy=k①,当x增加a%时,y减少b%,则(1+a%)x(1﹣b%)y=k②,将①和②式结合即:(1+a%)(1﹣b%)xy=xy所以两边同乘:10000/xy可以得到:(100+a)(100﹣b)=10000即100﹣b=10000/(100+a)从而b===可得:b=.故选:C.【点评】本题考查反比例函数的定义,属于基础题,关键是根据题意设出x和y的关系式.6.如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.B.C.D.【分析】AM与DE交于点F,则F是△ABC的内心,同时又是重心,依据重心的性质即可得出AF 与AS的比值;再根据相似三角形的性质,对应边的比相等,即可求解.【解答】解:如图,连接AM,与DE、BC分别交于点F、点S,则点F是圆心,又是三角形的内心;∵点S是BC的中点,点F是DE的中点,则有DE∥BC,∴AF:AS=DE:BC=2:3,∴DE=.故选:C.【点评】本题利用了圆的内接正三角形的内心到每个顶点的距离是等边三角形高的的性质,进行求解.7.某寺院有甲、乙、丙三口铜钟.甲钟每4s敲响一声,乙钟每5s敲响一声,丙钟每6s敲响一声.新年到来时,三口钟同时敲响且同时停敲,某人共听到365声钟响.若在此期间,甲、乙、丙三口钟敲响的次数分别为x次、y次、z次,则x+y+z=()A.365 B.484 C.585 D.465【分析】根据已知可以得出以一分钟为一个周期,甲钟响了15声,乙钟响了12声,丙钟响了10声,共响了37声,但人听到的只有28声,因有时是两钟或三钟同时敲响的.由题意知共敲了13分钟,即可求出x+y+z的值.【解答】解:由题意知:以一分钟为一个周期,设f(a1,a2.,an)表示60秒内同时听到隔a1,a2,.an秒敲钟的次数.则60秒内听到次数为f(4)+f(5)+f(6)﹣f(4,5)﹣f(5,6)﹣f(4,6)+f(4,5,6)=15+12+10﹣3﹣5﹣2+1=28.我们可以发现:甲钟响了15声,乙钟响了12声,丙钟响了10声,共响了37声,但人听到的只有28声,因有时是两钟或三钟同时敲响的.由题意知共敲了13分钟,x+y+z=37×13+3=484.故选:B.【点评】此题主要考查了整数问题的综合应用,根据已知得出以一分钟为周期得出人听到的只有28声是解决问题的关键.8.记S n=a1+a2+…+a n,令,称T n为a1,a2,…,a n这列数的“理想数”.已知a1,a2,…,a500的“理想数”为2004,那么8,a1,a2,…,a500的“理想数”为()A.2004 B.2006 C.2008 D.2010【分析】本题需先根据得出n×T n=(S1+S2+…+S n),再根据a1,a2,…,a500的“理想数”为2004,得出T500的值,再设出新的理想数为T x,列出式子,把得数代入,即可求出结果.【解答】解:∵∴n×T n=(S1+S2+…+S n)T500=2004设新的理想数为T x501×T x=8×501+500×T500T x=(8×501+500×T500)÷501==8+500×4=2008故选:C.【点评】本题主要考查了有理数的混合运算,在解题时要根据题意找出关系是解题的关键.二.填空题(共6小题)9.已知不等式ax+3≥0的正整数解为1,2,3,则a的取值范围是﹣1≤a<﹣.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.注意当x的系数含有字母时要分情况讨论.【解答】解:不等式ax+3≥0的解集为:(1)a>0时,x≥﹣,正整数解一定有无数个.故不满足条件.(2)a=0时,无论x取何值,不等式恒成立;(3)当a<0时,x≤﹣,则3≤﹣<4,解得﹣1≤a<﹣.故a的取值范围是﹣1≤a<﹣.【点评】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.当x的系数含有字母时要分情况讨论.10.在一次剪纸活动中,小聪依次剪出6张正方形纸片拼成如图所示的图形,若小聪所拼得的图形中正方形①的面积为1,且正方形⑥与正方形③面积相等,那么正方形⑤的面积为36.【分析】设正方形②的边长是x,则正方形③和正方形⑥的边长是x+1,正方形④的边长是x+1+1,正方形⑤的边长是x+1+1+1或x+1+x﹣1,从而建立方程求解.【解答】解:设正方形②的边长是x.结合图形,得x+1+1+1=x+1+x﹣1,解得x=3.则正方形⑤的边长是6,其面积是36.故答案为:36.【点评】此题主要是结合图形用两种不同的形式表示同一个正方形的边长,得到方程即可求解.11.方程x2﹣4x+3a2﹣2=O在区间[﹣1,1]上有实根.则实数a的取值范围是﹣≤a≤.【分析】首先设f(x)=x2﹣4x+3a2﹣2,由方程x2﹣4x+3a2﹣2=O在区间[﹣1,1]上有实根,利用函数的性质,即可得f(﹣1)•f(1)=(3a2+3)(3a2﹣5)≤0,然后解不等式即可求得答案.【解答】解:设f(x)=x2﹣4x+3a2﹣2,∵方程x2﹣4x+3a2﹣2=O在区间[﹣1,1]上有实根,∴f(﹣1)•f(1)=(3a2+3)(3a2﹣5)≤0,∵3a2+3>0,∴3a2﹣5≤0,∴a2≤,∴实数a的取值范围是﹣≤a≤.故答案为:﹣≤a≤.【点评】此题考查了一元二次方根的分布,函数的性质与一元二次不等式的解法.此题难度较大,解题的关键是掌握函数思想的应用.12.设△ABC的重心为G,且AG=6,BG=8,CG=10.则S△ABC=72.【分析】延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,所以CG'=BG=8,根据重心的性质可求得DG=DG′=3,则GG'=6,又CG=10,所以△CGG'是直角三角形,并可求得其面积,从而得出△BGC的面积,即可求得△ABC的面积.【解答】解:延长AG到G',与BC相交于D,使DG=DG′,则△BDG≌△CDG′,∴CG'=BG=8,∵DG=AG=3,∴DG=DG′=3,∴GG'=6,∵CG=10,∴△CGG'是直角三角形,∴S△GBC=S△CGG′=×8×6=24,∴S△ABC=3S△GBC=72.故选C.【点评】此题考查了三角形重心的性质与全等三角形的判定与性质,以及三角形面积问题的求解等知识.此题难度适中,解题时要注意数形结合思想的应用.13.设二次函数y=x2+2ax+(a<0)的图象顶点为A,与x轴交点为B、C,当△ABC为等边三角形时,a的值为﹣.【分析】根据已知的二次函数关系式,得出顶点坐标,用含x1、x2的式子表示出BC的长度;又利用BC在△ABC中与AD的关系,即可得出一个等式,解这个式子即可得出a的值(注意舍去不符合题意的值).【解答】解:二次函数y=x2+2ax+(a<0)可得其顶点坐标为(﹣a,﹣),设抛物线与x轴的两个交点为B(x1,0)、C(x2,0)则x1+x2=﹣2a,x1•x2=,对称轴与x轴的交点为D,∴|BC|=|x1﹣x2|==﹣a,又△ABC为等边三角形,所以|AD|=|BC|,即=|BC|,代入即有a2+a=0,所以a=﹣或a=0(舍去).故答案为:﹣.【点评】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和有关三角形的一些知识.在求的结果中要注意得出值的取舍问题.14.如图,边长为1的正三角形ANB放置在边长为MN=3,NP=4的长方形MNPQ内,且NB在边NP上.若正三角形在长方形内沿着边NP、PQ、QM、MN翻转一圈后回到原来起始位置,则顶点A在翻转过程中形成轨迹的总长是5π(保留π).【分析】先根据旋转的性质,正三角形ANB旋转5圈,圆心角为7个120°和2个30°,半径为1的弧,代入公式计算即可.【解答】解:如图所示:l=•π×1==5π,故答案为5π.【点评】本题考查了旋转的性质,等边三角形的性质以及弧长的计算,是一道综合题,要认真分析题目中的条件是解题的关键.三.解答题(共8小题)15.现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.【分析】因n段之和为定值150cm,故欲n尽可能的大,必须每段的长度尽可能小,这样依题意可构造一个数列.【解答】解:因为n段之和为定值150(cm),故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1(cm),且任意3段都不能拼成三角形,因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89,但1+1+2+…+34+55=143<150,1+1+2+…+34+55+89=232>150,故n的最大值为10.将长为150(cm)的铁丝分为满足条件的10段共有以下7种方式:1,1,2,3,5,8,13,21,34,62;1,1,2,3,5,8,13,21,35,61;1,1,2,3,5,8,13,21,36,60;1,1,2,3,5,8,13,21,37,59;1,1,2,3,5,8,13,22,35,60;1,1,2,3,5,8,13,22,36,59;1,1,2,3,5,8,14,22,36,58.