【全国校级联考】新疆乌鲁木齐市第九十八中学2017届中考四模数学试题(原卷版)

合集下载

2017新疆乌鲁木齐中考数学试卷

2017新疆乌鲁木齐中考数学试卷

2017新疆乌鲁木齐中考数学试卷满分:150分版本:人教版一、选择题(每小题4分,共10个小题,合计40分)1.(2017新疆乌鲁木齐,1,4分)如图,数轴上点A表示数a,则a是()A.2B.1C. -1D. -2=2,故选A.答案:A,解析:点A表示的数是-2,22. (2017新疆乌鲁木齐,2,4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°答案:B,解析:如图,∵∠3与∠1是对顶角,∴∠3=∠1=72°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-∠3=108°,故选B.3. (2017新疆乌鲁木齐,3,4分)计算(ab2)3结果是()A. 3ab2B. ab6C.a3b5D. a3b6答案:D,解析:根据积的乘方和幂的乘方的性质,(ab2)3=a3(b2)3= a3b6,故选D.4. (2017新疆乌鲁木齐,4,4分)下列说法正确的是()A. “经过有交通信号灯的路口,遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大,数据的波动越大,方差越小,数据的波动越小答案:D 解析:方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选D.5. (2017新疆乌鲁木齐,5,4分)如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是( )A.4B.5C.6D.7答案:C , 解析:设多边形的外角为x °,则相邻的内角为2x °,根据“外角与相邻的内角互补”,得x+2x=180,解得x=60°,根据多边形的外角和是360°,所以360660n ==,故选C. 6. (2017新疆乌鲁木齐,6,4分)一次函数y=kx+b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx+b >0的解集是( )A.x <2B.x <0C.x >0D. x >2答案:A , 解析:直线y=kx+b 在x 轴上方的部分,y 值大于0,此时x 的取值范围为x <2,故选A.7. (2017新疆乌鲁木齐,7,4分)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( ) A. ()30305120x x-=+% B. 3030520x x -=% C. 3030520x x +=% D. ()30305120x x -=+%答案:A , 解析:设原计划每天植树x 万棵,则实际每天植树(1+20%)x 万棵,根据等量关系“原计划植树天数-实际植树天数=5”可列方程()30305120x x-=+%,故选A. 8. (2017新疆乌鲁木齐,8,4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A. πB.2πC. 4πD. 5π答案:B ,解析:观察三视图发现几何体为圆锥,其母线长为,侧面积为12lR =12×2π×1×2=2π,故选B. 9. (2017新疆乌鲁木齐,9,4分)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处.若矩形面积为AFG=60°,GE=2BG ,则折痕EF 的长为( )A.1B.C.2D.答案:C , 解析:过点G 作GM ⊥AD ,垂足为M. ∵GE=2BG ,∴设BG=x ,GE=2x.∵∠AFG=60°,AD ∥BC ,∴∠FGE=∠AFG=60°.∵四边形FDCE 折叠得到FGHE ,∴∠GFE=∠DFG=1802AFG-∠=60°,DF=FG ,∴△FGE 是等边三角形,∴EF=EG=FG=2x ,DF=FG=2x.在Rt △FMG 中,GM=GF ×sin ∠,FM= GF ×cos ∠AFG=x.易证四边形ABGM 是矩形,∴AM=BG=x ,,∴AD=AM+FM+DF=4x ,∵矩形ABCD 面积为AD ×AB=4x =x=1,所以EF=2x=2,故选C.10. (2017新疆乌鲁木齐,10,4分)如图,点A (a ,3)、B (b ,1)都在双曲线3y x =上,点C ,D 分别是x 轴、y 轴上的动点,则四边形ABCD 周长的最小值为( )A. B. C.答案:B ,解析:∵点A (a ,3)、B (b ,1)都在双曲线3y x =上,∴a=1,b=3,∴A (1,3)、B (3,1),则=作点A 关于y 轴的对称点A 1,作点B 关于x 轴的对称点B 1,连接A1 B1,交y 轴于点D ,交x 轴于点C ,则A 1(-1,3)、B 1(3,-1),A1 B1=ABCD周长的最小值是AB+ A1B1=,故选B.二、填空题(每小题4分,共5个小题,合计20分)11. (2017新疆乌鲁木齐,11,4分)计算:12⎛⎫⎪⎪⎝⎭= .解析:110,根据“负数的绝对值等于它的相反数”,得1-1;根据“任何非0数的0次幂都等于1”,得2⎛⎝⎭=1,所以原式12. (2017新疆乌鲁木齐,12,4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为.答案:解析:过点D作DE⊥AB于点E,∵四边形ABCD是菱形,∴AD=AB=2.在Rt△DAE中,DE= AD·sin∠DAB=2×2ABCD的面积= DE×AB=13. (2017新疆乌鲁木齐,13,4分)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.答案:100 解析:设衣服的进价为x元,根据等量关系“标价×折数-进价=进价×利润率”列方程得200×0.6-x=x×20%,解方程得x=100,即这件衣服的进价是100元.14. (2017新疆乌鲁木齐,14,4分)用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分面积为.。

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考一、选择题(本大题共9题,每题5分,共45分)1.下列四个数中,最小的数是()A.﹣1 B.0 C.D.32.某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥3.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±14.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯5.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a36.如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°7.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.68.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=9.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18二、填空题(本大题共6题,每题5分,共30分)10.分解因式:x2﹣1=.11.如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是.12.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.13.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.15.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是(填写所有正确结论的序号)三、解答题(一)(本大题共4题,共30分)16.(6分)计算:()﹣1﹣|﹣|++(1﹣π)0..17.(6分)解不等式组>18.(8分)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.19.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)四、解答题(二)(本大题共4题,共45分)20.(10分)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=,b=,中位数落在组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.21.(10分)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.22.(12分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.23.(13分)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.2017年新疆生产建设兵团中考数学试卷参考答案与试题解析一、选择题(本大题共9题,每题5分,共45分)1.(5分)(2017•新疆)下列四个数中,最小的数是()A.﹣1 B.0 C.D.3【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法:负数<0<正数,找出最小的数即可.【解答】解:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选:A.【点评】本题考查了有理数大小比较的方法:正数都大于0;负数都小于0;两个负数,绝对值大的反而小.比较有理数的大小也可以利用数轴,他们从左到右的顺序,就是从大到小的顺序.2.(5分)(2017•新疆)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥【考点】U3:由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、B错误;根据俯视图是圆,三棱锥不符合要求,C错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.(5分)(2017•新疆)已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±1【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.【点评】命题立意:考查分式值为零的条件.关键是要注意分母不能为零.4.(5分)(2017•新疆)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【考点】X1:随机事件.【分析】根据随机事件与必然事件的定义即可求出答案.【解答】解:(A)购买一张彩票中奖是随机事件;(B)根据物理学可知0℃以下,纯净的水结冰是必然事件;(C)明天是晴天是随机事件;(D)经过路口遇到红灯是随机事件;故选(B)【点评】本题考查随机事件的定义,解题的关键是正确理解随机事件与必然事件,本题属于基础题型.5.(5分)(2017•新疆)下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a3【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据单项式乘以单项式的法则、幂的乘方法则及合并同类项的法则进行运算即可.【解答】解:A、6a﹣5a=a,故错误;B、(a2)3=a6,故错误;C、3a2+2a3,不是同类项不能合并,故错误;D、2a•3a2=6a3,故正确;故选D.【点评】本题考查了单项式乘以单项式,幂的乘方、合并同类项的法则及负整数指数幂的运算,属于基础题.6.(5分)(2017•新疆)如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠ADC=∠A=50°,再根据三角形外角性质,即可得到∠AEC的度数.【解答】解:∵AB∥CD,∠A=50°,∴∠ADC=∠A=50°,∵∠AEC是△CDE的外角,∠C=30°,∴∠AEC=∠C+∠D=30°+50°=80°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.(5分)(2017•新疆)已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.6【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的另一个根为t,利用根与系数的关系得到2+t=﹣1,然后解一元一次方程即可.【解答】解:设方程的另一个根为t,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.8.(5分)(2017•新疆)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得,=.故选B.【点评】此题主要考查了分式方程应用,利用本题中“现在平均每天比原计划多生产40台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(5分)(2017•新疆)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18【考点】M5:圆周角定理;M2:垂径定理.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r 的值,再求出BE的长,利用三角形的面积公式即可得出结论.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选A.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.二、填空题(本大题共6题,每题5分,共30分)10.(5分)(2017•新疆)分解因式:x2﹣1=(x+1)(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.11.(5分)(2017•新疆)如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是m>5.【考点】G4:反比例函数的性质.【分析】根据图象可知反比例函数中m﹣5>0,从而可以求得m的取值范围,本题得以解决.【解答】解:由图象可知,反比例函数y=图象在第一象限,∴m﹣5>0,得m>5,故答案为:m>5.【点评】本题考查反比例函数的性质,解答本题的关键是明确反比例函数的性质,利用数形结合的思想解答.12.(5分)(2017•新疆)某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为17元.【考点】VB:扇形统计图.【分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解;【解答】解:25×20%+10×30%+18×50%=17;答:该餐厅销售抓饭的平均单价为17元.故答案为:17.【点评】本题考查扇形统计图及相关计算,扇形统计图直接反映部分占总体的百分比大小.13.(5分)(2017•新疆)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【考点】8A:一元一次方程的应用.【分析】可以设该商品的进价是x元,根据标价×6折﹣进价=进价×20%列出方程,求解即可.【解答】解:设该商品的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故该商品的进价是1000元.故答案为:1000.【点评】本题考查了一元一次方程的应用,解题的关键是要明确6折及利润率的含义.14.(5分)(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积关于t的函数关系式,配方后即可得出结论.﹣4个△AEH的面积,即可得出S四边形EFGH【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,四边形EFGH∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形关于t的函数关系式是解题的关键.EFGH15.(5分)(2017•新疆)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是①④(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD +S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决.三、解答题(一)(本大题共4题,共30分)16.(6分)(2017•新疆)计算:()﹣1﹣|﹣|++(1﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.【解答】解:原式=2﹣+2+1=3+.【点评】本题综合考查了零指数幂,负整数指数幂,实数的运算,属于基础题,掌握运算法则即可解题.17.(6分)(2017•新疆)解不等式组>.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤1,解不等式②,得:x<4,则不等式组的解集为x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)(2017•新疆)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明证明△ADC≌△CEB即可;(2)由全等三角形的性质得出得到∠ACD=∠CBE,证出CD∥BE,即可得出结论.【解答】(1)证明:∵点C是AB的中点,∴AC=BC;在△ADC与△CEB中,,∴△ADC≌△CEB(SSS),(2)证明:连接DE,如图所示:∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE,又∵CD=BE,∴四边形CBED是平行四边形.【点评】该题主要考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.19.(10分)(2017•新疆)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△BCD中可求得CD的长,即求得乙的高度,过A作F⊥CD于点F,在Rt△ADF中可求得DF,则可求得CF的长,即可求得甲的高度.【解答】解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC•tan60°=30m,∴乙建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度为(30﹣30)m.【点评】本题主要考查角直角三角形的应用,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.四、解答题(二)(本大题共4题,共45分)20.(10分)(2017•新疆)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=12,b=0.2,中位数落在1≤t≤1.5组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)先求得抽取的学生数,再根据频率计算频数,根据频数计算频率;(2)根据每周课余阅读时间不足0.5小时的学生的频率,估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生数即可;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵抽取的学生数为6÷0.15=40人,∴a=0.3×40=12人,b=8÷40=0.2,频数分布直方图如下:故答案为:12,0.2,1≤t≤1.5;(2)该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有:0.15×2000=300人;(3)树状图如图所示:总共有12种等可能的结果,其中刚好是1名男生和1名女生的结果有6种,∴抽取的两名学生刚好是1名男生和1名女生的概率==.【点评】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.(10分)(2017•新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距22千米,小宇在活动中心活动时间为2小时,他从活动中心返家时,步行用了0.4小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【考点】FH:一次函数的应用.【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴小宇12:00前能到家.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据离家距离=22﹣速度×时间,找出y与x之间的函数关系式;(3)由爸爸开车的速度不变,求出小宇从活动中心返家所用时间.22.(12分)(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC=∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.23.(13分)(2017•新疆)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合三角形各边长得出D点坐标;②利用平行四边形的判定方法结合勾股定理的逆定理得出四边形ADBC的形状;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【解答】解:(1)当y=0时,0=﹣x2+x+2,解得:x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=2,故C(0,2);(2)①过点D作DE⊥x轴于点E,∵将△ABC绕AB中点M旋转180°,得到△BAD,∴DE=2,AO=BE=1,OM=ME=1.5,∴D(3,﹣2);②∵将△ABC绕AB中点M旋转180°,得到△BAD,∴AC=BD,AD=BC,∴四边形ADBC是平行四边形,∵AC==,BC==2,AB=5,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴∠ACB=90°,∴四边形ADBC是矩形;(3)由题意可得:BD=,AD=2,则=,当△BMP∽△ADB时,==,可得:BM=2.5,则PM=1.25,故P(1.5,1.25),当△BMP1∽△ABD时,P1(1.5,﹣1.25),当△BMP2∽△BDA时,可得:P2(1.5,5),当△BMP3∽△BDA时,可得:P3(1.5,﹣5),综上所述:点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).【点评】此题主要考查了二次函数的综合以及相似三角形的判定与性质等知识,正确分类讨论是解题关键.。

