SKMA – A Key Management Architecture for SCADA Systems
昌平区北七家镇房建项目施工组织设计研究
———————————————————————作者简介:李登云(1988-),女,安徽阜阳人,硕士研究生,研究方向为BIM 工程管理。
0引言施工组织设计方案包括技术管理、工程资源、质量控制等多个方面的内容,全面的施工组织设计方案也是对安全、进度、成本、质量等指标的基本保障。
新形势下建设工程项目的施工管理难度逐步提升,施工组织设计可为工程管理提供全面的保障与支持,合理的施组方案更是工程管理的必要需求。
北七家镇公建混合住宅工程属于大型房屋建设项目,其具有多种管理难点,因此笔者在项目管理过程中充分分析工程管理需求,同时编制了施工组织设计方案,旨在通过本文分析施工组织设计的合理性,同时对不足之处提出优化对策,为同类型工程项目管理提供参考指引。
1工程概况本项目为北七家镇公建混合住宅,位于北京市昌平区,属一综合体类工程项目,整体建造业态为房屋建筑,用途为住宅、公建。
案例项目共计7栋建筑单体,整体结构形式为混凝土框架结构,总建筑面积约14万平方米,其中地上面积10万平方米,其余为地下建筑面积。
地下建筑层数为2层,地上为2/5/9/13层。
最大建筑高度58.5米,最大基坑深度-11.13米,整体耐火等级一级。
其余未提及的指标内容按我国行业现行规范标准执行,不影响工程施工管理及施工组织设计。
2工程施工组织设计情况2.1基本原则时间部署原则:施工组织方案的编制需以时间需求为准,以工期要求为基础,同时考虑各个施工内容所消耗的时间。
在进行施工组织方案设计的过程中主要考虑到:①项目自N 年10月开工,N+2年交付,北京地区冬季平均气温较低,每年12月~1月之间无法开展任何施工工作,11月、2月也可能会因低温天气无法开展施工,在进行施工组织方案编制的过程中需要考虑到此问题;②以客观实际出发进行各个施工内容进度计划的编制,以图1为例,在进行进度编排的过程中就考虑到各个位置主体施工的实际需求,例如混凝土结构需要7-14天养护周期,在进行计划编制的过程中应考虑相关需求。
漂浮的“树屋”——英国牛津玛吉癌症康复中心
漂浮的“树屋”——英国牛津玛吉癌症康复中心Floating "Tree House"——Oxford Maggie Cancer Rehabilitation Center, UK文/威尔金森·艾尔建筑设计事务所By Wilkinson Eyre Architects玛吉治疗中心的设计理念源于患有癌症的园艺师玛吉·凯瑟克·詹克斯,她提倡打造一个如“家”般温馨宜人的治疗环境,为癌症患者提供一个庇护场所,在这里,人们可以找到身体和心理上的慰藉,帮助患者抗击病魔。
玛吉中心非常重视建筑在使人心情振奋方面以及在治疗过程中所起的积极作用,如今,玛吉中心在英国及海外地区均有分布,每一座玛吉中心都具有独特的建筑风格和特点。
该玛吉康复中心位于牛津丘吉尔医院内,其方案源于“树屋”的概念,如同漂浮在灌木丛上方的屋子。
建筑被建造在底层架空柱之上,轻盈地跨越下方的景观,并通过扭转的几何形式营造出拥有柔和采光和动线的室内空间。
设计与自然环境形成了密切的互动关系,为来访者营造出舒适宜人的氛围。
中心坐落在一家在英国国家医疗体系中的专业癌症医院内部,为癌症患者以及他们的亲属朋友提供免费的情绪、物质和社会支援。
❶❷❸❹多边形的几何外观设计的核心思路是打造一座令人感到温暖友好的建筑。
康复中心需要提供一种安静且较为中立的环境,避免带来商业或临床诊所的感觉。
建筑师利用多边几何形式解决了这一问题,为中心内的空间注入了生命力。
建筑由一系列的三维平面碎片组成,碎片通过折叠和相互包裹形成一个整体,使建筑能够与场地中既有的树木形成和谐的关系,来访者也可借此与景观亲密接触。
建筑外部还设有户外露台和深入树林的台阶,为沉浸式的探索体验创造了更多机会。
天然木结构搭配玻璃材料为了与周边森林环境相适应,并最大限度地减少对当地自然环境的破坏,建筑整体使用木材打造。
架空柱上方的体量选用了预制的交叉层压木板,底部的立柱由胶合板构成,并固定在隐藏在地下的螺旋桩上。
珀金斯伊士曼建筑设计事务所
学楼的公 共走 廊 朝向街道一侧 面的 室 向 教 朝 运动场。
位于折形金属板后
教 学楼的体 块蛆 台旨 在打破传统学校 设 计中常 用的 觉元素 与校 园 视 中已经建成的几个建筑所采 用的 设计 手法有 所呼 应但 完 不 全相 同 建筑材料采 取 更加复杂和独特的处理而别具 格 根据 6 个不 每个 目 的建筑体量采月7 6 种不 的外墙系统
设计过程应用千各娄I程实践 珀盎斯 伊±曼建筑事务 所的创立基于 一个信 念 即设计的 过程 是一 反 个 复研究的过程 事务所 我们坚信建筑环境可为 I作 活动的^们带来生活覆■ 参与的建筑类型丰富多 样 建筑物内部居住 的改耆 珀盘斯伊 ±曼研兜^ 划师 研究 种提 升规 长期 0司会将研 建筑师 设计 师 知识和能力的方法
单 廊 的组 织 围绕 在 公 井 空 的 边 侧 贯 通 6层 教
希望这些技术的运用可 节省2 % ~3 %的能源 5 0 开i 超 4 %白 新建屋顶 月7 0 勺 绿色屋面处理技 术 使整个供冷供暖系统的压力大大减 少 面积最 大的绿色屋顶 域位于体育馆上方疑自 罘 然 光窗部 分 屋顶花园非常舒适 屑锚成 跨谭程实验
始终秉承公司 创立之韧的理念并不晰鞭策自 —— 不懈地创新 协作 研发并追求卓越 承接从 小型 建 筑 珀盒斯伊士曼所提供的服务范 围 深^ 而广泛 我们与开发商 和韭主都紧密台作
秉承的理念到进行高质 的 量 建筑实践
劐太型综台体等各娄 目 并以此为契机丰富空阃 项
究成果应用到实际的项目中 使设计师和用P在设
伊士曼 一直 力于提供富于 创新和^文精神 的设 致 计 在满足 主 要求的同时改善^娄生活 体转 公司自1 8 年创立后 91 逐步发展 现B成为世界 领先的目际性 建筑 室 内 和城市规划设计事务所 可 提供全面的任务书拟定 规 划 设计 战略规划与 最们
库哈斯
乌德勒支教育馆
乌德勒支教育馆
乌德勒支教育馆
乌德勒支教育馆
餐厅处景观
乌德勒支教育馆
乌德勒支教育馆
发光墙面
CCTV新大楼
• 设计构思其实很简单明了:不重复通常 摩天楼作为单栋塔楼向空中追求绝对高 度的老套作法,而是将摩天楼设计成一 个高度适中的综合体──一个“巨环”。 或者,更直截了当地说,是将整个项目 先分为两栋摩天楼,然后再分别在地面 和高空中将两栋楼联结起来。 • 我们将电视制作的所有部门都囊括在一 个连续的巨环中,使它们可以自我运转 不息。”怎样使地面、空中相连的双塔 楼在形象上成为一个富于动感的“连续 的巨环”呢?
