概率论与数理统计 -- 第三章{多维随机变量及其分布} 第二节:边缘分布PPT课件

合集下载

概率论与数理统计 第三章 多维随机变量及其分布

概率论与数理统计 第三章 多维随机变量及其分布

1/4 0 1/8 1/8 1/12 1/12 1/16 1/16
25/48 13/48
0 0 0 0 1/12 0 1/16 1) 二维连续型随机变量(X, Y)及其分布
定义 设(X, Y)的分布函数为F(x, y),如果存在非负可积的二元 函数 f(x, y),使得对于任意实数x, y有





f ( x , y ) dxdy F ( , ) 1
(3)若f(x, y)在(x, y)处连续则有
2 F ( x, y ) f(x, y) = xy
(4)点(X, Y)落在xoy的平面区域D内的概率为:
Pr[( X , Y ) D] f ( x, y )dxdy
x y ( x y ) x y e dxdy (1 e )(1 e ), x 0, y 0 0 0 , 其它 0
( x y ) Pr[ X 1, Y 1] dx e dy (3) 0 1
1

1 1 1 e e
( x 1 )( y 2 ) ( y 2 ) 2 2 1 2 22 ( x , y )
其中 1, 2, 1, 2, 均为常数,且 1 >0, 2 >0, ||<1, 则称(X, Y)服从参数为 1 , 2, 1, 2, 的二维 正态分布. 记为: (X, Y) ~ N(1, 12 ; 2, 22; )




f ( x , y ) dxdy 1
0

0

k e ( x y ) dxdy
0 ) 2 k e y dy k ( e x | 0
16

概率论与数理统计课件第三章

概率论与数理统计课件第三章

f
(x,
y)
1
21 2
1
2
exp
1
2(1 2 )
(x
1)2
2 1
2
(x
1)( y 1 2
2 )
(y
2)2
2 2
其中1、2、1、 2、都是常数,且1 0, 2 0,1 1.
则称(X,Y)服从参数为1、2、1、的二2、维 正态分布,
记为
(X
,Y)
~
N (1,
2
,
2 1
,
2 2
2F(x, y) f (x, y) xy
(5)若(X,Y)为二维连续型随机向量,联合概率密度为f(x,y),则
F(x,y) P{X x,Y y}
返回
X
18


例5 设二维随机变量(X,Y)的概率密度为
Ae2(x y) , x 0, y 0
f (x, y)
0, 其他
(1)确定常数A;
分别为(X,Y)关于X和Y的边缘分布函数.
返回
X
25


例1 设二维随机向量(X,Y)的联合分布函数为
(1 e2x )(1 e3y ), x 0, y 0,
F(x, y)
0, 其他.
求边缘分布 FX (x), FY ( y)
当x
0时,FX
(x)
lim (1
y
e2 x
)(1
e3 y
)
1
e2 x
返回
X
14

例3 设随机变量Y~N(0,1),令
0, X 1 1,
| Y | 1
0,
|Y
|

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

概率论与数理统计ppt课件

概率论与数理统计ppt课件

称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计 --- 第三章{多维随机变量及其分布} 第二节:边缘分布

概率论与数理统计 --- 第三章{多维随机变量及其分布} 第二节:边缘分布

FX x P X x P X x ,Y F x , FY y P Y y P X ,Y y F , y
二、离散型随机变量的边缘分布律
概率论
பைடு நூலகம்
一般地, 对离散型 r.v. (X,Y ), X 和 Y 的联合分布律为: P ( X xi ,Y y j ) pij , i , j 1,2,
(X, Y) 关于Y 的边缘概率密度为:
fY ( y )


f ( x , y )dx y
例2 设(X, Y)的概率密度是
概率论
cy( 2 x ), 0 x 1,0 y x f ( x, y ) 0 , 其它 求 (1) c的值; (2) 两个边缘密度。 y
3 k 0 3
P{Y=3}= P X k ,Y 3=1/8+1/8=2/8.
k 0
概率论
X
0 1 2 3
Y
1 3 0 18 38 0 38 0
0 18
P X xi
18 38 38 18
P Y yj


68 28
我们常将边缘分布律写在联合分布律表格的边缘上, 由此得出边缘分布这个名词.
则 (X, Y) 关于X 的边缘分布律为:

