小学奥数染色问题和覆盖问题的讲解
小学奥数杂题染色问题【三篇】
小学奥数杂题染色问题【三篇】
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的
房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是
否能够找到.
【第二篇】
展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入
口进去,不重复地参观完全部展室后,从出口出来呢?
答案:
不能.对展室实行染色,使相邻两房间分别是黑色和白色的.此时入
口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个
展室,入口与出口展室的颜色应该不相同.
【第三篇】
染色问题基本解法:
三面涂色和顶点相关 8个顶点。
两面染色和棱长相关。即新棱长(棱长-2)×12
一面染色和表面积相关。同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6
0面染色和体积相关。用新棱长计算体积公式(棱长-2)×(棱长-2)×(棱长-2)
长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
小学奥数中的涂色问题
涂色问题的常见方法
与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。
一、区域涂色问题
1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种
颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?
分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=
2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理
求出不同的涂色方法种数。
例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:
(1)②与⑤同色、④与⑥同色,则有44A ;
(2)③与⑤同色、④与⑥同色,则有44A ;
(3)②与⑤同色、③与⑥同色,则有44A ;
(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有4
4A ;
所以根据加法原理得涂色方法总数为544A =120
例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色
小学奥数染色问题和覆盖问题的讲解
小学奥数染色问题和覆盖问题的讲解
小学奥数网权威发布小学奥数染色问题和覆盖问题的讲解,更多小学奥数染色问题和覆盖问题的讲解相关信息请访问无忧考网小学奥数频道。
【导语】经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。以下是无忧考网整理的相关资料,希望对您有所帮助。
先定义几个小名词:
日字形覆盖:用于覆盖的标准单元是由2个并排的正方形格子组成。
目字形覆盖:用于覆盖的标准单元是由3个并排的正方形格子组成。
3-L形覆盖:用于覆盖的标准单元是由3个组成L形状的格子组成。
4-L形覆盖:用于覆盖的标准单元是由4个组成L形状的四个格子组成,一边长一边短。
凸字形覆盖:用于覆盖的标准单元是由4个组成汉字“凸”字形状的四个格子组成。
田字形覆盖:用于覆盖的标准单元是由4个组成汉字“田”字形状的四个格子组成。
完全覆盖的定义:用规定形状的标准单元去铺盖指定的方格棋盘,无重复无遗漏,则称该棋盘被所用的标准单元完全覆盖。
一系列的小题目,从易到难,慢慢培养解题能力。更复杂的染色覆盖问题,往往需要涉及到用多种颜色进行染色,下面的题目仅有一个需要这种技巧。
题1:M×N的棋盘存在日形覆盖,当且仅当M,N中至少有一个为偶数。
题2:一个5×7的棋盘,去掉第二行第四列上的小方格之后,剩下部分有日形覆盖。
题3:如果m*n不能被3整除,则m*n的棋盘不可能有3-L覆盖。
题4:若M,N都是奇数,则去掉任何一个方格,剩余的部分不存在日字形覆盖。
五年级下册奥数试题-组合数学之染色与覆盖 全国通用(含答案)
组合数学之染色与覆盖
例1.有一次车展共36个展室,如下图,每个展室与相邻的展室都有门相通,入口和出口如图所示。参观者 (填“能”或“不能”)从人口进去,不重复地参观完每个展室再从出口出来。
解:答:不能;
如图将展室黑白相间染色,入口为白色,出口也是白色,而走遍36个展室,从白到黑,再从黑到白,共走了35步,最后应该走到黑格,而出口仍然是白格,矛盾,所以无法完成。