【点评】本题考查了三角形三边关系.正确确定什么情况下n最大,是解决本题的关键;注意各个竖列之和为143,由于150﹣143=7,故多余的7cm要加到数列的末几项上,而且使得任何三个不构成三角形,16.已知四边形ABCD两条对角线互相垂直,点O是对角线的交点,∠ACD=60°,∠ABD=45°,点A到CD的距离是6,点D到AB的距离是8,求四边形ABCD的面积S.【分析】过点A作CD的垂线,过点D作AB的垂线,取AC的中点G,连接EG,证出等边△CGE 和等腰直角△BFD,根据勾股定理求出AC和DB的长度,利用面积公式即可求出四边形ABCD的面积.【解答】解:过点A作CD的垂线,E是垂足,过点D作AB的垂线,F是垂足,取AC的中点G,连接EG,在Rt△ACE中,∠AEC=90°,∴CG=GE,又∵∠ACD=60°,∴△GCE是等边三角形,∴CE=CG=,由勾股定理,得AC2=CE2+AE2,∴,解得:,∵∠DFB=90°,∠ABD=45°,∴∠FBD=∠FDB∴△FBD是等腰直角三角形,∴.∴四边形ABCD的面积S=S△ABD+S△BCD,=BD•AO+BD•CO,=,=.答:四边形ABCD的面积S是16.【点评】本题主要考查了面积与等积变换,等边三角形的性质和判定,含30°角的直角三角形,勾股定理,等腰直角三角形等知识点,正确作辅助线求出AC和BD的长是解此题的关键.17.已知a、b、c满足方程组,试求方程bx2+cx﹣a=0的根.【分析】由已知a、b、c满足方程组,则a+b=8,ab=c2﹣c+48,可把a,b看成是方程y2﹣8y+c2﹣8c+48=0的两根,然后求出a,b,c的值再进行求解即可.【解答】解:由题意可知,a+b=8,ab=c2﹣c+48,因此令a,b是方程y2﹣8y+c2﹣c+48=0的两根,∴(y﹣4)2+(c﹣)2=0,∴y=4且c=,即a=b=4,c=,∴bx2+cx﹣a=0可化为4x2+x﹣4=0,即x2+x﹣1=0,解得x1=,x2=,故方程根为:x1=,x2=.【点评】本题考查根与系数的关系,难度较大,关键是先构造方程,然后根据非负数的性质求出a,b,c的值后再进行求解.18.如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.【分析】(1)延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,进而求证△AMN≌△AML,即可求得∠MAN=∠MAL=45°;(2)设CM=x,CN=y,MN=z,根据x2+y2=z2和x+y+z=2,整理根据△=4(z﹣2)2﹣32(1﹣z)≥0可以解题.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.【点评】本题考查了勾股定理在直角三角形中的运用,考查了正方形各边长相等,各内角为直角的性质,本题中求证△AMN≌△AML是解题的关键.19.如图所示,四边形ABCD是矩形,甲、乙两人分别从A、B同时出发,沿矩形按逆时针方向前进,即按A→B→C→D→…顺序前进,已知甲的速度为每分钟65米,乙的速度为每分钟74米,问乙至少在跑第几圈时才有可能第一次追上甲?又乙至多在跑第几圈时一定能追上甲?请说明理由.【分析】可设AD=BC=am,AB=CD=bm,求出乙第一次追上甲的时间是在出发后的分钟,从而求出乙第一次追上甲所走的路程.再设这时乙所走的圈数为p,可得p==4+=9﹣,求解即可.【解答】解:设AD=BC=am,AB=CD=bm,甲的速度为65m/min,乙的速度为74m/min.由题意得,乙的速度比甲快,所以乙第一次追上甲的时间是在出发后的分钟,乙第一次追上甲所走的路程为×74(米)设这时乙所走的圈数为p,则p==4+=9﹣从而得4<p<9,当38a+b<9(a+b),即当a<b时,<1,所以乙至少在跑第五圈时,才能第一次追上甲,又∵当7a+44b<9(a+b),即a>b时,<1,所以乙至多再跑第九圈时一定能追上甲.【点评】考查了分式方程的应用,本题是关于路程中的追及问题,得到乙所走的圈数与矩形的长与宽之间的关系是解题的关键.20.已知当﹣1<x<O时,二次函数y=x2﹣4mx+3的值恒大于1,求m的取值范围.【分析】分别对①当抛物线的对称轴x=2m≤﹣1时,②当抛物线的对称轴x=2m≥0时,即m≥0时,③当抛物线的对称轴x=2m在区间﹣1<x<0时,进行分析得出m的取值范围即可.【解答】解:二次函数y=x2﹣4mx+3的图象是一条开口向上的抛物线,①当抛物线的对称轴x=2m≤﹣1时,即m≤﹣,要使二次函数解析式的值﹣1<x<0时恒大于1,只要x=﹣1,y=1+4m+3=4m+4≥1,解得:m≥﹣,∴﹣≤m≤﹣,②当抛物线的对称轴x=2m≥0时,即m≥0时,要使二次函数解析式的值﹣1<x<0时恒大于1,只要m≥0即可;③当抛物线的对称轴x=2m在区间﹣1<x<0时,∵﹣1<2m<0,∴﹣<m<0,此时,要使二次函数解析式的值﹣1<x<0时恒大于1,只要>1即可,解得:﹣<m<,∴﹣<m<0,综上所述:m的取值范围是:m≥﹣.【点评】此题主要考查了二次函数的综合应用以及二次函数最值问题,利用对称轴取值范围进行分析是解决问题的关键.21.已知在矩形ABCD中,AB=4,BC=,O为BC上一点,BO=,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在矩形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个.(不必求出点P的坐标)【分析】(1)OM的长是1,小于矩形的宽,也小于OB的长,所以点P只能是OM的垂直平分线与AD的交点;(2)OM的长是4,等于矩形的宽,所以点P可以是过O、M的垂线与AD的交点,也可以是OM的垂直平分线与AD的交点,又OM的长大于OB的长,所以点P也可以在AB上;(3)OM的长是5,大于矩形的宽,所以点P可以在过O、M的垂线与AD的交点的两侧各一个,也可以是OM的垂直平分线与AD的交点,又OM的长大于OB的长也大于MC的长,所以点P也可以在AB和CD上,共有7个.【解答】解:(1)符合条件的等腰△OMP只有1个;点P的坐标为(,4);(2)符合条件的等腰△OMP有4个.如图②,在△OP1M中,OP1=OM=4,在Rt△OBP1中,BO=,BP1===,∴P1(﹣,);(5分)在Rt△OMP2中,OP2=OM=4,∴P2(0,4);在△OMP3中,MP3=OP3,∴点P3在OM的垂直平分线上,∵OM=4,∴P3(2,4);在Rt△OMP4中,OM=MP4=4,∴P4(4,4);(3)若M(5,0),则符合条件的等腰三角形有7个.点P的位置如图③所示.【点评】根据OM的长与矩形的宽的大小确定点P的位置主要在AD边上的情况,需要注意的是当OM的长大于OB(或MC)时,点P也可以在AB(或CD)上的情况,学生容易忽视.22.已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2﹣10x+16=0的两个根,且抛物线的对称轴是直线x=﹣2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC 交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.【分析】(1)先解一元二次方程,得到线段OB、OC的长,也就得到了点B、C两点坐标,根据抛物线的对称性可得点A坐标;(2)把A、B、C三点代入二次函数解析式就能求得二次函数解析式;(3)易得S△EFF=S△BCE﹣S△BFE,只需利用平行得到三角形相似,求得EF长,进而利用相等角的正弦值求得△BEF中BE边上的高;(4)利用二次函数求出最值,进而求得点E坐标.OC垂直平分BE,那么EC=BC,所求的三角形是等腰三角形.【解答】解:(1)解方程x2﹣10x+16=0得x1=2,x2=8 (1分)∵点B在x轴的正半轴上,点C在y轴的正半轴上,且OB<OC∴点B的坐标为(2,0),点C的坐标为(0,8)又∵抛物线y=ax2+bx+c的对称轴是直线x=﹣2∴由抛物线的对称性可得点A的坐标为(﹣6,0)(2分)(2)∵点C(0,8)在抛物线y=ax2+bx+c的图象上∴c=8,将A(﹣6,0)、B(2,0)代入表达式,得:解得∴所求抛物线的表达式为y=﹣x2﹣x+8(5分)(3)依题意,AE=m,则BE=8﹣m,∵OA=6,OC=8,∴AC=10∵EF∥AC∴△BEF∽△BAC∴=,即=∴EF=(6分)过点F作FG⊥AB,垂足为G,则sin∠FEG=sin∠CAB=∴=∴FG=•=8﹣m∴S=S△BCE﹣S△BFE=(8﹣m)×8﹣(8﹣m)(8﹣m)=(8﹣m)(8﹣8+m)=(8﹣m)m=﹣m2+4m(8分)自变量m的取值范围是0<m<8 (9分)(4)存在.理由:∵S=﹣m2+4m=﹣(m﹣4)2+8且﹣<0,∴当m=4时,S有最大值,S最大值=8 (10分)∵m=4,∴点E的坐标为(﹣2,0)∴△BCE为等腰三角形.【点评】本题综合考查一元二次方程的解法;用待定系数法求二次函数解析式;以及求二次函数的最值等知识点.。