库哈斯的设计方法
• 以空间为核心对建筑进行解构 • 惯用的元素:细长的柱子,倾斜的坡道, 通透的空间,倾斜的墙体
库哈斯的作品和著作
• • • • • • • • • 作品 法国国家图书馆(1989) 利布吉海运站 ZKM艺术媒体博物馆 里尔会议中心 乌德勒支教育馆 CCTV新大楼 福冈住宅 康索现代艺术中心
基 地 俯 视 图
里尔会议中心
总平面图
里尔会议中心
透视图
里尔会议中心
里尔会议中心
局部透视
里尔会议中心
里尔会议中心
里尔会议中心
里尔会议中心
里尔会议中心
内部空间
里尔会议中心
内部空间
内外空间的过渡
里尔会议中心
里尔会议中心
里尔会议中心
利布吉海运站
• 在竞赛结束的前4天,改用一个圆锥和一个圆 的相交部分的形式。 • 建筑的地下3层,以连续的螺旋线来组织,首 先是接近建筑的入口设施,然后是交通设施, 继续沿坡道上升,是一个巨大的停车空间。 • 在接近海的一侧,一个巨大的空隙分开了两个 独立的和自成一体的部分:旅馆和会议中心。 顶部是一个类似圆形的阶梯露天剧场,在一个 好天气里你可以看到去往英格兰的所有的路。
马云的简介英语作文
Jack Ma,whose real name is Ma Yun,is a Chinese entrepreneur and philanthropist who has made a significant impact on the global business landscape.Born on September 10,1964,in Hangzhou,Zhejiang Province,China,he is best known as the cofounder and former executive chairman of Alibaba Group,a multinational conglomerate specializing in ecommerce,retail,internet,and technology.Mas journey to success is nothing short of inspiring.He faced numerous challenges in his early life,including being rejected multiple times for various jobs and even for Harvard University.Despite these setbacks,he remained undeterred and pursued his passion for English,which he developed during his youth by communicating with foreign tourists in Hangzhou.In1995,Mas first exposure to the internet came during a trip to the United States,where he was introduced to the potential of this new technology.Upon returning to China,he founded China Yellowpages,one of the first internet companies in the country.However, it was the founding of Alibaba in1999that truly marked the beginning of his entrepreneurial journey.Alibaba started as a businesstobusiness marketplace,connecting Chinese manufacturers with overseas buyers.Over time,the company expanded its operations to include consumertoconsumer sales through Taobao,online payments through Alipay,and cloud computing services.Today,Alibaba is one of the worlds largest ecommerce companies, with a presence in various sectors,including retail,finance,and technology.Mas leadership style is characterized by his emphasis on innovation,adaptability,and longterm vision.He is known for his charismatic personality and his ability to inspire and motivate his employees.His philosophy of customer first,employee second,and shareholder third has been a guiding principle for Alibabas growth and success.In addition to his business achievements,Ma is also a dedicated philanthropist.He established the Jack Ma Foundation in2014,which focuses on education, entrepreneurship,and the environment.The foundation has supported various initiatives, such as rural education programs,scholarships for young entrepreneurs,and environmental conservation projects.Ma stepped down as the executive chairman of Alibaba in2019,but he continues to be involved in the company as a board member and a mentor to young entrepreneurs.His influence extends beyond the business world,as he is often invited to speak at international forums and conferences,sharing his insights on technology,innovation,and global economic trends.In conclusion,Jack Ma is a remarkable figure in the world of business and philanthropy. His ragstoriches story,coupled with his innovative approach to business and his commitment to social causes,make him an inspiring role model for aspiring entrepreneurs and leaders around the world.。
Skema商学院简介
SKEMA Business School 尼斯商学院-里尔商学院
本科项目介绍
BBA 国际商务本科(学制4年)
SKEMA商学院国际本科BBA in Global Management项目为法国教育部认证本科项目。
获取国际本科文凭的学生可直接进入就业市场,或寻求更卓越的教育,例如理学硕士学位。
在 SKEMA 商学院国际本科教育过程中,你将培养良好素质,这帮助你在今后的职业生涯中获益匪浅。
掌握适应当今和未来职业挑战的能力;
熟练掌握多种运营技巧,应对商业和市场要求;
培养你对创新及创业价值的认知,伴随你走向未来。
进入SKMEA这所法国著名的商学院学习,你将与精英学生、科研工作者及教授并肩学习。
前两年将生活和工作在全球最美丽的地区之一:尼斯(法国的蔚蓝海岸)。
第三年和第四年时,你可选择赴美国(罗利)或中国(苏州)国际校区学习。
申请要求:
高三在读或高中毕业
雅思6分
ESDHEM 法语本科(3年制)
与法国滨海大学及里尔第二大学合作,提供双轨高商预科教育。
SKEMA商学院法语本科ESDHEM项目为结束大学本科学习的学生颁发管理学或法学本科文凭(法国国家文凭),为想继续在精英商校攻读硕士学位的学生提供准备课程。
同时学生可通过海外校区学习拓宽国际视野,通过企业实习获得职场经验,为未来提供多种可能。
申请要求 :
法语B2
高三在读(需要参加高考) 高中毕业以上学历
学费 : 第一年和第二年8500欧,第三年9000欧(双文凭)
MSc英语硕士
SKMEA Grande Ecole 项目。
Secure key management scheme for dynamic hierarchical access control based on ECC
1. Introduction The access control problem in a user hierarchy is used to many applications such as schools, governments, military, corporations, computer network systems, and database management systems. All users in such a system form a user hierarchy and can be assigned into a number of disjoint sets of security classes, say SC ={SC1 , SC2 , . . ., SCn }, which are partially ordered by a binary relation “≤”. In (SC, ≤ ), SCj ≤ SCi means that the security level of class SCi is higher than or equal to the security class SCj . In other words, users in SCj can access the encrypted information held by users in SCj , but the opposite is disallowed. The secret key Ki is used by each security class SCi to encrypt/decrypt its sensitive information. When a user in SCi would like to retrieve data encrypted by SCj , he should get the right key Kj . Akl and Taylor (1983) first proposed a solution to solve the hierarchical access control problem. In their scheme, each security class is assigned a secret key and a public parameter. The security class
fabmaster (2)
fabmaster简介fabmaster是一种用于简化和自动化制造流程的软件工具。
它旨在提高制造效率,优化生产流程,并提供高质量的成品。
本文将介绍fabmaster的主要功能和用途,以及如何使用fabmaster来改进制造流程。
功能fabmaster具有多种功能,可以帮助制造商优化制造流程。
下面是fabmaster的主要功能:1.BOM管理:fabmaster可以管理和跟踪产品的BOM(Bill of Materials)。
用户可以轻松添加、编辑和删除BOM,并将其与其他系统集成,以确保准确的物料需求和订单管理。
2.工艺规划:fabmaster允许用户创建和管理工艺规划,包括制造任务、流程和工艺路线。
用户可以定义每个步骤的工艺参数和工作指导,以确保产品在制造过程中的一致性和质量。
3.自动化程序:fabmaster可以帮助用户创建自动化程序来执行制造流程中的任务。
用户可以编写脚本和宏来自动化重复性工作,从而节省时间和劳动力。
4.质量控制:fabmaster提供质量控制功能,以确保产品符合标准和规范。
用户可以定义检验和测试程序,并跟踪产品在制造过程中的质量数据,以便进行质量分析和改进。
5.数据分析:fabmaster提供数据分析功能,帮助用户从制造数据中提取有价值的信息。
用户可以生成报告和统计数据,以便监控制造流程的效率和质量,并进行持续改进。
应用fabmaster适用于各种制造行业,包括电子、汽车、机械等。
它可以帮助制造商在以下方面提高生产效率和产品质量:•物料管理:通过精确管理BOM和物料需求,fabmaster可以帮助制造商减少物料浪费和库存成本,并确保按时交付所需物料。
•工艺优化:通过创建和管理工艺规划,fabmaster 可以帮助制造商优化生产流程,减少生产时间和成本,并提高产品的一致性和质量。
•质量控制:fabmaster的质量控制功能可以帮助制造商实施严格的质量管理措施,并确保产品符合标准和规范。
流动的像素 特拉维夫大学check point大楼
Check Point 计算机科学学院和科学青年学院大楼坐落在以色列特拉维夫大学新校区内,主要致力于培养优秀的计算机人才和青年科学家,由以色列网络安全公司Check Point 捐赠。
该建筑由KimmelEshkolot 建筑事务所设计施工。
大楼位于校园中心,设计师采用参数化设计,将集成的玻璃面板材质“像素”作为建筑外壳,成为整栋建筑的设计核心所在。
同时其轻盈流动的体量很好地适应了周围的校园环境,也与临近的Cymbalista 犹太教堂和犹太遗产中心(1998)以及20世纪60年代的精确科学学院形成鲜明对比。
像素概念的外壳是设计师为本案度身定制,并与院系主旨价值相匹配的一次创新。
“创新技术经常激发建筑师的灵感,实现过去无法实现的创意。
技术不再只是服务于建筑,它正逐渐成为建筑理念的重要组成部分。
