马尔可夫链
第四章 马尔可夫链
股市预测
预测股票价格变化 基于历史数据建立模型 考虑股票之间的相关性 用于投资决策和风险管理
05
马尔可夫链的算法
状态转移矩阵算法
定义:状态转移 矩阵算法是马尔 可夫链中用于描 述状态转移概率 的算法
计算方法:根据 历史数据和当前 状态计算未来的 状态转移概率
应用场景:广泛 应用于自然语言 处理、语音识别、 机器翻译等领域
类问题等。
可扩展性强: 马尔可夫链可 以通过增加状 态和转移概率 来扩展模型, 以处理更复杂
的问题。
缺点
状态转移概率矩 阵必须已知
无法处理连续时 间或非齐次过程
无法处理多维或 多状态过程
无法处理非马尔 可夫过程
YOUR LOGO
THANK YOU
汇报人:儿
特点:隐马尔可夫链的状态转移和观测概率是参数化的,需要通过训练数据来估计。
应用:隐马尔可夫链在语音识别、自然语言处理、机器翻译等领域有广泛应用。
算法:隐马尔可夫链的算法包括前向-后向算法、Viterbi算法和Baum-Welch算法等。
04
马尔可夫链的应用
自然语言处理
文本分类:利 用马尔可夫链 对文本进行分 类,如垃圾邮 件过滤、情感
01
添加章节标题
02
马尔可夫链的定义
状态转移
定义:马尔可夫链的状态转移概率是描述状态之间转移的规则
特性:状态转移具有无记忆性,即下一个状态只与当前状态有关,与过去状态无关
转移矩阵:描述状态转移概率的矩阵
稳态分布:在长期状态下,马尔可夫链将趋于一个稳态分布,该分布描述
YOUR LOGO
马尔可夫链
,a click to unlimited possibilities
马尔可夫链
马尔可夫链
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)。
适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念。
马尔可夫链的命名来自俄国数学家安德雷·马尔可夫以纪念其首次定义马尔可夫链和对其收敛性质所做的研究。
Markov Chain(马尔科夫链)
状态转换矩阵:
1 0 0 1 − ������ 0 ������ 0 1 − ������ 0 0 0 1 − ������ 0 0 0
0 0 ������ 0 0
0 0 0 ������ 1
0
赌徒问题(续)
• ������ =
0 ������ 1 − ������ 0 0 1 − ������ 0 0 0 0 0 ������ 0 0 0 0 1 − ������ 0 0 ������ 0 1 阵������的元素������������������ 等于从状态������������ 出发到达稳定时经过������������ 的次数的期望值。 推论:马尔可夫过程中,从非稳定状态������������ 出发,到达稳定状态时的步数期望值 等于矩阵������的������行元素的和。
赌徒问题
• 一个赌徒,假设拿两元钱,一次赌一美元,赢的概率是������,输的概率是1 − ������,当赢够4元,或者全部输光就不赌了。 • 状态转换图:
1 − ������ 1 1 − ������ 1 ������ 2 ������ 3 ������ 1 − ������ 1 4 ������ =
������
������������
.此矩阵
������������������ = 1, ������ = 1,2, … , ������.
������=1
重新标记这些状态的序号,把对角线是1的元素调整到右下角,也就是变成 ������������×������ ������������× ������−������ ������������×������ → ������ ������−������ × ������ ������(������−������)×(������−������) 矩阵������ = ������ − ������������×������
马尔可夫链
三.有限维概率分布 马尔可夫链{ X ( t ), t t
0
, t 1 , t 2 , }在初始时刻t 0 的概率
分布:
p j ( t 0 ) P { X ( t 0 ) j },
j 0 ,1, 2 ,
称为初始分布. 初始分布与转移概率完全地确定了马尔可夫链的 任何有限维分布.下面的定理二正是论述这一点. 不妨设齐次马尔可夫链的参数集和状态空间都是 非负整数集,那么有如下定理。
P { X ( k 1 ) j1 , X ( k 2 ) j 2 , , X ( k n ) j n }
p i ( 0 ) p ij1 1 p j1 j22
(k )
( k k1 )
p j n n1 j n n 1
(k k
)
i0
(13.9)
例6 在本节例5中,设初始时输入0和1的概率分别为 1/3和2/3,求第2、3、6步都传输出1的概率.
