0346初等数论
初等数论_精品文档
初等数论初等数论是数学中的一个分支,研究的是整数的性质和特殊的数学关系。
它是数学发展的基础,对于数学中的许多其他分支,如代数、几何和数值分析都具有重要的影响。
初等数论可以追溯到古希腊时代,当时的数学家们对整数之间的关系进行了研究,并推导出了许多重要的结论。
在初等数论中,最基础的概念是整数和素数。
整数是自然数、负自然数和零的总称,它们可以用来表示数量。
素数是只能被1和自身整除的正整数,它们没有其他的因子。
素数在初等数论中具有重要的地位,因为他们是其他整数的构成单元。
在初等数论中,我们可以探讨整数的因子分解。
因子分解是将一个整数表示为素数的乘积的过程。
例如,将数字20分解成素数的乘积可以得到2×2×5=20。
因子分解在数论中起着重要的作用,它有助于我们理解整数之间的数学关系。
初等数论中的另一个重要概念是最大公约数和最小公倍数。
最大公约数是两个整数中能够同时被整除的最大的正整数。
最小公倍数是能够同时整除两个整数的最小的正整数。
最大公约数和最小公倍数可以帮助我们解决一些实际问题,比如找到最简分数、解线性方程等。
初等数论中还有一个重要的概念是同余。
同余是指两个整数除以一个正整数得到的余数相同。
例如,当两个整数被3除得到的余数相同时,我们可以说这两个整数互为3的同余数。
同余关系在数论中起着重要的作用,它可以帮助我们研究整数之间的性质和特殊的数学规律。
初等数论还涉及到数论函数的研究。
数论函数是定义在整数上的函数,它们可以帮助我们描述整数的性质和特征。
常见的数论函数包括欧拉函数、莫比乌斯函数等。
这些函数在数论中有广泛的应用,可以帮助我们研究素数分布、整数方程的解等问题。
除了以上几个基本概念,初等数论还包括一些其他的内容,如二次剩余、费马小定理、威尔逊定理等。
这些概念和定理都有着重要的理论意义和实际应用。
初等数论在数学中具有广泛的应用。
它不仅是其他数学分支的基础,还有着许多实际应用。
例如,在计算机科学中,初等数论可以帮助我们设计和分析算法、构建密码系统等。
初等数论简介PPT课件
数论是研究整数性质的一门很古老的数学 分支,其初等部分是以整数的整除性为中心 的,包括整除性、不定方程、同余式、连分 数、素数(即质数)分布 以及数论函数等内 容,统称初等数论(Elementary Number Theory)。
初等数论 初等数论是数论中不求助于其他数学学科的帮
许多领域中都有极大的贡献,因为他的本行是专业的 律师,世人冠以“业余王子”之美称。在三百七十多 年前的某一天,费马正在阅读一本古希腊数学家戴奥 芬多斯的数学书时,突然心血来潮在书页的空白处, 写下一个看起来很简单的定理。
方程 xn yn zn (n 3) 无非0整数解
经过8年的努力,英国数学家 安德鲁·怀尔斯 终于 在1995年完成了该定理的证明。
一个大于6的偶数可以表示为不同的两个质数之和。
陈景润在1966年证明了“哥德巴赫猜想”的“一个 大偶数可以表示为一个素数和一个不超过两个素数的 乘积之和”〔所谓的1+2〕,是筛法的光辉顶点,至 今仍是“哥德巴赫猜想”的最好结果。
初等数论 2、费尔马大定理: 费马是十七世纪最卓越的数学家之一,他在数学
若2n 1是素数,则2n1(2n 1)是完全数
注意以上谈到的完全数都是偶完全数,至今仍然 不知道有没有奇完全数。
初等数论 四、我国古代数学的伟大成就
1、算经十书 唐代国子监内设立算学馆,置博士、助教指导学生学
习数学,规定《周髀算经》、《九章算术》、《孙子算 经》、《五曹算经》、《夏侯阳算经》、《张丘建算经》、 《海岛算经》、《五经算术》、《缀术》、《缉古算经》 十部算经为课本,用以进行数学教育和考试,后世通称为 算经十书.算经十书是中国汉唐千余年间陆续出现的十部 数学著作.北宋时期(1084年),曾将一部算经刊刻发行, 这是世界上最早的印刷本数学书.(此时《缀术》已经失 传,实际刊刻的只有九种)。
初等数论
第一章 整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节 数的整除性定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a 。
显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1 下面的结论成立: (ⅰ) a ∣b ⇔ ±a ∣±b ; (ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数; (ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0。