P X xi P X xi ,Y y j pij
X xi X xi ,Y y j j 1
(X,Y) 关于Y 的边缘分布律为:
j 1



i 1, 2 ,
概率论
f X ( x ) f ( x, y )dy x

《概率论与数理统计》第三章

《概率论与数理统计》第三章

§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

概率论与数理统计图文课件最新版-第3章-多维随机变量及其分布

比如:
概率统计
比如:
1 x y 0
F( x, y) 0 x y 0
对这二元函数来验证第4条性质。
现找 4 个点如下:
( x2 , y2 ) (1, 1); ( x1, y2 ) (1, 1)
( x2 , y1 ) (1, 1); ( x1, y1 ) (1, 1)
F(1,1) F(1,1) F(1, 1) F(1, 1)
0
x 0, y 0 其它
求: (1) 分布函数 F( x, y)
(2) ( X ,Y )落在G内的概率
其中 G: x y 1 及 x 轴、y 轴所围区域
解: (1) Q
x
F(x, y)
y
f ( x, y)dxdy
当 x 0, y 0 时
xy
F( x, y)
0 dx 0
2,4,8,10,14,16,20这7个 数不能被3整除,但能
被2整除
6,12,18这3个数能被2 整除,又能被3整除
不难验证:
1 1
7473
pi j 0, 0 0 pi j 21 21 21 21 1
概率统计
故 得: (X,Y) 的 联合分布 律为:
XY
0 1
01
7
4
21 21
7
P( x1 X x2 , y1 Y y2 )
F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y1 ) F ( x1, y2 )
如图:
y
y2 L
y1 L M
M
x
0 x1
x2
概率统计
2. 二维随机变量分布函数 F(x,y) 的性质
性质1 F(x,y) 分别对 x 和 y 单调非减, 即:

第3章 多维随机变量及其分布

第3章  多维随机变量及其分布

0,
x 0, y 0,求(1)A ? 其它
(2)( X ,Y )的联合分布函数; (3)P{Y X }; (4)P{ X 1}.
解(1)由 f ( x, y)dxdy 1,得
y
1=
f ( x, y)dxdy=
dx
Ae (2 x y)dy
0
0
O
x
A
e2 xdx
(X1, X2, , Xn) 本章主要以二维随机变量 ( X ,Y ) 为例进行讨论。
3
第一节 二维随机变量的联合分布
1、联合分布函数
定义1 设( X ,Y )是二维随机变量, 对于任意实数x, y, 称二元函数
F ( x, y) P{X x,Y y}
为二维随机变量( X ,Y )的分布函数或X和Y的联合分布函数。
(乘法公式)
P{Y y j }P{ X xi Y y j };
(2) ( X ,Y )的联合分布函数为F ( x, y) P{ X x,Y y} p ij xi x y j y
8
例1 箱子中有10张彩票,其中3张可中奖,甲乙二人先后各抽取
一张彩票,定义两个随机变量X ,Y:
则称( X ,Y )是连续性二维随机变量,并将f ( x, y)称为( X ,Y )的联
合概率密度函数.
概率密度f ( x, y)的性质:
(1) f ( x, y) 0;
(2)
f ( x, y)dxdy F (, ) 1;
10
(3)若f ( x, y)连续, 则F ( x, y)偏导存在且 2F ( x, y) f ( x, y); xy
0
e ydy
0
e2 x
A
2
0

概率论与数理统计第3章

概率论与数理统计第3章

i
31
二维离散型随机变量的边缘分布
关于X的边缘分布列
X
x1
x2
x3

概率 P1.
P2.
P3.

pi P{X xi} pij
关于Y的边缘分布列
j
Y
y1
y2
y3

概率 P.1
P.2
P.3

p j P{Y y j} pij
32
i
16
2019-9-16
例1 设二维离散型随机变量(X,Y)的联合分布律为
30
15
2019-9-16
二维离散型随机变量的边缘分布
Y
X
y1
y2
y3

Pi.
x1
p11
p12
p13

P1.
x2
p21
p22
p23

P2.
x3
p31
p32
p33

P3.
…………… …
p.j p.1 p.2 p.3 …
关于X的边缘分布律 关于Y的边缘分布律
pi P{X xi} pij
j
p j P{Y y j} pij
22
11
2019-9-16
第4节 常见多维随机变量
23
1. 多项分布
在独立重复试验中,设每次实验必有A1, A2 , , Ar 之一发生,且事件Ai在每次实验中发生的概率为pi, 记Xi为Ai出现的次数,则 X1, X 2 , , X r 的分布律为
P{X1 n1, X 2 n2 , , X r nr}
20
10
2019-9-16
(4) P{X Y} f (x, y)dxdy y x 0, y 0