t 2 t n t n 1
和 S 内任意 n 1 个状态
j1 , j 2 , , j n , j n 1 , 如果条件概率
P { X ( t n 1 ) j n 1 | X ( t 1 ) j1 , X ( t 2 ) j 2 , , X ( t n ) j n }
二:马尔可夫链的分类 状态空间 S 是离散的(有限集或可列集),参数集 T 可为离散或连续的两类. 三:离散参数马尔可夫链 (1)转移概率 定义2 在离散参数马尔可夫链{ X ( t ), t 中,条件概率 P { X ( t
m 1
t 0 , t 1 , t 2 , , t n , }
1
马尔可夫链
n
n
P{Tij l, X n j | X 0 i} P{Tij l | X 0 i}P{X n j | Tij l, X 0 i}
l 1
l 1
n
fij (l)P{X n j | X 0 i, X1 j, X l1 j, X l j} l 1
n
n
fij (l)P{X n j | X l j} fij (l)Pjj (n l)
p
j
jl
n
m
p
j
i
mpii
n
pij
l
pii
n
定理8 若 i j ,则 (1)i与j同为常返或同为非常返; (2)若i与j常返,则i与j同为正常返或同为零常返; (3)i与j或同为非周期的,或同为周期的且有相同的周期。
遍历性与平稳分布
1 遍历性
定义1 设齐次马氏链 {X (n), n 0}的状态空间为E,若对一切 i, j E ,存在 不依赖于i的极限
显然有
fij () P{Tij } 1 fij
(i 不能到达 j 的概率)
0 fij (n) fij 1
fjj 表示从 j 出发迟早返回 j 的概率
定理4: 对任何状态 i, j G, n 1, 有
n
pij n fij lp jj n l i 1
证明:
pij (n) P{X n j | X 0 i} P{Tij n, X n j | X 0 i}
则称马尔可夫链具有遍历性。并 p j称为状态j的稳态概率。
定理9
对于一有限状态的马氏链,如 m 0,对一切i, j I, pij m 0
则 此链具有遍历性。且 p j p1, p2,p3, , pN
是
马尔可夫链的定义及例子
3、转移概率
定义 i, j S, 称 P Xn1 j Xn i
的一步转移概率。
pij n 为n时刻
若i, j S, pij n pij ,即pij与n无关,称转移概率
具有平稳性.此时称{Xn,n≥0}为齐次(或时齐的)马尔 可夫链。记P=(pij),称P为{Xn,n≥0}的一步转移概率矩阵.
0
j!
j 0,1, i
pi0公式略有不同,它是服务台由有i个顾客转为空闲的
概率,即第n个顾客来到时刻到第n+1个顾客来到时刻之
间系统服务完的顾客数≥i+1。
pi0 P X n1 0 X n i P(Yn i 1) P(Yn k) k i1
et (t)k dG t ,
0 P{Yn
j Tn1 x}dG x
( x) j exdG x, j 0,1, 2,
0 j!
因此, {Xn,n≥1}是马尔可夫链。其转移概率为
P0 j P( X n1 j X n 0) P(Yn j X n 0)
P(Yn
P( X n1 in1 X n in )
所以{Xn,n≥0}是马尔可夫链,且
pij P( X n1 j X n i) P( f i,Yn1 j) P( f i,Y1 j)
二、切普曼-柯尔莫哥洛夫方程
1,随机矩阵 定义:称矩阵A=(aij)S×S为随机矩阵,若aij ≥0,且
一步转移概率矩阵
0.5009
0.0458 0.2559 0.1388 0.2134
0.0466 0.0988 0.36584 0.14264
第2章-马尔可夫链
0.4834
0.5009
例
甲、乙两人进行比赛,设每局比赛中甲胜的概率是p,
乙胜的概率是q,和局的概率是r ,(p q r 1)。
设每局比赛后,胜者记“+1”分,负者记“-1”分,
和局不记分。当两人中有一人获得2分结束比赛。X以n
表示比赛至第n局时甲获得的分数。
(1)写出状态空间;(2)求P(2);
pij a0j,i ,
ji ji
显然{Yn,n≥1}也是一马尔可夫链。
例2 M/G/1排队系统
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不具马 尔可夫性。
Xn-----第n个顾客走后剩下的顾客数, Yn -----第n+1个顾客接受服务期间来到的顾客数,则
X
n1
Xn 1 Yn ,
CHAPTER 2 马尔可夫链
第一节 基本概念
一、马尔可夫链的定义及例子
1、定义
随机过程Xn, n 0,1, 2, 称为马尔可夫链,若它只
取有限或可列个值(称为过程的状态,记为0,1,2,…),
并且,对任意
及状态
,有
n0
i, j, i0 , i1, , in1
P( X n1 j X 0 i0 , X1 i1, , X n1 in1, X n i)
(3)问在甲获得1分的情况下,再赛二局可以结束比 赛的概率是多少?
解
(1)
记甲获得“负2分”为状态1,获得 “负1分”为状态2,获得“0分”为状态3, 获得“正1分”为状态4,获得“正2分”为 状态5,则状态空间为
I {1,2,3,4,5}
一步转移概率矩阵
1 0 0 0 0
q
r
p
马尔可夫链
马尔可夫链马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类: (1) 时间,状态都是离散的马尔可夫过程,称为马尔可夫链.(2) 时间连续,状态离散的马尔可夫过程,称为连续时间的马尔可夫 (3) 时间,状态都连续的马尔可夫过程. 4.1马尔可夫链的概念及转移概率 一,定义假设马尔可夫过程},{T n X n ∈的参数集T 是离散的时间集合,即 T={0,1,2,…},其相应n X 可能取值的全体组成的状态空间是离散的状态集,...}.,{21i i I =定义4.1 设有随机过程},{T n X n ∈,若对于任意的整数T n ∈和任意的I i i i i n ∈+.,...,,,1210,条件概率满足n n n n i X i X i X i X P ====++,...,,{110011}=},{11n n n n i X i X P ==++ (4.1) 则称},{T n X n ∈为马尔可夫链,简称.马氏链.(4.1)式是马尔可夫链的马氏性(或无后效性)的数学表达式.由定义知 ],...,,{1100n n i X i X i X P =====}.,...,,{111100--====n n n n i X i X i X i X P },...,,{111100--===n n i X i X i X P =}{11--==n n n n i X i X P .