定义2 若整数a ≠ 0,±1,并且只有约数 ±1和 ±a ,则称a 是素数(或质数);否则称a 为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2 任何大于1的整数a 都至少有一个素约数。
证明 若a 是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
初等数论 高等数论
1111
数论是一门研究整数性质的数学分支,它包括了初等数论和高等数论两个方面。
初等数论主要研究整数的基本性质,如整除性、质数、合数、最大公约数、最小公倍数等。
这些概念和性质在小学和初中的数学课程中就已经涉及到了,因此也被称为“小学数论”或“初中数论”。
初等数论的研究方法主要是通过观察、归纳和证明来得出结论,它的研究对象比较具体,结论也比较直观。
高等数论则是在初等数论的基础上,进一步深入研究整数的性质和结构。
它涉及到的概念和方法更加抽象和复杂,如素数分布、数的几何、代数数论、解析数论等。
高等数论的研究需要运用到高等数学的知识和方法,如微积分、线性代数、抽象代数等。
高等数论的研究成果不仅在数学领域有着广泛的应用,而且在计算机科学、物理学、密码学等领域也有着重要的应用。
总的来说,初等数论是高等数论的基础,高等数论则是初等数论的延伸和深化。
无论是初等数论还是高等数论,它们都是数学中非常重要的分支,对于我们深入理解整数的性质和结构、推动数学的发展都有着重要的意义。
初等数论简介
初等数论初等数论是研究整数最基本性质的一个数学分支,它也是数学中最古老的分支之一,至今仍有许多没有解决的问题。
初等数论是数学中“理论与实践”相结合最完美的基础课程。
近代数学中许多重要思想、概念、方法与技巧都是对整数性质的深入研究而不断丰富和发展起来的。
近几十年来,初等数论在计算机科学、组合数学、代数编码、信号的数字处理等领域内得到广泛的应用。
在日常生活中,也常会遇到一些数论问题。
具体内容1.整数的可除性:了解整除的概念,掌握带余数除法及其运用;理解最大公因数的基本概念及其性质,掌握用辗转相除法求整数的最大公因数。
掌握整除的性质及其运用,会求整数的最小公倍数。
掌握两个整数的最小公倍数与最小公因数的关系。
了解质数基本概念与性质,理解算术基本定理及其证明,会运用算术基本定理解决问题。
了解函数[x],{x}的基本性质,运用这两个函数解决n!的标准分解式。
2.不定方程:掌握二元及多元一次不定方程有解的充要条件,熟练掌握一次不定方程的求解。
勾股数公式的推导及其运用,了解费尔马问题及无穷递降法。
3.同余:理解同余的概念及其基本性质,掌握检查因数的一些方法和弃九法。
了解剩余类及完全剩余系的性质,并会加以运用。
了解简化剩余系及其性质,会推导欧拉函数,知道它的简单运用。
应用简化剩余系的性质证明Euler定理和Fermat定理,运用欧拉定理研究循环小数;欧拉定理与费马定理的综合运用。
了解同余在信息安全与密码中的运用。
4.同余式:了解同余式的基本概念,掌握一次同余式的求解;理解孙子定理,会解模互素的一次同余式组的求解。
了解一般一次同余式组的解法,掌握高次同余式的解数及解法。
理解质数模的同余式解数的有关定理,并予初步运用。
5.连分数:掌握连分数的基本性质、把实数表成连分数和循环连分数,了解连分数在天文中的运用。
初等数论是数论的一个分支。
它以算术方法为主要的研究方法,而区别于数论的其他分支。
公元前6世纪,古希腊数学家毕达哥拉斯就已研究过整数的可除性问题,例如,当时已经知道正整数中有奇数、偶数、素数、复合数等各种类型的数。
《初等数论》教学大纲
引言概述:初等数论是数学的一个重要分支,它研究整数的性质和关系,是一门基础性的课程。
本文旨在为《初等数论》课程的教学制定一份详细的大纲,以帮助教师合理安排教学内容,提高教学效果。
正文内容:一、素数与合数1.素数的定义与性质素数的定义:只能被1和自身整除的正整数。
2.合数的定义与性质合数的定义:不是素数的正整数。
二、因数与倍数1.因数的概念因数的定义:能整除一个数的整数。
因子的分类:负因数、正因数、真因数。
2.最大公因数与最小公倍数最大公因数的定义与性质:两个数公共因子中最大的一个。
最小公倍数的定义与性质:两个数公共倍数中最小的一个。
三、整数的整除性与除法算法1.整除的概念与性质整除的定义:一个数能够被另一个数整除。
整除的性质:整数除法原则、整数的对称性。
2.整数的除法算法除法算法的步骤与原理:用减法、用乘法、整数除法算法的应用。
四、余数与模运算1.余数的概念与性质余数的定义:做除法时除不尽的部分。
余数的性质:余数的范围、余数的基本性质。
2.模运算的概念与性质模运算的定义:对于整数a和正整数n,a与n的商所得的余数。
模运算的性质:模运算的加法、减法和乘法规则。