《概率论与数理统计》三

《概率论与数理统计》三
称F(x,y)为二维随机变量(X,Y)的分布函数,或称为随机变量X 和Y 的联合分布函数。
y (x,y)
y y2
y1
O
x
O x1
x2
x
P{x1 X x2, y1 Y y2} F(x2, y2 ) F(x1, y2 ) F(x2, y1) F(x1, y1)
➢ 分布函数F(x,y)的性质
设(X,Y)的所有可能取值:(xi, yj), i,j=1,2…,
P{X xi ,Y y j } ˆ pij ,( i, j 1,2,)

1 0 pij 1,

2
pij 1.
j1 i1


函 F ( x, y) pij

xi x yjy
Y X
x1 x2 xi
y1
p1 1 p21
记为
(X
,Y)
~
N (1,
2
,
2 1
,
22,
)
四、多维随机变量
(1)设E是一随机试验, 是其样本空间,X1,X2,...Xn 是定义在上的n个随机变量,则称n维向量(X1,X2,...Xn ) 为定义在 上的n维随机向量或n维随机变量.
(2)对n个任意实数,令
F(x1, x2 ,, xn ) P{X1 x1, X2 x2 ,Xn xn}
标 (X,Y)表示, 也就是 中每一元素都可用一对数来
表示, 把X, Y看成变量, X 与Y 都是随机变量, (X,Y) 共同刻化试验的结果, 这就是二维随机变量.
例2 考察某地一天的天气情况, 即同时考虑最高气温、 最低气温、气压、风力、降雨量,这就需要5个变量 来表示可能的试验结果,这就是五维随机变量.

第三章概率论与数理统计——矿大版

第三章概率论与数理统计——矿大版

解 ⑴ 由性质
A dx
0 1
f ( x, y )dxdy 1 可得
y yx
G 0

x
xy dy 1 A 15
2
0
1 x
上页 下页 返回 结束
机动
目录
所以
15 xy , f ( x, y ) , 0
2
0 y x 1, others.
⑵ 由于 F ( x, y )
则 FX (x) P{ X x} P{ X x , Y } F ( x,)
同理可得 FY ( y) F (, y )
研究问题:已知联合分布,怎样求 X,Y 的边缘分布。
例1: 已知 ( X , Y )的分布函数为
(1 e F ( x, y )
P{ X xi , Y y j } pi j
(i , j 1 , 2 , )

称为二维随机变量 ( X , Y ) 的分布律。 性质:1)
pi j 0
2)
p
i 1 j 1
ij
1
机动
目录
上页
下页
返回
结束
将骰子抛两次,X—第一次出现的点数, 例1、 Y—第二次出现的点数,求(X , Y)的分布律。 解: X 1 2 3 4 5 6 Y 1 2 3 4 5 6
2 2
f ( x, y )dydx
12 dydx
பைடு நூலகம்