},...,,{111100--===n n i X i X i X P =… =}{11--==n n n n i X i X P }{2211----==n n n n i X i X P …}{0011i X i X P ==}.{00i X P =可见,马尔可夫链的统计特性完全由条件概率}{11n n n n i X i X P ==++所决定. 二,转移概率条件概率}{1i X j X P n n ==+的直观含义为系统在时刻n 处于状态i 的条件下,在时刻n+1系统处于状态j 的概率.它相当于随机游动的质点在时刻n 处于状态i 的条件下,下一步转移到状态j 的概率.记此条件概率为).(n p ij 定义4.2 称条件概率).(n p ij = }{11n n n n i X i X P ==++为马尔可夫链},{T n X n ∈在时刻n 的一步转移概率,其中i,j I ∈,简称为转移概率. 定义4.3 若对任意i,j I ∈,马尔可夫链},{T n X n ∈的转移概率).(n p ij 与n 无关,则称马尔可夫链是齐次的,并记).(n p ij 为.ij p下面我们只讨论齐次马尔可夫链,通常将齐次两字省略.设p 表示一步转移概率.ij p 所组成的矩阵,且状态空间I={1,2,…},则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=...........................2222111211nnp p p p p p p 称为系统的一步转移概率矩阵,它有性质: (1) .,1)2(;,,0∑∈∈=∈≥Ij ij ijI i p I j i p通常称满足上述(1),(2)性质的矩阵为随机矩阵. 定义4.4称条件概率ij n p )(= )1,0,,(},{≥≥∈==+n m I j i i X j X P m n m 为马尔可夫链},{T n X n ∈的n 步转移概率,.并称)()()(n ij n p p =为马尔可夫链的n 步转移矩阵,其中(1) .,1)2(;,,0)(∑∈∈=∈≥Ij ij n ij n I i p I j i p 即也是随机矩阵.当n=1 时, .)1(ij p =.ij p ,此时一步转移矩阵.)1(p p =此外我们规定 ⎩⎨⎧=≠=.,1,,0)0(j i j i pij定理4.1设},{T n X n ∈为马尔可夫链,则对任意整数n l n <≤≥0,0和,,I j i ∈n 步转移概率.)(ij n p 具有下列性质:(1)))()()(l n kj Ik l ik n ij p p p -∈∑=; (4.2)(2) ;......112111)(j k Ik k k ik Ik n ij n n p p p p --∑∑∈∈= (4.3)(3);)1()(-=n n PP P (4.4) (4).)(n n P P =(4.5)证明(1) 利用全概率公式及马尔可夫性,有}{)(i X j X P p m n m n ij ===+=}{},{i X P j X i X P m n m m ===+}{},{.},{},,{i X P k X i X P k X i X P j X k X i X P m l m m Ik l m m n m l m m =========+∈+++∑}{}{i X k X P k X j X P m l m l m Ik n m =====++∈+∑=)()()()(m p l m p l ik Ik l n ij +∑∈-=)()(.l n kjIk l ik p p -∈∑. (2)在(1)中令1,1k k l ==得))1()(111-∈∑=n jkIk ik n ij p p p 这是一个递推公式,可递推下下去即得(4.3). (3)在(1).令l=1利用矩阵乘法可得. (4) 由(3),利用归纳法可证.定理4.1中的(1)式称为切普曼---柯尔哥洛夫方程,简称C-K 方程 .定义4.5设},{T n X n ∈为马尔可夫链,称 },{0j X P p j ==)(},{)(I j j X P n p n j ∈==为},{T n X n ∈的初始概率和绝对概率,并分别称}),({},,{I j n p I j p j j ∈∈为},{T n X n ∈的初始分布和绝对分布.简记为}.),({},,{n p p j j 称概率向量 )0(),...),(),(()(21>=n n p n p n P T 为n 时刻的绝对概率向量,而称)0(,...),,(21>=n p p P T为初始向量.定理4.2设},{T n X n ∈为马尔可夫链,则对任意整数I j n ∈≥,1,绝对概率).(n p j 具有下列性质:(1)))()(n ij Ii i j p p n p ∑∈=; (4.6)(2) ij Ii i j p n p p )1(-=∑∈ (4.7)(3);)0()()(n T T P P n P = (4.8) (4)P n P n P T T )1()(-= (4.9)证明(1) ===}{)(j X P n p n j},{0j X i XP n Ii ==∑∈= }{}{00i X P i X j XP nIi ===∑∈ =)(n ijIi i p p ∑∈ (2)===}{)(j X P n p n j },{1j X i X P n Ii n ==∑∈-=}{}{11i X P i X j X P n n n Ii ===--∈∑==ij Ii i p n p ∑∈-)1((3)与(4)是(1)与(2)的矩阵形式.定理4.3 设},{T n X n ∈为马尔可夫链,则对任意,1,,...,1≥∈n I i i n 有 },...{11n n i X i X P ===....11n n i i ii i p p p -∑ (4.10) 证明 由全概率公式及马氏性有},...{11n n i X i X P ===},...,,{110n n Ii i X i X i X P ===∈=},...,,{110n n Ii i X i X i X P ===∑∈=}.,{}{0110i X i X P i X P Ii ===∑∈...},...,{110--===n n n n i X i X i X P=}.,{}{0110i X i X P i X P Ii ===∑∈..}{11--==n n n n i X i X P=n n i i ii Ii i p p p 11...