”Kimmel Eshkolot 建筑事务所的合伙人Etan Kimmel 这样说。
建筑外壳结构由5种类型的40cm ×40cm 玻璃面板组成。
这5种类型提供了不同级别的透明度和反射率,设计师根据用户不同的需求来进行参数化建模。
人们可以在与立面平行的方向上打开那些透明的面板(类似于公交车的车门),而不会影响建筑立面整体的视觉效果。
可持续性是设计过程中的主要关注点。
除了阴凉通风的庭院,其双层外墙设计也为节能带来了更多可能。
玻璃像素的建筑外壳为大楼营造了一个通风缓冲区,空调系统得以从外墙与外壳间的空间中摄取新鲜空气,从而达到节能减排作用。
大楼在空间规划上实现了两组用户之间的相对分离,即在校大学生和青年教师,同时又通过礼堂以及大型教室等公共空间实现了必要的融合,并鼓励青年学生之间的相互交流与沟通。
(编译:麦子)收稿日期:2019.07.20012OCT2019工程名称:特拉维夫大学CHECK POINT大楼坐落地点:以色列特拉维夫面积:6300m2设计团队:Etan Kimmel,Limor Amrani,Omri Ron 竣工时间:2019摄影:Amit Geron013。
K总部办公园区 芬兰赫尔辛基市
K总部办公园区芬兰赫尔辛基市Kesko Campus Helsinki, Finland Design: JKMM Architects Client: Varma Insurance Company Function: Headquaters, offices, commercial spaces, restaurants Size: 34 200 m 2Status: Completed in 2019设计单位:芬兰JKMM 建筑师事务所建设单位:Varma 保险公司建筑功能:总部大楼、办公、商业空间、餐厅建筑面积:3.42万平方米项目状态:2019年竣工K总部办公园区位于卡拉萨达玛,一个靠近赫尔辛基市中心的新区。
港口迁出后,卡拉萨达玛正在迅速地把海滨区域发展成一个现代化的城市住宅区和商业区。
K总部办公园区是芬兰最大的零售集团凯斯科的总部。
K总部办公园区占据了整个城市街区,这为开发最佳的工作概念提供了可能:灵活的现代办公园区围绕着玻璃中庭空间,该建筑同时也是凯斯科产品和服务的展示厅。
办公园区的建筑体现了企业的价值观,即它的功能性和可持续性。
为了重新诠释北欧建筑传统,建筑使用真实的材料和整体的方法来进行细节设计,该建筑同时也非常注重创新的可持续原则。
JKMM设计了建筑和室内。
K Campus is located in Kalastama, a new district close to the city center of Helsinki. After harbor moved out, Kalasatama is rapidly developing the seafront into a modern urban residential and commercial district. K Campus is the head offices for Kesko, the biggest retailing conglomerate in Finland.K Campus fills one whole urban block , which gave the possibility to develop the best possible concept for working: modern flexible campus gathered around a glazed atrium space. The building also acts as a showroom for Kesko’s products and services. The architecture of K Campus reflects Kesko values. It is functionality and sustainability. The aim was to reinterpret Nordic architectural tradition, use authentic materials and holistic approach to detailing. The building has strong focus oninnovative sustainable principles. JKMM has designed both architecture and interiors.©Hannu Rytky。
《2024年莱姆·库哈斯的建筑创作理念研究》范文
《莱姆·库哈斯的建筑创作理念研究》篇一一、引言莱姆·库哈斯,作为当代建筑界的重要人物,以其独特的建筑创作理念和设计作品在全球范围内产生了深远影响。
他的作品不仅在形式上具有鲜明的特点,更在建筑与城市、环境、社会等多方面关系中展现出深刻的思考。
本文旨在深入探讨莱姆·库哈斯的建筑创作理念,分析其设计思想的形成背景、特点及影响。
二、莱姆·库哈斯建筑创作理念的形成背景1. 时代背景莱姆·库哈斯的建筑创作理念形成于21世纪初的全球化时代,此时全球经济、文化、科技的融合与发展为建筑设计提供了广阔的空间和挑战。
在这个背景下,库哈斯强调建筑与社会的紧密联系,以及在城市化进程中建筑的适应性和可持续性。
2. 教育经历库哈斯的建筑教育背景对其创作理念产生了深远影响。
他在欧洲的著名建筑学院接受了系统的建筑教育,这使他对欧洲的建筑传统和现代主义建筑有了深刻的理解。
同时,他在美国的学习和工作经历也使他对不同地域的文化和建筑特色有了更全面的认识。
三、莱姆·库哈斯建筑创作理念的特点1. 注重场所感和地域性库哈斯的建筑设计注重场所感和地域性,强调与当地环境的融合。
他通过运用地域性的建筑材料、色彩和形式,使建筑与周围环境形成和谐的共生关系。
同时,他也在设计中充分考虑了当地的气候、文化和社会特点,使建筑成为反映地域特色的标志性建筑。
2. 强调建筑的复杂性和多元性库哈斯认为,现代社会的复杂性和多元性要求建筑也应具有相应的特点。
他的设计作品中常常呈现出复杂的空间关系和多元的功能布局,以适应不同需求和变化。
同时,他也在设计中运用了多种建筑材料和构造方式,使建筑在形式上呈现出丰富的变化。
3. 关注社会问题和城市发展库哈斯的建筑设计不仅关注建筑本身,更关注社会问题和城市发展。
他通过建筑设计来回应城市发展中的问题,如城市规划、交通组织、公共空间等。
他的作品往往具有强烈的公共性和社会性,旨在为城市的发展和居民的生活提供更好的解决方案。
求索慕尼黑IFAT的中国之路——访慕尼黑国际展览集团高级执行总监、资本品项目组执行总监哈玛女士
求索慕尼黑IFAT的中国之路——访慕尼黑国际展览集团高级执行总监、资本品项目组执行总监哈玛女士
张萍
【期刊名称】《中国建设信息》
【年(卷),期】2008(000)006
【摘要】经过多年的成长和发展,IFAT2008的展会面积达到史无前例的192,000
平方米,吸引了25,60名展商,并创纪录的迎来了来自163个国家的122,000观众。
【总页数】2页(P35-36)
【作者】张萍
【作者单位】
【正文语种】中文
【中图分类】F713.83
【相关文献】
1.突出特色实现由检测向食品安全技术展示平台延伸--访慕尼黑展览(上海)有限公司项目组总监路王斌 [J], 申海鹏
2.bauma将至波澜四起——专访德国慕尼黑国际博览集团资本品项目组总监Katharina Hamma女士 [J], 彭少虎
3.慕尼黑国际展览集团将在上海举办IFAT China 2004 [J],
4.约克:创新引导节能环保之路——访江森自控建筑设施效益业务中国冷冻业务总经理兼执行总监奚晔 [J], 王宇
5.真金不畏火炼,靓线无惧PK——访AcoustiHarmony首席执行官盛实伸二先生高级执行总监佐藤隆宏先生 [J], 本刊记者
因版权原因,仅展示原文概要,查看原文内容请购买。
Key Account Management
Tie account team incentives to customer metrics
Reflect “balanced scorecard” in account metrics
Review account
Analyze Account
Set account objectives
Understand account requirements/ needs/ capabilities
Take planned action
Plan account strategy
“improvement” potential
Hold account team
members accountable
Include customer in account planning process
Develop both internal and customer targets
• Trade Shows • Publications • Promotion Material
Key Account Manager
Analyze Set
Plan
Take Review
account objectives strategy action account
Sales Mgmt
Territory Mgmt
- 11 -
CUSTOMER
• Better product information • Better information on services • Better understanding of
reimbursement • Better product benefits knowledge • Ability to raise individual profile • Increased end users • Provide resource input
制作英语介绍人物卡片作文
Creating an English introduction card for a person involves highlighting their key characteristics, achievements, and personal details in a concise and engaging manner. Heres a sample structure for such a card, followed by a filledout example:English Introduction Card Structure:1. Name: The full name of the person.2. Photo: A professional or personal picture.3. Contact Information: Email, phone number, and social media links if applicable.4. Position/Title: Current job title or role.5. Education: Degrees or certifications.6. Key Skills: A list of the persons most relevant skills.7. Professional Experience: Brief overview of work history.8. Achievements: Notable accomplishments or awards.9. Interests/Hobbies: Personal interests outside of work.10. Personal Quote: A short, meaningful quote that reflects the persons philosophy or outlook.Example of an English Introduction Card:Name: Jane DoePhoto: Insert a professional headshot of JaneContact Information:Email: Phone: 555 1234567LinkedIn: /in/janedoePosition/Title: Senior Software EngineerEducation:Bachelor of Science in Computer Science, XYZ University, 2015Key Skills:Programming Languages: Python, Java, CFrameworks: Django, Spring, ReactDatabase Management: SQL, NoSQLProject Management: Agile MethodologiesProfessional Experience:Worked at ABC Tech as a Software Developer 20152018Lead Developer at DEF Solutions 2018PresentAchievements:Developed a groundbreaking AI algorithm that improved efficiency by 20%Awarded Employee of the Year in 2019Interests/Hobbies:Hiking, reading science fiction, volunteering at local tech workshopsPersonal Quote:The best way to predict the future is to invent it. Alan KayThis card provides a snapshot of Janes professional background, skills, and personal interests, making it an effective tool for networking and introductions in both personal and professional settings.。
凯里森商业建筑设计
美国凯里森建筑事务所(Callison)是美国名列前茅的大型建筑师事务所之一,凯里森在商业零售设计尤其著称,在全球享有声誉。
拥有设计行业内公认的杰出人才和高效的业务运作系统,其业绩包括世界各地一大批著名的购物中心及微软、波音等众多知名公司的企业总部,中国首座双塔办公楼和最成功的商业购物中心为一体的上海港汇广场,以及位于上海南京东路步行街口的地标性综合项目—宏伊中心。