例2.棋盘由下图所示的9个小圆圈排列而成,用1~9编号,在3号和9号的小圆圈中各方一枚棋子,分别代表警察和小偷。若两个小圆圈之间有线相连,则棋子可以从其中一格走入另一格,现在由警察先走,两人轮流,每人每次走一步,每步可以从一格走到有线相连的临格之中。如果在6步之内警察走入小偷所在的格子中,就算警察抓住了小偷而立功获胜;如果警察走了6步还没有抓住小偷,就算他失职而失败。问警察应如何取胜。
解:警察先从3走到1,则小偷从9走到7(或8);第2步,警察走到2,小偷走到6(或9); 第3步,警察走到3,小偷走到7或8;第4步,警察走到4,小偷走到9;
第5步,警察6,小偷无论是走到7(或8),警察在第6步一定可以获胜。
例3.空间六点任三点不共线,任四点不共面,成对地连接它们得到十五条线段,用红色或蓝色染这些线段(一条线段只染一种颜色),求证:无论这么染,总存在一个同色的三角形。
解:设六点为A 、B 、C 、D 、E 、F ,从A 点出发的五条线段AB 、AC 、AD 、AE 、AF 中至少有3条是同色的,不妨设AB 、AC 、AD 为红色,
解决小学奥数问题的方法:染色分类法
一种解决数学问题的新方法:染色分类法
【摘要】:在现实生活中,有一些判断能与否的数学问题涉及到的知识点很少,
难以快速地找到解题思路。本文主要介绍一种解决这类数学问题的新方法:染色分类法。对研究对象进行染色,可以形象、直观地使某些隐蔽的条件显露,从而 获得简明的解答。
【关键字】:染色 分类 数学问题
一、 用染色解决图形覆盖问题:
在中学数学竞赛中,我们常常会碰到这样的题目:用多个几何图形去覆盖另一个几何图形,问能否实现。如果我们每一种情况都去试,不仅花时间,而且容易因考虑不全而出错。对于这一类问题,我们不妨对涉及到的几何对象进行染色,再来寻找解题思路。
问题一:能否用2个田字形和7个T 字形恰好覆盖一个6⨯6网格?
分析:这道题看似简单,但是如果要穷尽每种情况去试一试,却不太可行。考虑到网格中共有36个小方格,不妨通过染色把这36个小方格分成黑白两类,然后看用田字形能覆盖住多少个,T 字形能覆盖住多少个,从而判断该题是否有解。 解:由于用黑白两种颜色对6⨯6 网格进行染色(如图),可以看到图中有18个黑格,18个白格。而用一个田字形,无论放在哪里,都能覆盖住一个黑格,一个白格;而T 字形能覆盖住1个或3个白格。所以2个田字形和7个T 字形总共覆盖住奇数个白格,而6⨯6 网格中总共有18(偶数)个白格,所以不能完全覆盖住。
问题二 :要用40块方形瓷砖铺设如图2所示图形的地面,但当时商店只有长方形瓷砖,每块大小等于方形的两块,一人买了20块长方形瓷砖,结果弄来弄去始终无法完整铺设好,你能否用这20块瓷砖(不分割任何一块)帮他铺好地面?
五年级奥数:染色问题
五年级奥数:染色问题
染色问题的解题思路
染色问题是数奥解题中的难点,这类问题初看起来好像无从着手,其实只要认真思考问题也很容易解决,下面就染色问题的解题思路说一下。
图一
首先,拿到一道题先认真观察,看这个题的突破点。什么是染色问题的突破点呢?那就是找染色区域中的一个最多,这个最多是指一个区域,其他区域与它连接的最多。
例如图一中A区域A与B、C、D、E、 F连接最广所以A为特殊区域。找到这个区域问题就容易解决了。这个区域可以任意添色就是染最多的颜色。
本题中有4种颜色那么A可以染4种颜色了。完成这个事件需要A、B、C、D、E、F6步所以用乘法原理。这道题找到了最特殊的A区域第二特殊区域和第三区域的确定也就容易了,C区域是与A相连,连接区域的数量仅次于A区域图一中的C和E区域都可以做第二个特殊区域了,但只能选一个,我们把C当成第二特殊的区域,则C可以染3种颜色。区域B跟A、C相连那么 B可以染2种。
D与A、C、E相连则只能选1种,对吗?我们仔细观察,按顺序说A----4,C------3,B-------
2,D则连接A、C当A 选色后C有3种可能,D在A、C选色后只有2种可能。
E连接A、D也有两种可能。F也是连接着A、E有两种可能。这道题就解出来了。有
4×3×2×2×2=96种可能。
这道题跟以下一道题有异曲同工之效,大家不妨一起看下图二。
图二
图中A与B、C相连有4种染色方式,为第一特殊区域。而B是与A相连的第二特殊区域(切记,此时选第二特殊区域,乃是跟第一特殊区域相连的一个区域)B有3种可能,C连接A、B则有2种可能,D连接B、C则有2种可能,同理E也有2种可能。
小学奥数杂题染色问题【三篇】
小学奥数杂题染色问题【三篇】
导读:本文小学奥数杂题染色问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】 1.如图是一套房子的平面图,图中的方格代表房间,每个房间都有通向任何一个邻室的门.有人想从某个房间开始,依次不重复地走遍每一个房间,他的想法能实现吗?