九年级上学期数学竞赛试题(含答案)

九年级上学期数学竞赛试题(含答案)

九年级上学期数学竞赛试题(含答案)题号 一 二三 四 五 总分21 22 23 24 25 26 27 得分一、选择题:(每小题3分,共36分)将唯一正确答案的代号字母填在下面的表格内 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中既是中心对称图形,又是轴对称图形的是 A. 等边三角形 B.等腰三角形 C.平行四边形 D.线段2.如图,A 、B 是数轴上的两点,在线段AB 上任取一点C,则点C 到表示-1的点的距离小于或等于.....2的概率是A .21B .32C .43D .543. 如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA ,则下列结论一定正确的是A .AB 2=BC ·BD B .AB 2=AC ·BD C .AB ·AD =BD ·BCD .AB ·AD =AD ·CD4. 如图⊙O 中,半径OD⊥弦AB 于点C,连结AO 并延长交⊙O 于点E,连结EC,若AB=8,CD=2,则EC 的长度为 A .52 B . 8 C . 102 D . 1325.对于代数式246x x -+的值的情况,小明作了如下探究的结DCBA第3题图第7题图第9题图论,其中错误的是A. 只有当2x =时,246x x -+的值为2B.x 取大于2的实数时,246x x -+的值随x 的增大而增大, 没有最大值C. 246x x -+的值随x 的变化而变化,但是有最小值D. 可以找到一个实数x ,使246x x -+的值为06.方程22(6)x m x m -++=0有两个相等的实数根,且满足12x x +=12x x ,则m 的值是A .-2或3B .3C .-2D .-3或27.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°, 过点C 作⊙O 的切线交AB 的延长线于E,则∠E 为 A .25° B .30° C .35° D .45°8.在函数21a y x +=(a 为常数)的图象上有三点1(4,)y -,2(1,)y -,3(3,)y ,则函数值的大小关系是A .231y y y << B. 321y y y << C. 123y y y << D. 213y y y << 9. 冬至时是一年中太阳相对于地球位置最低的时刻,只要此时能 采到阳光,一年四季就均能受到阳光照射.此时竖一根a 米长 的竹杆,其影长为b 米,某单位计划想建m 米高的南北两幢 宿舍楼(如图所示).当两幢楼相距多少米时,后楼的采光一年 四季不受影响? A.a bm 米 B.bam米 C.m ab 米 D. abm 米10. 如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是 A .3㎝B .4㎝C .5 ㎝D .6㎝11.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后, 顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB,MC =6, NC =则四边形MABN 的面积是 A .B .. D .12.已知二次函数)0(2≠++=a c bx ax y 的图象开口向上,与 x 轴的交点坐标是(1,0),对称轴x=-1.下列结论中,错误的是A .abc <0B .b=2aC .a+b+c=0D .20=+b a 二、填空题:(每小题3分,共24分)将正确答案直接填在题中横线上.13.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长l的取值范围是 .14.已知二次函数y =(k -3)x 2+2x+1的图象与x 轴有交点,则k 的取值范围是 . 15.已知A 是反比例函数xky =的图象上的一点,AB ⊥x 轴于点B,且△ABO 的面积是3,则k 的值是 .16.如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是 .17. 小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色(第11题图)NMD ACB交通信号灯,他在路口遇到红灯的概率为31,遇到黄灯的概率为91,那么他遇到绿灯的概率为 .18.已知正六边形的边心距为3,则它的周长是 . 19. 如图,PA 、PB 切⊙O 于A 、B,50P ∠=,点C 是⊙O 上异于A 、B 的任意一点,则ACB ∠= . 20.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是 .三、开动脑筋,你一定能做对!(本大题共3小题,共22分)21.(本小题满分7分)近年来随着全国楼市的降温,商品房的价格开始呈现下降趋势,2012年某楼盘平均售价为5000元/平方米,2014年该楼盘平均售价为4050元/平方米.(1)如果该楼盘2013年和2014年楼价平均下降率相同,求该楼价的平均下降率;(2)按照(1)中楼价的下降速度,请你预测该楼盘2015年楼价平均是多少元/平方米?第20题图第9题图FEDC BA22.(本小题满分8分)如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于点F.已知23BE AB =,3BEFS=,求△CDF 的面积.23. (本小题满分7分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为-7、-1、3,乙袋中的三张卡片上所标的数值分别为-2、1、6.先从甲袋中随机取出一张卡片,用x 表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y 表示取出的卡片上标的数值,把x 、y 分别作为点A 的横坐标、纵坐标.(1)用适当的方法写出点(,)A x y 的所有情况; (2)求点A 落在第三象限的概率.四、认真思考,你一定能成功!(本大题共2小题,共18分)24. (本小题满分10分)如图,AB 是⊙O 直径,D 为⊙O 上一点,AT 平分∠BAD 交⊙O 于点T,过T 作AD 的垂线交AD 的延长线于点C . (1)求证:CT 为⊙O 的切线;(2)若⊙O 半径为2,3CT =,求AD 的长.25. (本小题满分8分)已知:如图,反比例函数xky =的图象与一次函数y =x +b 的图象交于点A(1,4)、点B(-4,n). (1)求△OAB 的面积;(2)根据图象,直接写出不等式kx b x<+的解集.第24题图五、相信自己,加油呀!(本大题共2小题,共20分)26. (本小题满分10分)某商店经营一种成本为每千克40美元的水产品,根据市场分析,若按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最大?最大利润是多少?27.(本小题满分10分)如图,抛物线2y x bx c =+-与x 轴交(1,0)A -、(3,0)B两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线及直线AC的函数表达式;(2)若P点是线段AC上的一个动点,过P点作y轴的平行线交抛物线于F 点,求线段PF长度的最大值.第27题图九年级数学试题参考答案及评分建议一、选择题:(每小题3分,共36分)13.6<l<10; 14.k ≤4且k ≠3;15.k=±6;16.30cm ; 17. 95; 18.12;19. 65°或115°; 20.(3,2)或(-3,-2). 三、解答题:(共60分)21. (本小题满分7分)解:(1)设楼价下降率为x ,………………………1分根据题意25000(1)4050x -=.…………………………………………………3分解得1 1.9x =(舍去),20.1x =,故楼价下降率为10%.………………………5分(2)预测2015年楼价平均是4050(110%)3645⨯-=(元/平方米).……7分22. (本小题满分8分)解:∵四边形ABCD 为平行四边形,∴CD =AB,且CD ∥AB,∴△CDF ∽△BEF.………………………………………3分 又∵23BE AB =,∴23BE DC =,∴2()BEF F S BE S CD =△△CD ,即232()3F S =△CD .………6分 解得274CDFS =.…………………………………………………………………8分23. (本题共7分)解:(1)如图A 的坐标:(-7,-2);(-7,1);(-7,6);(-1,-2);(-1,1);(-1,6);(3,-2);(3,1);(3,6);……………………………………………………………………4分(2)由树状图可知,所有可能的情况共有9种,点A 落在第三象限的情况有2种,所以P (点A 落在第三象限)=29.………………………7分 24. (本小题满分10分)解:(1)证明:连接OT, ∵OA=OT ,∴∠OAT=∠OTA .又∵AT 平分∠BAD , ∴∠DAT=∠OAT ,∴∠DAT=∠OTA .∴OT∥AC .……………………………………………………2分 又∵CT⊥AC ,∴CT⊥OT ,∴CT 为⊙O 的切线;……………4分 (2)解:过O 作OE⊥AD 于E,则E 为AD 中点,又∵CT⊥AC ,∴OE∥CT ,∴四边形OTCE 为矩形.…………7分 ∵CT=,∴OE=, 又∵OA=2,∴在Rt△OAE中,∴AD=2AE=2. (10)分25. (本小题满分8分)解:(1)把A 点(1,4)分别代入反比例函数xky =,一次函数y =x +b,得k =1×4,1+b =4,解得k =4,b =3,∴反比例函数的解析式是xy 4=.………………2分 一次函数解析式是y =x +3.……………………………………………………………4分如图当x =-4时,y =-1,B(-4,-1),当y =0时,x +3=0,x =-3,C(-3,0)S △AOB =S △AOC +S △BOC =21513214321=⨯⨯+⨯⨯.………………………………………6分 (2)∵B(-4,-1),A(1,4),∴根据图象可知:当x >1或-4<x <0时,反比例函数值小于一次函数值.……………………………………………………………………8分26. 解:(本题满分10分)设定价上涨x 元时获得的利润最大,最大利润是y .……1分根据题意得y=(500-10x )(50+x)-(500-10x)×40. …………………………………6分化简得y=-10(x-20)2+9000. ……………………………………………………………8分 x=20时,y 有最大值9000. ……………………………………………………………9分 答:定价定为70元时获得的利润最大,最大利润是9000元.……………………10分27. (本小题满分10分)(1)将A 、B 两点坐标代入抛物线的解析式,得 10,930b c b c --=⎧⎨+-=⎩,解得2,3b c =-⎧⎨=⎩∴抛物线解析式为223y x x =--.………………2分将点C 的横坐标代入抛物线解析式,得3y =-,即(2,3)C -,设直线AC 为y kx m =+,将点A 和点C 坐标代入,得0,23k mk m-+=⎧⎨+=-⎩,解得1,1km=-⎧⎨=-⎩,即直线AC解析式为1y x=--.……………………4分(2)如图,不妨设点2(,23)P x x x--,因为点F在直线AC上,因此则点(,1)F x x--.………………………………6分所以有21(23)PF x x x=-----22x x=-++.…8分∴当122bxa=-=时,PF最大值=244ac ba-=94.………………………………10分(备注:在解答题中,考生若用其它解法,应参照本评分标准给分)。

初三数学竞赛试题及答案

初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题1. 已知平面内一直线L的倾斜角为α,斜率为k,若点A(-1,2)在L 上,则直线L的方程为:A. y-2 = k(x+1)B. y+2 = k(x-1)C. y-2 = k(x-1)D. y+2 = k(x+1)答案:A2. 若函数f(x) = ax^2 + bx + c 是一个减函数,那么a, b, c的关系是:A. a > 0, b > 0, c > 0B. a > 0, b < 0, c < 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c > 0答案:D3. 已知等差数列{an}的公差为d,首项为a1,末项为an,且an =3a1,若a4 = 7,则d的值是:A. 1B. 2C. 3D. 4答案:B4. 在ΔABC中,∠A=60°,AC=2AB,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°答案:D5. 若直角三角形的两直角边分别为3和4,求斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知ABC是一个等边三角形,AB的边长为5,则三角形ABC 的面积为______。

