苏科版七年级数学上册 一元一次方程易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)
1.如图,数轴上有、、、四个点,分别对应,,,四个数,其中,,与互为相反数,
(1)求,的值;
(2)若线段以每秒3个单位的速度,向右匀速运动,当 ________时,点与点重合,当 ________时,点与点重合;
(3)若线段以每秒3个单位的速度向右匀速运动的同时,线段以每秒2个单位的速度向左匀速运动,则线段从开始运动到完全通过所需时间多少秒?
(4)在(3)的条件下,当点运动到点的右侧时,是否存在时间,使点与点的距离是点与点的距离的4倍?若存在,请求出值,若不存在,请说明理由.
【答案】(1)解:由题意得:
∵
∴,
∴,
(2)8;
(3)解:秒后,点表示的数为,点表示的数为
∵重合
∴
解得 .
∴线段从开始运动到完全通过所需要的时间是6秒
(4)解:①当点在的左侧时
∵
∴
解得
②当点在的右侧时
∵
∴
解得:
所以当或时,
【解析】【解答】(2)若线段以每秒3个单位的速度,
则A点表示为-10+3t, B点表示为-8+3t,
点与点重合时,-10+3t=14
解得t=8
点与点重合时,-8+3t=20
解得t=
故填:8;;
【分析】(1)由与|d−20|互为相反数,求出c与d的值;(2)用含t的式子表示A,B两点,根据题意即可列出方程求解;(2)用含t的式子表示A,D两点,根据题意即可列出方程求解;(3)分两种情况,①当点在的左侧时②当点在的右侧时,然后分别表示出BC、AD的长度,建立方程,求解即可.
2.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:
(1)这批游客的人数是多少?原计划租用多少辆45座客车?
(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?
【答案】(1)解:设原计划租用x辆45座客年
根据题意,得45x+15=60(x-1)
解得x=5
则45x+15=45×5+15=240.
答:这批游客共240人,原计划租5辆45座客车。
(2)解:租45座客车:240÷45≈5.3(辆),
所以需租6辆,租金为220×6=1320(元).
租60座客车:240÷60=4(辆),租念为300×4=1200(元).
答:租用4辆60座客车更合算。
【解析】【分析】(1)设原计划租用x辆45座客车,根据等量关系,列出方程,求出x 的值,进而求出游客的人数,即可;
(2)分别求出租45座的车和60座的车的费用,进行比较,即可.
3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:
解:方程可化为:
或
当时,则有:;所以 .
当时,则有:;所以 .
故,方程的解为或。
(1)解方程:
(2)已知,求的值;
(3)在(2)的条件下,若都是整数,则的最大值是________(直接写结果,不需要过程).
【答案】(1)解:方程可化为:或,
当时,则有,所以;
当时,则有,所以,
故方程的解为:或
(2)解:方程可化为:或,
当时,解得:,
当时,解得:,
∴或
(3)100
【解析】【解答】(3)∵或,且都是整数,
∴根据有理数乘法法则可知,当a=-10,b=-10时,取最大值,最大值为100.
【分析】(1)仿照题目中的方法,分别解方程和即可;(2)把
a+b看作是一个整体,利用题目中方法求出a+b的值,即可得到的值;(3)根据都是整数结合或,利用有理数乘法法则分析求解即可.
4.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.
(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;
(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?
【答案】(1)解:设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,据题意,得
49+3x=100.
解得,x=17.
64+2y=100.
解得,y=18.
因为y>x,
所以,进入该公园次数较多的是B类年票.
答:进入该公园次数较多的是B类年票
(2)解:设进入该公园z次,购买A类、B类年票花钱一样多.则根据题意得
49+3z=64+2z.
解得z=15.
答:进入该公园15次,购买A类、B类年票花钱一样多
【解析】【分析】(1)设用100元购买A类年票可进入该公园的次数为x次,购买B类年票可进入该公园的次数为y次,根据总费用都是100元列出方程,并求得x、y的值,通过比较它们的大小即可得到答案;(2)设进入该公园z次,购买A类、B类年票花钱一样多.根据题意列方程求解.
5.已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.
(1)A、B的中点C对应的数是________;
(2)若点D数轴上A、B之间的点,D到B的距离是D到A的距离的3倍,求D对应的数.(提示:数轴上右边的点对应的数减去左边对应的数等于这两点间的距离);
(3)若P点和Q点是数轴上的两个动点,当P点从B点出发,以6个单位长度/秒的速度向左运动时,Q点也从A点出发,以4个单位长度/秒的速度向右运动,设两点在数轴上的E点处相遇,那么E点对应的数是多少?
【答案】(1)35
(2)解:设点D对应的数是x,则由题意,
得100﹣x=3[x﹣(﹣30)]