解析:对房间染色,使最下面的两个房间染成黑色,与黑色相邻的房染成白色,
则图中有7个黑色房间和5个白色房间.
如果要想不重复地走过每一个房间,黑色与白色房间数应该相等.故题中的想法是不能实现的.
点评:完成本题也可根据要求据图中的房间实际找下路线,看是否能够找到.【第二篇】展览会有36个展室(如图),每两相邻展室之间均有门相通.能不能从入口进去,不重复地参观完全部展室后,从出口出来呢? 答案:不能.对展室进行染色,使相邻两房间分别是黑色和白色的.此时入口处展室的颜色与出口处展室的颜色是相同的,而不重复参观完36个展室,入口与出口展室的颜色应该不相同. 【第三篇】染色问题基本解法:三面涂色和顶点有关8个顶点。两面染色和棱长有关。即新棱长(棱长-2)×12一面染色和表面积有关。同样用新棱长计算表面积公式(棱长-2)×(棱长-2)*6 0面染色和体积有关。用新棱长计算体积公式(棱
长-2)×(棱长-2)×(棱长-2)长方体的解法和立方体同理,即计算各种公式前长、宽、高都要先减2再利用公式计算。
六年级下册奥数讲义-奥数方法:染色法 全国通用
在解决某些数学问题时,我们常常需要把有关元素适当分类.为了使这种分类更为形象,我们可以设想把元素分别涂上不同的颜色.这类用涂色的方法来寻求解题思路的方法叫做染色法.
根据染色对象的不同,染色法一般分为方格染色、线段染色和点染色三种,在运用染色法解题的过程中,常结合抽屉原理等组合知识和图论初步知识.解题步骤一般分为:
(1)审题,把实际问题用染色图表示出来;
(2)运用抽屉原理或图论知识对染色图进行分析;
(3)找出问题的答案.
[例1] 在平面上有一个27×27的方格棋盘,在横盘的正中间摆好81枚棋子,它们被摆成一个9×9的正方形.按下面的规则进行游戏:每一枚棋子都可沿水平方向或竖直方向越过相邻的棋子,放进紧挨着这枚棋子的空格中,并把越过的这枚棋子取出来.问:是否存在一种方法,使棋盘上最后恰好剩下一枚棋子?
思路剖析
本题的游戏规则是一枚棋子越过相邻的棋子进
行移动,故每一次移动会影响3个棋盘方块的棋子
数,可考虑用3种颜色对棋盘染色,研究其变动规
律,推出答案.
解答
如图1所示,将整个棋盘的每一格都分别染上红、白、黑三种颜色,这种染色方式将棋盘按颜色分成了三个部分.按照游戏规则,每走一步,有
两部分中的棋子数各减少了一个,而第三部分的棋子数的奇偶性都要改变.
因为一开始时,81个棋子摆成一个9×9的正方形,显然三个部分的棋子数是相同的,故每走一步,三部分中的棋子数的奇偶性是一致的.
但如果在走了若干步以后,棋盘上恰好剩下一枚棋子,则两部分上的棋子数为偶数,而另—部分的棋子数为奇数,这种结局是不可能的,即不
存在一种走法,使棋盘上最后恰好剩下一枚棋子.