答案:(25√3)/42. 若一组数据中50%的数据小于等于10,25%的数据大于15,中位数为12,则这组数据的总个数为______。

答案:83. 若甲数是乙数的8倍,且甲数减去乙数等于30,则甲数的绝对值为______。

答案:404. 已知某数的60%等于120,这个数是______。

答案:2005. 若甲数是乙数的1/5,乙数是丙数的1/3,则甲数与丙数之和的三倍为______。

答案:28三、解答题1. 一条细长导线的电阻率R为ρ,长度为l,截面积为A。

如果将导线的长度翻倍,截面积减半,则新的导线的电阻率是多少?答:R2. 已知函数f(x)满足f(x+1) = 2f(x) - 1,且f(2) = 3,求f(5)的值。

全国各地初中(九年级)数学竞赛《函数》真题大全 (附答案)

全国各地初中(九年级)数学竞赛《函数》真题大全 (附答案)

全国各地初中(9年级)数学竞赛专题大全竞赛专题6 函数一、单选题1.(2021·全国·九年级竞赛)2420x x y -+,则x y -的值为( ). A .2B .6C .2或2-D .6或6-2.(2021·全国·九年级竞赛)如图,两个反比例函数1k y x=和2ky x =在第一象限内的图象分别是1l 和2l ,设点P 在1l 上,PC x ⊥轴于点C ,交2l 于点,A PD y ⊥轴于点D ,交2l 于点B ,则四边形PAOB 的面积为( ).A .12k k +B .12k k -C .12k kD .21k k -3.(2021·全国·九年级竞赛)如右图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线交双曲线1y x=于点Q ,连接OQ ,当点P 向右运动时,Rt QOP 的面积( ).A .逐渐增大B .逐渐减小C .保持不变D .无法确定4.(2021·全国·九年级竞赛)设a ,b ,c 是ABC 三边的长,二次函数2()22b b y a x cx a =----在1x =取最小值83b -,则ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形5.(2021·全国·九年级竞赛)若函数22(1)32y k x x k k =++++-的图象与x 轴交点的纵坐标为4-,则k 的值是( ) A .1-B .2-C .1-或2D .1-或2-6.(2021·全国·九年级竞赛)设[]x 表示不超过实数x 的最大整数,{}[]x x x =-,则200983201083401783200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦( ). A .249075 B .250958 C .174696 D .2510007.(2021·全国·九年级竞赛)在实数范围内,设1988(2)(1)(2)(1)511111a a a a a x a a ⎡⎤--+--⎢⎥+=⎢⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1B .2C .4D .68.(2021·全国·九年级竞赛)设抛物线24y x kx =++与x 轴有两个不同交点()()12,0,,0x x ,则下列结论中一定成立的是( ).A .221217x x += B .22128x x +=C .221217x x +< D .22128x x +>9.(2021·全国·九年级竞赛)设Rt ABC △的三个顶点A ,B ,C 均在抛物线2y x 上,并且斜边AB 平行于x 轴,若斜边上的高为h ,则( ) A .1h <B .1h =C .12h <<D .2h >10.(2021·全国·九年级竞赛)设,n k 为正整数,12132(3)(1)4,(5)4,(7)4A n n A n A A n A +-+=++=++431(9)4,,(21)4,k k A n A A n k A -++=+++,已知1002005A =,则n 的值为( ).A .1806B .2005C .3612D .4100二、填空题11.(2021·全国·九年级竞赛)边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是_________. 12.(2021·全国·九年级竞赛)若0abc ≠,则||||||||a b c abca b c abc +++的最大值是________,最小值是__________. 13.(2021·全国·九年级竞赛)若0x >,则24411x x x y ++-+=的最大值是________.14.(2021·全国·九年级竞赛)设x 为正实数,则函数21y x x x=-+的最小值是______.15.(2021·全国·九年级竞赛)已知,a b 为抛物线()()2y x c x c d =----与x 轴交点的横坐标,a b <,则||||a c c b -+-的值为______.16.(2021·全国·九年级竞赛)设正ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA PM 十的最大值和最小值分别记为s 和t ,则22s t -=_______. 17.(2021·全国·九年级竞赛)若2008个数122008,,,a a a 满足:12a =,2n a -1112008n n n a a a --⎛⎫+ ⎪⎝⎭102008+=,其中,2n =,3,…,2008.那么2008a 可能达到的最大值是_________.18.(2021·全国·九年级竞赛)设333199519961997,0x y z xyz ==>,且2223333199519961997199519961997x y z ++111x y z++=_______. 19.(2021·全国·九年级竞赛)如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是_________.20.(2021·全国·九年级竞赛)函数23||7y x x =-+的图象与函数22336y x x x x =-+-+的图象的交点个数是_______.21.(2021·全国·九年级竞赛)不论m 取任何实数,抛物线2221y x mx m m =+++-的顶点都在一条直线上,则这条直线的解析式是______.22.(2021·全国·九年级竞赛)如果一次函数y mx n =+与反比例函数3n x y x -=的图象相交于点1,22⎛⎫⎪⎝⎭,那么该直线与双曲线的另一个交点为________.23.(2021·全国·九年级竞赛)函数|1||2||3|y x x x =+++++,当x =_______时,y 有最小值,最小值等于_______.24.(2021·全国·九年级竞赛)当x 变化时,分式22365112x x x x ++++的最小值是_______.25.(2021·全国·九年级竞赛)代数式21133110x x +的最小值是_______.26.(2021·全国·九年级竞赛)已知a ,b 是正数,并且二次函数22y x ax b =++和22y x bx a =++的图象都与x 轴相交,则22a b +的最小值是________. 三、解答题27.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 28.(2021·全国·九年级竞赛)试求1231997x x x x -+-+-++-的最小值.29.(2021·全国·九年级竞赛)当12x ≤≤2121x x x x +---30.(2021·全国·九年级竞赛)一幢33层的大楼里有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次.对每个人来讲,他往下走一层楼感到1分不满意,往上走一层感到3分不满意.现有32个人在第一层,并且他们分别住在第2层至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小值?最小值是多少?(有些人可以不坐电梯直接从楼梯上楼) 31.(2021·全国·九年级竞赛)求函数22233x y x x +=++的最大值和最小值.32.(2021·全国·九年级竞赛)已知,,a b c 都是正整数,且抛物线2y ax bx c =++与x 轴有2个不同的交点A 和B ,若,A B 到原点的距离都小于1,求a b c ++的最小值.33.(2021·全国·九年级竞赛)求2221026249T x y z xy yz z =++---+的最小值.34.(2021·全国·九年级竞赛)在40与100之间任取一个实数x ,如果[]7x =,那么1610x ⎡=⎣的概率是多少?这是[]a 表示不超过a 的最大整数(要求答案写成最简分数的形式).35.(2021·全国·九年级竞赛)如图,D E F 、、分别是ABC 的三边BC CA AB 、、上任意一点,证明:,,AEF BFD CDE △△△中至少有一个三角形的面积不大于ABC 的面积的四分之一.36.(2021·全国·九年级竞赛)某林场安排了7天的植树工作,从第二天起每天都比前一天增加5个植树的人,但从第二天起每人每天都比前一天少植5棵树,且同一天植树的人,植相同数量的树.若7天共植树9947棵,则植树最多的那天共植了多少棵?植树最少的那天,有多少人在植树?37.(2021·全国·九年级竞赛)一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次.对于每个人来说他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别在第2至第33层的每一层,问:电梯停在哪一层,可以使32人不满意的总分达到最小?最小值是多少?(有些人可以不坐电梯而直接从楼梯上楼). 38.(2021·全国·九年级竞赛)已知正整数m ,n 17434m m n -+=,求n 的最大值. 39.(2021·全国·九年级竞赛)对于1,2,3,,i n =,有|| 1 i x <且有12||||||n x x x +++=122009||n x x x ++++.求正整数n 的最小值.40.(2021·全国·九年级竞赛)整数012010,,,x x x 满足条件:00x =,10|||1|x x =+,21|||1|x x =+,…,201020091x x =+,求122010x x x +++的最小值.41.(2021·全国·九年级竞赛)平面内给定一个方向l 和一个凸图形F ,其面积为()S F ,内接于F 且有一边平行于l 的所有三角形中面积最大的记为,其面积记()S .求最大正实数c ,使对平面内任意给定的凸图形F ,都有()()S c S F ≥⋅.42.(2021·全国·九年级竞赛)已知x ,y ,z 是正数且1x y z ++=,比较149A x y z=++与36B =的大小,并问A 能否等于B ?43.(2021·全国·九年级竞赛)(1)证明:若x 取任意整数时,二次函数2y ax bx c =++总取整数值,那么2,,a a b c -都是整数;(2)写出上述命题的逆命题,并判断真假,且证明你的结论.44.(2021·全国·九年级竞赛)已知一次函数12y x =,二次函数221y x =+,是否存在二次函数23y ax bx c =++,其图象经过点(5,2)-,且对任意实数,这三个函数对应的函数值123,,y y y ,都有132y y y ≤≤成立?若存在,求出函数3y 的解析式;若不存在,请说明理由.45.(2021·全国·九年级竞赛)点(4,0),(0,3)A B 与点C 构成边长是3,4,5的直角三角形.如果点C 在反比例函数ky x=的图象上,求k 可能取到的一切值. 46.(2021·全国·九年级竞赛)已知一次函数y ax b =+的图象经过点(3,32),(3),(,2)A B C c c --,求222a b c ab bc ca ++---的值.47.(2021·全国·九年级竞赛)如图,在直角梯形OABC 中,//OA BC ,A ,B 两点的坐标分别是(13,0)A ,(11,12)B ,动点P ,Q 分别从O ,B 两点同时出发,点P 以每秒3个单位长的速度沿OA 方向运动,点Q 以每秒1个单位长的速度沿线段BC 运动,线段OB 与PQ 的交点为D ,过D 作//DE OA 交AB 于E ,射线QE 交x 轴于点F ,设P ,Q 运动的时间为t 秒.(1)当t 为何值时,以P A B Q 、、、为顶点的四边形是平行四边形,请写出推理过程.(2)设以P A E Q 、、、为顶点的图形面积为y ,求y 关于运动时间t 的函数关系式,并求出y 的最大值. (3)当t 为何值时,PQF △为等腰三角形?请写出推理过程.48.(2021·全国·九年级竞赛)已知抛物线21:34c y x x =--+和抛物线22:34c y x x =--相交于A ,B 两点,点P 在抛物线1c 上,且位于点A 与点B 之间;点Q 在抛物线2c 上,也位于点A 与点B 之间. (1)求线段AB 的长;(2)当//PQ y 轴时,求PQ 长度的最大值.49.