服务客户包括极具商界影响的企业,如微软公司,惠普公司,波音公司,耐克公司,日本西武百货,香港恒隆地产等等。
主持人:今天下午第一个给我们做演讲的嘉宾是美国凯里森建筑事务所合伙人、中国区总经理杨砚先生。
杨砚:各位下午好!首先,感谢主办方为我们创造了这么好的一个机会,而且很难得RTKL、捷得还有我们事务所这三个在美国主要的商业开发的事务所在一起交流。
我们今天的主题是围绕中国城市中心区商业建筑进行规划设计,谈谈我差不多近20年,特别是最近几年在中国规划设计的一些体会。
首先,我用两分钟时间把凯里森大致的情况介绍一下。
凯里森专注的市场领域就是商业、零售业、办公、酒店、综合体开发的设计公司。
这边这些图片代表着我们在主要这些领域的主要建筑规划设计,综合体、办公楼、酒店、公寓、购物中心,还有商店设计,大到百货店,小到购物中心里面的专卖店。
所以,使得我们在30年来比较注重于在这个领域的发展,也被评为全世界最大的商业设计公司。
讲到商业设计,跟我们公司的形成成长和我们的设计理念,其实有三点是最主要的,特别是前面两个一定要着重的来给出一些介绍,因为大家很多是开发商,很多是建筑师在做这个领域的工作。
我们觉得你的设计,特别是这种大型的开发有大量的投资,需要进行几十年的经营,你一定要把你的设计策略和我们客户的商业策略一体化,这是非常重要的一点,所以不是纯粹的规划或者设计,而这是一个商业策略。
第二,为使用者着想。
所有我们设计的都是关于人使用的,包括开发商,包括商家,包括购物者。
基于ASK理念的涉外酒店专业课程体系研究
基于ASK理念的涉外酒店专业课程体系研究[摘要]文章运用ASK理念,针对高职涉外酒店专业就“ASK”理念来源、“ASK”理念介绍及相关课程体系、“ASK”理念课程体系的支撑三个方面对课程体系进行了分析、研究与设计。
[关键词]课程体系;ASK;涉外酒店酒店管理专业的学生,毕业之后从事酒店工作的比例并不是很高,原因是“面子问题”影响就业取向,从而大酒店难招大学生。
在历届毕业学生中,我们高校酒店管理专业的部分学生尽管找不到工作,或者工作不对口,也不愿去四星、五星级酒店。
在武汉某高校酒店管理专业岗位就业实习启动仪式上,上海某酒店管理总经理感慨:大学生对酒店这个行业误解很大。
以为这是一个既没有“前途”也没有“钱途”的职业,其实并非如此:就发展空间来说,在一些集团化的大型酒店,大学生还是有非常好的上升空间的,一般来说,3年后就可进入中层甚至是高层;就报酬来说,一线城市酒店员工的月收入在3000元左右,并且还包吃住,还有工作服,到中层就会达到月薪5000元,高层则会达到10多万元。
我国酒店业发展迅猛,人才严重不足,比如说,仅上海酒店人才的缺口就达50万人。
然而在毕业求职时,不少大学生认为酒店这个行业就是个“伺候”人的体力活,哪怕是五星级酒店,他们也只愿去管理层,不愿当服务员。
就算有部分学生进入五星级酒店工作,大概只有35%的大学生能坚持工作1年以上。
酒店管理专业大学生毕业时,为什么不愿意去酒店工作?学生为什么没有专业认同感?酒店需要什么样的学生?以及,学校需要如何教学,才能让学生接受并且愿意投身酒店行业。
带着这些问题,我们开始调研,提出“基于ASK理念的涉外酒店专业课程体系”,通过实践,希望能够解决酒店专业学生就业择业的观念转化问题和知识技能问题,端正对酒店的正确认识,投身于酒店行业。
1 “ASK”理念来源图1 课程体系开发过程解释图如图1所示,“ASK”理念是我们在前期的专业调研中,通过收集大量资料和实地考察得来的:①“走出去”,即教师参加全国旅游类会议,到合作实习的酒店基地进行专家访谈,到兄弟院校进行参观学习;②“请进来”,请大学教授,评估组专家等到我校来做专业建设会议;③内部交流,全院系主任会议,介绍其他示范专业的课程设置理念,组织到酒店顶岗学习后回来的学生,进行座谈,询问他们在酒店工作的要求和对学校教学课程设置的意见。
破译设计密码——深港两地设计师对话沙龙举行
破译设计密码——深港两地设计师对话沙龙举行
佚名
【期刊名称】《《室内设计与装修》》
【年(卷),期】2009(000)011
【摘要】9月19日,6位香港设计名师在深圳华侨城创意园内和300多名设计师分享全新设计理念,用国际视野及开拓性、跳跃性思维的表述,说出不能说的秘密。
【总页数】1页(P144)
【正文语种】中文
【中图分类】TB47
【相关文献】
1.广东省家协举行第七届家具设计师沙龙 [J],
2.破译优秀眼镜设计师的素质密码 [J], Eric So
3.高端厨房电器品牌Arda举行设计师系列沙龙 [J],
4.“2009顶级设计师沙龙暨鼎辉照明商洽会”在深圳举行 [J], 甘露;郭连珍
5.浙赣两地精英设计师交流会在南昌举行 [J], 杨国鑫
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SKMA–A Key Management Architecture for SCADA Systems Robert Dawson Colin Boyd Ed Dawson Juan Manuel Gonz´a lez NietoInformation Security InstituteQueensland University of Technology,GPO Box2434,Brisbane,QLD4001,AustraliaEmail:{re.dawson,c.boyd,e.dawson,j.gonzaleznieto}@.auAbstractSupervisory Control And Data Acquisition(SCADA) systems are widely used in the management of critical infrastructure such as electricity and water distrubu-tion systems.Currently there is little understanding of how to best protect SCADA systems from mali-cious attacks.We review the constraints and require-ments for SCADA security and propose a suitable architecture(SKMA)for secure SCADA communi-cations.The architecture includes a proposed key management protocol(SKMP).We compare the ar-chitecture with a previous proposal from Sandia Labs. Keywords:SCADA Security,Key management, Secure protocol,Key Distribution Center(KDC), Key establishment protocols1IntroductionNations are becoming increasingly dependent on automated Supervisory Control And Data Acquisi-tion(SCADA)systems to help deliver critical services such as water,sewerage and electricity distribution. SCADA systems,which once used proprietary com-munication mechanisms,are increasingly using stan-dard protocols,such as DNP3(Curtis2005).The use of standard protocols,combined with in-creased interconnectivity with other networks,has changed the threat environment.In2001the British Columbia Institute of Technology(BCIT)began recording information about world-wide industrial se-curity incidents(Byres&Lowe2004),storing this information in a database,similar to the CERT com-puter security incident database.CERT began cap-turing computer security incident data in1988,and has seen the number of incidents rise from six in 1988to137,529in2003(CERT/CC Statistics1988-20052005).While the current rate of incidents being added to the BCIT database is currently low,it is also increasing.The increase in incidents reported, and the changing nature of the sources,indicate that the risk of SCADA incidents occurring is increasing.The need to secure SCADA systems has there-fore been identified as an importantfield of research. One critical security requirement for SCADA systems is that communication channels need to be secured. Secure keys need to be established before crypto-graphic techniques can be used to secure communi-cations.Copyright c 2006,Australian Computer Society,Inc.This pa-per appeared at the Fourth Australasian Information Security Workshop(AISW-NetSec2006),Hobart,Australia.Confer-ences in Research and Practice in Information Technology,Vol.54.Rajkumar Buyya,Tianchi Ma,Rei Safavi-Naini,Chris Steketee and Willy Susilo,Ed.Reproduction for academic, not-for profit purposes permitted provided this text is included.1.1Relationship to Existing Work Communications security for SCADA is a topic that is being addressed in both the academic community and in industry.Wang&Chu(2004)have developed broadcast and point-to-point protocols,based on ear-lier work in Sensor Networks(Perrig,Szewczyk,Ty-gar,Wen&Culler2002).In industry,the American Gas Association is developing a standard for secure communication(AGA12-1Working Group2005) that is based on link-level encryption.Although these protocols use cryptographic techniques to protect the confidentiality and integrity of data,they do not di-rectly address key establishment.Cryptographic protocols depend on having secure keys distributed to the parties participating in the protocol.A cryptographic key needs to be established before messages can be encrypted and sent between parties.Researchers at Sandia have produced a paper on key establishment for SCADA(SKE)(Beaver, Gallup,Neumann&Torgerson2002).Their paper firstly outlines SCADA security systems architecture, and then discusses a key management solution.How-ever the key management design that Beaver et al have proposed,has the following limitations:1.Both symmetric and public key cryptographytechniques are used.2.Long term keys are shared between nodes viamanual installation.If a Remote Telemetry Unit(RTU)has multiple master stations,its key will need to be installed on each master station.Also,if a master station is compromised,long term keys are also compromised.The SCADA Key Management Architecture (SKMA)proposed in section5of this paper has the following advantages over SKE:1.SKMA only uses symmetric techniques;thussimplifying implementation,and minimising overheads.2.SKMA only requires that long term keys to bestored on the node to which the key belongs, and one other party,the Key Distribution Cen-ter(KDC).This decreases the number of copies of each long term key,minimising the risk of ex-posure,and simplifying recovery from the com-promise of a master station.1.2ContributionThis paper provides a concise description of the con-straints of a SCADA system with respect to secure communication(Table1).Key management require-ments for SCADA systems are also outlined(Table 2).The most important contribution of this paper is the key management mechanism(tailored specifically for SCADA systems)proposed(Section5).This con-tribution consists of the SCADA Key Management Architecture(SKMA),and the SCADA Key Manage-ment Protocols(SKMP).SKMA is an architecture that provides security meeting the constraints and requirements in Sections 2and3.SKMA specifies the keys and mechanisms required to secure SCADA communications.SKMP uses a series of existing security techniques to provide secure key management.ISO11770-2 mechanism9(ISO1996)is used to establish a long term key shared between the nodes.An approach for deriving session keys is suggested,and a technique for key revocation is described.2SCADA ArchitectureA SCADA system consists of a number of different entities communicating with each other.These en-tities are diverse in purpose and design,varying from a Remote Telemetry Unit(RTU)that interacts with the physical environment,to the Human Machine In-terface(HMI)that operators interact with.In this paper,the term node will be used to refer to any en-tity in the system.The entities that make up a SCADA system are shown in Figure1.The boxes with dashed lines in Figure1indicate parts of the system that should be physically secured.The box at the top left indicates the main network.The entities in the system,and the communication channels between entities are de-scribed in more detail below.2.1Remote Telemetry UnitRTUs are devices composed of a microprocessor that controls sensors and actuators that interact with the physical environment.For example,in a water control system a typical RTU would consist of:1.one or more water pumps(actuators);2.sensors that measure the water level;and3.a microprocessor that takes input from the waterlevel sensors,and sends commands to control the pumps.RTUs are able to communicate with other entities in the network.This communication is two-way,with the RTUs typically allowing settings to be changed and commands to be sent to the sensors or actuators of an RTU.RTUs have limited memory and processing power. There are RTUs running industry standard protocols on16bit Microprocessors with8kilobytes of RAM (working memory),and64kilobytes of EPROM(per-sistent memory).An RTU can often be located remotely to the main corporate offices.The location of RTUs may make physically securing the units difficult.For example, sewage pumps need to be located throughout resi-dential areas,in locations where extensive physical security is not practical.2.2Master StationsThe master station is a node which provides super-visory control of an RTU.The master station is the superior in a communication hierarchy(IEEE Stan-dards Board1994).The structure of a SCADA system will normally include one central master station,which communi-cates with a hierarchy of other nodes,including sub-master stations,and RTUs.Master stations and sub-master stations,are com-puters with resources at least as plentiful as a modern desktop computer.These machines typically run on commodity(standard)hardware and operating sys-tems.2.3Human Machine Interface(HMI)The HMI is the device that people use to interact with a SCADA system.HMIs for SCADA systems have been developed utilising a wide range of client tech-nologies,including PDAs,web browsers,and Desktop PCs(IConics2005).2.4HistorianThe historian is a database of the historical data from the SCADA system.It is updated by the master sta-tion,and can be accessed from the HMI.The Histo-rian runs on similar hardware to the master station.2.5Communication ChannelsThe network topology of a SCADA system is highly structured.The available communication paths be-tween nodes are known in advance.In a SCADA system there is no need to support ad hoc communi-cation between nodes.Nodes are added in a managed fashion.A detailed description of the communication paths in a SCADA system is outlined below.2.5.1Master-RTU CommunicationFigure1shows many of the diverse options used for the master-RTU channel.The communication can take place using diverse mechanisms such as:1.the Internet2.satellite3.radio4.physical cables5.WiFi6.standard modem/ethernetAs malicious messages on the master-RTU channel could lead to physical damage,it is critical that this channel is secured.The physical remoteness of the RTUs limits the possibility of physical security.A technical solution,including the use of cryptographic mechanisms is required.This technical solution will include a system for managing cryptographic keys.The mechanisms listed above include a number of channels where the message travels via wireless sig-nals.In SCADA systems that use these channels, messages can be marked for a single node,or can be sent to all nodes.2.5.2RTU-RTU CommunicationRTU-RTU communication is possible,and occurs in a controlled manner.However,not all RTUs will communicate with other RTUs.There are a num-ber of scenarios where RTU-RTU communication is required.These scenarios can all be planned for in advance.Any security solution designed for master-RTU communication should also support RTU-RTU communication.In situations where an RTU is able to control another RTU,the RTU that acts as a mas-ter should be physically secured.Figure1:SCADA Architecture2.5.3Other CommunicationOther communication channels include:HMI-Master Communication:The HMI is able to communicate with the master station.This communication is typically run using TCP/IP based protocols,and utilises a client server ar-chitecture.HMI-Historian Communication:The HMI-Historian communication is similar to that of the master-HMI channel.2.6Key SCADA Architectural Constraintsand