五、同余与模运算应用1.同余的定义与性质同余的定义:对于整数a、b和正整数n,当a与b对n取余相等时,称a与b模n同余。
同余的性质:同余的传递性、同余的运算性质。
2.模运算的应用模运算在代数方程中的应用:线性同余方程、模运算的性质在方程求解中的应用。
总结:本文从素数与合数、因数与倍数、整除性与除法算法、余数与模运算以及同余与模运算应用等五个大点进行阐述。
通过这些内容的学习,学生将能够了解整数的性质和关系,理解数论的基本原理,为后续数学学习打下坚实的基础。
教师在教学过程中,应注重拓展学生的数学思维、培养其解决问题的能力,并结合实际生活和其他数学知识进行应用。
通过系统的教学大纲指导,教师能够更好地组织教学内容,提高学生的学习效果。
0346初等数论
所以125与50的最大公因数是52,即25。
四、解:因为(1,9) = 1,所以不定方程有整数解。
显然x = 1,y = 0是其一个特解,
所以不定方程的一切整数解为,其中t取一切整数。
五、证明:若m或n为3的倍数,则mn是3的倍数;若m是3的倍数加1,n是3的倍数加1,则m-n是3的倍数;若m是3的倍数加1,n是3的倍数加2,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加1,则m+n是3的倍数;若m是3的倍数加2,n是3的倍数加2,则m-n是3的倍数,结论成立。
三、(15分)求125与50的最大公因数。
四、(15分)求不定方程x+9y=1的一切整数解。
五、(10分)设m,n为整数,证明m+n,m-n与mn中一定有一个是3的倍数。
一、解释概念
1.答:若a,b是两个整数,其中b>0,则存在两个整数q及r,使得
a=bq+r, 0<=r<b 成立,而且q及r是唯一的,q叫做a被b除所得的不完全商。学与应用数学2017年06月
课程名称【编号】:初等数论【0346】 A卷
大作业满分:100 分
一、解释下列概念(每小题15分,共30分)
1.叙述整数a被b除的不完全商的概念。
2.叙述整数a,b对模m同余的概念。
二、(30分)给出有关整除的一条性质并加以证明。
2.答:如果用m去除任意两个整数a与b所得的余数相同,我们就说a与b对模m同余,记为a≡b(mod m)。
二、答:若a是b的倍数,b是c的倍数,则a是c的倍数。即:若b| a,c| b,则 c|a。
证:由b|a,c|b及整除的定义知存在整数q1,q2 使得a=bq1,b=cq2。因此a=(cq2)q1=c(q1q2),但q1q2是一个整数,故c|a。
初等数论
序言数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即整数)分布以及数论函数等内容,统称初等数论(Elementary Number Theory)。
初等数论的大部份内容早在古希腊欧几里德的《几何原本》中就已出现。
欧几里得证明了素数有无穷多个,他还给出求两个自然数的最大公约数的方法,即所谓欧几里得算法。
我国古代在数论方面亦有杰出之贡献,现在一般数论书中的“中国剩余定理”正是我国古代《孙子算经》中的下卷第26题,我国称之为“孙子定理”。
近代初等数论的发展得益于费马、欧拉、拉格朗日、勒让德和高斯等人的工作。
1801年,高斯的《算术探究》是数论的划时代杰作。
“数学是科学之王,数论是数学之王”。
-----高斯由于自20世纪以来引进了抽象数学和高等分析的巧妙工具,数论得到进一步的发展,从而开阔了新的研究领域,出现了代数数论、解析数论、几何数论等新分支。
而且近年来初等数论在计算器科学、组合数学、密码学、代数编码、计算方法等领域内更得到了广泛的应用,无疑同时间促进着数论的发展。
数论是以严格和简洁著称,内容既丰富又深刻。
我将会介绍数论中最基本的概念和理论,希望大家能对这门学问产生兴趣,并且对中小学时代学习过的一些基本概念,例如整除性、最大公因子、最小公倍数、辗转相除法等,有较深入的了解。
第一章整数的整除性§1.1整除的概念一、基本概念1、自然数、整数2、正整数、负整数3、奇数、偶数一个性质:整数+整数=整数整数-整数=整数整数*整数=整数二、整除1、定义:设a,b是整数,b≠0。
如果存在一个整数q使得等式:a=bq成立,则称b能整除a或a能被b整除,记作b∣a;如果这样的q不存在,则称b不能整除a。
2、整除的性质(1)如果b∣a,c∣b,则c∣a.(2)如果b∣a,则cb∣ca.(3)如果c∣a,则对任何整数d,c∣da.(4)如果c∣a,c∣b,则对任意整数m,n,有c∣ma+nb.(5)如果a∣b,b∣a,则a=±b.3、质数、合数质数(素数)是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。