0
3

4
( x 9)( y 16)
2
.
例6 已知 ( X , Y ) 的概率密度为
Axy , f ( x, y ) , 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
13
0 18 38 0 38 0 0 18
P{X=0}=P{X=0, Y=1}+P{X=0, Y=3}=1/8,
P{X=1}=P{X=1, Y=1}+P{X=1, Y=3}=3/8,
P{X=2}= P{X=2, Y=1}+P{X=2, Y=3}=3/8,
P{X=3}=P{X=3, Y=1}+P{X=3, Y=3}=1/8.
3
P{Y=1}= PX k,Y 1=3/8+3/8=6/8,
k0 3
P{Y=3}= PX k,Y 3=1/8+1/8=2/8.
k0
XY 0 1 2 3
PY y j
13 0 18 38 0 38 0 0 18
68 28
PX xi
18 38 38 18
我们常将边缘分布律写在联合分布律表格的边缘上, 由此得出边缘分布这个名词.
x ), ,
0 x 1,0 y x 其它
求 (1) c的值; (2) 两个边缘密度。
y
解: (1) 1 f x, ydxdy
R2
1
x
0 dx0 cy(2 x)dy
0
c 1 2x2 x3 dx 20
= 5c/24 ,
故 c =24/5.
y x x1 x
f
(
x,
y)
24 5
Please Criticize And Guide The Shortcomings
讲师:XXXXXX XX年XX月XX日
05
5
fX
x
12
5
x2
2
x
,0
x
1,
0,
其它 .
暂时固定
y
fY y
f x, ydx
y
y x
当 y 1或 y 0时, 对 x , , 都有 f x, y 0,故 fY y 0.
当0 y 1时,
1 y 0 y1 x y
fY
y
y
f
x,
y dx
1 y
f
x,
y dx
1
f
பைடு நூலகம்
x,
解: ( X, Y ) 可取值 (0,3) , (1,1) , (2,1) , (3,3)
P{X=0, Y=3} 1 23 1 8
P{X=1,
Y=1}
3 1
1 2
1 2
2
=3/8
XY 0
P{X=2,
Y=1}
3 2
1 2
2
1 2
=3/8
1 2
P{X=3, Y=0} 1 23 1 8.
联合分布与边缘分布的关系:
由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
(观察P70-71:例1和例2)
三、连续型随机变量的边缘概率密度
1. 对连续型 r.v. ( X,Y ) ,
X 和Y 的联合概率密度为 f (x, y)
则 (X, Y) 关于 X 的边缘概率密度为:
f X (x)
第二节 边缘分布
二维随机变量的边缘分布函数 二维离散型随机变量的边缘分布律 二维连续型随机变量的边缘概率密度
一、边缘分布函数 (marginal distribution)
二维随机变量 (X, Y) 作为一个整体, 具有分布函数 F(x, y), 而 X 和 Y 都是随机变量, 也有各自的分布函数, 分别记为 FX(x), FY(y), 依次称为二维随机变量 (X, Y) 关于 X 和 Y 的边缘分布函数.
y dx
1 24
24 3
y2
y
5
y(2 x)dx
5
y( 2 y 2
), 2
例4: 设(X,Y)的概率密度是
求( X,Y )关于 X 和 Y 的边缘概率密度.

fX x
f x, y dy
暂时固定
当 x 0 时,
fX x
0dy 0
y
当 x 0 时,
fX x
e y dy
y(2
x),
0 x 1,0 y x
(2)
f
X
x
f
0
x,
, y
暂时固定其它
dy
y
当 x 1或 x 0时,y ,,
x
y x
都有 f x, y 0,故 fX x 0 .
当 0 x 1时,
x 0 x1 x x
fX
x
0
f
x,
y dy
x
0
f
x,
y dy
x
f
x,
y dy
x 24 y(2 x)dy 12 x2(2 x),
FX x PX x PX x,Y F x,
FY y PY y PX ,Y y F , y
二、离散型随机变量的边缘分布律
一般地, 对离散型 r.v. (X,Y ), X 和 Y 的联合分布律为:
P( X xi ,Y y j ) pij , i, j 1, 2,
则 (X, Y) 关于X 的边缘分布律为:
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The
More You Know, The More Powerful You Will Be
结束语
感谢聆听
不足之处请大家批评指导
x
y x
ey
x
ex
x

f
X
x
e 0,
x
,
x x
0, 0.
x0 x
x
暂时固定
fY y
f x, y dx
暂时固定
当 y 0 时,
fY y
0dx 0
当 y 0 时,
fY y
y e y dx ye y
0
y
y x

fY
y
ye 0,
y
,
y y
0, 0.
y
0
yx
y
暂时固定
P X xi P X xi ,Y y j pij
j1
j1
X xi X xi ,Y y j
j 1
i 1,2,
(X,Y) 关于Y 的边缘分布律为:
例1: 把一枚均匀硬币抛掷三次,
设X为三次抛掷中正面出现的次数, 而 Y 为正面出现次数与反面出现次数之差的绝对值, 求 (X, Y) 的边缘分布律 .
f (x, y)dy
x
事实上 ,
FX x F x ,
x
dx
f x, ydy
fX x FX x
f x, y dy
(X, Y) 关于Y 的边缘概率密度为:
fY ( y)
f ( x, y)dx
y
例2 设(X, Y)的概率密度是
f
(
x,
y
)
cy(
2 0
相关文档
最新文档