RequirementsTable1outlines the key elements of the SCADA ar-chitecture that impact the design of a security ar-chitecture for SCADA systems.These elements are referred to as(C1)to(C10)in the remainder of the paper.The SCADA architecture outlined above does not match that of popular computer networks.The differences have an impact on the security require-ments,therefore a specific solution for SCADA se-curity is needed.As the HMI-Master architecture utilises a standard client-server architecture,standard security solutions can be applied to this part of the SCADA system.Of particular note are the requirements relating to performance.The RTU has low resources,and many of the communication mechanisms used have low bandwidth.In addition many of the processes that are controlled by SCADA systems need to be monitored and controlled in real time.Most nodes in the system will only communicate with a small num-ber of other nodes.Many SCADA systems are always on,and have been designed to be failproof.The phys-ical location of a RTU is dictated by the physical envi-ronment the RTU needs to interact with.This makes it difficult to apply physical security mechanisms to the device.RTUs have a long life time and are designed to last for at least ten years.Many RTUs have been deployed for up to twenty-five years.This in combination with the dispersed physical structure of SCADA systems means that rolling out changes to the RTUs will take a long time.When an RTU is initially added to the network,its clock should not be trusted,as there will have been no way of synchronising it with the master station clock.After the RTU has been installed,it will have its clock synchronised,in order to support timestamp-ing of messages.3Security RequirementsWhen looking at the security of a system,the require-ments can be classified in terms of:Confidentiality:limiting access to information or resources to those people.Integrity:ensuring that the data has not been changed(data integrity),and the origin has not be changed(origin integrity or authentication).This also includes user authentication. Availability:the ability to use the information or resource desired.(Bishop2002)In a SCADA system,these can be prioritised,with integrity of messages being the highest concern,fol-lowed by availability,and then confidentiality.The rationale for this prioritisation is seen below.3.1IntegrityIt is critical that messages between nodes are not tam-pered with,and that no new messages are inserted (data integrity).A malicious attacker could cause physical damage if they have the ability to alter or cre-ate messages.It is also important that the messages are authenticated,allowing confidence in the source of messages,and also preventing attackers from in-serting messages.User authentication should be performed using techniques familiar to standard client-server applica-tions.ID Constraint/Feature DescriptionC1Resource Constrained RTU RTUs have low processing power as well as limited persis-tent and working memory.C2High Resiliency Due to their interaction with the physical world,SCADAsystems have been designed to be always on,without anydowntime.Any change to this should be minimal.C3Low Bandwidth and Low Latency Communications Bandwidth is limited to9600baud on many systems,such as those that use satellites to communicate with remote devicesC4Long Node Life Nodes will typically last for up to25years,much longerthan the life spans of typical computer hardware compo-nents.C5Real Time The physical processes controlled by a SCADA system of-ten need to be interacted with in a real time manner.Thisconstraint is not constant across all SCADA systems.C6Structured Network The structure of the network and its communication chan-nels will be well defined.Ad hoc communication betweennodes are not required.C7Phased Delivery Due to the size of the systems,the real time properties,and long life span of RTUs,a phased rollout of communi-cation security is required,perhaps running over a numberof years,while legacy hardware that cannot support thesecurity is upgraded.C8RTUs Physically Insecure As RTUs are deployed to remote locations,they cannotalways be physically secured.C9RTU Clocks Initially Unsy-chronised When initially installed the clock of an RTU cannot be relied on.C10RTU Clocks Sychronised Af-ter Initialisation Once the system has been initialised,the SCADA system will ensure clocks are synchronised.Table1:SCADA system constraints.3.2AvailabilityMany SCADA systems need to be available for use at all times,as outages can cause physical damage or threaten human life.Countermeasures designed to provide improved integrity or confidentiality need to be implemented in such a way that the availability of the system is not decreased.The proposed crypto-graphic solution should not require messages outside of the initialisation of the system,and dependence on new messages should be kept to a minimum.3.3ConfidentialityConfidentiality is a much lower priority for most SCADA systems.Support for confidentiality is im-portant,but will not be used in some environments. Systems that need to respond instantaneously(C5) and those that contain resource constrained RTUs (C1)may not be able to afford the extra process-ing overheads associated with providing confidential-ity services.3.4Key Establishment Requirements Having a set of well defined requirements is critically important for a key establishment system.This facil-itates thorough analysis of the system,including the use of provable security techniques.Thekey management requirements are outlined in Table2.In this table,A and B refer to the en-tities exchanging keys(master stations and RTUs in SCADA).The definitions of goals are based on those given by Boyd&Mathuria(2003).In listing these requirements,there is some redun-dancy.Any protocol that provides mutual key au-thentication will also provide mutual entity authenti-cation.Similarly,a protocol that provides key confir-mation will also ensure key integrity.4Proposed Architecture for Secure Commu-nicationThe architecture outlined below focuses on key man-agement for point-to-point communication.The keys being managed are ones that would be suit-able for the AGA12-1standard(AGA12-1Work-ing Group2005).Many of the SCADA systems re-quire broadcast communication.Secure broadcast(as opposed to