【全国校级联考】新疆乌鲁木齐市第九十八中学2017届中考四模数学试题

【全国校级联考】新疆乌鲁木齐市第九十八中学2017届中考四模数学试题

绝密★启用前【全国校级联考】新疆乌鲁木齐市第九十八中学2017届中考四模数学试题试卷副标题考试范围:xxx ;考试时间:69分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、如图,在Rt △ABC 中,AB=AC ,D 、E 是斜边BC 上两点,且∠DAE=45°,将△ADC 绕点A 顺时针旋转90°后,得到△AFB ,连接EF ,下列结论:①△AED ≌△AEF ;②AE :BE=AD :CD ;③△ABC 的面积等于四边形AFBD 的面积;④BE 2+DC 2=DE 2⑤BE+DC=DE 其中正确的是()A. ①②④B. ③④⑤C. ①③⑤D. ①③④2、如图,O 是菱形ABCD 的对角线AC ,BD 的交点,E ,F 分别是OA ,OC 的中点.下列结论:①S △ADE =S △EOD ;②四边形BFDE 是中心对称图形;③△DEF 是轴对称图形;④∠ADE=∠EDO .其中错误的结论有 .A .1个B .2个C .3个D .4个3、如图,矩形ABCD 中,点E 在边AB 上,将矩形ABCD 沿直线DE 折叠,点A 恰好落在边BC 的点F 处.若AE =5,BF =3,则CD 的长是( )A .7B .8C .9D .104、如图,A ,B 是函数的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y轴,△ABC 的面积记 为S ,则( ).A .S = 2B .S = 4C .2<S <4D .S >45、200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的某市每天浪费大米约( )克(用科学记数法表示)A .91600B .91.6×103C .9.16×104D .0.916×1056、下图是一个台阶形零件,两个台阶的高度和宽度都相等,则它的三视图是( )A .B .C .D .7、下列运算正确的是( ) A .a + a = 2a B .a + a= a C .a ·a = 2a D .(-3a )= -27a8、-3的倒数是( )A .B .C .-3D .39、某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是( )A .修车时间为15分钟B .学校离家的距离为2000米C .到达学校时共用时间20分钟D .自行车发生故障时离家距离为1000米二、选择题(题型注释)10、如图为二次函数y = ax 2 + bx + c (a≠0)的图象,则下列说法: ①a >0 ②2a + b = 0 ③a+b+c >0④ 当﹣1<x <3时,y >0其中正确的个数为( )A .1B .2C .3D .4第II 卷(非选择题)三、填空题(题型注释)11、如图,在矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率是____________。

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考数学试卷(含答案解析版)