-∑∈.三,马尔可夫链的例子例4.1 无限制随机游动设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为 q=1-p,这种运动称为无限制随机游动.以n X 表示时刻n 质点所处的位置,则},{T n X n ∈是一个齐次马尔可夫链,试写出它的一步和k 步转移概率. 解 },{T n X n ∈的状态空间,...},2,1,0{±±=I 其一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=.....................00.........0.....................p q p q P 设在第k 步转移中向右移了x 步向左移动了y 步,且经过k 步转移状态从j 进入j,则⎩⎨⎧-=-=+i j y x k y x ,.2)(,2)(i j k y i j k x --=-+=由于x,y 都只取整数,所以)(i j k -±必须是偶数.又在k 步中哪x 步向右,哪y 步向左是任意的,选取的方法有x k C 种.于是⎩⎨⎧-+-+=是奇数是偶数)(,0)(,i j k i j k q p C p y x x k k ij.例4.2赌徒输光问题.两赌徒甲,乙进行一系列赌博.赌徒甲有a 元,赌注乙有b 元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止.设在每一局中,甲赢的概率为p,输的概率为q=1-p,求甲输光的概率.这个问题实质上是带有两个吸收壁的随机游动,其状态空间为I={0,1,2,…,c} c=a+b.故现在的问题是求质点从a 出发到达0状态先于到达c=a+b 状态的概率.解 设i u 表示甲从状态i 出发转移到状态0的概率,要计算的是a u ..由于0和c 是吸收状态,故,10=u .0=c u i u 由全概公式).1,...,2,1(,11-=+=-+c i qu pu u i i i (4.11) 上式的含义是,甲从状态i 出发开始赌到输光的概率等于’他接下去赢了一局(概率为p)处于状态i+1后再输光”;和他接下去输一局(概率为q),处于状态i-1后再输光”这两个事件的概率.由于p+q=1,(4.11)实质上是一个差分方程.1,...,2,1),(11-=-=--+c i u u r u u i i i i (4.12)其中pqr =,其边界条件为.0,10==c u u (4.13) 先讨论r=1,即p=q=1/2的情况,(4.12)成为 .1,...,2,1),(11-=-=--+c i u u r u u i i i i 令,01α+=u u 得,2012αα+=+=u u u …,01ααi u u u i i +=+=- …,01ααc u u u c c +=+=-将,1,00==u u c 代于最后一式,得参数,1c-=α所以.1,...,2,1,1-=-=ci ciu i 令i=a, 求得甲输光的概率为.1ba bc a u a +=-= 由于甲,乙的地位是对称的,故乙输光的概率为.ba a u a +=再讨论1≠r ,即q p ≠的情况.由(4.12)式得到)(11--=-=-∑i c k i i k c u u r u u =)(011u u r c ki i-=∑-=.1)1(1r r r u ck ---= (4.14) 令k=0,由于,0=c u 有rr u c---=11)1(11即,11)1(1crru --=- 代入(4.14)式,得.1,...,2,1,1-=--=c k rr r u cck k 令k=a,得到输光的概率,1cca a rr r u --= 由对称性,乙输光的概率为.,11111q p r r r r u c cb b =--= 由于,1=+b a u u 因此在1≠r 时,即q p ≠时两个人中也总有一个人要输光的. 例4.3 天气预报问题设昨日,今日都下雨,明日有雨的概率为0.7;昨日无雨今日有雨,明日有雨的概率为0.5;昨日有雨,今日无雨明日有雨的概率为0.4;昨日,今日均无雨,明日有雨的概率为0.2.若星期一星期二均下雨,求星期四下雨的概率.解 设昨日,今日连续两天有雨称为状态0(RR),昨日无雨今日有雨称为状态1(NR),昨日有雨今日无雨称为状态2(RN),昨日今日无雨称为状态3(NN),于是天气预报模型可看作一个四状态的马尔可夫链,其中转移概率为 7.0}{}{}{00====今昨明今昨明今连续三天有雨R R R P P R R R R P p , )(0}{01不可能事件今昨明今==R R R N P p ,,3.07.01}{}{02=-===今昨明今昨明今R R N P R R N R P p)(0}{03不可能事件今昨明今==R R N N P p ,其中R 代表有雨,N 代表无雨.类似地可得到所有状态的一步转移概率,于是它的一步转移概率矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=33323130232221201312111003020100p p p p p p p p p p p p p p p p P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0其中两步转移矩阵为==P P P .)2(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8.002.006.004.0005.005.003.007.0 = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡.64.010.016.010.048..020.012.020.030.015.020.035.018.021.012.049.0 由于星期四下雨意味着过程所处的状态为0或1,因此星期一星期二连续下雨,星期四下雨的概率为.61.012.049.0)2(01)2(00=+=+=p p p例 4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻T n ∈发生移动,且只能停留在1,2,3,4点上.当质点转移到2,3点时,它以1/3的概率向左或向右移动一格或停留在原处.当质点称动到点1时,它以概率1停留在原处.当质点移动到点4时,它以概率1移动到点3.