《整数指数幂》教学设计
《15.2.3 整数指数幂》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册
《整数指数幂》教学设计方案(第一课时)一、教学目标:1. 理解整数指数幂的意义。
2. 能够正确计算底数为负数的幂。
3. 理解正整数次幂的底数可以是正数,也可以是负数,从而对幂的观点有更深层次的理解。
二、教学重难点:1. 教学重点:通过实例引导学生理解整数指数幂的意义,正确计算底数为负数的幂。
2. 教学难点:学生对整数指数幂的观点的理解和运用。
尤其是对于负数的幂的理解和应用,需要再三练习和引导。
三、教学准备:在课前准备好黑板、笔和纸等教学工具,并准备一些整数指数幂的实例和练习题。
同时,为了激发学生的学习兴趣,可以准备一些与整数指数幂相关的趣味性的小故事或图片。
四、教学过程:1. 引入教师通过展示一张纸对折约20次后比珠峰高度的图片,让学生感受到指数增长带来的视觉冲击力,引发学生对学习指数知识的兴趣和探究欲望。
学生活动:学生讨论,思考指数的意义,以及怎样计算较大的指数。
设计意图:激发学生的探究欲望,引发对指数观点的学习兴趣。
2. 探究教师引导学生探究整数指数幂的运算法则。
通过观察、猜想、验证等数学活动,让学生亲身经历知识的形成过程,培养其主动探究的习惯。
学生活动:(1)通过小组合作,探究底数为正整数、负整数、零的幂的运算法则;(2)举出一些例子进行验证;(3)将探究结果与同桌交流,再与全班同砚分享。
教师点评与补充:针对学生探究过程中出现的一些典型错误进行纠正,强调运算法则中的关键点。
设计意图:通过观察、猜想、验证等数学活动,让学生亲身经历知识的形成过程,培养其主动探究的习惯。
3. 练习教师出示一些整数指数幂的典型练习题,学生独立思考或进行小组讨论后回答。
教师对回答进行点评。
设计意图:稳固所学知识,提高学生对整数指数幂的运算能力。
4. 作业教师安置课后作业,包括基础题和提高题,供不同层次的学生选择,达到分层教学的目标。
设计意图:稳固所学知识,满足不同层次学生的学习需求。
5. 教室小结(1)学生自主总结整数指数幂的运算法则;(2)教师提问,学生回答,进一步强化学生对知识的理解和记忆。
整数指数幂教案
整数指数幂教案标题:整数指数幂一、教学目标:1. 理解整数指数的概念和含义;2. 能够计算任意整数指数幂;3. 运用整数指数幂进行实际问题的求解。
二、教学重难点:整数指数的含义及计算。
三、教学过程:1. 导入(5分钟)引入教材中的数学问题:“小明有两个相同的矩形纸片,第一个纸片的面积是10,第二个纸片的面积是100,为什么第二个纸片的面积比第一个纸片大呢?”引导学生思考,为后续学习整数指数幂的概念做铺垫。
2. 探究(15分钟)1)利用计算器,将2依次相乘若干次,观察结果。
引导学生发现,当指数为0时,结果为1。
2)同样的方法,让学生计算2的负指数(-1,-2,-3),引导学生总结结果与指数的关系。
3)由此引入整数指数幂的概念,解释0和负指数幂的含义。
3. 讲解(20分钟)1)引导学生理解整数指数幂的定义,例如:a^0 = 1,a^1 = a,a^2 = a * a,a^(-1) = 1 / a ...2)讲解整数指数幂的计算方法,例如:a^m * a^n =a^(m+n),(a^m)^n = a^(m * n),(a * b)^n = a^n * b^n ...3)解释整数指数的意义,例如:a^2表示a和a的乘积,a^(-2)表示a的倒数和它自己的乘积。
4. 实践(25分钟)1)板书几个整数指数幂的例子,如:2^3,3^(-2),(-5)^4 ... 2)通过计算器,让学生依次计算这些整数指数幂的结果。
3)让学生自己设计几个整数指数幂的计算题目,互相交换题目,并计算结果。
5. 小结(10分钟)回顾本节课的学习内容,总结整数指数幂的定义和计算方法。
鼓励学生进行反思和提问。
四、课后作业:1. 完成课后练习册上的相关习题;2. 准备整数指数幂的学习报告或小作文。