point-to-point)message transfer is not within the scope of this paper.Sending messages over insecure channels(such as the Internet,and radio)to a specific node is supported.TheµTESLA protocol, tailored for sensor networks may be a suitable broad-cast option(Perrig et al.2002).Figure2depicts a SCADA system,including an additional entity,the Key Distribution Center (KDC).Nodes that do not form a part of the new security architecture are excluded.4.1Design GoalsThe goals of the security architecture are driven by the combination of security requirements and the con-straints inherent in SCADA systems.These factors combine to form a unique environment,leading to the design goals outlined below.As the system has strict performance constraints (C1,C3and C5),only symmetric cryptographic tech-niques will be used.Due to the network structure, which does not require support for ad-hoc node-to-node communication(C6),this solution will not pro-duce the problem of key explosion that is usually found with symmetric systems.Figure2:Key Management Architecture It is critical that the dependence on nodes such as the KDC is kept to minimum after the successful de-ployment of a node in order to maintain the resiliency of the system(C2).This requirement is met by limit-ing the dependence on the KDC to the establishment of a node-node key(see section5.2),and deriving ses-sion keys,rather than communicating them.As the nodes are physically insecure(C8),the se-curity system needs to ensure that the compromise of a node has limited promising a node should not compromise all communication.As a security system cannot be instigated across all nodes simultaneously(C4and C7),a node needs to be able to communicate with other nodes that are know to be insecure,without using the security system.4.2Key Distribution CenterThe KDC will be used to maintain a long term key for each node in the system.The KDC will also con-tain information regarding the system structure,and will be responsible for allowing and denying key es-tablishment requests.In performing this role,it will be facilitating the distribution of keys,and the ini-tialisation of trust relationships between nodes.In addition,key revocation messages will be issued by the KDC.The KDC should be co-located with the master station of the SCADA system,which means that mes-sages between the KDC and master station will be efficient.In addition physical security will be high,as the master station has a requirement of being physi-cally secured.If possible,the KDC should be imple-mented using a secure hardware device.4.3Trust RelationshipsIn general RTUs will be deployed into untrusted loca-tions,which leads to the assumption that the RTUs are untrusted.The proposed key management system allows for a node to be compromised without compro-mising the entire system.The master station will be trusted by RTUs.In the case of an environment that includes sub-master stations,each master station(or sub-master station) will be trusted by the nodes that are subordinate toRequirement Description ImportanceMutual Entity Authentication Both entities(A and B)involvedin the protocol will have a freshassurance that the other entityparticipated in the protocol.It is critical in establishing the key that both the master station and RTU are assured of the existence of each other.Key Freshness Both entities are assured that thekey is fresh(i.e.it has just beencreated).Key freshness is required to prevent adversaries from reusing a revoked key.Key Authentication The key is only known by the par-ties involved in the protocol.This requirement means that the key is not known to an adversary.Mutual Key Confirmation A and B have assurance that thekey has successfully been estab-lished,and is ready for use.It is critical that both nodes are as-sured that the key has been success-fully communicated,and is available for use.Table2:Proposed Key Establishment Requirementsit.Each master station should be physically secured, because an attacker would be able to control any of its children if the master station is compromised.All nodes will trust the KDC.Each node will have a key that it shares with the KDC.The trust relation-ships between a master station and its child RTUs will be initiated via the KDC.An RTU may be configured to act as a backup sub-station to other RTUs.In this case it will be treated as a sub-master station,with the same requirements for physical security.The trust relationship between the backup master RTU,and other RTUs will be ini-tiated through the KDC.As communication is performed using wireless sig-nals(such as radio,WiFi and satellite),the channels need to be treated as insecure.It is trivial for an adversary to insert,modify or delete messages from these channels.The only guarantee the system has is that messages are delivered some of the time.4.4Secure Communication ChannelsThe architecture proposed will make use of a series of keys,with different uses.The keys are outlined below:long term node-KDC key:This key will be shared between a node and the KDC,and will be used when establishing keys used for communication.long term node-node key:Nodes that need to communicate with each other will share a key that is established using the mechanism in sec-tion5.2.session key:Underlying encryption mechanisms may or may not recommend the use of a session key,used for encrypting messages.broadcast keys:The broadcast mechanism(not specified in this document),will require indepen-dent keys.4.5Use of KeysThe keys that are generated will be used to commu-nicate messages.As mentioned in section4.1,these messages need to be transmitted efficiently.As dis-cussed in section3,all communication requires mes-sage and source integrity,and where possible confi-dentiality should be provided.In environments where confidentiality produces excessive overheads,a Message Authentication Code(MAC),using the node-node(or session)key should be used.Where possible,confidentiality should be provided.The confidentiality and integrity services can then be provided using the encrypt and MAC approach(i.e.encrypt the message and then produce a MAC),or by using efficient authenticated encryption modes of operation such as those proposed by NIST(2003).5Proposed Key Management Mechanism (SKMP)Each of the keys outlined in section4.4will need to be managed.In order