若以n X 表示质点在时刻n 所处的位置,则},{T n X n ∈ 是一个齐次马尔可夫链,其转移概率矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=0100313131003131310001P 例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去.例4.5生灭链.观察某种生物群体,以n X 表示在时刻n 群体的数目,设为i 个数量单位,如在时刻n+1增生到i+1个单位的概率为i b ,减灭到i 个数量单位的概率为i a ,保持不变的概率为)(1i i i b a r +-=,则}0,{≥n X n 为齐次马尔可夫链,I={0,1,2,…,}.其转移概率为⎪⎩⎪⎨⎧+==+==.1,,,1,i j a j i r i j b p ii i ij称此马尔可夫链为生灭链. 4.2 遍历性设齐次马氏链的状态空间为I,若对于所有,,I a a j i ∈转移概率)(n P ij 存在极限 j ij n n P π=∞→)(lim (不依赖于i)或 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡→=................................................)(212121j j jn P n P πππππππππ则称此链具有遍历性.又若∑=jj 1π,则同时称,...),(21πππ=为链的极限分布.齐次马氏链在什么条件下才具有遍历性?如何求出它的极限分布?这问题在理论上已经解决,但是要较多的篇幅.下面对有限链的遍历性给出一个充分条件. 定理4.4设齐次马氏链},{T n X n ∈的状态空间为P a a a I n },,...,,{21=是它的一步转移概率矩阵,如果存在正整数m,使对任意的j i a a ,都有 ,,...,2,1,,0)(N j i m p ij =>则此链具有遍历性,且有极限分布, ),,...,,(21N ππππ=它是方程组 P ππ=或即ij Ni i j p ∑==1ππ的满足条件∑==>Nj j j 11,0ππ的唯一解.在定理条件下马氏链的极限分布又是平稳分布.即若用π作为链的初始分布,即π=)0(p ,则链在任一时刻T n ∈的分布)(n p 永远与π一致,事实上ππππ======-P P P n P p n p n n ...)()0()(1 例4..6 设马尔可夫链的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9.005.005.01.08.01.02.01.07.0P 解 容易证明满足定理4.4条件.可得方程组⎪⎪⎩⎪⎪⎨⎧=++++=++=++=1,9.01.02.0,05.08.01.0,05.01.07.0321321332123211πππππππππππππππ解上述方程组得平稳分布为.5882.0,2353.0,1765.0321===πππ。
马尔可夫链
马尔可夫过程一类随机过程。
它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。
该过程具有如下特性:在已知目前状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变 ( 过去 ) 。
例如森林中动物头数的变化构成——马尔可夫过程。
在现实世界中,有很多过程都是马尔可夫过程,如液体中微粒所作的布朗运动、传染病受感染的人数、车站的候车人数等,都可视为马尔可夫过程。
关于该过程的研究,1931年 A.H.柯尔莫哥洛夫在《概率论的解析方法》一文中首先将微分方程等分析的方法用于这类过程,奠定了马尔可夫过程的理论基础。
目录马尔可夫过程离散时间马尔可夫链连续时间马尔可夫链生灭过程一般马尔可夫过程强马尔可夫过程扩散过程编辑本段马尔可夫过程Markov process1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。
1954年前后,W.费勒将半群方法引入马尔可夫过程的研究。
流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。
类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。
人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。
这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。
荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。
青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。
如果将荷叶编号并用X0,X1,X2,…分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{Xn,n≥0} 就是马尔可夫过程。
液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。
马尔可夫链-
利用积事件的概率及上述定义知: P{X0=i0,X1=i1,…,Xn=in} =P{Xn=in|X0=i0,X1=i1,…,Xn-1=in-1}P{X0=i0,X1=i1,…, Xn-1=in-1} =P{Xn=in|Xn-1=in-1}P{X0=i0,X1=i1,…,Xn-1=in-1} =… =P{Xn=in|Xn-1=in-1}P{Xn-1=in-1|Xn-2=in-2}…P{X1=i1| X0=i0}P{X0=i0}. 即马尔可夫链的统计特性完全由条件概率 P{Xn+1=in+1|Xn=in} 所决定. 如何确定这个条件概率,是马尔可夫链理论和应 用中的重要问题之一.
p21 p22 … p2n … … … … …… pi1 pi2 … pin … …… … … …
称为系统状态(1) pij≥0, i,j∈I; (2) pij=1, i∈I.
jI
通常称满足(1)、(2)性质的矩阵为随机矩阵. 为进一步讨论马尔可夫链的统计性质, 还须了解n步转 移概率,初始概率和绝对概率的概念. 定义2.4 称条件概率 pij(n)=P{Xm+n=j|Xm=i},i,j∈I,m≥0,n≥1
改变游动的概率规则,可以得到不同方式的随机 游动和相应的马氏链.如当把点1(及5)改为吸收 壁,Q一旦到达点1(5),则将永远留在点1(5)上.此 时相应链的转移概率矩阵只须在上述矩阵P中将 第一行改为(1,0,0,0,0),第五行改为(0,0,0,0,1) 即可.