五、教学反思:整数指数幂是初中数学中的基础概念之一,它不仅在数学中具有重要地位,也在科学、工程等领域起到关键作用。
本节课通过引入实际问题,结合计算器的使用和学生的实际操作,使学生能够直观地理解整数指数幂的含义和计算方法。
人教版数学八年级上册15.2.3.1《整数指数幂》教学设计2
人教版数学八年级上册15.2.3.1《整数指数幂》教学设计2一. 教材分析《整数指数幂》是人教版数学八年级上册第15章的教学内容,这部分内容是对幂的运算规则的进一步拓展。
通过学习整数指数幂,学生可以更好地理解幂的概念,掌握幂的运算方法,并为后续学习分数指数幂和实数指数幂打下基础。
二. 学情分析学生在学习本节课之前,已经学习了幂的概念和幂的运算规则,对幂的基本概念和运算方法有一定的了解。
但部分学生可能对幂的运算规则理解不够深入,对于一些复杂指数幂的运算可能会感到困惑。
因此,在教学过程中,需要关注学生的学习情况,针对学生的掌握情况,进行有针对性的教学。
三. 教学目标1.理解整数指数幂的概念,掌握整数指数幂的运算方法。
2.能够运用整数指数幂的运算方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:整数指数幂的概念,整数指数幂的运算方法。
2.难点:对于一些复杂指数幂的运算,如何运用运算方法进行简化。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考,激发学生的学习兴趣。
2.使用案例教学法,通过具体的例子,让学生理解和掌握整数指数幂的运算方法。
3.采用小组合作学习的方式,让学生在小组内进行讨论和交流,提高学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例,用于引导学生进行思考和练习。
2.准备教学PPT,用于辅助教学。
3.准备练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾幂的概念和幂的运算规则,为新课的学习做好铺垫。
2.呈现(15分钟)介绍整数指数幂的概念,并通过PPT展示整数指数幂的运算方法。
3.操练(20分钟)让学生进行整数指数幂的运算练习,教师进行个别指导。
4.巩固(10分钟)让学生通过PPT上的练习题进行巩固,教师进行讲解和指导。
5.拓展(10分钟)让学生运用整数指数幂的运算方法解决实际问题,教师进行讲解和指导。
人教版数学八年级上册15.2.3.1《整数指数幂》教学设计1
人教版数学八年级上册15.2.3.1《整数指数幂》教学设计1一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与对数”的一部分,本节课主要让学生理解整数指数幂的概念,掌握有理数指数幂的运算性质。
教材通过引入幂的概念,让学生从具体实例中感受幂的意义,从而过渡到整数指数幂的定义和运算性质。
二. 学情分析学生在七年级时已经学习了有理数的乘方,对幂的概念有了一定的了解。
但八年级的学生对幂的概念的理解还停留在表面,对幂的运算性质还没有系统的认识。
因此,在教学过程中,需要引导学生从具体实例中抽象出幂的概念,让学生通过自主探究、合作交流,理解并掌握整数指数幂的运算性质。
三. 教学目标1.理解整数指数幂的概念,掌握有理数指数幂的运算性质。
2.培养学生观察、分析、抽象、概括的能力,提高学生的逻辑思维能力。
3.培养学生的自主探究、合作交流的能力,提高学生的数学素养。
四. 教学重难点1.重点:整数指数幂的概念,有理数指数幂的运算性质。
2.难点:对整数指数幂的理解,有理数指数幂的运算性质的运用。
五. 教学方法采用问题驱动法、案例分析法、自主探究法、合作交流法等,引导学生从具体实例中抽象出幂的概念,让学生通过自主探究、合作交流,理解并掌握整数指数幂的运算性质。
六. 教学准备1.准备相关实例,用于引导学生理解幂的概念。
2.准备PPT,用于展示教学内容和引导学生进行自主探究。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾七年级学习的有理数的乘方,让学生回忆幂的概念。