(2021·全国·九年级竞赛)已知x ,y ,z 为实数,且满足2023x y z x y z +-=⎧⎨-+=⎩,求222x y z ++的最小值.50.(2021·全国·九年级竞赛)函数22(21)y x k x k =+-+的图象与x 轴的两个交点是否都在直线1x =的右侧,若是,请说明理由;若不一定,请求出两个交点在直线1x =的右侧时,k 的取值范围.竞赛专题6 函数答案解析一、单选题1.(2021·全国·九年级竞赛)2420x x y -+,则x y -的值为( ). A .2 B .6C .2或2-D .6或6-【答案】D 【解析】 【分析】 【详解】解:2420x x y -+,2420x x y -+=,240x -,20x y +=,即2,2x y x =±=-,于是()236x y x x x -=--==或6-. 故选:D .2.(2021·全国·九年级竞赛)如图,两个反比例函数1k y x=和2ky x =在第一象限内的图象分别是1l 和2l ,设点P 在1l 上,PC x ⊥轴于点C ,交2l 于点,A PD y ⊥轴于点D ,交2l 于点B ,则四边形PAOB 的面积为( ).A .12k k +B .12k k -C .12k kD .21k k -【答案】B 【解析】 【分析】 【详解】OACOBDPOOD PAOB S S SS=--长方形四边形.设(,),(,),(,)P a b A c d B e f ,则122,,ab k cd k ef k ===,所以12212111111222222PAOB S PC PD AC OC BD OD ab cd ef k k k k k =⨯-⨯⨯-⨯⨯=--=--=-四边形.故选:B .3.(2021·全国·九年级竞赛)如右图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线交双曲线1y x=于点Q ,连接OQ ,当点P 向右运动时,Rt QOP 的面积( ).A .逐渐增大B .逐渐减小C .保持不变D .无法确定【答案】C 【解析】 【分析】 【详解】设(,)Q a b ,则,OP a PQ b ==,且1b a=,所以111222OPQS OP PQ ab =⨯⨯=⨯=. 故选:C .4.(2021·全国·九年级竞赛)设a ,b ,c 是ABC 三边的长,二次函数2()22b by a x cx a =----在1x =取最小值83b -,则ABC 是( )A .等腰三角形B .锐角三角形C .钝角三角形D .直角三角形【答案】D 【解析】 【分析】 【详解】解 依题意可得2220,,42,231,2,52()52338()223ba b a a b c b c a a b c ABC b a c b c b b b a c a b⎧⎪->⎧⎪>⎧⎪⎪=⎪⎪-⎪⎪=⇒+=⇒⇒+=⇒⎨⎨⎨⎪⎪⎪-=⎪⎪⎪=⎩⎩⎪----=-⎪⎩是直角三角形.故应选D .注:从前面的例题可以看出,解有关二次函数的最值问题,不仅要熟悉有关二次函数的性质,还要灵活运用相关的不等式知识、几何知识等,才能使问题得到顺利解决.5.(2021·全国·九年级竞赛)若函数22(1)32y k x x k k =++++-的图象与x 轴交点的纵坐标为4-,则k 的值是( ) A .1- B .2-C .1-或2D .1-或2-【答案】B【分析】 【详解】解 因0x =时,4y =-代入函数关系得2432k k -=+-,即(1)(2)0k k ++=,所以1k =-或2k =-.故应选D .注:本题中的函数可以是一次函数,也可以是二次函数.不能一开始就默认它是二次函数,约定10k +≠,从而错误地选择了B .6.(2021·全国·九年级竞赛)设[]x 表示不超过实数x 的最大整数,{}[]x x x =-,则200983201083401783200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤+++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦( ). A .249075 B .250958 C .174696 D .251000【答案】A 【解析】 【分析】 【详解】原式(20090)83(20091)83(20092008)83200920092009+⨯+⨯+⨯⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦083183200883838383200920092009⨯⨯⨯⎡⎤⎡⎤⎡⎤=++++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦083183200883083183200883832009200920092009200920092009⨯⨯⨯⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯++++----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭83083183200883200983(122008)2009200920092009⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯++++----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭083183200883200983831004200920092009⨯⨯⨯⎧⎫⎧⎫⎧⎫=⨯+⨯----⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭.显然,2009与83互质,083,183,,200883⨯⨯⨯除以2009有2009个不同的余数.所以,08318320088301200810042009200920092009⨯⨯⨯+++⎧⎧⎫⎧⎫+++==⎨⎨⎬⎨⎬⎩⎩⎭⎩⎭. 故原式200983831004100416674782328249075=⨯+⨯-=+=.7.(2021·全国·九年级竞赛)在实数范围内,设1988(2)(1)(2)(1)511111a a a a a x a a ⎡⎤--+--⎢⎥+=⎢⎥-⎢⎥+-⎣⎦,则x 的个位数字是( ). A .1 B .2C .4D .6【答案】D【分析】 【详解】解:要使x 有意义,必须且只需(2)(1)0,(2)(1)0,(2)(1)0,1,110,21101a a a a a a a a a a a⎧--≥⎪⎧--=--≥⎪⎪⎪⇒≠⇒=-⎨⎨-≠⎪⎪≠⎩⎪+≠⎪-⎩. 所以1988198********05(1)1()(2)(2)1611(1)12x ⨯⨯-+=+=-=-=--+, 故x 的个位数字为6, 故选:D .8.(2021·全国·九年级竞赛)设抛物线24y x kx =++与x 轴有两个不同交点()()12,0,,0x x ,则下列结论中一定成立的是( ).A .221217x x += B .22128x x += C .221217x x +< D .22128x x +> 【答案】D 【解析】 【分析】 【详解】由2244016k k =-⨯>⇒>.又因1212,4x x k x x +=-=,所以()2222121212281688x x x x x x k +=+-=->-=. 故选:D .9.(2021·全国·九年级竞赛)设Rt ABC △的三个顶点A ,B ,C 均在抛物线2y x 上,并且斜边AB 平行于x 轴,若斜边上的高为h ,则( ) A .1h < B .1h = C .12h << D .2h >【答案】B 【解析】 【分析】 【详解】解 设A 的坐标为()2,a a ,点C 的坐标为()2,(|||| )c c c a <,则B 点的坐标为()2,a a -.由勾股定理可得()22222()AC a c a c =-+-,()22222()BC c a a c =++-,则22222(2)4AC BC AB a a +===, 于是()()222222224a c a c a ++-=,即()22222a c a c -=-.由于22a c >,所以221a c -=,即斜边上的高h =(A 的纵坐标)-(C 的纵坐标)221a c =-=. 注:(1)如图仅画出了0c a <<的情形,在其他情形下,计算是完全相同的.(2)设()()1122,,,A x y B x y ,利用勾股定理可得计算A 与B 的距离的公式为()()2222121AB x x y y =-+-.10.(2021·全国·九年级竞赛)设,n k 为正整数,12132(3)(1)4,(5)4,(7)4A n n A n A A n A +-+=++=++431(9)4,,(21)4,k k A n A A n k A -++=+++,已知1002005A =,则n 的值为( ).A .1806B .2005C .3612D .4100【答案】A 【解析】 【分析】 【详解】2221[(1)2][(1)2]4(1)24(1)1A n n n n n +++-+=+-++=+, 2222[(3)2][(3)2]4(3)24(3)3A n n n n n +++-+=+-+=+=+, 2223[(5)2][(5)2]4(5)24(5)5A n n n n n +++-++-+++,同理451007,9,,21001199200520051991806A n A n A n n n =+=+=+⨯-=+=⇒=-=.故选:A . 二、填空题11.(2021·全国·九年级竞赛)边长为整数的等腰三角形一腰上的中线将其周长分为1:2的两部分,那么所有这些等腰三角形中,面积最小的三角形的面积是_________. 37【解析】 【分析】设等腰三角形的腰为x ,底为y ,周长被分为的两部分的长分别为n 和2n ,则222x x n x y n ⎧+=⎪⎪⎨⎪+=⎪⎩或222x x n x y n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得25(,),33n n x y ⎛⎫= ⎪⎝⎭或4,33n n ⎛⎫ ⎪⎝⎭.因为25233n n ⨯<(此时不能够成三角形,舍去),所以4(,),33n n x y ⎛⎫= ⎪⎝⎭,其中n 是3的倍数.则三角形面积2221472336n n n S ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.当0n ≥时,S 随着n 的增大而增大.所以3n =时.S 37 12.(2021·全国·九年级竞赛)若0abc ≠,则||||||||a b c abca b c abc +++的最大值是________,最小值是__________. 【答案】 4 -4 【解析】 【分析】 【详解】 因为1||a a =±,1||b b =±,1||c c =±,1||abc abc =±,所以44||||||a b ca b c -≤++≤. 当a ,b ,c 全为正时等于4,当a ,b ,c 全为负时等于4-,故其最大值是4,最小值是4-. 13.(2021·全国·九年级竞赛)若0x >,则24411x x x y ++-+=的最大值是________.32 【解析】 【分析】 【详解】因0x >,244222441111111x x x x y xx x x ++++==++++-+22222211121232x x x x x x+⋅+⋅等号成立当且仅当221(0)x x x =>,即1x =,所以0x >时,1y 32y 3232=+ 故答案为:0x >时,1y 32y 3232=+ 14.(2021·全国·九年级竞赛)设x 为正实数,则函数21y x x x=-+的最小值是______.【答案】1【分析】 【详解】 211(1)10211(0)y x x x x x x=-++-≥+⋅=>,等号当且仅当1x =且1x x =,即1x =时成立,故y 的最小值为1, 故答案为:1.15.(2021·全国·九年级竞赛)已知,a b 为抛物线()()2y x c x c d =----与x 轴交点的横坐标,a b <,则||||a c c b -+-的值为______. 【答案】b a - 【解析】 【分析】 【详解】依题意,该抛物线开口向上,又当x a =或b 时,0y =.当x c =时,20y =-<,所以a c b <<,故||||a c c b c a b c b a -+-=-+-=-.故答案为:b a -.16.(2021·全国·九年级竞赛)设正ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA PM 十的最大值和最小值分别记为s 和t ,则22s t -=_______. 