例2.3 某计算机机房的一台计算机经常出故障,研究者每 隔15分钟观察一次计算机的运行状态,收集了24小时的数 据(共做97次观察).用1表示正常状态,0表示不正常状态, 所得的数据序列为:
为马尔可夫链{Xn,n∈T}的n步转移概率,并称 P(n)=(pij(n)) 为马尔可夫链的n步转移矩阵,其中pij(n)≥0, pij(n)=1
马尔可夫链
马尔可夫链的统计特性完全由以下条件概率所决定:
P{X n1 in1 X n in}
转移概率
[定义] 称条件概率
pij (n) P{Xn1 j Xn i}
为马尔可夫链 { Xn , n T } 在时刻 n 的一步转移概率, 其中 i , j I ,简称为转移概率。
P{X 0 i0 , X1 i1,, X n1 in1} P{X n in X n1 in1} P{X 0 i0 , X1 i1,, X n1 in1}
P{X n in X n1 in1} P{X n1 in1 X n2 in2}
(4) P(n) Pn
初始概率和绝对概率
初始概率: p j P{X 0 j}, ( j I )
绝对概率: p j (n) P{X n j}, ( j I )
初始分布: {pj} {pj , j I}
绝对分布: { p j (n)} { p j (n) , j I}
初始概率向量:
PT (0) p1, p2 ,
绝对概率向量:
PT (n) p1(n), p2 (n), , (n 0)
绝对概率 pj(n) 的性质
[定理] 设 { Xn , n T } 为马尔可夫链,则对于任意整数 n 1 和 j I ,绝对概率 pj (n) 具有下列性质:
率为p,产生错误的概率为q,则该级
信道输入状态和输出状态构成一个两
状态的齐次马尔可夫链。
p
0
q
q
p
1
p, i j pij q, i j
(i, j 0,1)
概率论第十三章-马尔可夫链
s
s u s u v
t
i, j 1,2,
这就是著名的chapman kolmogorov方程,简称C K 方程
即"从时刻s所处的状态ai出发,经时段u v转移到状态a j "
这一事件可分解成: "从X s ai出发,先经时段u转移到中间状态ak k 1, 2, 再从ak 经时段v转移到状态a j"这样一些事件和
p j i P i, j 0,1 ij P X n 1 j | X n i q j i
p P q
q p
9
例2:排队模型
随机到达者
等候室
服务台
离去者
系统
服务系统由一个服务员和只可以容纳两个人的等候室组成。 服务规则为:先到先服务,后来者需在等候室依次排队;若一 个需要服务的顾客到达系统时发现系统内已有3个顾客,则该 顾客立即离去。 设: (1)时间间隔⊿t内有一个顾客进入系统的概率为q,有一 接受服务的顾客离开系统(即服务完毕)的概率为p; (2)当⊿t充分小时,在这时间间隔内多于一个顾客进入或 离开系统实际上是不可能的; (3)再设有无顾客来到与服务是否完毕是相互独立的。 10
Pin1in tn tn 1
pi 0 Pii1 t1 Pi1i2 t2 t1
马尔可夫链的有限维分布完全由初始分布和转移概率所确定
例如:P{X 0 a0,X 2 a2} P{X 2 a2 | X 0 a0}P{X 0 a 0} p0 (0) p02 (2)
, X (tn 1 ) xn 1}
马尔可夫性(无后效性 ):已知过程“现在” 的条件下, “将来”不依赖于“过 去”。
第10章 - 马尔可夫链
P{Xmn a j | Xm ai }
记 pij (m, m n) P{ Xmn a j | Xm ai }
称 pij (m, m n) 为马氏链在时刻 m 处于状态 ai 条件下,
=P{ X n1 ai1 }P{ X n2 ai2 | X n1 ai1 }P{ X n3 ai3 | X n2 ai2 }
P{ X nk aik | X nk1 aik1 }
pi1 (n1 ) pi1i2 (n2 n1 ) pik1ik (nk nk1 )
q2
r2
p2
i
0
0
qi
ri
pi
0
这里 pi 0,qi 0,ri 0, 并且 pi qi ri 1, i 1,2,
p0 0, r0 0, r0 p0 1
01
如果状态空间I {0,1,2,, N }是有限的,且状态 0 与状态
N 都为吸收状态,即 r0 1, p0 0, rN 1,qN 0
称为具有两个吸收壁的随机游动.
qi
ri pi
01
i 1 i i 1
N
第二节
多步转移概率的确定
定理: 设{X (n), n 0,1,2,}为齐次马氏链,则对任意的 u, v 有
第十章 马尔可夫链
• 第一节 马尔可夫链的概念及转移概率 • 第二节 多步转移概率的确定 • 第三节 马氏链的有限维分布 • 第四节 遍历性
第七讲马尔可夫链
P { X n a i(n )|X n 1 a i(n 1 )}(i1,2,,N) 则称 { X n }为马尔可夫链(简称马氏链)。
为了完整的描述一个随机过程,需要给出任意 有限维概率函数。 对于马氏链的任意有限维概率函 数完全由初始分布和转移概率矩阵来描述。
设 {X(n),n0,1 ,2,}为一马氏链,其状态空间
E{0,1,2,}或为有限子集。
令 p i(0 ) P [X (0 ) i], i E,且对任意的 i E
均有
pi (0) 0
若与m无关,则称该马氏链为齐次马氏链,此时
pij (m,mk) 表示为 p ij ( k ) 。
(1) 一步转移概率
在齐次条件下,令 p ij( m ,m k ) P [X m k a j|X m a i]
中 k 1 则
pij(1 )pij(m ,m 1 )pij
称为一步转移概率。
由所有一步转移概率 p ij 构成的矩阵
均有
pi (n) 0 pi (n) 1 iE
则称 {pi(n),iE}为该马氏链的绝对分布,也称
绝对概率。
定理 马氏链的绝对概率由初始分布和相应的转移概 率唯一确定。
利用C-K方程,则n步转移矩阵可由一步转移 矩阵唯一确定。
推论 马氏链的绝对概率由初始分布和一步转移概率 唯一确定。
转移图(状态转移图与概率转移图)
p jj (n)
n0
推论 如果状态j是非常返的,则必有
ln im pjj(n)0
设i是一常返态,则从i出发可经过n (n1,2,)步 首次返回i,
马尔可夫链