然后给出具体实例,如正方形的面积、球的体积等,让学生感受幂的意义。
2.呈现(10分钟)利用PPT展示整数指数幂的定义和运算性质,引导学生从具体实例中抽象出幂的概念,让学生理解整数指数幂的意义。
3.操练(10分钟)让学生进行自主探究,尝试解决一些与整数指数幂相关的问题,如:计算幂的值、判断两个幂是否相等等。
教师在这个过程中给予学生适当的引导和帮助。
《整数指数幂的运算法则》教案
《整数指数幂的运算法则》教案教案:整数指数幂的运算法则教学目标:1.学生能够理解和掌握整数指数幂的定义和运算法则;2.学生能够运用整数指数幂的运算法则解决相关问题。
教学重点:整数指数幂的定义和运算法则。
教学难点:整数指数幂的运算法则的灵活应用。
教学准备:1.教师准备黑板、粉笔、教学PPT等教学工具;2.学生准备纸和笔。
教学过程:Step 1:引入新知识(5分钟)教师通过简单的问题引入整数指数幂的运算法则,例如:3的4次方是多少?学生可以自由思考,然后提供答案,并解释自己的思路。
Step 2:概念讲解(15分钟)教师通过PPT或黑板,对整数指数幂的定义进行详细讲解。
首先解释什么是整数指数幂,然后给出相关示例进行说明。
教师可以通过图形或实际生活中的问题进行解释,使学生更好地理解整数指数幂。
Step 3:运算法则的讲解(30分钟)教师通过PPT或黑板,给出整数指数幂的运算法则,包括幂的乘法法则和幂的幂法则。
对于幂的乘法法则,教师可以通过例题进行演示,并让学生完成相应的计算;对于幂的幂法则,教师也可以通过例题演示,并让学生进行计算。
Step 4:练习(25分钟)教师让学生进行练习,包括计算给定的整数指数幂和解决相关的实际问题。
教师可以根据学生的能力安排不同难度的练习。
教师可以在黑板上出题,让学生上台进行解答,或者让学生在纸上写作业。
教师要及时进行检查和指导,确保学生能够正确理解和运用整数指数幂的运算法则。
Step 5:总结与拓展(10分钟)教师对整数指数幂的运算法则进行总结,并与学生一起回顾和讨论学到的知识。
教师还可以给学生提供一些拓展的问题,让学生进行思考和讨论,以加深对整数指数幂的理解。
Step 6:作业布置(5分钟)教师布置相关的作业,包括计算和应用题,要求学生在课后完成,并及时批改和反馈。
教学反思:整数指数幂的运算法则是初中数学的重要内容,对学生的数学思维能力和问题解决能力有着重要的影响。
在教学过程中,教师要注重引导学生思考和讨论,激发学生的学习兴趣和主动性。
《整数指数幂》教案
10-4= ____0_._0_0_0_1__;
议一议:指数与运算结果的0的个数有什么关系?
通过上面的探索,你发现了什么?:
一般地,10的-n次幂,在1前面有__n__个0.
想一想:10-21的小数点后的位数是几位?1前面有几个零?
科学记数法
用科学记数法表示一些绝对值较大的数的方法: 即利用10的正整数次幂,把一个绝对值大于10的数表示成 a×10n的形式,其中n是正整数,1 ≤ ︴a ︴<10. n等于原
数整数位数减去1. 用科学记数法表示一些绝对值小于1的数的方法: 即利用10的负整数次幂,把一个绝对值小于1的数表示成 a×10-n的形式,其中n是正整数,1 ≤ ︴a ︴<10. n等于原
数第一个非零数字前所有零的个数(特别注意:包括小数
点前面这个零).
典例解析
例 纳米是非常小的长度单位,1nm=10-9m.把1nm3的物体 放到乒乓球上,就如同把乒乓球放到地球上,1mm3的空
1 100
1
0.001 1000 10-3
10-2 ;
所以, 0.0000864=8.64 ×0.00001=8.64 ×10-5.
类似地,我们可以利用10的负整数次幂,用科学记数法表示一些绝 对值较小的数,即将它们表示成a×10- n的形式,其中n是正整数, 1≤∣a∣<10.
算一算:
10-2= ___0_._0_1_____; 0.00000001
所以
( a )n (a b1)n an bn , b
即商的乘方可以转化为积的乘方.