【答案】43 【解析】 【分析】 【详解】因为PA CA ≤,PM CM ≤,故当P 处于BC 边顶点C 这一极端位置时,PM PA 十取最大值,最大值为32s CM CA =+=.如图4-1,作正'A BC ,设'M 为'A B 的中点,则由'PBM PBM ≌得'PM PM ,于是''PA PM PA PM AM +=+≥.连'CM ,则'ACM ∠='ACB BCM ∠+∠=603090︒+︒=︒,所以'AM =22'AC CM +=222(3)7+'7PA AM PM +≥=A 、P 、'M 共线时等号成立,即PA AM +的最小值为7t =22s t -=22(32)(7)3-=4317.(2021·全国·九年级竞赛)若2008个数122008,,,a a a 满足:12a =,2n a -1112008n n n a a a --⎛⎫+ ⎪⎝⎭102008+=,其中,2n =,3,…,2008.那么2008a 可能达到的最大值是_________.【答案】200620082 【解析】 【分析】 【详解】依题意11102008n n nn a a a a --⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭,12008n n a a -= ①或11n n a a -=② 于是连续两次第②类变换互相抵消,保持原数不变,并且当连续三次变换依次是“第①类变换,第②类变换,第①类变换”时,其效果相当为进行一次第②类变换,故从12a =出发变到2008a ,一共要经过2007次变换,相当于进行若干次第①类变换和至多2次第②类变换,并且第②类变换只有第一次、最后一次进行才可能使2008a 最大.其中以前2006次进行第①类变换,最后一次进行第②类变换时,2008a 达到最大值200620082.18.(2021·全国·九年级竞赛)设333199519961997,0x y z xyz ==>,且2223333199519961997199519961997x y z ++111x y z++=_______. 【答案】1 【解析】 【分析】 【详解】解:因0xyz >,故3331995199619970x y z k ===>,则3331995,1996,1997k k k x y z ===, 3333333k k k k k kx y z x y z++, 两端三次方得3111111()x y z x y z++=++.又0,0,0x y z >>>,所以1111x y z++=.故答案为:1.19.(2021·全国·九年级竞赛)如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是_________. 【答案】17- 【解析】 【分析】 【详解】解:因为当2x =-时,535328257ax bx cx a b c ++-=----=, 所以328212a b c +=-+,于是当2x =时,5353282512517ax bx cx a b c ++-=++-=--=-. 故答案为:17-.20.(2021·全国·九年级竞赛)函数23||7y x x =-+的图象与函数22336y x x x x =-+-+的图象的交点个数是_______. 【答案】4 【解析】 【分析】 【详解】第一个函数化为2237(0),37(0),x x x y x x x ⎧++<=⎨-+≥⎩第二个函数化为26(03),266(03).x y x x x x ≤≤⎧=⎨-+⎩或 分别作它们的图象知,它们共有4个交点.或者分别解方程组(22237,37,(0),00)2666y x x y x x x x y x x y ⎧=++=-+<≤≤⎨=-+=⎩及2237,(3)266y x x x y x x ⎧=-+>⎨=-+⎩,可得4个交点为(1111(985,6285,(35),6,(35),6,(313),82222A B C D ⎛⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎝⎭⎝⎭⎝⎭.故答案为:4.21.(2021·全国·九年级竞赛)不论m 取任何实数,抛物线2221y x mx m m =+++-的顶点都在一条直线上,则这条直线的解析式是______. 【答案】1y x =-- 【解析】 【分析】 【详解】二次函数化为2()1y x m m =++-,得顶点坐标为,1,x m y m =-⎧⎨=-⎩消去m 得1y x =--.故答案为:1y x =--.22.(2021·全国·九年级竞赛)如果一次函数y mx n =+与反比例函数3n x y x -=的图象相交于点1,22⎛⎫⎪⎝⎭,那么该直线与双曲线的另一个交点为________. 【答案】51,2⎛⎫-- ⎪⎝⎭【解析】 【分析】 【详解】将1,22x y ==代入,31y mx n ny x =+⎧⎪⎨=-⎪⎩得12,2261,m n n ⎧=+⎪⎨⎪=-⎩于是1,23.n m ⎧=⎪⎨⎪=⎩ 解方程13,2312y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩得1,22x y ⎧=⎪⎨⎪=⎩或1,5.2x y =-⎧⎪⎨=-⎪⎩故另一交点为51,2⎛⎫-- ⎪⎝⎭.故答案为:51,2⎛⎫-- ⎪⎝⎭.23.(2021·全国·九年级竞赛)函数|1||2||3|y x x x =+++++,当x =_______时,y 有最小值,最小值等于_______.【答案】 2- 2 【解析】 【分析】 【详解】解 当3x ≤-时,(1)(2)(3)3(2)y x x x x =-+-+-+=-+; 当32x -<≤-时,(1)(2)(3)y x x x x =-+-+++=-;当21x -<≤-时,(1)(2)(3)4y x x x x =-+++++=+; 当1x >-时,(1)(2)(3)3(2)y x x x x =+++++=+.故|1||2||3|y x x x =+++++在(,2]-∞-上递减,在[2,)-+∞上递增,当2x =-时,y 取最小值2.故应填2,2-(如图).注:①一般说来,对于含绝对值的一次函数,应分区间将绝对值符号去掉变成折线函数,再根据函数的增减性(一次项系数为正时递增,为负时递减)就不难得出所求函数的最大(或最小)值.如果作出其图象,那么其结果是一目了然的.②本题的一种简单解法是利用差的绝对值的几何意义来求解:因为||x a -表示数轴上坐标为x 的点P 到坐标为a 的点A 的距离,故|1||2||3|y x x x =+++++表示数轴上坐标为x 的点P 到坐标分别为1,2,3---的点,,A B C 的距离之和.显然当P 与B 重合时,即2x =-时,这个距离之和为最小,其最小值为线段AC 的长度|(1)(3)|2---=.又如,若要求|9||8||3||1||5||6|y x x x x x x =-+-+-++++++的最小值,则它等价于求数轴上坐标为x 的点P ,分别到坐标为9,8,3,1,5,6---的各点,,,,,A B C D E F 的距离之和的最小值. 显然当P 在线段CD 上,即当13x -≤≤时,这个距离之和取最小值,并且最小值|9(6)||8(5)||3(1)|32AF BE CD =++=--+--+--=.24.(2021·全国·九年级竞赛)当x 变化时,分式22365112x x x x ++++的最小值是_______.【答案】4 【解析】 【分析】 【详解】解 令22365112x x y x x ++=++,去分母整理得 2(6)(212)2100y x y x y -+-+-=.若6y =,则①化为20=,矛盾.故6y ≠. 因为作为x 的方程①有实根x ,故()22(212)4(6)(210)410244(4)(6)0y y y y y y y =----=--+=---≥,即(4)(6)0y y --≤,解得46y ≤≤. 而6y ≠,所以46y ≤<.4y =代入①可得1x =-,故当1x =-时,y 取最小值4.故应填4.注:例5~7中求最值的方法叫做判别式法.这是求函数最值的重要方法之一.但应该注意的是,化简整理为一个关于x 的二次方程后(其余数是变量y 的函数),对其二次项系数是否为零应进行讨论,只有在二次项系数不等于零的情形才能应用判别式法(若使二次项系数等于0的y 的值存在,则这个值也是函数y 可取到的值,在求最值时,应将这个值考虑在内进行讨论).25.(2021·全国·九年级竞赛)代数式21133110x x +的最小值是_______. 【答案】3223【解析】 【分析】 【详解】解 设21133110y x x =+,则()222(110)1133y x x +=+,即22222032233113y xy x +=⨯+⨯.关于x 的方程222322322031130x yx y ⨯-+⨯-=有实根,所以 ()()222222(220)432233113411332230y y y =--⨯⨯⨯⨯-=⨯-⨯≥(因为22220432234113+⨯⨯=⨯),所以3223y ≥. 当且仅当223x =y 取最小值3223 故应填322326.(2021·全国·九年级竞赛)已知a ,b 是正数,并且二次函数22y x ax b =++和22y x bx a =++的图象都与x 轴相交,则22a b +的最小值是________. 【答案】20 【解析】 【分析】 【详解】解 因两条抛物线都与x 轴相交,故其判别式218a b =-及22(2)4b a =-都不小于零,即22222280,8,8440a b a b a b a b b a b a⎧⎧-≥≥⎪⇒⇒+≥+⎨⎨-≥≥⎪⎩⎩. 因,a b 都是正数,所以423(8)64644a b a a a ≥≥⇒≥⇒≥,及242b a b ≥≥⇒≥,所以22224220a b +≥+=,即22a b +的最小值为20.故应填20.注:本题中求最值的方法叫做放缩法,即根据题目条件,将各变量的值适当放缩为一个常数,从而求出其最值. 三、解答题27.(2021·全国·九年级竞赛)在直径为5的圆内放入10个点,证明其中必有两点的距离小于2. 【答案】见解析 【解析】 【分析】 【详解】分析 把圆等分为9个扇形显然不行(虽然必有一扇形内至少有2点,但不保证它们的距离小于2),因此,我们先作一个与已知圆同心的小圆(其直径必须小于2,但不能太小),然后将余下的圆环部分8等分. 证明 设O 是已知圆心,如图,以O 为圆心作半径为0.9的圆,再将余下的圆环8等分,于是将已知圆面分成了9个部分,由抽屉原理知其中必有一部分内至少有已知10点中的101129-⎡⎤+=⎢⎥⎣⎦点,M N ,若,M N 在小圆内,则220.9 1.82MN OC ≤=⨯=<. 若,M N 同在一个扇面形内,则由余弦定理,有222cos45MN AC OC OA OC OA ≤+-⋅︒0.81 6.2520.9 2.50.7 3.912+-⨯⨯⨯<.从例2可以看出,分割图形制造“抽屉”时,可能不是将图形等分为几部分,而是要求分割的每一部分图形都具有所需要的性质(例2中每一部分图形内任意两点的距离都小于2),读者应用这种方法解题时,应该注意到这一点.28.(2021·全国·九年级竞赛)试求1231997x x x x -+-+-++-的最小值.【答案】997002. 【解析】 【分析】 【详解】解:要求1219961997x x x x -+-+⋯+-+-的最小值,只要在数轴上找出x 所对应的点,使这点到1,2,3,…,1997所对应的点的距离之和最小即可. 如图1-1所示,当999x =时,原式的值最小,最小值为999199929999989999999991000999100199919969991997-+-+⋯+--+-+-+⋯+-+-+99899721012997998=++⋯++++++⋯++(9981)99822+⨯=⨯997002=.29.(2021·全国·九年级竞赛)当12x ≤≤2121x x x x +--- 【答案】21x -. 【解析】 【分析】 【详解】解:令2121(12)A x x x x x +---≤≤,则 222212(21)21A x x x x x x =+-----22224422(2)x x x x x =--+=--()()22222241x x x x x =--=--=-,又0,12A x >≤≤,所以1A x =-30.(2021·全国·九年级竞赛)一幢33层的大楼里有一部电梯停在第一层,它一次最多容纳32人,而且只能在第2层至第33层中某一层停一次.对每个人来讲,他往下走一层楼感到1分不满意,往上走一层感到3分不满意.现有32个人在第一层,并且他们分别住在第2层至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小值?最小值是多少?