4模型完整的四叉树模型也存在一些问题.⑴因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一问题更为突出.虽然可以通过取对数的方法将接近于0 的小值转换成大的负值,但若层次过多、概率值过小,该方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.⑵当图像较大而导致层次较多时,逐层的计算甚为繁琐下溢现象肯定会出现,存储中间变量也会占用大量空间,在时间空间上都有更多的开销 .⑶分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.5MRF为了解决这些问题,我们提出一种新的分层MRF 模型——半树模型,其结构和图15类似,仍然是四叉树,只是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各节点不具有条件独立性,即不满足上述的性质2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小到出现下溢.但第0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在第0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因为第0 层的概率计算仍然要采用非迭代的算法,层数少表明第0 层的节点数仍较多,计算费时,所以在实验中将层数取为完整层次数的一半或一半稍少.MPM 算法3半树模型的MPM 算法图像分割即已知观测图像y,估计X 的配置,采用贝叶斯估计器,可由一个优化问题来表示:?x = arg min [E C ( x,x )′ | Y = y],x其中代价函数C 给出了真实配置为x 而实际分割结果为x′时的代价.在已知y 的情况下,最小化这一代价的期望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若C(x,x′)=1?δ(x,x′)(当x=x′时δ(x,x′)=1,否则δ(x,x′)=0)得到的是MAP 估计器,它意味着x 和x′只要在一个像素处有不同,则代价为1,对误分类的惩罚比较重,汪西莉等:一种分层马尔可夫图像模型及其推导算法而在实际中存在一些误分类是完全允许的.若将半树模型的MPM 算法记为HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式⑵、式⑶逐层计算P(yd(s)|xs)和P(xs,xρ(s)|yd(s)),对最下层P(yd(s)|xs)=P(ys|xs). 向下算法自上而下根据式⑴逐层计算P(xs|y),对最上层由P(x0|y)采样x0⑴,…,x0(n),6详细说明马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
马尔科夫链_马尔可夫过程
马尔科夫链_马尔可夫过程一、引言1、马尔科夫链的数学背景马尔可夫链,因安德烈?马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。
该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。
这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。
如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则PX_{n+1}=x|X_0, X_1, X_2, \ldots, X_n = PX_{n+1}=x|X_n. 这里x为过程中的某个状态。
上面这个恒等式可以被看作是马尔可夫性质。
2、马尔科夫链的典型应用①马尔科夫链在股指期货投资中的应用马尔科夫链转移矩阵的有效状态以近时点动量策略原时点反转策略为主,有效抓住了上涨和下跌的中期和初期.从而准确的抓住了日内股指波动. ②马尔科夫链在天气预报中的应用通过对马尔科夫链理论和切普曼-柯尔莫哥洛夫方程方程的探讨,,结合天气情况不确定等诸多特点,构想了天气情况预报的马尔科夫链预测模型,给出了马尔科夫链的初始概率和多重转移概率的计算方法,根据此算法可以预报短期天气情况,同时扩展到对未来天气情况趋势的预测。
③马尔科夫链在环境预测中的应用鉴于目前环境质量预测在理论方法和实践上的缺乏,把马尔科夫链引入环境质量的预测中,将各种污染物的浓度变化过程视作马尔科夫过程,通过预测各种污染物的污染负荷系数来推知其浓度值/④马尔科夫链在桥梁状态预测中的研究与应用马尔科夫链以矩阵的形式来表达桥梁状况,通过求解状态转移矩阵,进一步预测桥梁未来数年内的基本状况。
综合考虑了桥梁检修的影响,给出了桥梁检修后不同状态的状态转移矩阵,为进一步引入实际数据做了充分的准备。
3、相关文献《程序设计实践》作者 Brian W.Kernighan程序设计实践并不是只是写代码。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马尔可夫链
马尔可夫链(Markov chains )是一类重要的随机过程,它的状态空间是有限的或可数无限的。
经过一段时间系统从一个状态转到另一个状态这种进程只依赖于当前出发时的状态而与以前的历史无关。
马尔可夫链有着广泛的应用,也是研究排队系统的重要工具。
1) 离散时间参数的马尔可夫链 ①基本概念
定义 5.7 设{()0,1,2,}X n n ∙∙∙=,是一个随机过程,状态空间{0,1,2,}E =,如果对于任意的一组整数
时间120k n n n ∙∙∙≤<<<,以及任意状态12,,
,k i i i E ∈,都有条件概率
11{()|()}k k k k P X n i X n i --=== (5-17)
即过程{()0,1,2,}X n n ∙∙∙=,未来所处的状态只与当前的状态有关,而与以前曾处于什么状态无关,则称
{()0,1,2,}X n n ∙∙∙=,是一个离散时间参数的马尔可夫链。
当E 为可列无限集时称其为可列无限状态的马尔可
夫链,否则称其为有限状态的马尔可夫链。
定义5.8 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,