to implement SKMP,processes for each of the following need to be implemented: 1.Installing the node-KDC key on a node and theKDC before a node is deployed to the system;2.Exchanging the node-node key when installing anew node;3.Generating a session key that will be used formore direct communication;4.As the long term keys will not expire,there needsto be a mechanism for revoking these keys;and5.The KDC needs to be able to notify nodes thata node does not have security deployed,and re-quires unsecure messages to be sent and received to it.5.1Node-KDC KeyEach node in the proposed system will have a key which it shares with a key distribution center(KDC). Both the KDC and the node will need to keep this key secret.When adding a new node to the system,a node-KDC key will be configured and securely stored on the node and KDC.The key will be installed on the machines using a manual process.The node-KDC key will be used to send node-node key establishment messages between nodes and the KDC,as described in section5.2.As this key is only known by the KDC and the node which the key pro-tects,the risk of exposure is limited.5.2Node-Node Key EstablishmentThe node-node key establishment protocol will be a three party key establishment protocol that uses the KDC as a server.The node-KDC keys will be used to communicate with the server when running this protocol.Thefirst documented three party key estab-lishment protocol was developed in1978(Needham &Schroeder1978).The Needham-Schroeder proto-col establishes a key in a series of four messages with the use of a trusted third party.Unfortunately this protocol does not meet the requirements specified in Table2.The primary failing of the Needham-Schroeder protocol is that it does not provide key freshness,allowing adversaries to reuse earlier keys, using variants of an attackfirst proposed by Den-ning&Sacco(1981).Newer protocols based on the Needham-Schroeder protocol use one of three strate-gies for ensuring that the keys are fresh.5.2.1Time Based FreshnessProtocols have been proposed that include a time-stamp in the messages sent.An example of a key establishment protocol that provides these properties is the Kerberos Authentication Mechanism(Neuman &Ts’o1994).It is possible to meet the security re-quirements of Table2using this approach with only four messages.However synchronised clocks are re-quired for this to happen.It is not possible to have synchronised clocks when the Node-node keys are being established.Since the key initialisation is performed at the installation of the RTU,there is no way to ensure that the clocks are synchronised without sending messages through the network to confirm.While efficient techniques for this exist,time synchronisation needs to be per-formed securely and requires additional communica-tion,which means that in real terms,more than four messages need to be sent.5.2.2State Based FreshnessAnother approach that is not dependent on time de-pends on the use of a time variant parameter(TVP), the state of which is maintained by all nodes in the system.This approach can be implemented without any dependence on clock synchronisation.Numerous different techniques using this approach have been proposed.One approach that minimises the stor-age requirements on clients and servers is to use the clock of a trusted server to generate the sequence number(Mitchell2000).ISO11770-2Mechanism 8(ISO1996)depends on a TVP.In the state based options,nodes are required to maintain state so that old messages are identified. This means that nodes will need to maintain two vari-ables,one which is their long term key,the second be-ing the state.This is not suitable for the extremely resource limited SCADA systems.5.2.3Nonce FreshnessInstead of depending on time,nonces1are generated by the nodes establishing the key.Messages contain-ing the key material also include the nonce which the user maintains.The user then confirms the mes-sage.ISO11770-2Mechanism9(ISO1996)uses nonces,as well as other independently developed pro-tocols(Carlsen1994,Bauer,Berson&Feiertag1983, Bellare&Rogaway1995).These protocols all run in a series offive messages,and meet the requirements outlined in Table2.1A nonce is a n umber used once.1.B→A:N B2.A→S:N A,N B,B3.S→A:{N A,K AB,B,T ext1}KAS{N B,K AB,A,T ext2}KBS4.A→B:{N B,K AB,A,T ext2}KBS{NA,N B,B,T ext3}KAB5.B→A:{N B,NA,T ext4}KABFigure3:ISO11770-2Mechanism9Figure3describes the ISO11770-2mechanism9 protocol.Thisfigure uses the following conventions:•N A is a nonce generated by node A.•NAis a second nonce generated by node A.•S is the server(representing the KDC)•A and B are nodes that need to establish a key •A→B represents a message sent from A to B •K AB is a key shared by nodes A and B•{text}KABis the encryption of the message text, using the key K AB.In a SCADA system,nonces are the best way to ensure freshness.ISO11770-2Mechanism9is a protocol that uses nonces to provide freshness.SKMP utilises this standard protocol,with a minor enhance-ment.5.2.4Modification to11770-2Mechanism9 In the ISO11770-2protocol,there are two messages that are sent between the server and node A.In the SCADA environment,the master station and KDC will be co-located,making the master station the most efficient choice for node A.This means that the RTU will not need to directly communicate with the KDC.In most situations,the master station and KDC are the parties responsible for initiating the key ini-tialisation process.In order to do this,an additional message is sent from the master station or KDC to the RTU,requesting an initialisation of the protocol. This would be viewed as message0,the structure of which is shown in Figure4.The node S is the ini-tiator of the message,and may be either the master station,or the KDC.Node A is the master station, and node B is the RTU.After receiving this message, B will initiate the protocol of Figure30.S →B:A,BFigure4:Message to initiate11770-2Mechanism95.3Session Key DerivationIn some protocols there is an important requirement of supporting session-keys.In modern stream ciphers, this requirement is often avoided through the use of nonces.In order to improve the security against cryptan-alytic attacks,and minimise the consequences of ex-posure of keys,session keys should be used.In or-der to minimise the communication overheads,these。