典例解析
例 计算:(1) a2 a5;
(3) (a1b2 )3 ;
(2)
整数指数幂教案
整数指数幂教案教案标题:整数指数幂教案教学目标:1. 理解整数指数幂的概念和性质。
2. 掌握整数指数幂的计算方法。
3. 能够应用整数指数幂解决实际问题。
教学重点:1. 整数指数幂的定义和性质。
2. 整数指数幂的计算方法。
教学准备:1. 教师准备:教案、黑板、粉笔、教学PPT等。
2. 学生准备:教材、笔记本、铅笔等。
教学过程:一、导入(5分钟)1. 引入整数指数幂的概念,让学生回顾指数的基本知识。
2. 提问:你知道整数指数幂是什么吗?举例说明。
二、讲解整数指数幂的概念和性质(10分钟)1. 教师用简洁明了的语言解释整数指数幂的概念,并讲解整数指数幂的性质,如幂的乘法法则、幂的除法法则等。
2. 教师通过示例演示整数指数幂的计算方法。
三、练习与巩固(15分钟)1. 学生进行课堂练习,计算给定的整数指数幂。
2. 学生上台展示解题过程,并与全班一起讨论解题方法。
四、拓展应用(10分钟)1. 教师设计一些实际问题,让学生运用整数指数幂的知识解决问题。
2. 学生进行小组讨论,提出解决问题的思路和方法,并向全班汇报。
五、归纳总结(5分钟)1. 教师引导学生总结整数指数幂的计算方法和应用技巧。
2. 教师对整个教学过程进行总结,强调重点和难点。
六、作业布置(5分钟)1. 布置课后作业:完成教材上的相关练习题。
2. 强调作业的重要性,并提醒学生及时解决问题。
教学反思:整数指数幂作为数学中的重要概念,需要学生掌握其定义、性质和计算方法。
通过本节课的教学,学生对整数指数幂有了更深入的理解,能够熟练地进行计算,并能够将所学知识应用于实际问题中。
在教学过程中,教师注重启发式教学,引导学生自主思考和解决问题,培养了学生的创新思维和合作能力。
同时,教师还注意了巩固和拓展应用的环节,让学生在实践中深化对知识的理解。
整个教学过程紧凑有序,学生参与度高,达到了预期的教学目标。
人教版数学八年级上册教学设计15.2.3《整数指数幂》
人教版数学八年级上册教学设计15.2.3《整数指数幂》一. 教材分析《整数指数幂》是人教版数学八年级上册第15章“指数与指数幂”的一部分,本节内容是在学生已经掌握了有理数的乘方、分数指数幂的基础上进行学习的。
本节课主要让学生了解整数指数幂的概念,掌握整数指数幂的运算性质,并能运用整数指数幂解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘方和分数指数幂的知识,具备了一定的数学基础。
但整数指数幂的概念和运算性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要教师通过生动的实例和生活中的实际问题,引导学生理解和掌握整数指数幂的概念和运算性质。
三. 教学目标1.了解整数指数幂的概念,掌握整数指数幂的运算性质。
2.能够运用整数指数幂解决实际问题。
3.培养学生的逻辑思维能力和数学素养。
四. 教学重难点1.整数指数幂的概念。
2.整数指数幂的运算性质。
3.运用整数指数幂解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生通过思考和讨论,自主探索整数指数幂的概念和运算性质。
2.用生活中的实际问题,激发学生的学习兴趣,提高学生运用数学知识解决实际问题的能力。
3.利用多媒体课件,生动形象地展示整数指数幂的概念和运算性质,帮助学生理解和记忆。
六. 教学准备1.多媒体课件。
2.教学素材(生活中的实际问题)。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实际问题,如:“电线塔的高度”、“楼层的高度”等,引导学生思考如何用数学知识来解决这些问题。
2.呈现(10分钟)介绍整数指数幂的概念,通过实例和讲解,让学生理解整数指数幂的意义。
3.操练(10分钟)让学生进行一些整数指数幂的运算,巩固学生对整数指数幂的理解。
4.巩固(10分钟)通过一些练习题,让学生进一步理解和掌握整数指数幂的运算性质。
5.拓展(10分钟)引导学生思考如何运用整数指数幂解决实际问题,让学生运用所学知识解决实际问题。
整数指数幂-人教版八年级数学上册教案
整数指数幂-人教版八年级数学上册教案教学目标1.理解指数幂的概念,并用自己的话表达出来。
2.掌握整数指数幂的运算规律和性质。
3.能够根据指数幂的性质解决实际问题。
4.发扬探究精神,积极探讨指数幂的应用。
教学重点1.整数指数幂的定义。
2.整数指数幂的运算规律和性质。