}E =上的马尔可夫链,条件概率
(,){()|()}ij p m k P X m k j X m i i j E =+==∈,、 (5-18)
称为马尔可夫链{()0,1,2,}X n n ∙∙∙=,在m 时刻的k 步转移概率。
k 步转移概率的直观意义是:质点在时刻m 处于状态i 的条件下,再经过k 步(k 个单位时间)转移到状
态j 的条件概率。
特别地,当1k =时,
(,1){(1)|()}ij p m P X m j X m i =+== (5-19)
称为一步转移概率,简称转移概率。
如果k 步转移概率(,)ij p m k i j E ∈,、,只与k 有关,而与时间起点m 无关,则{()}X n 称为离散时间的齐次马尔可夫链。
定义5.9 设{()0,1,2,}X n n ∙∙∙=,是状态空间{0,1,2,}E ∙∙∙=上的马尔可夫链,矩阵
0001010
11101(,)(,)(,)(,)(,)(,)(,)(,)(,)
(,)
n n j j jn p m k p m k p m k p m k p m k p m k P m k p m k p m k p m k ⎡⎤
⎢⎥⎢⎥
⎢
⎥=⎢
⎥⎢⎥⎢⎥⎣
⎦
(5-20) 称为{()}X n 在m 时刻的k 步转移概率矩阵。
当1k =时,(,1)P m 称为一步转移概率矩阵。
对于齐次马尔可夫链,容易推得k 步转移概率矩阵与一步转移概率矩阵具有关系
()(),,1k
P m k P m =⎡⎤⎣⎦,1,2,k ∙∙∙= (5-21)
而且与起始时刻m 无关。
今后我们用 ()ij p k 表示齐次马尔可夫链的 k 步转移概率,()P k 为k 步转移概率矩阵。
②平稳分布与存在条件
定义5.10 给定齐次马尔可夫链{()0,1,2,}X n n ∙∙∙=,,称概率分布
(0){(0)},j P P X j j E ==∈ (5-22)
为{()0,1,2,}X n n ∙∙∙=,的初始分布,其中0(0)1j P ≤≤,且
(0)1j j E
P ∈=∑,而称概率分布
(){()},j P n P X n j j E ==∈ (5-23)
为{()0,1,2,}X n n ∙∙∙=,的瞬时分布,它表示过程在任意时刻n 的概率分布。
如果极限
()lim ,j j n p p n j E →∞
=∈ (5-24)
存在,且01j P ≤≤,
1j
j E
P ∈=∑,则称{,}j
p j E ∈为过程{()0,1,2,
}X n n ∙∙∙
=,的平稳分布。
显然,对于齐次马尔可夫链,它的瞬时概率由初始分布和转移概率矩阵完全确定,即
()(0)()j i ij i E
p n p p n ∈=⋅∑ (5-25)
在平稳分布存在的条件下,由于式(5-25)可变为
()(1)(1)j i ij i E
p n p n p ∈=-⋅∑ (5-26)
令n →∞,得平稳分布{}j p j E ∈,
满足方程 01(,,,,)[1(1)]0j p p p P ∙∙∙∙∙∙-= (5-27)
即
0001012020010111212100011212(1)0,
(1)0,(1)0.
i i i i
i ii i p p p p p p p p p p p p p p p p p p p p p p p p ∙∙∙∙∙∙
------=⎧⎪-------=⎪⎨⎪⎪------=⎩ (5-28)
再结合正规化条件
1j
j E
P ∈=∑可求得平稳分布{}j
p j E ∈,。
方程式(5-27)或式(5-28)称为过程{()0,1,2,}X n n ∙∙∙=,的平衡方程。
由平衡方程知,若平稳分布存在,它与初始状态无关,完全由一步转移概率矩阵确定。
2) 连续时间参数的马尔可夫链 ① 基本概念
定义5.11 设连续时间参数随机过程{()0}X t t ≥,,状态空间{0,1,2,}E ∙∙∙=,如果对于任意的非负整数
n ,以及任意1210n n t t t t +<<<<<及121,n n i i i i E ∙∙∙+∈,,,,有
11{()|()}n n n n P X t i X t i ++=== (5-29)
则称{()0}X t t ≥,为连续时间参数的马尔可夫链。
定义5.12 设{()0}X t t ≥,为连续时间参数的马尔可夫链,对任意i j E ∈、,非负实数0s t ≥、,条件概率
(,){()|()}ij p s t P X s t j X s i =+== (5-30)
称为其转移概率函数。
显然
0(,)1ij P s t ≤≤,
(,)1ij j E
P s t ∈=∑ (5-31)
若式(5-30)只与时间的间隔t 有关,而与时刻的起点无s 关,则称{()0}X t t ≥,为连续时间参数的齐次马尔可夫链。
一般地,我们要求齐次马尔可夫链的转移概率函数满足如下的连续性条件: ②平稳分布与存在条件
定义5.13 给定连续时间参数的齐次马尔可夫链{()0}X t t ≥,,称概率分布
(0){(0)}j p P X j j E ==∈, (5-32)
为{()0}X t t ≥,的初始分布,其中0(0)1j P ≤≤,且
(0)1j j E
P ∈=∑,而称概率分布
(){()}j p t P X t j j E ==∈, (5-33)
为{()0}X t t ≥,的瞬时概率分布,它表示过程在任意时刻t 的概率分布。
如果极限
lim ()j j t p p t j E →∞
=∈, (5-34)
存在,且01j p ≤≤,
1j
j E
p
∈=∑,则称{}j p j E ∈,为{()0}X t t ≥,的平稳分布。
与离散时间参数的齐次马尔可夫链一样,连续时间参数的齐次马尔可夫链{()0}X t t ≥,的瞬时概率由初始分布和转移概率函数完全确定,即
()(0)(0,)j i ij i E
p t p p t ∈=⋅∑ (5-35)
在平稳分布存在的条件下,由于
(,)()(,)j i
ij
i E
p s t p s p
s t ∈=
⋅∑ (5-36)
令s →∞,得平稳分布满足方程
(0,)j i ij i E
p p p t j E ∈=⋅∈∑, (5-37)
因此,若知道转移概率函数,则结合01j p ≤≤, 1j
j E
p
∈=∑可求得平稳分布{}j p j E ∈,。