2017年新疆中考一、选择题(本大题共9题,每题5分,共45分)1.下列四个数中,最小的数是()A.﹣1 B.0 C.D.32.某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥3.已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±14.下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯5.下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a36.如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°7.已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.68.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=9.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18二、填空题(本大题共6题,每题5分,共30分)10.分解因式:x2﹣1=.11.如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是.12.某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为元.13.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为s时,四边形EFGH的面积最小,其最小值是cm2.15.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是(填写所有正确结论的序号)三、解答题(一)(本大题共4题,共30分)16.(6分)计算:()﹣1﹣|﹣|++(1﹣π)0..17.(6分)解不等式组>18.(8分)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.19.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)四、解答题(二)(本大题共4题,共45分)20.(10分)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=,b=,中位数落在组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.21.(10分)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距千米,小宇在活动中心活动时间为小时,他从活动中心返家时,步行用了小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.22.(12分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.23.(13分)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.2017年新疆生产建设兵团中考数学试卷参考答案与试题解析一、选择题(本大题共9题,每题5分,共45分)1.(5分)(2017•新疆)下列四个数中,最小的数是()A.﹣1 B.0 C.D.3【考点】18:有理数大小比较.【分析】根据有理数的大小比较方法:负数<0<正数,找出最小的数即可.【解答】解:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选:A.【点评】本题考查了有理数大小比较的方法:正数都大于0;负数都小于0;两个负数,绝对值大的反而小.比较有理数的大小也可以利用数轴,他们从左到右的顺序,就是从大到小的顺序.2.(5分)(2017•新疆)某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥【考点】U3:由三视图判断几何体.【分析】根据几何体的三视图,对各个选项进行分析,用排除法得到答案.【解答】解:根据主视图是三角形,圆柱和球不符合要求,A、B错误;根据俯视图是圆,三棱锥不符合要求,C错误;根据几何体的三视图,圆锥符合要求.故选:D.【点评】本题考查的是由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.(5分)(2017•新疆)已知分式的值是零,那么x的值是()A.﹣1 B.0 C.1 D.±1【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】分式的值为0的条件是:(1)分子等于0;(2)分母不等于0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:若=0,则x﹣1=0且x+1≠0,故x=1,故选C.【点评】命题立意:考查分式值为零的条件.关键是要注意分母不能为零.4.(5分)(2017•新疆)下列事件中,是必然事件的是()A.购买一张彩票,中奖B.通常温度降到0℃以下,纯净的水结冰C.明天一定是晴天D.经过有交通信号灯的路口,遇到红灯【考点】X1:随机事件.【分析】根据随机事件与必然事件的定义即可求出答案.【解答】解:(A)购买一张彩票中奖是随机事件;(B)根据物理学可知0℃以下,纯净的水结冰是必然事件;(C)明天是晴天是随机事件;(D)经过路口遇到红灯是随机事件;故选(B)【点评】本题考查随机事件的定义,解题的关键是正确理解随机事件与必然事件,本题属于基础题型.5.(5分)(2017•新疆)下列运算正确的是()A.6a﹣5a=1 B.(a2)3=a5C.3a2+2a3=5a5D.2a•3a2=6a3【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据单项式乘以单项式的法则、幂的乘方法则及合并同类项的法则进行运算即可.【解答】解:A、6a﹣5a=a,故错误;B、(a2)3=a6,故错误;C、3a2+2a3,不是同类项不能合并,故错误;D、2a•3a2=6a3,故正确;故选D.【点评】本题考查了单项式乘以单项式,幂的乘方、合并同类项的法则及负整数指数幂的运算,属于基础题.6.(5分)(2017•新疆)如图,AB∥CD,∠A=50°,∠C=30°,则∠AEC等于()A.20°B.50°C.80°D.100°【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠ADC=∠A=50°,再根据三角形外角性质,即可得到∠AEC的度数.【解答】解:∵AB∥CD,∠A=50°,∴∠ADC=∠A=50°,∵∠AEC是△CDE的外角,∠C=30°,∴∠AEC=∠C+∠D=30°+50°=80°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.(5分)(2017•新疆)已知关于x的方程x2+x﹣a=0的一个根为2,则另一个根是()A.﹣3 B.﹣2 C.3 D.6【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】设方程的另一个根为t,利用根与系数的关系得到2+t=﹣1,然后解一元一次方程即可.【解答】解:设方程的另一个根为t,根据题意得2+t=﹣1,解得t=﹣3,即方程的另一个根是﹣3.故选A.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.8.(5分)(2017•新疆)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x台机器,根据题意,下面列出的方程正确的是()A.=B.=C.=D.=【考点】B6:由实际问题抽象出分式方程.【分析】设原计划平均每天生产x台机器,根据题意可知现在每天生产(x+40)台机器,而现在生产600台所需时间和原计划生产4800台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得,=.故选B.【点评】此题主要考查了分式方程应用,利用本题中“现在平均每天比原计划多生产40台机器”这一个隐含条件,进而得出等式方程是解题关键.9.(5分)(2017•新疆)如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18【考点】M5:圆周角定理;M2:垂径定理.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r 的值,再求出BE的长,利用三角形的面积公式即可得出结论.【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC=AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE===6,∴△BCE的面积=BC•BE=×4×6=12.故选A.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.二、填空题(本大题共6题,每题5分,共30分)10.(5分)(2017•新疆)分解因式:x2﹣1=(x+1)(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式分解即可求得答案.【解答】解:x2﹣1=(x+1)(x﹣1).故答案为:(x+1)(x﹣1).【点评】此题考查了平方差公式分解因式的知识.题目比较简单,解题需细心.11.(5分)(2017•新疆)如图,它是反比例函数y=图象的一支,根据图象可知常数m的取值范围是m>5.【考点】G4:反比例函数的性质.【分析】根据图象可知反比例函数中m﹣5>0,从而可以求得m的取值范围,本题得以解决.【解答】解:由图象可知,反比例函数y=图象在第一象限,∴m﹣5>0,得m>5,故答案为:m>5.【点评】本题考查反比例函数的性质,解答本题的关键是明确反比例函数的性质,利用数形结合的思想解答.12.(5分)(2017•新疆)某餐厅供应单位为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为17元.【考点】VB:扇形统计图.【分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解;【解答】解:25×20%+10×30%+18×50%=17;答:该餐厅销售抓饭的平均单价为17元.故答案为:17.【点评】本题考查扇形统计图及相关计算,扇形统计图直接反映部分占总体的百分比大小.13.(5分)(2017•新疆)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【考点】8A:一元一次方程的应用.【分析】可以设该商品的进价是x元,根据标价×6折﹣进价=进价×20%列出方程,求解即可.【解答】解:设该商品的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故该商品的进价是1000元.故答案为:1000.【点评】本题考查了一元一次方程的应用,解题的关键是要明确6折及利润率的含义.14.(5分)(2017•新疆)如图,在边长为6cm的正方形ABCD中,点E、F、G、H分别从点A、B、C、D同时出发,均以1cm/s的速度向点B、C、D、A匀速运动,当点E到达点B时,四个点同时停止运动,在运动过程中,当运动时间为3s时,四边形EFGH的面积最小,其最小值是18cm2.【考点】H7:二次函数的最值;LE:正方形的性质.【分析】设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,由四边形EFGH的面积=正方形ABCD的面积关于t的函数关系式,配方后即可得出结论.﹣4个△AEH的面积,即可得出S四边形EFGH【解答】解:设运动时间为t(0≤t≤6),则AE=t,AH=6﹣t,根据题意得:S=S正方形ABCD﹣4S△AEH=6×6﹣4×t(6﹣t)=2t2﹣12t+36=2(t﹣3)2+18,四边形EFGH∴当t=3时,四边形EFGH的面积取最小值,最小值为18.故答案为:3;18【点评】本题考查了二次函数的最值、三角形以及正方形的面积,通过分割图形求面积法找出S四边形关于t的函数关系式是解题的关键.EFGH15.(5分)(2017•新疆)如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面积S=AC•BD.正确的是①④(填写所有正确结论的序号)【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】①证明△ABC≌△ADC,可作判断;②③由于AB与BC不一定相等,则可知此两个选项不一定正确;④根据面积和求四边形的面积即可.【解答】解:①在△ABC和△ADC中,∵,∴△ABC≌△ADC(SSS),∴∠ABC=∠ADC,故①结论正确;②∵△ABC≌△ADC,∴∠BAC=∠DAC,∵AB=AD,∴OB=OD,AC⊥BD,而AB与BC不一定相等,所以AO与OC不一定相等,故②结论不正确;③由②可知:AC平分四边形ABCD的∠BAD、∠BCD,而AB与BC不一定相等,所以BD不一定平分四边形ABCD的对角;故③结论不正确;④∵AC⊥BD,∴四边形ABCD的面积S=S△ABD +S△BCD=BD•AO+BD•CO=BD•(AO+CO)=AC•BD.故④结论正确;所以正确的有:①④;故答案为:①④.【点评】本题考查了全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定方法是解题的关键,第1问可以利用等边对等角,由等量加等量和相等来解决.三、解答题(一)(本大题共4题,共30分)16.(6分)(2017•新疆)计算:()﹣1﹣|﹣|++(1﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.【解答】解:原式=2﹣+2+1=3+.【点评】本题综合考查了零指数幂,负整数指数幂,实数的运算,属于基础题,掌握运算法则即可解题.17.(6分)(2017•新疆)解不等式组>.【考点】CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x≤1,解不等式②,得:x<4,则不等式组的解集为x≤1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)(2017•新疆)如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.【考点】L6:平行四边形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明证明△ADC≌△CEB即可;(2)由全等三角形的性质得出得到∠ACD=∠CBE,证出CD∥BE,即可得出结论.【解答】(1)证明:∵点C是AB的中点,∴AC=BC;在△ADC与△CEB中,,∴△ADC≌△CEB(SSS),(2)证明:连接DE,如图所示:∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE,又∵CD=BE,∴四边形CBED是平行四边形.【点评】该题主要考查了平行四边形的判定、平行线的判定、全等三角形的判定与性质;熟练掌握平行四边形的判定,证明三角形全等是解决问题的关键.19.(10分)(2017•新疆)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△BCD中可求得CD的长,即求得乙的高度,过A作F⊥CD于点F,在Rt△ADF中可求得DF,则可求得CF的长,即可求得甲的高度.【解答】解:如图,过A作AF⊥CD于点F,在Rt△BCD中,∠DBC=60°,BC=30m,∵=tan∠DBC,∴CD=BC•tan60°=30m,∴乙建筑物的高度为30m;在Rt△AFD中,∠DAF=45°,∴DF=AF=BC=30m,∴AB=CF=CD﹣DF=(30﹣30)m,∴甲建筑物的高度为(30﹣30)m.【点评】本题主要考查角直角三角形的应用,构造直角三角形,利用特殊角求得相应线段的长是解题的关键.四、解答题(二)(本大题共4题,共45分)20.(10分)(2017•新疆)阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a=12,b=0.2,中位数落在1≤t≤1.5组,将频数分布直方图补全;(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数.【分析】(1)先求得抽取的学生数,再根据频率计算频数,根据频数计算频率;(2)根据每周课余阅读时间不足0.5小时的学生的频率,估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生数即可;(3)通过画树状图,根据概率的计算公式,即可得到抽取的两名学生刚好是1名男生和1名女生的概率.【解答】解:(1)∵抽取的学生数为6÷0.15=40人,∴a=0.3×40=12人,b=8÷40=0.2,频数分布直方图如下:故答案为:12,0.2,1≤t≤1.5;(2)该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有:0.15×2000=300人;(3)树状图如图所示:总共有12种等可能的结果,其中刚好是1名男生和1名女生的结果有6种,∴抽取的两名学生刚好是1名男生和1名女生的概率==.【点评】本题主要考查了树状图法或列表法求概率,以及频数分布直方图的运用,解题时注意:当有两个元素时,可用树形图列举,也可以列表列举.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.21.(10分)(2017•新疆)某周日上午8:00小宇从家出发,乘车1小时到达某活动中心参加实践活动.11:00时他在活动中心接到爸爸的电话,因急事要求他在12:00前回到家,他即刻按照来活动中心时的路线,以5千米/小时的平均速度快步返回.同时,爸爸从家沿同一路线开车接他,在距家20千米处接上了小宇,立即保持原来的车速原路返回.设小宇离家x(小时)后,到达离家y(千米)的地方,图中折线OABCD表示y与x之间的函数关系.(1)活动中心与小宇家相距22千米,小宇在活动中心活动时间为2小时,他从活动中心返家时,步行用了0.4小时;(2)求线段BC所表示的y(千米)与x(小时)之间的函数关系式(不必写出x所表示的范围);(3)根据上述情况(不考虑其他因素),请判断小宇是否能在12:00前回到家,并说明理由.【考点】FH:一次函数的应用.【分析】(1)根据点A、B坐标结合时间=路程÷速度,即可得出结论;(2)根据离家距离=22﹣速度×时间,即可得出y与x之间的函数关系式;(3)由小宇步行的时间等于爸爸开车接到小宇的时间结合往返时间相同,即可求出小宇从活动中心返家所用时间,将其与1比较后即可得出结论.【解答】解:(1)∵点A的坐标为(1,22),点B的坐标为(3,22),∴活动中心与小宇家相距22千米,小宇在活动中心活动时间为3﹣1=2小时.(22﹣20)÷5=0.4(小时).故答案为:22;2;0.4.(2)根据题意得:y=22﹣5(x﹣3)=﹣5x+37.(3)小宇从活动中心返家所用时间为:0.4+0.4=0.8(小时),∵0.8<1,∴小宇12:00前能到家.【点评】本题考查了一次函数的应用,解题的关键是:(1)根据数量关系列式计算;(2)根据离家距离=22﹣速度×时间,找出y与x之间的函数关系式;(3)由爸爸开车的速度不变,求出小宇从活动中心返家所用时间.22.(12分)(2017•新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【考点】ME:切线的判定与性质;MO:扇形面积的计算.【分析】(1)连接BO,根据△OBC和△BCE都是等腰三角形,即可得到∠BEC=∠OBC=∠OCB=30°,再根据三角形内角和即可得到∠EBO=90°,进而得出BE是⊙O的切线;(2)在Rt△ABC中,根据∠ACB=30°,BC=3,即可得到半圆的面积以及Rt△ABC的面积,进而得到阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.【点评】本题主要考查了切线的判定以及扇形面积的计算,解题时注意:经过半径的外端且垂直于这条半径的直线是圆的切线.23.(13分)(2017•新疆)如图,抛物线y=﹣x2+x+2与x轴交于点A,B,与y轴交于点C.(1)试求A,B,C的坐标;(2)将△ABC绕AB中点M旋转180°,得到△BAD.①求点D的坐标;②判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用y=0,x=0分别得出A,B,C的坐标;(2)①利用旋转的性质结合三角形各边长得出D点坐标;②利用平行四边形的判定方法结合勾股定理的逆定理得出四边形ADBC的形状;(3)直接利用相似三角形的判定与性质结合三角形各边长进而得出答案.【解答】解:(1)当y=0时,0=﹣x2+x+2,解得:x1=﹣1,x2=4,则A(﹣1,0),B(4,0),当x=0时,y=2,故C(0,2);(2)①过点D作DE⊥x轴于点E,∵将△ABC绕AB中点M旋转180°,得到△BAD,∴DE=2,AO=BE=1,OM=ME=1.5,∴D(3,﹣2);②∵将△ABC绕AB中点M旋转180°,得到△BAD,∴AC=BD,AD=BC,∴四边形ADBC是平行四边形,∵AC==,BC==2,AB=5,∴AC2+BC2=AB2,∴△ACB是直角三角形,∴∠ACB=90°,∴四边形ADBC是矩形;(3)由题意可得:BD=,AD=2,则=,当△BMP∽△ADB时,==,可得:BM=2.5,则PM=1.25,故P(1.5,1.25),当△BMP1∽△ABD时,P1(1.5,﹣1.25),当△BMP2∽△BDA时,可得:P2(1.5,5),当△BMP3∽△BDA时,可得:P3(1.5,﹣5),综上所述:点P的坐标为:(1.5,1.25),(1.5,﹣1.25),(1.5,5),(1.5,﹣5).【点评】此题主要考查了二次函数的综合以及相似三角形的判定与性质等知识,正确分类讨论是解题关键.。