教学难点1.运用指数幂的性质解决实际问题。
2.学生掌握的指数幂知识的自主运用能力。
教学过程一、引入1.通过背景介绍引入本节课的内容,即整数指数幂的概念与性质。
2.让学生思考实际问题,并引导学生思考与指数幂相关的数学问题,激发学生学习的兴趣。
二、教学内容1.整数指数幂的定义:•定义:对于任意正整数 a,n,n>1,则a n表示 a 的 n 次方,称为 a 的 n 次幂。
2.运算规律和性质:•a m∗a n=a m+n;•(a m)n=a m∗n;•a m/a n=a m−n;•a0=1。
3.示例演示:通过具体的例子解释以上知识。
三、练习与巩固1.完成课本上的相关练习,包括填空、选择题和计算题。
2.根据给出的实际问题,让学生用指数幂的知识解决问题。
四、总结与提高1.总结本节课的重点内容,并与学生一起回顾整个学习过程。
2.提高:通过拓展练习加深学生对指数幂的理解与运用,让他们在未来的学习中可以更好地应用这些知识。
教学效果评估1.观察学生在课堂练习和解决实际问题的表现。
2.分发测验,了解学生掌握的指数幂知识程度和运用能力。
教学反思与改进1.教学过程中要注意理解学生的思维模式和思考方法,让他们在学习中更容易理解和运用相关的数学知识。
2.强化实际应用,让学生学会将学到的知识与实际问题相结合,提高他们的解决问题的能力。
整数指数幂说课稿
整数指数幂说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如报告总结、合同协议、申报材料、规章制度、计划方案、条据书信、应急预案、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample texts for everyone, such as report summaries, contract agreements, application materials, rules and regulations, planning schemes, doctrine letters, emergency plans, experiences, teaching materials, other sample texts, etc. If you want to learn about different sample formats and writing methods, please pay attention!整数指数幂说课稿整数指数幂说课稿(通用10篇)作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以让教学工作更科学化。
整数指数幂 教案
整数指数幂教案教案标题:整数指数幂教案目标:1. 理解整数指数幂的概念和性质。
2. 掌握整数指数幂的计算方法。
3. 能够运用整数指数幂解决实际问题。
教案步骤:引入(5分钟):1. 利用一个简单的问题或例子引起学生对整数指数幂的兴趣,例如:计算2的3次方等于多少?2. 引导学生思考指数的含义和作用,以及指数幂的定义。
概念讲解(10分钟):1. 介绍整数指数幂的定义:a的n次方(a^n)表示将a连乘n次。
2. 解释指数的正负性质:正指数表示连乘,负指数表示连除。
3. 强调指数为0时的特殊情况:任何数的0次方都等于1。
计算方法(15分钟):1. 教授整数指数幂的计算方法,例如:a的m次方乘以a的n次方等于a的m+n次方。
2. 解释指数幂的乘法法则:a的m次方的n次方等于a的m*n次方。
3. 演示几个例子,让学生通过计算来理解和掌握计算方法。
练习(15分钟):1. 分发练习题,包括计算和应用题。
2. 引导学生独立完成练习,鼓励他们在计算中灵活运用整数指数幂的性质和计算方法。
3. 督促学生相互讨论和解答问题,提供必要的指导和帮助。
拓展(10分钟):1. 引导学生思考整数指数幂在实际生活中的应用,例如:计算科学记数法、利用指数幂表示大数等。
2. 提供一些拓展问题,让学生运用所学知识解决更复杂的问题。
总结(5分钟):1. 总结整数指数幂的概念和计算方法。
2. 强调指数幂的性质和应用。
3. 鼓励学生继续巩固和应用所学内容。
评估:1. 随堂练习的成绩和参与度。
2. 学生对整数指数幂的理解和应用能力的表现。
3. 学生在拓展问题中的解决能力。
教案指导:1. 在讲解概念时,注意使用简单明了的语言和生动的例子,以帮助学生理解和记忆。
2. 在计算方法和练习环节,鼓励学生多进行口算和思考,培养他们的计算能力和逻辑思维能力。
3. 在拓展环节,引导学生思考和探索更多的应用场景,激发他们的兴趣和创造力。