(有些人可以不坐电梯直接从楼梯上楼) 【答案】当电梯停在第27层时,不满意总分最小,最小值为316分 【解析】 【分析】 【详解】解易知这32人恰好是从第2层到第33层各住1人.对于每个乘电梯上下楼的人,他所住的层数一定不小于直接上楼的人所住的层数(事实上,设住s 层的人乘电梯,而住第t 层的人直接上楼,s t <,则这2人不满意分数之和为3t ;若两人交换上楼方式,则2人不满意分数之和为33s t <,即不满意总分减小. 设电梯停在第x 层,在第一层有y 人没有乘电梯而直接上楼,那么不满意总分为3[12(33)]3(12)[12(2)]S x y x y =+++-++++++++--,其中3[12(33)]x +++-是住在第1x +层至第33层的人(共33x -人)的不满意总分之和,3(12)y +++是直接从楼梯上楼的人(共y 人)的不满意总分之和,12(2)x y +++--是从第2y +层至第1x -层的人(共2x y --人)的不满意总分之和,于是331(33)(34)(1)(2)(1)222S x x y y x y x y =--+++----222102231684x xy x y y =--+++ 222(102)231684x y x y y =-++++()221021215180308648y x y y +⎛⎫=-+-+ ⎪⎝⎭22102152(6)31631648y x y +⎛⎫=-+-+≥ ⎪⎝⎭,且当27,6x y ==时,316S =.答:当电梯停在第27层时,不满意总分最小,最小值为316分.注:求含2个或2个以上变量的代数式的最大(小)值时,配方法是其中有效方法之一;另一种方法则是利用已有不等式将含有变量的代数式化为一个不大于(或不小于)一个常数c 的不等式,并能确定等号可以成立,则常数c 便是所求的最大值(或最小值);第三种方法就是化为一元二次方程用判别式法(参看§5例4~7),等等.31.(2021·全国·九年级竞赛)求函数22233x y x x +=++的最大值和最小值.【答案】当2x =-时,y 取最小值2-;当0x =时,y 取最大值23,理由见解析. 【解析】 【分析】 【详解】将原式整理为关于x 的方程:2(32)(32)0yx y x y +-+-=.若0y =,则1x =-,即0y =是函数的一个值;若0y ≠,则因关于x 的方程有实根,所以2(32)4(32)(32)(324)0y y y y y y =---=---≥,即(32)(2)0y y -+≤,解得223y -≤≤.由此可看出0y =即不是最大值也不是最小值. 当2y =-时,由222233x x x +-=++,解得2x =-;当23y =时,由2222333x x x +=++,解得0x =.所以当2x =-时,y 取最小值2-;当0x =时,y 取最大值23.32.(2021·全国·九年级竞赛)已知,,a b c 都是正整数,且抛物线2y ax bx c =++与x 轴有2个不同的交点A 和B ,若,A B 到原点的距离都小于1,求a b c ++的最小值. 【答案】11,见解析. 【解析】 【分析】【详解】设()()()1212,0,,0A x B x x x <,则1212120,0,00b x x ax x c x x a ⎧+=-<⎪⎪⇒<<⎨⎪⋅=>⎪⎩. 又2402b ac b ac =->⇒>① 又因为121,1OA x OB x =<=<, 故121210,101cx x x x c a a-<<-<<⇒=<⇒<.② 因0a >,抛物线开口向上,故1x =-时,0y a b c =-+>,得b a c <+.而,b a c +均为正整数,故1a c b +≥+,于是由①得21()1a c ac a c +>⇒>,由②1a c >,即1a c >,于是22(1)(11)4a c >≥+=,所以5a ≥.又22514b ac >⨯,所以5b ≥.取5,5,1a b c ===时,2551y x x =++满足题目条件,故a b c ++的最小值为55111++=. 33.(2021·全国·九年级竞赛)求2221026249T x y z xy yz z =++---+的最小值. 【答案】5 【解析】 【分析】 【详解】解 ()()()22222692445T x xy y y yz z z z =-++-++-++222(3)()(2)55x y y z z =-+-+-+≥.当6,2x y z ===时,T 取最小值5.注:例2~3中求最值的方法是常用的配方法.34.(2021·全国·九年级竞赛)在40与100之间任取一个实数x ,如果[]7x =,那么1610x ⎡=⎣的概率是多少?这是[]a 表示不超过a 的最大整数(要求答案写成最简分数的形式). 【答案】780【解析】 【分析】 【详解】因[]7x =,故2278,78x x <≤≤≤.而要使[16]10x =,即22101611,2.5 2. 75,2.5 2.75x x x ≤≤≤,故所求概率22222.75 2.25 1.31257871580p -===-. 35.(2021·全国·九年级竞赛)如图,D E F 、、分别是ABC 的三边BC CA AB 、、上任意一点,证明:,,AEF BFD CDE △△△中至少有一个三角形的面积不大于ABC 的面积的四分之一.【答案】见解析 【解析】 【分析】 【详解】证明 记123,,,ABC AEF BFD CDE S S S S S S S S ====,于是11sin 21sin 2AE AF A S AE AFS AB ACAB AC A ⋅⋅⋅⋅==⋅⋅⋅⋅.同理32,S S BF BD CD CE S BA BC S CA CB⋅⋅==⋅⋅, 所以1233222()()()S S S AF FB BD DC CE EA S AB BC CA ⋅⋅⋅⋅⋅=⋅⋅ 222222122264AF FB BD DC CE EA AB BC CA +++⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≤=⋅⋅. 31234S S S S . 由平均值原理得123,,S S S 中必有一个不大于S4.即证. 36.(2021·全国·九年级竞赛)某林场安排了7天的植树工作,从第二天起每天都比前一天增加5个植树的人,但从第二天起每人每天都比前一天少植5棵树,且同一天植树的人,植相同数量的树.若7天共植树9947棵,则植树最多的那天共植了多少棵?植树最少的那天,有多少人在植树? 【答案】植树最少的那天有54人或24人植树. 【解析】 【分析】 【详解】设第4天有m 人植树,每人植树n 棵,则第4天共植树mn 棵;第3天有5m -人植树,每人植5n +棵,则第3天共植树(5)(5)m n -+棵.同理,第2天共植树(10)(10)m n -+棵;第1天共植树(15)(15)m n -+棵;第5天共植树(5)(5)m n +-棵;第6天共植树(10)(10)m n +-棵;第7天共植树(15)(15)m n +-棵.由七天共植树9947棵得(15)(15)(10)(10)m n m n -++-++(5)(5)(5)(5)m n mn m n -++++-(10)(10)m n ++-(15)(15)9947m n ++-=.化简得77009947mn -=,1521mn =.因221521313=⨯.又每天都有人植树,所以15m >,15n >,故39m n ==.因为第4天植树棵数为39391521⨯=,其他各天植树棵数为(39)(39)a a -+=21521a -(5a =,10或15),所以第4天植树最多,这一天共植树1521棵. 当15a =时,2239a -的植树棵数最少.又当15a =时,植树人数为391554+=或391524-=,所以植树最少的那天有54人或24人植树. 37.(2021·全国·九年级竞赛)一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次.对于每个人来说他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别在第2至第33层的每一层,问:电梯停在哪一层,可以使32人不满意的总分达到最小?最小值是多少?(有些人可以不坐电梯而直接从楼梯上楼). 【答案】当电梯停在第27层时,这32人不满意的总分达到最小,最小值为316分. 【解析】 【分析】 【详解】易知,这32人恰好是第2至第33层各住一人,对于每个乘电梯上、下梯的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.事实上,设住s 层的人乘电梯,而住第t 层的人直接走楼梯上楼,且s t <,交换两人上楼方式,其余人不变,则不满意总分不增.现分别证明如下:设电梯停在第x 层,①当x s t ≤<时,若住在第s 层的坐电梯,住第t 层的人直接走楼梯上楼,则这两者不满意总分为3(1)3()t s x -+-=3333t s x +--;交换两人上楼方式,则两者不满意总分为3(1)3()s t x -+-=3333t s x +--,两者相等;②当s x t <<时,若住s 层的人乘电梯,而住第t 层的人直接走楼梯上楼,则这两人不满意总分为3(1)()t x s -+-=33t x s +--;交换两人上楼方式,则这两者不满意总分为3(1)3()s t x -+-=3333t x s -+-,前者比后者多4()0x s ->;③当s t x <≤时,若住s 层的人乘电梯,住t 层的人直接走楼梯上楼,则这两者不满意总分为3(1)()t x s -+-=33t x s +--;交换两人上楼方式,则这两者的不满意总分为3(1)()s x t -+-=33s x t +--,前者比后者多4()0t s ->.今设电梯停在第x 层,设有y 人直接走楼梯上楼,则11y x +≤-,那么不满意总分为3(12)s y =+++3[12(33)]x ++++-[12(11)]x y ++++---3(1)3(33)(34)22y y x x +--=++(2)(1)2x y x y ----222102231684x xy x y y =--+++222(102)231684x y x y y =-++++=210224y x +⎡⎤-⎢⎥⎣⎦()211518030688y y +-+210224y x +⎛⎫=-+ ⎪⎝⎭215(6)3163168y +-+≥. 当27x =,6y =时,316s =,所以,当电梯停在第27层时,这32人不满意的总分达到最小,最小值为316分.38.(2021·全国·九年级竞赛)已知正整数m ,n 17434m m n -+=,求n 的最大值. 【答案】104 【解析】 【分析】 【详解】设70a m =-,104104a a n -+=,两边平方得22222104a a n +-=.令222104a b -=(b 为正整数),则2()()104a b a b -+=.由于-a b 与a b +同奇偶,即同为偶数,所以当2a b -=时,a b +取最大值52104⨯.这时,222()104n a b =+=为最大,所以n 的最大值为104. 39.(2021·全国·九年级竞赛)对于1,2,3,,i n =,有|| 1 i x <且有12||||||n x x x +++=122009||n x x x ++++.求正整数n 的最小值.【答案】正整数n 的最小值为2010. 【解析】 【分析】 【详解】 作整体估计如下:2009=1212||||||||n n x x x x x x +++-+++12||||||n x x x n ≤+++<,所以2010n ≥.当2010n =时,取121005x x x ===20092010=,10061007x x ===201020092010x =-,则||1i x <(1,2,,2010) i =且122010|||||x x x +++2009=+122010||x x x +++,满足题目条件,故所求n 的最小值为2010.40.(2021·全国·九年级竞赛)整数012010,,,x x x 满足条件:00x =,10|||1|x x =+,21|||1|x x =+,…,201020091x x =+,求122010x x x +++的最小值.【答案】122010x x x +++的最小值为7.【解析】 【分析】 【详解】由已知条件可得:2210021x x x =++,2221121x x x =++,…,2220102009200921x x x =++,各式相加整理后得22010x =()2001200922010x x x x +++++.又00x =,故有122010x x x +++=2201020101220102x x +-()220101120112x =+-. 因122010x x x +++为整数,故()220101x +为奇数,又2243201045<<且2432011-=16214>=2452011-,所以122010x x x +++2145201172≥-=.。