六年级奥数题及答案-有多少种不同染色方法?
六年级奥数题及答案-有多少种不同染色方法?
如图,地图上有A,B,C,D四个国家,现用五种颜色给地图染色,要使相邻国家的颜色不相同,有多少种不同染色方法?
解答:为了按要求给地图上的这四个国家染色,我们可以分四步来完成染色的工作:
第一步:给A染色,有5种颜色可选。
第二步:给B染色,由于B不能A与同色,所以B有4种颜色可选。
第三步:给C染色,由于C不能与A、B同色,所以C有3种颜色可选。
第四步:给D染色,由于D不能与B、C同色,但可以与A同色,所以D有3种颜色可选。
根据分步计数的乘法原理,用5种颜色给地图染色共有种5*4*3*3=180不同的染色方法。
六年级奥数:棋盘的覆盖
六年级奥数:棋盘的覆盖
棋盘的覆盖
用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。
实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。
棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。
例1 要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?
分析与解:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。经试验,不可能拼成边长为3的正方形。所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形
36÷3= 12(个)。
分析与解:在五年级学习“奇偶性”时已经讲过类似问题。左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。我们将左上图黑白相间染色,得到右上图。细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,
不可能盖住左上图。
例3 下图的七种图形都是由4个相同的小方格组成的。现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?
分析与解:先从简单的情形开始考虑。显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。经试验,用6种图形也可以拼成4×7的长方形(见下图)。
能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。但事实上却拼不成。
小学奥数中的涂色问题
涂色问题的常见方法
与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。
一、区域涂色问题
1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种
颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种?
分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240⨯⨯⨯=
2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:
(1)②与⑤同色、④与⑥同色,则有44A ;
(2)③与⑤同色、④与⑥同色,则有44A ;
(3)②与⑤同色、③与⑥同色,则有44A ;
① ②③
④ ⑤ ⑥
(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120
例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色
小学奥数模块教程染色问题(一)
染色问题(一)
染色问题是一种将题目研究对象分类的形象化方法,通过将问题中的对象适当染色,我们可以更形象地观察分析出其中蕴含的关系,再经过一定的逻辑推理,便能得出问题的答案。因此,这里的染色问题指的是一种解题方法。这类问题不需要太多的数学知识,但技巧性、逻辑性较强,要注意学会集中典型的染色方法。
根据具体题目的研究对象,染色方法大致可以分为对点染色、对线段染色、对方格染色和对区域染色。对方格染色常用的是黑白方格相间染色,也叫自然染色。
例1如右图,在5×5方格的A格中有一只爬虫,它每次总是朝上
下左右方向爬到相邻的方格中。那么他能否不重复的爬满每个方格再回
A
到A格中?
解:有小虫的爬法,可黑白相间对方格自然染色,于是小虫只能
由黑格爬到白格或白格爬到黑格。所以它由A出发回到A,即黑格爬到
黑格,必须经过偶数步。
而小方格为5×5=25个,每格爬过一次,就应该为25步,不是偶
数。于是这只爬虫不可能不重复地爬遍每格再回到A格。
例2 有一次车展有6×6=36个展室,如图。每格展室与相邻的展室都有门相通,入口和出口如图所示。参观者能否从入口进去,不重复地参观完每格展室在从出口出来?
解:如图,对每个展室黑白相间染色,同样每次只能冲黑格到白格或
者从白格到黑格。
入口和出口都是白格,故线路黑白相间,首位都是白格,于是应该
白格比合格多1个,而实际上白格、黑格都是18个,故不能做到不重
复走遍每个展室。
例3 右图是某一套房子的平面图,共12个房间,每相邻两间房间都有
门相通。请问,你能从某个房间出发,不重复地走完每个房间吗?