新疆乌鲁木齐市2017年中考数学真题试题(答案不全)

新疆乌鲁木齐市2017年中考数学真题试题(答案不全)

新疆乌鲁木齐市2017年中考数学试题一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上点A 表示数a ,则a 是( )A .2B .1C .1-D .2-2.如图,直线,172a b ∠= ,则2∠的度数是 ( )A .118B .108C .98D .723. 计算()22ab的结果是( ) A .23ab B .6ab C. 35a b D .36a b4.下列说法正确的是 ( )A .“经过有交通信号的路口,遇到红灯,” 是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D .方差越大数据的波动越大,方差越小数据的波动越小5.如果n 边形每一个内角等于与它相邻外角的2倍,则n 的值是 ( )A .4B .5 C.6 D .7 6.一次函数(,y kx b k b =+是常数,0k ≠)的图象,如图所示,则不等式0kx b +>的解集是 ( )A .2x <B .0x <C .0x >D .2x >7.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是 ( )A .()0030305120x x-=+ B .003030520x x -= C.003030520x x += D .()0030305120x x -=+ 8. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .πB .2π C.4π D .5π9.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G点处,若矩形面积为60,2AFG GE BG ∠==,则折痕EF 的长为( )A .1 B2 D.10. 如图,点()(),3,,1A a B b 都在双曲线3y x=上,点,C D ,分别是x 轴,y 轴上的动点,则四边形ABCD 周长的最小值为( )A..C..二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.计算01+=⎝⎭ .12.如图,在菱形ABCD 中,60,2DAB AB ∠==,则菱形ABCD 的面积为 .13.一件衣服售价为200元,六折销售,仍可获利0020,则这件衣服的进价是 元.14.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .15.如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫-⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .三、解答题 (本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16. 解不等式组:()3242113x x x x -->⎧⎪⎨+>-⎪⎩ . 17. 先化简,再求值:22282242x x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x =18.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19. 如图,四边形ABCD 是平行四边形,,E F 是对角线BD 上的两点,且BF ED =,求证:AF CF .20. 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:a b c d的值并补全频数分布直方图;(1)写出,,,(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21. 一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C 处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到≈≈≈,结果取整数)达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.73222. 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y 与x 之间的函数关系式;(4)何时两车相距300千米.23.如图,AB 是O 的直径,CD 与O 相切于点C ,与AB 的延长线交于D .(1)求证:ADCCDB ∆∆; (2)若32,2AC AB CD ==,求O 半径. 24.如图,抛物线()20y ax bx c a =++≠与直线1y x =+相交于()()1,0,4,A B m -两点,且抛物线经过点()5,0C .(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .①当2PE ED =时,求P 点坐标;② 是否存在点P 使BEC ∆为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.。

2017年乌鲁木齐市中考数学试卷与答案

2017年乌鲁木齐市中考数学试卷与答案

2017年乌鲁木齐市中考数学试卷与答案一、试卷结构2017年乌鲁木齐市中考数学试卷共分为两个部分:选择题和非选择题,其中选择题占40分,非选择题占60分,在选择题中,共有25道小题,每题2分;在非选择题中,共有5道大题,每题12分。

二、试卷内容分析1. 选择题选择题部分涵盖了数学各个方面的知识,包括:集合,函数,三角函数,数列,立体几何等。

其中,整式的计算和因式分解比重较大,占了选择题的大部分考点,考查的难度相对较低,主要是考查学生的记忆和计算能力。

还有一些题目考查了学生对数学概念的理解和应用能力,例如利用概率公式计算概率等。

选择题总体难度适中,但是在分数细节、计算准确度等方面考验了学生的耐心和细心程度。

2. 非选择题非选择题部分考察学生的综合运用能力,涉及到思维、创新等方面的考点。

其中,解析几何和函数是非选择题考试的难点,在解析几何的部分,学生需要对直线和曲线的方程、相交关系、距离等知识有深入的掌握,能够运用相关公式进行计算。

函数部分主要考查学生的函数变化、导数计算和曲线图象的绘制能力。

综合题的难度较大,需要学生从给定的条件中综合运用所学数学知识进行求解,考查学生的数学综合应用能力。

三、试卷分析2017年乌鲁木齐市中考数学试卷整体难度适中,和历年试卷难度相比偏低。

试卷涵盖了数学各个方面的知识点,整体考查了学生的记忆、理解和应用能力。

但是,选择题部分计算误差和粗心现象比较普遍,而非选择题解题思路的严密性和准确性也需要进一步提高。

在本次试卷中,考查了集合和函数、解析几何和立体几何、数列和概率等知识点,考点比较全面,但是整体来看,选择题的难度稍低,而非选择题的难度有所提高。

四、试卷答案无法提供试卷答案,建议学生在认真回顾考试过程中寻找自己的失分点,并及时与老师和同学进行交流,加强巩固练习。

新疆乌鲁木齐市2017年中考数学试题(精校word版%2C答案不全)

新疆乌鲁木齐市2017年中考数学试题(精校word版%2C答案不全)

新疆乌鲁木齐市2017年中考数学试题物以类聚,人以群分。

《易经》 如海学校 陈泽学漂市一中 钱少锋一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,数轴上点A 表示数a ,则a 是( )A .2B .1C .1-D .2- 2.如图,直线,172ab ∠= ,则2∠的度数是 ( )A .118B .108C .98D .72 3. 计算()22ab 的结果是( )A .23abB .6ab C. 35a b D .36a b 4.下列说法正确的是 ( )A .“经过有交通信号的路口,遇到红灯,” 是必然事件B .已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次 C.处于中间位置的数一定是位数D .方差越大数据的波动越大,方差越小数据的波动越小5.如果n 边形每一个内角等于与它相邻外角的2倍,则n 的值是 ( )A .4B .5 C.错误!未指定书签。

D .76.一次函数(,y kx b k b =+是常数,0k ≠)的象,如图所示,则不等式0kx b +>的解集是 ( )A .错误!未找到引用源。

B .0x <C .0x >D .7.2017年,在创建文明市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多0020,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是 ( )A .()0030305120xx-=+ B .003030520x x -=C.003030520x x += D .()0030305120x x-=+ 8. 如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .πB .2π C.4π D .5π 9.如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为360,2AFG GE BG∠==,则折痕EF的长为()A.1 B.3 C. 2 D.2310. 如图,点()(),3,,1A aB b都在双曲线3yx=上,点,C D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.52 B.62 C. 21022+ D.82二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.计算5132⎛⎫-+=⎪⎪⎝⎭.12.如图,在菱形ABCD中,60,2DAB AB∠==,则菱形ABCD的面积为.13.一件衣服售价为200元,六折销售,仍可获利020,则这件衣服的进价是元.14.用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .15.如图,抛物线2y ax bx c =++过点()1,0-,且对称轴为直线1x =,有下列结论:①0abc <;②1030a b c ++>;③抛物线经过点()14,y 与点()23,y -,则12y y >;④无论,,a b c 取何值,抛物线都经过同一个点,0c a ⎛⎫- ⎪⎝⎭;⑤20am bm a ++≥,其中所有正确的结论是 .三、解答题 (本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16. 解不等式组:()3242113x x x x -->⎧⎪⎨+>-⎪⎩ . 17. 先化简,再求值:22282242x x x x x x x +-⎛⎫-÷⎪--+⎝⎭,其中3x =18.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19. 如图,四边形ABCD是平行四边形,,E F是对角线BD上的两点,且BF ED=,求证:AF CF.20. 现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率04000x≤<8a 40008000x≤<150.3 800012000x≤<12b 1200016000x≤<c0.2 1600020000x≤<30.06 2000024000x≤<d0.04请根据以上信息,解答下列问题:(1)写出,,,a b c d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21. 一艘渔船位于港口A的北偏东60方向,距离港口20海里B处,它沿北偏西37方向航行至C处突然出现故障,在C处等待救援,,B C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin370.6,cos370.8,3 1.732≈≈≈,结果取整数)22. 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.23.如图,AB是O的直径,CD与O相切于点C,与AB的延长线交于D.(1)求证:ADC CDB∆∆;(2)若32,2AC AB CD ==,求O 半径. 24.如图,抛物线()20y ax bx c a =++≠与直线1y x =+相交于()()1,0,4,A B m -两点,且抛物线经过点()5,0C .(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E .①当2PE ED =时,求P 点坐标;② 是否存在点P 使BEC ∆为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.【素材积累】1、不求与人相比,但求超越自己,要哭旧哭出激动的泪水,要笑旧笑出成长的性格。