全国大学生数学竞赛赛试题(1-9届)

全国大学生数学竞赛赛试题(1-9届)

一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(__ ,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(yy f e xe=确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy_____.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 25d d π⎰≥--L y y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u xn n n, 且n eu n =)1(, 求函数项级数∑∞=1)(n n x u 之和. 八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五指山市实验学校2015-2016学年度第二学期
九年级数学竞赛试题
步步为营
(一)游戏类:数字猜与数字有关的成语(1)谜题:0 0 0 0 答案:四大皆空
(2)谜题:0 + 0 = 0 答案:一无所获
(3)谜题:0 + 0 = 1 答案:无中生有
(4)谜题:1 × 1 = 1 答案:一成不变
(5)谜题: 1/2答案:一分为二
(6)谜题:1 + 2 + 3 答案:接二连三
(7)谜题: 3.4 答案:不三不四
(8)谜题:2/2 =1 答案:合二为一
(9)谜题:1 = 365 答案:度日如年
(10)谜题:9寸+ 1寸=1尺答案:得寸进尺
(11)谜题:1℅答案:百里挑一
(12)谜题:333333 555555 答案:三五成群
(13)谜题:5 10 答案:一五一十
(14)谜题:1 2 3 4 5 6 0 9 答案:七零八落(15)谜题:1 2 4 6 7 8 9 10 答案:隔三差五(16)谜题:2 3 4 5 6 7 8 9 答案:缺衣少食(17)谜题:7/8答案:七上八下(18)谜题:2 4 6 8 10 答案:无独有偶
再接再厉
(二)生活常识类:应用所学数学知识解决日常生活中的实际问题(1)小林今年10岁,爸爸的年龄是他的3倍还多6, 3 年后爸爸的年龄是他的3倍。

(2)一张方桌子,锯去一个角后台面的形状是三角形、四边形、五边形。

(3)已知三个点,可以画1条或3条条直线。

(4)圆周率是个无理数,小数点后第五位是9
(5)“火警”电话号码是119
(6)王老师最近搬进教师宿舍大楼,他站在阳台上,往下看有3个阳台,往上看有4个阳台,教师宿舍楼共有8 层。

(7)小明的哥哥在上海上大学,1月8日开始放假,3月1日开学,他的寒假共有40或41 天。

(8)从1数到100,读出18 个9.
(9)王大妈去集市卖鸡蛋,第一个人买走了鸡蛋的一半又一个,第二个人买走了剩下的一半又一个,这时篮子里还剩下一个鸡蛋,王大妈至少卖10 个鸡蛋。

(10)有个朋友问小东:“你们班有多少学生?”他答:“二分之一的在学数学,四分之一的在学语文,七分之一的在学英语,还剩下3人在睡觉”,则小东所在的班级共有28 人。

巅峰对决
综合应用类:利用所学的知识解决较为复杂的实际问题
1、某小学为每个学生编号,设定号码未尾为1表示男生,为2表示女生。

如96410252表示“96年入学,在四年级一班,025号同学,该同学是女生”。

那么,01110101表示的学生是()年入学,在()年级()班,学号是()的一名()同学。

假若你是六年级三班的36号同学,请用以上方法编出自己的学号。

2、某地区小灵通移动电话的交费方式有以下两种:(1)免交月租费。

通话每分钟0.25元,每月基本消费15元;(2)交月租费,每月交月租费18元,通话每分钟0.1元。

小涛的爸爸每月通话时间为200分钟,请算一下,他选择方式比较划算,比另外一种节约元.
3、一次,甲、乙、丙三位朋友合乘一辆出租车出去办事,出发时三人商量好,车费由三人合理分摊。

早在行到6千米的地方下车,乙在行到12千米的地方下车,丙一直行到18千米的地方下车,并付了72元的车费,请问他们三人各应承担多少车费才比较合理?
4、小亮和爸爸坐出租车去郊游,10千米以内收费5元,超过10千米时,每千米收费0.3元,下车时小亮共交出租车费9.2元,求出租车行了多少千米?
5、某小学要买60个足球,现在有甲、乙、丙三个商店可以选择,三个商店足球的价格都是25元,但各个商店的优惠办法不同:
甲店:买10个足球免费赠送2个,不足10个不赠送;乙店:每个足球优惠5元;丙店:购物每满200元,返还现金30元。

为了节省费用,希望小学应到哪个商店购买,为什么?
6、九年级有甲、乙、丙三个班,已知甲、乙两班共有50人,乙、丙两班共有70人,甲、丙两班共有60人,问甲、乙、丙三个班各有多少人?
7、某小学组织325名师生去春游,已知大客车限乘40人,每天每辆1000元,小客车限乘25人,每天每辆650元,问怎样租车才合适?
8、有两则招聘启事,A公司的工资采用年薪制,起薪为每年10000元,以后逐年增加,每年增加600元;而B公司采用半年薪制,起薪为每半年5000元,以后每半年增加200元,问那个公司的条件更优厚?
9、A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一人24天的食物和水,如果不准将部分食物存放于途中,问:其中一个人最远可以深入沙漠多少千米?如果可以将部分食物存放于途中以备返回时取用呢?
10、甲、乙两人在银行存款共9600元,如果两人分别取出自己的存款的40%,再从乙的存款中取出120元给甲,这时两人存款数相等,乙原来存款多少元。

相关文档
最新文档