小学奥数中的涂色问题
涂色问题的常见方法
与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。
一、区域涂色问题
1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种
颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种
4种方法,接着给③号涂色方法有3涂色方法有543
4⨯⨯⨯=2、 求出不同的涂色方法种数。
例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:
(1)②与⑤同色、④与⑥同色,则有44A ;
(2)③与⑤同色、④与⑥同色,则有44A ;
(3)②与⑤同色、③与⑥同色,则有44A ;
(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有4
4A ;
所以根据加法原理得涂色方法总数为544A =120
例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种 分析:依题意至少要用3种颜色
1) 当先用三种颜色时,区域2与4必须同色,
2) 区域3与5必须同色,故有34A 种;
3) 当用四种颜色时,若区域2与4同色,
4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有44A 种,故用四种颜色时共有244A 种。由加法原理可知满足题意的着色方① ②③ ④ ⑤ ⑥
小学奥数 小学五年级奥数 春季班 染色与覆盖(一)
染色与覆盖(一)
崔帅帅一个暑假的研究成果
三个不等式:
五年级一班有35名同学,共分成5排,每排7人,坐在教室里,每个座位的前后左右四个位置都叫作他的邻座。如果要让这35名同学各人都恰好坐到他的邻座上去,能办到吗?为什么?
有一次车展共25个展室,如图,每个展室与相邻的展室都有门相通,入口和出口如图所示。参观者能否从入口进去,不重复地参观完每个展室再从出口出来?
棋盘由如图所示的9个小圆圈排列而成,用1~9编号。在3号和9号小圆圈中各放一枚棋子,分别代表警察和小偷。若两个小圆圈之间有线相连,则棋子可以从其中的一个走入另一个.现在由警察先走,两人轮流,每人每次走一步,每步可以从一格走到有线相连的邻格之中。如果在6步之内,警察走入小偷所在的格子之中,就算警察抓住了小偷而立功获胜;如果警察走了6步还没有抓住小偷,就算他失职而失败。问:警察应如何取胜?
右图是由40个小正方形组成的图形,能否将它剪裁成20个相同的长方形?
如图,缺两格的8×8=64方格共有62个格,能否用31个图不重复地盖住它且不留空隙?
一只电动老鼠从右图的A点出发,沿格线奔跑,并且每到一个格点不是向左转就是向右转。当这只电动老鼠又回到A点时,甲说它共转了81次弯,乙说它共转了82次弯,丙说它共转了83次弯,丁说它共转了84次弯。如果四人有一人说对了,那么谁正确?
学而思奥数2011年五年级春季班第三讲染色与覆盖
第三讲 染色与覆盖
本讲我们将一起学习染色与覆盖。而这里所说的染色问题并不是要求如何染色,然后有多少种染色方法等数学问题。而是一种解决逻辑推理题的一种方法,一种将研究对象分类的形象化的方法。通过将要解决的问题适当的染色,可以使我们更形象的观察分析其中所蕴含的关系,在经过一定的推理从而得到问题的答案。
知识构架图: 染色问题 座位问题(例 )路径问题(例 )结点问题(例 )
覆盖问题 一般覆盖(例 ) 特殊形状覆盖(例 )
例题讲解
一、 染色问题
1、 座位染色问题
例1:分析题中规定每个座位的前后左右都是他的邻座,那么35名同学每个人都恰好坐到它的邻座上
能否办到?像这种问题我们该如何考虑呢?直接一步一步操作吗?很显然是很不现实的,那么
有什么方法能让我们更直接的找到答案呢?染色。我们将35个座位染成黑白相间的形式,一眼
就能看出,每个黑色的座位都是白色座位的邻座,也就是说如果35名同学每个人都恰好能坐到
它的邻座上,那么必然是,黑白位置对换,但从图中我们看到黑色17格,白色18格,黑白个
数不相等,所以无法办到。
提高练习:(1)某影院有31排,每排29个座位,某天放映了两场电影,每个座位上都坐了一个观众,
如果要求每个观众在看第二场电影时必须跟他前后左右相邻的某一观众交换座位,这样
能办到吗?