0346初等数论考试答案
0346初等数论考试答案一、填空题1、32、93、1122⨯4、95、136、{1、2、5、7}7、7、11、13、17二、简答题 1、答:a,b ∈Z ,b>0,那么存在唯一的一对整数q 和r ,使得等式a=bq+r ,其中0≤r<b. 成立。
并且,b|a 当且仅当r=0。
2、答:公因数又称为公约数,指定两个或两个以上的整数,如果有一个整数是它们共同的因数,那么这个数就叫做它们的公因数。
3、答:0,1,、、、、m-1这m 个整数叫做模m 的最小非负完全剩余系。
4、答:A 、设a , b 是任意两个整数,其中b ≠0,如果存在一个整数q 使得等式a =bq 成立,我们就称b 整除a 或a 被b 整除。
B 、若b a |,c b |,则c a |。
5、答:203是5的倍数,因为:2+0+3=5是5的倍数。
6、答:设k m m m ,,, 21是k 个两两互质的正整数,121,2,,k i i m m m m m m M i k === ,,,则同余式组⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod )(mod )(mod 2211k k m b x m b x m b x 的解是)(mod 222111m b M M b M M b M M x k k k '++'+'≡ ,其中'i M 是满足)(mod 1i i i m M M ≡'的任一个整数,i =1,2,…,k 。
三、计算题1.解:)(11229921111,2112212222,1142299=⨯=⨯=⨯=+⨯=,所以;;2.解:53253⨯⨯=! 3..解:()17,114....114114114151000101991001010101010整除,故余数为一项不能被在上述数字中只有最后⨯⨯++⨯⨯+⨯⨯=+=c c c4.解:3x+y=1得,y=1-3x,故此不定方程的所有整数解是,.....)2,1,0(31,±±=-==t t y t x5.解:).7(mod 5,372,71,1)7,2({5500==-===x y x x y 所以同余式的解为的一个解由于只有一个解。
(0346)《初等数论》网上作业题及答案
(0346)《初等数论》网上作业题及答案1:第一次作业2:第二次作业3:第三次作业4:第四次作业5:第五次作业1:[论述题]数论第一次作业参考答案:数论第一次作业答案2:[单选题]如果a|b,b|c,则()。
A:a=cB:a=-cC:a|cD:c|a参考答案:C马克思主义哲学是我们时代的思想智慧。
作为时代的思想智慧,马克思主义哲学主要具有反思功能、概括功能、批判功能和预测功能。
(1)“反思”是哲学思维的基本特征,是以思想的本身为内容,力求思想自觉其为思想。
通过不断的反思,揭示自己时代的本质和规律,达到对事物本质和规律性的认识。
(2)概括是马克思主义哲学的重要功能,是马克思主义哲学把握人与世界总体性关系的基本思维方式。
(3)马克思主义哲学的批判功能主要是指对现存世界的积极否定。
(4)马克思主义哲学的预测功能在于预见现存世界的发展趋势。
3:[单选题]360与200的最大公约数是()。
A:10B:20C:30D:40参考答案:D数论第一次作业答案4:[单选题]如果a|b,b|a ,则()。
A:a=bB:a=-bC:a=b或a=-bD:a,b的关系无法确定参考答案:C数论第一次作业答案5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C数论第一次作业答案6:[单选题]设n,m为整数,如果3整除n,3整除m,则9()mn。
A:整除B:不整除C:等于D:小于参考答案:A数论第一次作业答案7:[单选题]整数6的正约数的个数是()。
A:1B:2C:3D:4参考答案:D数论第一次作业答案8:[单选题]如果5|n ,7|n,则35()n 。
A:不整除B:等于C:不一定D:整除参考答案:D数论第一次作业答案1:[论述题]数论第二次作业参考答案:数论第二次作业答案2:[单选题]288与158的最大公约数是()。
A:2B:4C:6D:8参考答案:A数论第二次作业答案3:[单选题]-337被4除余数是()。
西南大学2020秋季 [0346]《初等数论》考试答案
西南大学培训与继续教育学院课程考试试题卷学期:2020年秋季
课程名称【编号】:初等数论【0346】 A卷
考试类别:大作业满分:100分
1.解:整除的定义:
设a, b是任意两个整数,其中b不为零,若存在一个整数q使得a=bq,我们就说b 整除a,记为bla.这时b叫a的因数, a叫b的倍数.若这样的q不存在,则说b 不整除a.
6整除24.
8不整除42.