4. 在评估环节,除了考察学生的计算能力,也要注重对学生的思维过程和解决问题的方式进行评估。
整数的指数幂教案
整数的指数幂教案教案标题:整数的指数幂教案教学目标:1. 理解整数的指数幂的概念和性质。
2. 能够计算和简化整数的指数幂。
3. 能够应用整数的指数幂解决实际问题。
教学重点和难点:重点:整数的指数幂的定义和计算方法。
难点:理解负指数幂的概念和运算规则。
教学准备:1. 教材:包括整数的指数幂的相关知识点和例题。
2. 教具:包括黑板、彩色粉笔、教学PPT等。
3. 学生练习册:包括相关的练习题和作业。
教学过程:一、导入新知识1. 利用教学PPT或黑板,引导学生回顾幂的概念和性质,引出整数的指数幂的概念。
2. 通过实例引导学生理解整数的指数幂的定义和运算规则。
二、整数的指数幂的计算方法1. 整数的指数幂的定义:a的n次幂(a^n)表示a连乘n次,其中a为底数,n为指数。
2. 整数的指数幂的计算规则:同底数幂相乘,指数相加;同底数幂相除,指数相减;幂的乘方,指数相乘。
三、负指数幂的概念和运算规则1. 引导学生理解负指数幂的概念:a的负n次幂(a^-n)表示a的n次幂的倒数。
2. 整数的负指数幂的运算规则:a^-n = 1/a^n。
四、应用实例训练1. 给学生提供一些整数的指数幂的计算和简化练习题,让学生通过实际计算加深对知识点的理解。
2. 带领学生解决一些实际问题,如物理、化学等领域中的应用题,让学生将知识应用到实际生活中。
五、课堂小结1. 对整数的指数幂的定义、计算方法和运算规则进行总结和归纳。
2. 引导学生查漏补缺,解答他们在学习过程中遇到的问题。
六、课后作业1. 布置相关的练习题和作业,巩固学生对整数的指数幂的理解和运用能力。
2. 鼓励学生在课外积极探索,发现更多整数的指数幂的应用场景。
教学反思:1. 整数的指数幂是数学中的重要知识点,需要通过丰富的例题和实际应用来帮助学生理解和掌握。
2. 在教学过程中,要注重引导学生思考和发现,培养他们的数学思维能力和解决问题的能力。
(完整word版)整数指数幂教案
教
学
总
结
负整数指数幂的意义:
负整数指数幂的引入,还将指数的取值范围扩大到了全体整数
整数指数幂的运算性质:
(1)
(2)
(3)
(4)
(5)
教师总结
重点总结负指数幂的产生过程、意义和运算性质,以及思想与方法.
使学生对本节课的整体有所把握,了解新旧知识的区别与联系,及新知的形成过程,提炼出思想方法,使学生的思维得以升华。
(4)
(5)
(6)
根据上述性质,计算下列问题:
(1) (2) (3)
(4)
教师展示PPT,学生独立完成。
教师在巡视中发现学生普遍存在的问题,通过提问学生并讲解的方式澄清问题,扫除学习障碍.
复习旧知,巩固基础,为新知识做好准备;同时摸清学生学习情况,适当调整教学策略。
提出问题引发思考
观察第四条性质,思考是否必须要求
例3利用负整数指数幂把下列各式化成不含分母的式子:
(1) ;(2) ;(3) ;
首先呈现1-3题,老师提问学生回答;澄清指数的负号表示取倒数,底数的负号表示负数。解题步骤是,先把负指数化为倒数的正指数再计算。
根据学生接受情况,例2例3灵活处理。
通过练习巩固,帮助学生更加深刻的理解负指数幂的含义;
在练习过程中,加深负指数是取倒数的理解.
让学生独立发现结论,并叙述,加深了学生对意义的理解;逐步完善限制条件,让学生明确底数与指数的取值范围。
简单练习及时巩固
根据负整数指数幂的意义,计算下列各题:
例1填空:
(1) , , ,
(2) , , ,
(3) , , ,
(4) , , ,
整数指数幂教案
整数指数幂教案【篇一:《整数指数幂》公开课教案】《整数指数幂》教案授课教师授课时间:授课班级:教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版)教材分析一教学内容《整数指数幂》是教材第五章第一节指数与指数函数的第一课时,主要内容是整数指数幂的推导过程及应用。
二地位与作用考虑到现阶段中等职业学校学生的实际情况,在教学中注意与初中有关知识紧密衔接.本节课的教学注重复习整数指数幂的推导, 使学生回忆起或重新学习整数指数幂的有关知识,为下阶段学习把整数指数幂推广到有理指数幂打下基础。
学情分析一知识基础高一学生已在初中阶段学习了整数指数幂的运算法则,但在零指数幂和负整数指数幂性质的探索环节中,课本的设计是通过引导学生猜想完成的,说理要求并不高。
大多数学生的数学基础较差, 学生对零指数幂与负指数幂规定的合理性认识不深。