提示:总共31×29=899个座位,染成黑白相间的情况时黑白个数不相等,所以办不到。
(2)五年级一班有49名同学,共分成7排,每排7个人。新年到了,每个同学都准备了一
个礼物送给自己前后左右相邻的某一个同学,那么有没有可能每个同学都刚好收到一个
小学奥数中的涂色问题
涂色问题的常见方法 与涂色问题有关的试题新颖有趣,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,故这类问题的利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法。
一、 区域涂色问题
1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。
例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,
相邻部分涂不同颜色,则不同的涂色方法有多少种?
分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有
5434240⨯⨯⨯=
2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。
例2、(2003江苏卷)四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。
分析:依题意只能选用4种颜色,要分四类:
(1)②与⑤同色、④与⑥同色,则有44A ;
(2)③与⑤同色、④与⑥同色,则有44A ;
(3)②与⑤同色、③与⑥同色,则有44A ;
(4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为544A =120
例3、(2003年全国高考题)如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数染色问题和覆盖问题的讲解
日字形覆盖:用于覆盖的标准单元是由2个并排的正方形格子
组成。
目字形覆盖:用于覆盖的标准单元是由3个并排的正方形格子组成。
3-L形覆盖:用于覆盖的标准单元是由3个组成L形状的格子组成。
4-L形覆盖:用于覆盖的标准单元是由4个组成L形状的四个格
子组成,一边长一边短。
凸字形覆盖:用于覆盖的标准单元是由4个组成汉字“凸”字形
状的四个格子组成。
田字形覆盖:用于覆盖的标准单元是由4个组成汉字“田”字形
状的四个格子组成。
完全覆盖的定义:用规定形状的标准单元去铺盖指定的方格棋盘,无重复无遗漏,则称该棋盘被所用的标准单元完全覆盖。
一系列的小题目,从易到难,慢慢培养解题水平。更复杂的染色
覆盖问题,往往需要涉及到用多种颜色实行染色,下面的题目仅有一
个需要这种技巧。
题1:M×N的棋盘存有日形覆盖,当且仅当M,N中至少有一个为
偶数。
题2:一个5×7的棋盘,去掉第二行第四列上的小方格之后,剩下部分有日形覆盖。
题3:如果m*n不能被3整除,则m*n的棋盘不可能有3-L覆盖。
题4:若M,N都是奇数,则去掉任何一个方格,剩余的部分不存
有日字形覆盖。
题5:证明,一个8*8的棋盘不可能用15个凸形块和一个田字形块覆盖。
题6:证明,一个8*8的棋盘去掉左上角和右下角的两个方格后,剩下的62个方格不可能实现日形覆盖。
题7:一个3*7的棋盘,用红、蓝两种颜色染色,证明,总有四
个同色的方格位于一个长方形的四个角上。
题8:一个3*7的棋盘不存有3-L覆盖。提示:本题目需要用多
种颜色染色。
题9:若m*n的棋盘能够实现4-L覆盖,证明m*n能够被8整除。
题10:7*9的棋盘中,挖去位于第四行,第六列的小方格,证明
剩下的部分能够实现日形覆盖。
题11:在6*6的正方形棋盘上的各个小方格上,分别写上从1到36的36个数,要求相邻成“凸”字形的四个方格内的数字之和都为偶数,存有这种可能吗?
题12:假定8*8的棋盘是用64个正方形马赛克组成,每个马赛
克能够翻动,而且每个马赛克正反两面一个为白色,一个为黑色。现
在开始翻转部分马赛克,但是要求每次必须同时翻动9块(上次翻动
的下一次还能够翻动),试问:是否能够经过有限次翻动之后,得到
一个和原来黑白颜色正好相反的棋盘?
题13:某个展览大厅是一个6*6的棋盘状,每个棋盘格子是一个展览室,相邻展览室之间有门相通。现在有人想从入口开始,不重复
不遗漏地走完所有的展览室。已知该展览室的入口在左上角,出口在
右下角,问,有无这种行走路径?
题14:一个2*8的棋盘,水平线和垂直线相交的部分称之为格点。对格点用红蓝两种颜色染色。证明:无论如何,一定存有两条水平线
和两条垂直线,它们所形成的格点是同一种颜色。