2017年各地中考试卷2017年新疆乌鲁木齐市中考数学试卷

2017年各地中考试卷2017年新疆乌鲁木齐市中考数学试卷

2017年新疆乌鲁木齐市中考数学试卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣22.(4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°3.(4分)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5 D.a3b64.(4分)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小5.(4分)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.76.(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2 B.x<0 C.x>0 D.x>27.(4分)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=58.(4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π9.(4分)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.10.(4分)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)计算|1﹣|+()0=.12.(4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为.13.(4分)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.14.(4分)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为.15.(4分)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)解不等式组:.17.(8分)先化简,再求值:(﹣)÷,其中x=.18.(10分)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?19.(10分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.(10分)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离(sin37°为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.≈0.6,cos37°≈0.8,≈1.732,结果取整数)22.(10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.2017年新疆乌鲁木齐市中考数学试卷参考答案与试题解析一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)(2017•乌鲁木齐)如图,数轴上点A表示数a,则|a|是()A.2 B.1 C.﹣1 D.﹣2【分析】直接根据数轴上A点的位置可求a,再根据绝对值的性质即可得出结论.【解答】解:∵A点在﹣2处,∴数轴上A点表示的数a=﹣2,|a|=|﹣2|=2.故选A.【点评】本题考查的是绝对值和数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.2.(4分)(2017•乌鲁木齐)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°【分析】根据平行线的性质,以及邻补角的定义进行计算即可.【解答】解:∵直线a∥b,∴∠2=∠3,∵∠1=72°,∴∠3=108°,∴∠2=108°,故选:B.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.3.(4分)(2017•乌鲁木齐)计算(ab2)3的结果是()A.3ab2B.ab6C.a3b5 D.a3b6【分析】根据整式的运算即可求出答案.【解答】解:原式=a3b6,故选(D)【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.4.(4分)(2017•乌鲁木齐)下列说法正确的是()A.“经过有交通信号的路口,遇到红灯,”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大数据的波动越大,方差越小数据的波动越小【分析】根据概率的意义以及中位数的定义、方差的意义分别分析得出答案.【解答】解:A、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;C、处于中间位置的数一定是中位数,说法错误;D、方差越大数据的波动越大,方差越小数据的波动越小,说法正确;故选:D.【点评】此题主要考查了中位数、方差、随机事件以及概率,关键是掌握中位数、随机事件的定义,掌握概率和方差的意义.5.(4分)(2017•乌鲁木齐)如果n边形每一个内角等于与它相邻外角的2倍,则n的值是()A.4 B.5 C.6 D.7【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案.【解答】解:设外角为x,则相邻的内角为2x,由题意得,2x+x=180°,解得,x=60°,360÷60°=6,故选:C.【点评】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.6.(4分)(2017•乌鲁木齐)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是()A.x<2 B.x<0 C.x>0 D.x>2【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.故选A.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.7.(4分)(2017•乌鲁木齐)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x万棵,可列方程是()A.﹣=5 B.﹣=5C.+5= D.﹣=5【分析】根据题意给出的等量关系即可列出方程.【解答】解:设原计划每天植树x万棵,需要天完成,∴实际每天植树(x+0.2x)万棵,需要天完成,∵提前5天完成任务,∴﹣=5,故选(A)【点评】本题考查分式方程的应用,解题的关键是利用题目中的等量关系,本题属于基础题型.8.(4分)(2017•乌鲁木齐)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π【分析】由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.【解答】解:由三视图可知,原几何体为圆锥,∵l==2,∴S=•2πr•l=×2π××2=2π.侧故选B.【点评】本题考查了由三视图判断几何体、圆锥的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥是解题的关键.9.(4分)(2017•乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC 上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AFG=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.【点评】本题考查了翻折变换、矩形的性质、等边三角形的判定及性质以及解含30度角的直角三角形,根据边角关系及解直角三角形找出BC=4EC、DC=EC是解题的关键.10.(4分)(2017•乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.二、填空题(本大题5小题,每小题4分,满分20分,将答案填在答题纸上)11.(4分)(2017•乌鲁木齐)计算|1﹣|+()0=.【分析】先利用零指数幂的意义计算,然后去绝对值后合并.【解答】解:原式=﹣1+1=.故答案为.【点评】本题考查了实数的运算:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.12.(4分)(2017•乌鲁木齐)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为2.【分析】由菱形ABCD,得到邻边相等,且对角线互相平分,再由一个角为60°的等腰三角形为等边三角形得到三角形ABD为等边三角形,求出BD的长,再由菱形的对角线垂直求出AC的长,即可求出菱形的面积.【解答】解:∵菱形ABCD,∴AD=AB,OD=OB,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AB=2,∴OD=1,在Rt△AOD中,根据勾股定理得:AO==,∴AC=2,则S=AC•BD=2,菱形ABCD故答案为:2【点评】此题考查了菱形的性质,等边三角形的判定与性质,勾股定理,熟练掌握菱形的性质是解本题的关键.13.(4分)(2017•乌鲁木齐)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是100元.【分析】此题的等量关系:实际售价=标价的六折=进价×(1+获利率),设未知数,列方程求解即可.【解答】解:设进价是x元,则(1+20%)x=200×0.6,解得:x=100.则这件衬衣的进价是100元.故答案为100.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程是解决问题的关键.14.(4分)(2017•乌鲁木齐)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为π﹣.【分析】连OA,OP,AP,求出AP直线和AP弧面积,即阴影部分面积,从而求解.【解答】解:如图,设的中点我P,连接OA,OP,AP,△OAP的面积是:×12=,=,扇形OAP的面积是:S扇形AP直线和AP弧面积:S弓形=﹣,=π﹣.阴影面积:3×2S弓形故答案为:π﹣.【点评】本题考查了扇形面积的计算,解题的关键是得到阴影部分面积=6(扇形OAP的面积﹣△OAP的面积).15.(4分)(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(﹣3,y2),则y1>y2;④无论a,b,c取何值,抛物线都经过同一个点(﹣,0);⑤am2+bm+a ≥0,其中所有正确的结论是②④⑤.【分析】由开口方向、对称轴及抛物线与y轴交点位置可判断①;由x=3时的函数值及a>0可判断②;由抛物线的增减性可判断③;由当x=﹣时,y=a•(﹣)2+b•(﹣)+c=且a﹣b+c=0可判断④;由x=1时函数y取得最小值及b=﹣2a可判断⑤.【解答】解:由图象可知,抛物线开口向上,则a>0,顶点在y轴右侧,则b<0,抛物线与y轴交于负半轴,则c<0,∴abc>0,故①错误;∵抛物线y=ax2+bx+c过点(﹣1,0),且对称轴为直线x=1,∴抛物线y=ax2+bx+c过点(3,0),∴当x=3时,y=9a+3b+c=0,∵a>0,∴10a+3b+c>0,故②正确;∵对称轴为x=1,且开口向上,∴离对称轴水平距离越大,函数值越大,∴y1<y2,故③错误;当x=﹣时,y=a•(﹣)2+b•(﹣)+c==,∵当x=﹣1时,y=a﹣b+c=0,∴当x=﹣时,y=a•(﹣)2+b•(﹣)+c=0,即无论a,b,c取何值,抛物线都经过同一个点(﹣,0),故④正确;x=m对应的函数值为y=am2+bm+c,x=1对应的函数值为y=a+b+c,又∵x=1时函数取得最小值,∴am2+bm+c≥a+b+c,即am2+bm≥a+b,∵b=﹣2a,∴am2+bm+a≥0,故⑤正确;故答案为:②④⑤.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(2017•乌鲁木齐)解不等式组:.【分析】分别求出两个不等式的解集,求其公共解.【解答】解:,由①得,x>1,由②得,x<4,所以,不等式组的解集为1<x<4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).17.(8分)(2017•乌鲁木齐)先化简,再求值:(﹣)÷,其中x=.【分析】先把除法化为乘法,再根据运算顺序与计算方法先化简,再把x=代入求解即可.【解答】解:原式=(﹣)•=•=•=,当x=时,原式==.【点评】本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.18.(10分)(2017•乌鲁木齐)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?【分析】设笼中鸡有x只,兔有y只,本题中的等量关系有:鸡头+兔头=35头;鸡足+兔足=94足,需要注意的是,一只鸡有一头两足,一只兔有一头四足.【解答】解:设笼中鸡有x只,兔有y只,由题意得:,解得.答:笼中鸡有23只,兔有12只.【点评】本题考查二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需要注意的是,一只鸡有一头两足,一只兔有一头四足.19.(10分)(2017•乌鲁木齐)如图,四边形ABCD是平行四边形,E,F是对角线BD上的两点,且BF=ED,求证:AE∥CF.【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.【解答】证明:连接AC,交BD于点O,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BF=ED,∴OE=OF,∵OA=OC,∴四边形AECF是平行四边形,∴AE∥CF.【点评】本题考查了平行四边形的判定与性质,平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法是解决问题的关键.20.(12分)(2017•乌鲁木齐)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.【分析】(1)根据频率=频数÷总数可得答案;(2)用样本中超过12000步(包含12000步)的频率之和乘以总人数可得答案;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.【点评】此题考查了频率分布直方图,用到的知识点是频率=频数÷总数,用样本估计整体让整体×样本的百分比,读懂统计表,运用数形结合思想来解决由统计图形式给出的数学实际问题是本题的关键.21.(10分)(2017•乌鲁木齐)一艘渔船位于港口A的北偏东60°方向,距离港口20海里B处,它沿北偏西37°方向航行至C处突然出现故障,在C处等待救援,B,C之间的距离为10海里,救援船从港口A出发20分钟到达C处,求救援的艇的航行速度.(sin37°≈0.6,cos37°≈0.8,≈1.732,结果取整数)【分析】辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,在Rt△ABD中,根据勾股定理可求AD,在Rt△BCE中,根据三角函数可求CE,EB,在Rt△AFC中,根据勾股定理可求AC,再根据路程÷时间=速度求解即可.【解答】解:辅助线如图所示:BD⊥AD,BE⊥CE,CF⊥AF,有题意知,∠FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,∴BD=10海里,在Rt△ABD中,AD==10≈17.32海里,在Rt△BCE中,sin37°=,∴CE=BC•sin37°≈0.6×10=6海里,∵cos37°=,∴EB=BC•cos37°≈0.8×10=8海里,EF=AD=17.32海里,∴FC=EF﹣CE=11.32海里,AF=ED=EB+BD=18海里,在Rt△AFC中,AC==≈21.26海里,21.26×3≈64海里/小时.答:救援的艇的航行速度大约是64海里/小时.【点评】考查了解直角三角形的应用﹣方向角问题,用到的知识点是方向角、勾股定理、解直角三角形、三角函数值,关键是做出辅助线,构造直角三角形.22.(10分)(2017•乌鲁木齐)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式;(4)何时两车相距300千米.【分析】(1)由图象容易得出答案;(2)由题意得出慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得出方程,解方程即可;(3)求出相遇的时间和慢车行驶的路程,即可得出答案;(4)分两种情况,由题意得出方程,解方程即可.【解答】解:(1)由图象得:甲乙两地相距600千米;(2)由题意得:慢车总用时10小时,∴慢车速度为=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;(3)由图象得:=(小时),60×=400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为;(4)设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2小时或6小时时,两车相距300千米.【点评】此题主要考查了一次函数的应用,解题的关键是正确理解题意,求出两车的速度.23.(10分)(2017•乌鲁木齐)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.(1)求证:△ADC∽△CDB;(2)若AC=2,AB=CD,求⊙O半径.【分析】(1)首先连接CO,根据CD与⊙O相切于点C,可得:∠OCD=90°;然后根据AB是圆O的直径,可得:∠ACB=90°,据此判断出∠CAD=∠BCD,即可推得△ADC∽△CDB.(2)首先设CD为x,则AB=x,OC=OB=x,用x表示出OD、BD;然后根据△ADC∽△CDB,可得:=,据此求出CB的值是多少,即可求出⊙O半径是多少.【解答】(1)证明:如图,连接CO,,∵CD与⊙O相切于点C,∴∠OCD=90°,∵AB是圆O的直径,∴∠ACB=90°,∴∠ACO=∠BCD,∵∠ACO=∠CAD,∴∠CAD=∠BCD,在△ADC和△CDB中,∴△ADC∽△CDB.(2)解:设CD为x,则AB=x,OC=OB=x,∵∠OCD=90°,∴OD===x,∴BD=OD﹣OB=x﹣x=x,由(1)知,△ADC∽△CDB,∴=,即,解得CB=1,∴AB==,∴⊙O半径是.【点评】此题主要考查了切线的性质和应用,以及勾股定理的应用,要熟练掌握.24.(12分)(2017•乌鲁木齐)如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(﹣1,0),B(4,m)两点,且抛物线经过点C(5,0).(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A、点B重合),过点P作直线PD⊥x 轴于点D,交直线AB于点E.①当PE=2ED时,求P点坐标;②是否存在点P使△BEC为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.【分析】(1)由直线解析式可求得B点坐标,由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)①可设出P点坐标,则可表示出E、D的坐标,从而可表示出PE和ED的长,由条件可知到关于P点坐标的方程,则可求得P点坐标;②由E、B、C三点坐标可表示出BE、CE和BC的长,由等腰三角形的性质可得到关于E点坐标的方程,可求得E点坐标,则可求得P点坐标.【解答】解:(1)∵点B(4,m)在直线y=x+1上,∴m=4+1=5,∴B(4,5),把A、B、C三点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+4x+5;(2)①设P(x,﹣x2+4x+5),则E(x,x+1),D(x,0),则PE=|﹣x2+4x+5﹣(x+1)|=|﹣x2+3x+4|,DE=|x+1|,∵PE=2ED,∴|﹣x2+3x+4|=2|x+1|,当﹣x2+3x+4=2(x+1)时,解得x=﹣1或x=2,但当x=﹣1时,P与A重合不合题意,舍去,∴P(2,9);当﹣x2+3x+4=﹣2(x+1)时,解得x=﹣1或x=6,但当x=﹣1时,P与A重合不合题意,舍去,∴P(6,﹣7);综上可知P点坐标为(2,9)或(6,﹣7);②设P(x,﹣x2+4x+5),则E(x,x+1),且B(4,5),C(5,0),∴BE==|x﹣4|,CE==,BC==,当△BEC为等腰三角形时,则有BE=CE、BE=BC或CE=BC三种情况,当BE=CE时,则|x﹣4|=,解得x=,此时P点坐标为(,);当BE=BC时,则|x﹣4|=,解得x=4+或x=4﹣,此时P点坐标为(4+,﹣4﹣8)或(4﹣,4﹣8);当CE=BC时,则=,解得x=0或x=4,当x=4时E点与B点重合,不合题意,舍去,此时P点坐标为(0,5);综上可知存在满足条件的点P,其坐标为(,)或(4+,﹣4﹣8)或(4﹣,4﹣8)或(0,5).【点评】本题为二次函数的综合应用,涉及待定系数法、勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中用P点坐标分别表示出PE和ED的长是解题关键,在(2)②中用P 点坐标表示出BE、CE和BC的长是解题的关键,注意分三种情况讨论.本题考查知识点较多,综合性较强,难度适中.。