3.解:欧拉函数()a
ϕ是定义在正整数上的函数,它在正整数a上的值等于序列0,1,2,…,a-1中与a互质的数的个数。
(5)
ϕ=4
(6)
ϕ=2.
4.解:220=2²×5×11。
6.解如下图
8.解:素数除了1和自己就没有其他约数了.4m-1或4m+1,其中4m-1看成4m+3,即一切奇素数都可以表示成4m+3或4m+1的形式.因为,一切奇素数不可以写成4m的形式(约数4),但也不能写成4m+2(约数2).所以一切奇素数都可以表示成4m-1或4m+1的形式,即41
m±.
- 1 -。
初等数论1
初等数论1
数论是数学的一个分支,它研究的是数学中整数的性质及其相关的函数及应用。
而初等数论则是数论的一个特殊分支,它研究的是数论与其他数学领域以及实际应用的交叉。
本文将介绍初等数论的基本概念,包括质数定理,欧拉函数以及不变量的重要性等。
首先,质数定理是初等数论的基础。
质数定理可以定义为:任何数字都可以表示为由一个或多个质数乘积组成的形式,这样的乘积称为合数。
这个定理非常重要,因为它使得我们可以用质数来分解任何数字,从而更有效地理解它们。
欧拉函数是另一个重要的初等数论概念,它可以定义为:欧拉函数是一个以质数为参数的函数,它的值表示在质数小于某个数的范围内的不同质数的数量。
它的实际应用在于可以有效地判断某个数字是否为质数,以及求出某个范围内的质数数量。
不变量也是初等数论中的一个重要概念。
不变量可以定义为:在一个给定的数论环境中,一个不变量是指被定义的某些数学关系不会改变的量。
比如,如果给定一个质数,那么在这个质数的周围的所有合数的乘积,都与初始质数的乘积是相等的,就是一个不变量。
由此可见,初等数论是一门极其重要的数学分支,它的基本概念是:质数定理,欧拉函数以及不变量。
它们都具有重要的实用价值,可以应用在许多数学领域,如解方程,分析数字,编写程序等。
而且,还有很多有趣的实验机会可以进一步研究初等数论,比如欧拉函数的重要性,质数定理的算法以及不变量的推广等。
因此,初等数论所提
供的启发和机会都是值得我们去尝试的。
(0346)《初等数论》复习思考题 (1)
(0346)《初等数论》复习思考题1. 一个不等于1的自然数,分别去除967,1000,2001得到相同的余数。
试求这个自然数。
2. 求证:不可能存在两个质数p 1,p 2,使得p 1 + p 2 = 111…1(20位数)。
3. 如果p 和p + 2都是大于3的质数,求证6 | p + 1。
4. 设m , n 为整数,求证m +n , m -n 与mn 中一定有一个是3的倍数。
5. 证明:两个奇数的平方差是8的倍数。
6.已知p 为偶数,q 为奇数。
方程组⎩⎨⎧=+=-q y x p y x 39918的解是整数,那么( )。
A. x 是奇数,y 是偶数 B. x 是偶数,y 是奇数C. x 是偶数,y 是偶数D. x 是奇数,y 是奇数7. 求1980的标准分解式。
8. 求792与594的最大公因数。
9. 求2001!中末尾0的个数。
10.求不定方程10x -7y =17的一切整数解。
11.求不定方程15x +10y +6z =61的一切整数解。
12.袋子里有三种球,分别标有数字2,3和5,小明从中摸出12个球,它们的数字之和是 43,问:小明最多摸出标有数字2的球多少个?13.下列结论是否成立。
A. 若a 2≡b 2(mod m ),则a ≡b (mod m )。
B. 若a 2≡b 2(mod m ),则a ≡b (mod m )或a ≡-b (mod m )至少有一个成立。
C. 若a ≡b (mod m ),则a 2≡b 2(mod m )。
D. 若a ≡b (mod 2),则a 2≡b 2(mod 22)。
E. 若ac ≡bc (mod m ),c 关于模m 不同余于0,则a ≡b (mod m )。
F. 若a ≡b (mod 3),k ≥2,则a k ≡b k (mod 3)。
14.若n 为为然数,求证9n +1≡8n +9(mod 64)。
15.写出模9的一个完全剩余系。
16.写出模8的一个简化剩余系。
初等数论
2013,北约,8:至少可以找到多少个两两不同的正整数 使得他们中的任意三个的和都是质数?证明你的结论。
2013,北约,8:至少可以找到多少个两两不同的 正整数使得他们中的任意三个的和都是质数?证明 你的结论。 特殊化猜想:1 3 7 9 一般化证明:假设存在5个符合题意的正整数。考 虑他们除以3的余数,设余数为0,1,2的分别为 a b c 个则 (1)若a b c均不为0则一定存在三个数,他们的余 数分别为0 1 2 取这三个数他们的和为3的倍数,不 是质数 (1)若a,b,c中有零,则根据抽屉原理至少有三个 数,他们的余数相同,这三个数的和为3的倍数一 定不是质数。综上最多能找到4个
2 设m=x1 x2 x3 x4 x5 , c4 6 这5个数中有两个相等;
不妨设x1
x2
x3
a 44, 45, 46, 47 a 46, m 57 x1 13, x2 12, x3 x5 11, x4 10
m x1 44 m x 45 2 x4则 m x3 46 则4m 182 a m x 47 4 m x5 a
初等数论
初等数论是研究数的规律,特别是整数性质 的数学分支。它是数论的一个最古老的分支。 它以算术方法为主要研究方法,主要内容有 整数的整除理论、同余理论、连分数理论和 某些特殊不定方程。 换言之,初等数论就 是用初等朴素的方法去研究数论。 在自主招生考试中所考察的内容包括:整数, 有理数,实数 整除,同余理论,多项式, 韦达定理,高斯函数等。 特点:形式简单所用知识不多但是富有灵巧 性不易下手
2014数学竞赛河南预赛7(高斯函数)
n n n 符号 x 表示不超过x的最大整数,n是正整数则 ( ) 3 6 n 1 2
2018年春季学期西南大学网络教育平时作业答案0346《初等数论》
0346《初等数论》概念解释题一、解释下列概念1. 叙述整数b被整数a整除的概念。
2. 叙述合数的概念,并判断21是否为合数。
3. 80530是否是5的倍数,为什么?4. 叙述质数的概念,并写出小于18的所有质数。
5. 叙述模m的最小非负完全剩余系的概念。
6. 2358是否是3的倍数,为什么?二、给出不定方程ax + by = c有整数解的充要条件并加以证明。
三、给出有关同余的一条性质并加以证明。
四、叙述带余数除法定理的内容并给出证明。
概念解释题答案一、解释下列概念1. 叙述整数b被整数a整除的概念。
答:若存在整数q使得b=aq,则称整数b被整数a整除。
2. 叙述合数的概念,并判断21是否为合数。
答:一个大于1的整数,如果它的正因数除了1和它本身外,还有其它正因数,就叫作合数。
21是合数,因为除了1和21外还有3,7是它的正因数。
3. 80530是否是5的倍数,为什么?答:80530是5的倍数。
因为一个整数能被5整除的充要条件是它的个位数为5或0。
4. 叙述质数的概念,并写出小于18的所有质数。
答:一个大于1的整数,如果它的正因数只有1和它本身,就叫作质数。
小于18的所有质数是2,3,5,7,11,13,17。
5. 叙述模m 的最小非负完全剩余系的概念。
答:0,1,2,…,m -1称为m 的最小非负完全剩余系。
6. 2358是否是3的倍数,为什么? 答:2358是3的倍数。
因为一个整数能被3整除的充要条件是它的各个位数的数字之和为3的倍数,而2+3+5+8=18,18是3的倍数,所以2358是3的倍数。
二、给出不定方程ax + by = c 有整数解的充要条件并加以证明。
解: 结论:二元一次不定方程ax + by = c 有整数解的充要条件是(,)|a b c 。
证明如下:若ax + by = c 有整数解,设为00,x y ,则00ax by c +=但(,)|a b a ,(,)|a b b ,因而(,)|a b c ,必要性得证。
《初等数论》复习思考题答案
(0346)《初等数论》复习思考题答案1. 一个不等于1的自然数,分别去除967,1000,2001得到相同的余数。
试求这个自然数。
解:设这个自然数为q ,则q | 1000 – 967,即q | 33。
又q | 2001 – 1000,即q | 1001,所以 q = 11。
2. 求证:不可能存在两个质数p 1,p 2,使得p 1 + p 2 = 111…1(20位数)。
证明:由于p 1与p 2的和为奇数,故p 1与p 2中有一个为2,设p 2 = 2,则110101*********-++++= p 。
因为10 ≡ 1(mod 9),所以p 1 ≡ 19 – 1 ≡ 0 (mod 9),即p 1不是质数,矛盾。
3. 如果p 和p + 2都是大于3的质数,求证6 | p + 1。
证明:首先p 是大于3的质数,则p 不是3的倍数。