2017年新疆乌鲁木齐中考数学试题(含解析)

2017年新疆乌鲁木齐中考数学试题(含解析)

2017新疆乌鲁木齐中考数学试卷满分:150分版本:人教版一、选择题(每小题4分,共10个小题,合计40分)1.(2017新疆乌鲁木齐,1,4分)如图,数轴上点A表示数a,则a是()A.2B.1C. -1D. -2=2,故选A.答案:A,解析:点A表示的数是-2,22. (2017新疆乌鲁木齐,2,4分)如图,直线a∥b,∠1=72°,则∠2的度数是()A.118°B.108°C.98°D.72°答案:B,解析:如图,∵∠3与∠1是对顶角,∴∠3=∠1=72°,∵a∥b,∴∠2+∠3=180°,∴∠2=180°-∠3=108°,故选B.3. (2017新疆乌鲁木齐,3,4分)计算(ab2)3结果是()A. 3ab2B. ab6C.a3b5D. a3b6答案:D,解析:根据积的乘方和幂的乘方的性质,(ab2)3=a3(b2)3= a3b6,故选D.4. (2017新疆乌鲁木齐,4,4分)下列说法正确的是()A. “经过有交通信号灯的路口,遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.处于中间位置的数一定是中位数D.方差越大,数据的波动越大,方差越小,数据的波动越小答案:D 解析:方差是反映一组数据的波动大小的一个量.方差越大,则与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.故选D.5. (2017新疆乌鲁木齐,5,4分)如果正n边形每一个内角等于与它相邻外角的2倍,则n的值是( )A.4B.5C.6D.7答案:C , 解析:设多边形的外角为x °,则相邻的内角为2x °,根据“外角与相邻的内角互补”,得x+2x=180,解得x=60°,根据多边形的外角和是360°,所以360660n ==,故选C. 6. (2017新疆乌鲁木齐,6,4分)一次函数y=kx+b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx+b >0的解集是( )A.x <2B.x <0C.x >0D. x >2答案:A , 解析:直线y=kx+b 在x 轴上方的部分,y 值大于0,此时x 的取值范围为x <2,故选A.7. (2017新疆乌鲁木齐,7,4分)2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5天完成任务,设原计划每天植树x 万棵,可列方程是( ) A.()30305120x x-=+% B.3030520xx -=%C.3030520xx+=% D.()30305120xx-=+%答案:A , 解析:设原计划每天植树x 万棵,则实际每天植树(1+20%)x 万棵,根据等量关系“原计划植树天数-实际植树天数=5”可列方程()30305120x x-=+%,故选A.8. (2017新疆乌鲁木齐,8,4分)如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A. πB.2πC. 4πD. 5π答案:B ,解析:观察三视图发现几何体为圆锥,其母线长为R=()2231+=4=2,侧面积为12lR =12×2π×1×2=2π,故选B.9. (2017新疆乌鲁木齐,9,4分)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处.若矩形面积为43且∠AFG=60°,GE=2BG ,则折痕EF 的长为( ) A.1 B.3 C.2 D. 23答案:C , 解析:过点G 作GM ⊥AD ,垂足为M. ∵GE=2BG ,∴设BG=x ,GE=2x. ∵∠AFG=60°,AD ∥BC ,∴∠FGE=∠AFG=60°. ∵四边形FDCE 折叠得到FGHE ,∴∠GFE=∠DFG=1802AFG-∠o=60°,DF=FG ,∴△FGE 是等边三角形,∴EF=EG=FG=2x ,DF=FG=2x.在Rt △FMG 中,GM=GF ×sin ∠AFG=3x ,FM= GF ×cos ∠AFG=x.易证四边形ABGM 是矩形,∴AM=BG=x ,AB=GM=3x ,∴AD=AM+FM+DF=4x ,∵矩形ABCD 面积为43,∴AD ×AB=4x ×3x =43,解得x=1,所以EF=2x=2,故选C. 10. (2017新疆乌鲁木齐,10,4分)如图,点A (a ,3)、B (b ,1)都在双曲线3y x=上,点C ,D 分别是x 轴、y 轴上的动点,则四边形ABCD 周长的最小值为( ) A. 52 B. 62 C. 21022+ D.82答案:B ,解析:∵点A (a ,3)、B (b ,1)都在双曲线3y x=上,∴a=1,b=3,∴A (1,3)、B (3,1),则22(13)(31)-+-8=22作点A 关于y 轴的对称点A 1,作点B 关于x 轴的对称点B 1,连接A1 B1,交y 轴于点D ,交x 轴于点C ,则A 1(-1,3)、B 1(3,-1),A1 B1=22(13)[3(1)]--+--=32=42,根据轴对称的性质,四边形ABCD周长的最小值是AB+ A1 B1=22+42=62,故选B.二、填空题(每小题4分,共5个小题,合计20分)11. (2017新疆乌鲁木齐,11,4分)计算:13-+52⎛⎫⎪⎪⎝⎭= .答案:3解析:1<3,∴1-3<0,根据“负数的绝对值等于它的相反数”,得13-=3-1;根据“任何非0数的0次幂都等于1”,得52⎛⎫⎪⎪⎝⎭=1,所以原式=3-1+1=3.12. (2017新疆乌鲁木齐,12,4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD 的面积为.答案:23解析:过点D作DE⊥AB于点E,∵四边形ABCD是菱形,∴AD=AB=2.在Rt△DAE中,DE= AD·sin∠DAB=2×32=3,菱形ABCD的面积= DE×AB=13. (2017新疆乌鲁木齐,13,4分)一件衣服售价为200元,六折销售,仍可获利20%,则这件衣服的进价是元.答案:100 解析:设衣服的进价为x元,根据等量关系“标价×折数-进价=进价×利润率”列方程得200×0.6-x=x×20%,解方程得x=100,即这件衣服的进价是100元.14. (2017新疆乌鲁木齐,14,4分)用等分圆周的方法,在半径为1的圆中画出如图所示图形,则图中阴影部分面积为.答案:332π-解析:连OA,OP,AP,△OAP的面积是,扇形POA的面积是2601360π⨯=,线段OA和»OA面积是-,阴影面积是3×2×(-)=π-.15. (2017新疆乌鲁木齐,15,4分)如图,抛物线2y ax bx c=++过点(-1,0),且对称轴为直线x=1,有下列结论:①abc<0;②10a+3b+c>0;③抛物线经过点(4,y1)与点(-3,y2)则y 1>y 2;④无论a、b、c取何值,抛物线都经过同一个点(ca-,0);⑤2am bm a++≥0.其中所有正确的结论是.答案:②④⑤解析:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故①错误;∵抛物线2y ax bx c=++过点(-1,0),对称轴为直线x= 1,则抛物线与x轴的另一个交点是(3,0),∴9a+3b+c=0,又a>0,∴9a+3b+c+a>0,即10 a+3b+c>0,故②正确;∵直线x=4与直线x=1相距3个单位长度,直线x=-3与直线x=1相距4个单位长度,根据抛物线的对称性,所以y2>y1,故③错误;∵抛物线2y ax bx c =++过点(-1,0),∴a -b+c=0,∴b=a+c ;∵抛物线的对称轴为直线x=1,∴12b a-=,∴b=-2a ,∴a+c=-2a ,∴c=-3a ,ca-=3,∴无论a 、b 、c 取何值,抛物线都经过同一个点(3,0),故④正确.∵x=m 对应的函数值为y=am 2+bm+c ,x=1对应的函数值为y=a+b+c ,又∵x=1时函数取得最小值,∴a+b+c <am 2+bm+c ,即a+b <am 2+bm ,∵b=-2a , ∴am 2+bm+a >0(m ≠﹣1).故⑤正确. 综上所述,正确的结论是②④⑤. 三、解答题(共9个小题,合计90分)16.(2017新疆乌鲁木齐,16,8分)解不等式组:()3242113x x x x -->+>-⎧⎪⎨⎪⎩ 思路分析:分别解两个不等式,求出不等式的解集,再确定解集的公共部分. 解:解不等式①,得x >1,解不等式②,得x <4,根据“大小小大取中间”,得不等式组的解集是1<x <4.17. (2017新疆乌鲁木齐,17,8分)先化简,再求值:2228224+2x x x x x x x +-⎛⎫-÷ ⎪--⎝⎭,其中3x =思路分析:先计算括号内的异分母分式加减法,再进行分式的除法运算,最后化简求值.解:原式=()()()2822222x x x x x x x x ⎡⎤++-⨯⎢⎥-+--⎣⎦=()()()()2282222x x x x x x x +-+⨯+-- =()()()24482222x x x x x x x x ++-+⨯+--=()()()2442222x x x x x x x -++⨯+--=()()()()222222x x x x x x -+⨯+-- =1x, 当3x =3=33.18. (2017新疆乌鲁木齐,18,10分)我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思是:及和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡和兔各有多少只?思路分析:设笼中鸡有x只,兔有y只,根据等量关系“鸡的只数+兔的只数=35”和“鸡的腿数+兔的腿数=94”列方程组,解方程组写出答案.解:设鸡有x只,兔有y只,根据题意得352494x yx y+=⎧⎨+=⎩,解方程组得2312xy==⎧⎨⎩.答:笼中鸡有23只,兔有12只.19. (2017新疆乌鲁木齐,19,10分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的两点,且BF=ED,求证:AE∥CF.