又p + 2是大于3的质数,所以p – 1不是3的倍数。
故p + 1 必为3的倍数。
但p + 1 为偶数,所以p + 1 为2的倍数。
由于2与3互质,所以p + 1 为6的倍数,于是6 | p + 1。
4. 设m , n 为整数,求证m +n , m -n 与mn 中一定有一个是3的倍数。
证明:若m 或n 为3的倍数,则mn 是3的倍数;若m 是3的倍数加1,n 是3的倍数加1,则m -n 是3的倍数;若m 是3的倍数加1,n 是3的倍数加2,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加1,则m +n 是3的倍数;若m 是3的倍数加2,n 是3的倍数加2,则m -n 是3的倍数,结论成立。
5. 证明:两个奇数的平方差是8的倍数。
证明:若a =2k +1为奇数,则a 2-1=4k (k +1),因2|k (k +1),所以8| a 2-1。
于是当a , b 均为奇数时,由8| a 2-1与8| b 2-1得8|a 2-b 2。
即两个奇数的平方差是8的倍数。
初等数论教学大纲
初等数论教学大纲一、课程简介初等数论是数学的一门重要分支,主要研究整数的性质和结构。
通过对初等数论的学习,学生可以更深入地理解整数及其关系,培养数学逻辑思维和问题解决能力。
本教学大纲旨在提供一份全面的教学计划,帮助学生掌握初等数论的基本概念和方法。
二、教学目标1、理解整数的概念、性质和运算;2、掌握因数分解和质数判断的方法;3、理解最大公约数和最小公倍数的概念及其计算方法;4、掌握分数及其性质,了解分数分解的方法;5、理解代数方程及其解法,掌握二次方程的解法;6、培养学生对数学的兴趣和解决问题的能力。
三、教学内容1、整数的概念和性质a.整数的定义和分类b.整数的运算规则c.数的表示方法2、因数分解和质数判断a.因数分解的方法b.质数判断的方法3、最大公约数和最小公倍数a.最大公约数的定义和计算方法b.最小公倍数的定义和计算方法4、分数及其性质a.分数的定义和分类b.分数的运算规则c.分数的约分和通分5、二次方程及其解法a.二次方程的定义和分类b.二次方程的解法6、其他代数方程的解法介绍a.一元一次方程的解法b.一元二次方程的解法c.高次方程的解法简介7、数论在密码学中的应用介绍a. RSA算法简介b.其他密码学应用简介8、数论在其他领域的应用介绍a.数论在计算机科学中的应用b.数论在物理学中的应用等9、数论的历史和发展简介a.数论的起源和发展历程b.数论在现代数学中的应用及发展前景10、初等数论与中学数学的与区别分析。
在数学的学习中,数论是一个非常重要的分支,它研究的是数的性质和规律。
在大学数学中,初等数论是数论的基础课程,它主要包括了以下几个方面的内容:整除性理论:整除性理论是数论的基础,它主要研究的是整数之间的除法性质。
通过研究素数和分解定理,我们可以更好地理解整数的内部结构和性质。
同余理论:同余理论是数论的核心内容之一,它主要研究的是整数之间的同余关系。
通过研究同余方程和模逆元,我们可以解决许多与整数相关的问题。
初等数论简介
初等数论
勒让德[法]1752~1833,在分 析学、数论、初等几何与天体 力学,取得了许多成果,是椭 圆积分理论奠基人之一。对数 论的主要贡献是二次互反律, 还是解析数论的先驱者之一.
雅可比[德]1804~1851,在偏 微分方程中,引进了“雅可比 行列式。对行列式理论作了奠 基性的工作,在代数学、变分法 复变函数论、分析力学 、动 力学及数学物理方面也有贡献。
初等数论
陈景润1933-1996,主要研究 解析数论,他研究哥德巴赫猜 想和其他数论问题的成就,至 今仍然在世界上遥遥领先。其 成果也被称之为陈氏定理。
王元1930-50年代至60年 代初,首先在中国将筛法 用于哥德巴赫猜想研究, 并证明了命题3+4,1957年 又证明2+3,这是中国学者 首次在此研究领域跃居世 界领先地位.
初等数论
欧几里得[前330年~前275年] 丢番图Diophante 246~330 欧氏几何学的开创者 , “代数学之父” 古希腊数学家,以其所著的 古希腊数学家,著《算术》 《几何原本》闻名于世。
初等数论
刘徽,生于公元250年左右, 三国时期数学家,是世界上最 早提出十进小数概念的人,著 《九章算术注》10卷;《海岛 算经》;《九章重差图》.割圆 术求圆面积和圆周率.
初等数论 三 、 几个著名数论难题 初等数论是研究整数性质的一门学科,历史上遗
留下来没有解决的大多数数论难题其问题本身容易搞
懂,容易引起人的兴趣,但是解决它们却非常困难。 其中,非常著名的问题有:哥德巴赫猜想 ;费 尔马大定理 ;孪生素数问题 ;完全数问题等。
初等数论 1、哥德巴赫猜想: 1742年,由德国中学教师哥德巴赫在教学中首先发 现的。1742年6月7日,哥德巴赫写信给当时的大数学
初等数论
初等数论初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。
准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。
它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。
纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。
第一部分:整除初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。
整除理论首先涉及整除。
现向上延伸则想到整除的对象,即自然数、整数。
从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。
但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。
首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。
另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。
在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。
自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。
Peano定理:设N是一个非空集合,满足以下条件:(ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继);(ⅱ)有元素e∈N,他不是N中任意元素的后继;(ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b;(ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N.这样的集合N称为自然数集合,它的元素叫做自然数。
其中的归纳原理是我们常用的数学归纳法的基础。
数学归纳法在中学已属重点内容,此处就不作介绍。
主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。
初等数论及其应用
= 251649
16
课堂练习
计算: 将237894与251649都转换为二进制.
解: 其八进制表示分别为(720506) 8与(753401)8
易知对八进制0 − 7有如下二进制转换
0 −> 000 1 −> 001 2 −> 010 3 −> 011
4 −> 100 5 −> 101 6 −> 110 7 −> 111
因此, (720506) 8 = (111010000101000110) 2
(753401) 8 = (111101011100000001) 2
17
总结
自然数或者正整数指的是数1, 2,…, 而整数指的是数
0,±1,±2,⋯. 全体整数的集合记为ℤ, 而全体正整数或
除法:
66 = 2 × 33 + 0 (低位)
33 = 2 × 16 + 1
16 = 2 × 8 + 0
8=2×4+0
4=2×2+0
2=2×1+0
1 = 2 × 0 + 1 (高位)
按从低位到高位顺序, 依次取出上述除法中的余数, 得到
(66)10 = (1000010)2.
12
余数的定义
定义1.1.2 带余除法 = + 中的为用除得出
② 如果|, ≠ 0, 那么|.
③ 如果|, |, 那么对任意, ∈ ℤ, 有| + .
④ 如果|, |, 那么 = 或 = −.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算题答案
1. 求400与240的最大公因数。
解:因为4240025=⨯,4240235=⨯⨯,
所以400与240的最大公因数是425⨯,即80。
2. 求不定方程10x + 9y = 1的一切整数解。
解:因为(10,9) = 1,所以不定方程有整数解。
显然x = 1,y = -1是其一个特解,
所以不定方程的一切整数解为:
,其中t 取一切整数。
3. 求150与210的最大公因数。
解:因为2150235=⨯⨯,2102357=⨯⨯⨯
所有150与210的最大公因数是235⨯⨯,即30。
4. 解同余式3x ≡ 2 (mod 5)。
解: 因为(3,2)=1,所以同余式有解,且有一个解。
将0,1,2,3,4直接代入检查知,4满足同余式,所以同余式的解为x ≡ 4 (mod
5)。
5.求不定方程7x + 2y = 1的一切整数解。
解:因为(7,2)=1,1|1,所以不定方程有解。
观察知其一个整数解是
00
13x y =⎧⎨=-⎩。
于是其一切整数解为1237x t y t
=+⎧⎨=--⎩,t 取一切整数。
6.解同余式3x ≡ 1 (mod 7)。
解:因为(3,7)= 1,所以同余式有解且有一个解。
由3x - 7y = 1得⎩⎨⎧+=+=t
y t x 3275,
所以同余式的解为)7(mod 5≡x
7.解同余式28x ≡ 21 (mod 35)。
解:因为(28,35) = 7,而7|21,所以同余式28x ≡ 21(mod 35)有解,
且有7个解。
同余式28x ≡ 21(mod 35)等价于4x ≡ 3(mod 5),解4x ≡ 3(mod 5) 得x ≡ 2(mod 5),故同余式28x ≡ 21(mod 35)的7个解为
x ≡ 2,7,12,17,22,27,32(mod 35)。
8.解同余式组:
⎩⎨⎧≡≡)
5(mod 2)3(mod 1x x 。
解:由)3(mod 1≡x 得13+=k x ,将其代入)5(mod 2≡x
得)5(mod 213≡+k ,
解得)5(mod 2≡k ,即25+=t k ,
所以715+=t x ,所以解为)15(mod 7≡x 。
9.求不定方程3x + 2y = 2的一切整数解。
解:因为(3,2) = 1,所以不定方程有整数解。
显然1,0==y x 是其一个特解, 所以不定方程的一切整数解为
,其中t 取一切整数。
10. 解同余式)5(mod 14≡x 。
解:因为(4,5) = 1,所以同余式有解,且只有1个解。
将0,1,2,3,4代入检查知4满足)5(mod 144≡⨯,
所以同余式的解为)5(mod 4≡x 。