思路分析:根据平行四边形的性质证明△AED≌△CFB,所以∠AED=∠CFB,根据“内错角相等,两直线平行”完成证明.解:∵四边形ABCD是平行四边形,∴AD∥BC,且AD=BC,∴∠ADE=∠CBF,又∵BF=ED,∴△AED≌△CFB(SAS),∴∠AED=∠CFB,∴AE∥CF.20. (2017新疆乌鲁木齐,20,12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)写出a、b、c、d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包括16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.步数频数频率0≤x<4000 8 a4000≤x<8000 15 0.38000≤x<12000 12 b思路分析:(1)根据“频率=频数数据总数”和“频数=数据总数×频率”求出a 、b 、c 、d 的值.(2)算出样本平均数,从而估计出总体平均数.(3)画树状图或列表给出所有可能发生的情况数和事件发生的情况数,再利用概率公式求出概率. 解:(1)a=850=0.16,b=0.24,c=10,d=2.补全频数分布直方图如下图:(2)1510050⨯%=30%,37800×30%=11340(人),即估计日行走步数超过12000步(包含12000步)的教师有11340名.(3)设16000≤x <20000的三名教师分别为A 、B 、C ,20000≤x <24000的两名教师分别为X 、Y ,A B C X Y A BA CA XA YA B AB CB XB YB C AC BC XC YC XAXBXCXYX12000≤x <16000 c 0.2 16000≤x <20000 3 0.06 20000≤x <24000 d0.04Y AY BY CY XY从表中可知,选取日行走步数超过16000步(包括16000步)的两名教师与大家分享心得,共有20种情况,其中被选取的两名教师恰好都在20000步(包含20000步)以上的有2中情况,所以220=110,即被选取的两名教师恰好都在20000步(包含20000步)以上的概率是110.21. (2017新疆乌鲁木齐,21,10分)一艘渔船位于港口的北偏东60°方向,距离港口20海里B 处,它沿着北偏西37°方向航行至C 处突然出现故障,在C 处等待救援,BC 之间的距离为10海里,救援船从港口A 出发20分钟到达C 处,求救援船的航行速度.(sin37°≈0.6,cos37°≈1.732,结果取整数)思路分析:辅助线如图所示,BD ⊥AD ,BE ⊥CE ,CF ⊥AF. 在Rt △ABD 中,求出AD 的长,在Rt △BCE 中,利用锐角三角函数求得CE 和BE ,在Rt △AFC 中,由勾股定理求出AC ,最后根据“速度=路程时间”确定答案.解:辅助线如图所示,BD ⊥AD ,BE ⊥CE ,CF ⊥AF.由题意知,∠FAB=60°,∠CBE=37°,∴∠BAD=30°,∵AB=20海里,∴BD=10海里. 在Rt △ABD 中,AD=22AB BD -317.32海里,在Rt △BCE 中,sin37°= CEBC,∴CE=BC ·sin37°≈0.6×10=6海里, ∵cos37°=EBBC,∴EB= BC ·cos37°≈0.8×10=8海里, EF= AD=17.32海里,∴FC=EF -CE=11.32海里,AF=ED=EB+BD=18海里, 在Rt △AFC 中,AC=22AF FC +221811.32+≈21.26海里,∵20分钟=13小时,∴21.26÷13=21.26×3≈64海里/小时.答:救援船的航行速度是64海里/小时.22. (2017新疆乌鲁木齐,22,10分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地相距多远?(2)求快车和慢车的速度分别是多少?(3)求出两车相遇后y与x之间的函数关系式.(4)何时两车相距300千米?思路分析:结合题意观察图形,线段AB表示两车同时出发相向而行到相遇的情况,线段BC表示两车相遇后快车到达甲地的情况,线段CD表示在快车到达甲地后慢车到达甲地的情况.解:(1)由图得,甲、乙两地相距600(千米),慢车总用时10小时.(2)慢车速度为60010=60(千米/小时),设快车速度为x千米/小时,由图得,60×4+4x=600,解得x=90(千米/小时),所以慢车速度为60千米/小时,快车速度为90千米/小时.(3)由图得,60090=203,60×203=400(千米),时间为203小时时快车已经到达,此时慢车走了400千米,所以C(203,400),利用待定系数法求得线段BC的函数解析式为150600 y x=-2043x⎛⎫≤<⎪⎝⎭,线段CD的函数关系式为60y x=20103x⎛⎫≤≤⎪⎝⎭,所以两车相遇后,y与x之间的函数关系式为20150600432060103y x xy x x=-≤<=≤≤⎧⎛⎫⎪⎪⎪⎝⎭⎨⎛⎫⎪⎪⎪⎝⎭⎩.(4)设a小时时,两车相距300千米,分两种情况,①是相遇前两车相距300千米,由题意得60a+90a=600-300,解得a=2,②是相遇后两车相距300千米,由题意得60a+90a=600+300,解得a=6,所以2小时或6小时时,两车相距300千米.23. (2017新疆乌鲁木齐,23,10分)如图,AB 是⊙O 的直径,CD 与⊙O 相切于点C ,与AB 的延长线交于点D.(1)求证:△ADC ∽△CDB ;(2)若AC=2,AB=32CD ,求⊙O 半径. 思路分析:(1)连接CO ,根据切线的性质得∠OCD=90°,根据直径所对的圆周角是直角,得∠ACB=90°,根据同角的余角相等判断得出∠CAD=∠BCD.(2)利用AB=32CD 和相似三角形的对应边成比例求出CB=1,再利用勾股定理求出直径AB 的长.解:(1)证明:连接CO ,∵CD 是⊙O 的切线,∴∠OCD=90°,又∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠CAO=∠ACO=90°-∠OCB ,∠DCB=90°-∠OCB ,∴∠CAD=∠BCD ,又∠ADC=∠CDB ,∴△ADC ∽△CDB.(2)设CD 为x ,则AB=32x ,OC=OB=34x ,∵∠OCD=90°,∴OD=22OC CD + =2324x x +⎛⎫ ⎪⎝⎭=54x ,∴BD=OD -OB=12x ,由(1)知△ADC ∽△CDB ,∴AC CD CB BD =,即212x CB x =,∴CB=1.在Rt △ACB 中,AB=22AC BC +=5,∴r=52,即⊙O 半径是52.24. (2017新疆乌鲁木齐,24,12分)如图,抛物线2y ax bx c =++(a ≠0)与直线1y x =+相交于A (-1,0),B (4,m )两点,且抛物线经过点C (5,0).(1)求抛物线的解析式;(2)点P 是抛物线上的一个动点(不与点A 、点B 重合),过点P 作直线PD ⊥x 轴于点D ,交直线AB 于点E.①当PE=2ED 时,求P 点坐标;②是否存在点P 使△BEC 为等腰三角形,若存在请直接写出点P 的坐标,若不存在,请说明理由.思路分析:(1)先确定B (4,5),再利用待定系数法求出二次函数解析式.(2)设P (x ,245x x -++),E (x ,x+1),D (x ,0),分三种情况①P 点在抛物线上AB 之间,②P 点在抛物线上A 左侧,③P 点在抛物线上B 右侧,用字母x 表示PE 和ED ,再利用PE=2ED 建立方程,求出点P 的坐标.(3)设P (x ,245x x -++),E (x ,x+1),B (4,5),C (5,0),分三种情况①EB=EC , ②BE=BC ,③CB=CE ,根据两点间的距离公式列出方程,解方程确定点P 坐标.解:(1)由题意得,点B (4,m )在直线1y x =+上,∴B (4,5).∵抛物线2y ax bx c =++(a ≠0)经过点A (-1,0),B (4,5)和点C (5,0), ∴016452550a b c a b c a b c -+=++=++=⎧⎪⎨⎪⎩,解得145a b c =-==⎧⎪⎨⎪⎩,所以抛物线的解析式为245y x x =-++.(2)设P (x ,245x x -++),E (x ,x+1),D (x ,0).设P 点在抛物线上AB 之间时,PE =245x x -++- x -1,ED = x+1,∵PE=2ED ,即245x x -++- x -1=2(x+1),解得x 1=2,x 2=-1,所以点E (2,3)或E (-1,0),E (-1,0)与点A 重合舍去,∴此时P (2,9).若P 点在抛物线上A 左侧,PE = x+1+ 245x x --,ED =- x -1,∵PE=2ED ,即x+1+ 245x x --=2(- x -1),解同上.若P 点在抛物线上B 右侧,PE = x+1+ 245x x --,ED = x+1,∵PE=2ED ,即x+1+ 245x x --=2(x+1),解得x 1=6,x 2=-1,所以点E (6,7)或E (-1,0),E (-1,0)与点A 重合舍去,∴此时P (6,-7).综合起来, P (2,9)或(6,-7).(3)设P (x ,245x x -++),E (x ,x+1),B (4,5),C (5,0),当△BEC 是等腰三角形时,分三种情况:①EB=EC ,即=,解得34x =,此时245x x -++=11916,所以点P 3119,416⎛⎫ ⎪⎝⎭.②BE=BC ,即=,即()()22415x x -++-= ()()224550-+-,解得14x =24x =14x =245x x -++=8-,所以点P ()48-,当24x =245x x -++=8,所以点P ()48.③CB=CE ,解得10x =或24x =,当10x =时,245x x -++=5,所以点P (0,5);当24x =时,点E (4,5)与点B 重合舍去.综上所述,存在点P 使△BEC 为等腰三角形,点P 的坐标为13119,416p ⎛⎫ ⎪⎝⎭,()248P -,()348P +,()40,5p .。

新疆乌鲁木齐市数学中考四模试卷

新疆乌鲁木齐市数学中考四模试卷

新疆乌鲁木齐市数学中考四模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若,,,则的值为()A . 3或-13B . -3或-13C . 3或13D . -3或132. (2分)(2019·高台模拟) 某种零件模型可以看成如图所示的几何体(空心圆柱),该几何体的俯视图是()A .B .C .D .3. (2分) (2015七下·南山期中) 下列运算正确的是()A . a3•a2=a6B . (﹣a2)3=﹣a6C . (ab)3=ab3D . a8÷a2=a44. (2分) (2016九上·简阳期末) 如图,已知△ABC中,AB=AC=5,BC=8.则cosB的值是()A . 1.25B . 0.8D . 0.6255. (2分)正比例函数y=kx,当x每增加3时,y就减小4,则k=()A .B . ﹣C .D . ﹣6. (2分)在Rt△ABC中,∠C=90°,BC=4,sinA= ,则AB的长为()A .B . 6C . 12D . 87. (2分)将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()A . y=2x-1B . y=2x-2C . y=2x+1D . y=2x+28. (2分)下列说法正确的是().A . 矩形都是相似图形B . 菱形都是相似图形C . 各边对应成比例的多边形是相似多边形D . 等边三角形都是相似三角形9. (2分)如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=()A . 35°B . 70°C . 110°10. (2分) (2018七下·浏阳期中) 平面直角坐标系中,点(2,4)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限二、填空题 (共3题;共3分)11. (1分) (2018七下·黑龙江期中) 不等式2x﹣1>3的最小整数解是________.12. (1分)若⊙O是等边△ABC的外接圆,⊙O的半径为,则等边△ABC的边长为________.13. (1分) (2019八上·温州开学考) 如图,点A是函数y= (x<0)图象上的一点,连结AO并延长交函数y= (x>0)的图象于点B,点C是x轴上一点,且AC=AO,则△ABC的面积为 ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乌市第98中学2016-2017学年第二学期
九年级第四次模考数学试卷
一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. -3的倒数是()
A. B. C. -3 D. 3
2. 下列运算正确的是()
A. a+ a= 2a
B. a+ a= a
C. a·a= 2a
D. (-3a)= -27a
3. 下图是一个台阶形零件,两个台阶的高度和宽度都相等,则它的三视图是()
A. B. C. D. ......
4. 200粒大米重约4克,如果每人每天浪费1粒米,那么约458万人口的某市每天浪费大米约()克(用科学记数法表示)
A. 91600
B. 91.6×103
C. 9.16×104
D. 0.916×105
5. 某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图
中描述了他上学的情景,说法中错误
..的是().
A. 修车时间为15分钟
B. 学校离家的距离为2000米
C. 到达学校时共用时间20分钟
D. 自行车发生故障时离家距离为1000米
6. 如图,A,B是函数的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,△ABC的面积记
为S,则().
A. S = 2
B. S = 4
C. 2<S<4
D. S>4
7. 如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()
A. 7
B. 8
C. 9
D. 10
8. 如图,O是菱形ABCD的对角线AC,BD的交点,E,F分别是OA,OC的中点.下列结论:
①S△ADE=S△EOD;②四边形BFDE是中心对称图形;③△DEF是轴对称图形;④∠ADE=∠EDO.其中错误的结论有.
A .1个B.2个C.3个D.4个
9. 如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB连接EF,下列结论:①△AED≌△AEF;②;③△ABC的面积等于四边形AFBD的面
积;④BE2+DC2=DE2⑤BE+DC=DE;其中正确的是( )
A. ①②④
B. ③④⑤
C. ①③④
D. ①③⑤
10. 如图为二次函数(a ≠ 0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;
④当﹣1<x<3时,y>0其中正确的个数为().
A. 1
B. 2
C. 3
D. 4
二、填空题(本大题共5小题,每小题4分,共20分)
11. 已知圆锥的底面半径为9cm,母线长为10cm,则圆锥的全面积是________cm2
12. 已知:关于x的一元二次方程有两个相等的实数根,其中R 、r分别是⊙O1和⊙O2的半径,d为两圆的圆心距,则⊙O1与⊙O2的位置关系是____________
13. 如图,P是射线y=x(x>0)上的一点,以P为圆心的圆与y轴相切于C点,与x轴的正半轴交于A、B 两点,若⊙P的半径为5,则A点坐标是_________
14. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为BD,则图中阴影部分的面积是___________.
15. 如图,在矩形纸片上作随机扎针实验,则针头扎在阴影区域的概率是____________。

三、解答题(第16—23题,共90分)
16. 计算:.
17. 先化简,再求值:其中
18. 如图在RtΔABC中,∠C=90º,点D是AC的中点,且∠A+∠CDB=90º,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
19. 钓鱼岛自古就是中国的领土,中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测。

一日,中国一艘海监船从A点沿正北方向巡航,其航线距钓鱼岛(设M、N为该岛的东西两端点)最近距离为14km(即MC=14km)。

在A点测得岛屿的西端点M在点A的东北方向;航行4km后到达B点,测得岛屿的东端点N在点B的北偏东60°方向(其中N、M、C在同一条直线上),求钓鱼岛东西两端点M、N之间的距离(结果保留根号)。

20. 如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,
AG⊥BC于E,
(1)求证:CF=CG;
(2)连接DE,若BE=4CE,CD=2求DE的长.
21. 在我校举办的课外活动中,有一项是小制作评比.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1. 第三组的件数是12件. 请你回答:
(1)本次活动共有________件作品参赛;各组作品件数的中位数是________件.
(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?
小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示B、D的概率.
22. 为推进节能减排,发展低碳经济,某市“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产
品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为
y(万件),年获利为w(万元).(年获利=年销售额-生产成本-节电投资)
(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?
23. 已知:二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴是直线x=1,且图象向右平移一个单位后经过坐标原点O,
(1)求这个二次函数的解析式;
(2)直线交y轴于D点,E为抛物线顶点.若∠DBC=α,∠CBE=β,求α-β的值.
(3)在(2)问的前提下,P为抛物线对称轴上一点,且满足PA=PC,在y轴右侧的抛物线上是否存在点M,使得△BDM的面积等于PA2若存在,求出点M的坐标;若不存在,请说明理由.。

相关文档
最新文档