〈二〉认知水平与能力:任教学生推导运算法则的能力较差,不能灵活运用幂的运算法则。
〈三〉任教班级特点和教学要求:该班学生的数学入学成绩只有三十多分,课前调查70%的学生对幂的意义认识不深,只能死记住整数指数幂的运算法则,对运算法则的来龙去脉搞不清,不少学生在初中没怎么学习数学,甚至放弃数学科的学习。
因此这章的第一节只一、温故知新[设计说明:下列活动,体现了从特殊到一般的认识过程,再现知识的发现过程,全体学生能参与到知识的探究中,让学生重新探索幂的意义及幂的运算法则,而不是急于给出结论,增强学生的学习信心,提高学生的学习兴趣.]探究活动〈一〉1、探索:23=(展开运算),有个2相乘,an有个a相乘,an叫做a的n次幂,其中a叫,n叫。
2、归纳 am?an=(m,n都是正整数)法则一:同底数幂相乘,底数不变,指数a5am25-3a?a=,则3=a=a,归纳n=(m,n都是正整数) aa23法则二:同底数幂相乘,底数不变,指数3、应用两个法则,体验成功4、深化提高题① -22?(-2)3=;②(-a)3?a4= ;探究活动〈二〉1、提出问题:(102)3 计错为105 ,如何纠正?(102)3的意义是2、探索:(102)3=(根据幂的意义展开运算)即:(102)3,3、归纳(am)n=m,n都是正整数)法则三:幂的乘方,底数不变,指数4、应用法则,体验成功①(34)2= ;②(a3)5= .5、混合运用①(x3)4?(-x2)5;②a5?a4=;③(-a)4?(-a)3=.[教学说明:探究活动〈二〉,让学生区别于同底数幂的乘法的指数运算,提示学生注意幂的乘方运算中底数只有一个,而同底数幂的乘法运算底数不只一个.]探究活动〈三〉3、归纳:积的乘方法则:(ab)m (m为正整数)bmbm同理:()=maa①(m为正整数),法则:分式的乘方等于乘方的分式 4、应用法则,体验成功 5 ②(a2y)5(-2b)2(()2=③(-2x2y3)4=④a5、巩固提高:反向运用法则: (ab)m①a6y3=()3[教学说明:探究活动〈三〉提示学生注意区分积的乘方运算与幂的乘方运算:幂的乘方运算中底数只有一个因式,而积的乘方底数不只一个因式.]<一>1、考察m=n的情况:如果按照同底数幂的除法公式来计算,让学生计算提出问题:这里出现了零指数,怎样认识它们的意义?试用除法的意义想一想52同理规定:100=,规定:a0=a≠0)即:任何不等于零的数(式)的零次幂都等于1.2、发现:上述①②③有三个共同点:(1)底数不等于,(2)指数为(3)结果为<二>1、考察mn的情况:如果按照同底数幂的除法公式来计算,让学生计算提出问题:这里出现了负指数,怎样认识它们的意义?试用除法的意义想一想同理规定:10-3=11-2a= ,规定:(a≠0) 103a21(a≠0,n是正整数) a-n与an互为关系。
15.2.3整数指数幂(教案)-人教版八年级数学上册
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整数指数幂的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整数指数幂的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调同底数幂的乘除法则和幂的乘方法则这两个重点。对于难点部分,如零指数幂和负整数指数幂,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整数指数幂相关的实际问题,如计算地球到太阳的距离。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际操作,演示整数指数幂的基本原理。
最后,关于教学方法的运用,我觉得可以尝试更多元化的方式。例如,在讲解整数指数幂的性质时,可以结合图形演示,让学生更直观地感受指数变化对幂的影响。在实践活动中,也可以增加一些竞赛环节,提高学生的参与度和积极性。
五、教学反思
今天我们在课堂上探讨了整数指数幂的相关知识,回顾整个教学过程,我觉得有几个地方值得反思。
首先,整数指数幂的概念对于八年级的学生来说是一个新的挑战。在引入这个概念时,我通过提问的方式引导学生回顾了之前学过的乘方知识,希望他们能从已知的乘方概念过渡到指数幂。但从课堂反馈来看,部分学生对零指数幂和负整数指数幂的理解仍存在困难。未来,我需要在这个环节更加耐心地引导学生,多举一些生活中的例子,帮助他们更好地理解。
-整数指数幂的运算法则:同底数幂的乘除法则、幂的乘方、积的乘方等。
-实际应用:运用整数指数幂解决实际问题,如科学记数法等。
整数指数幂(平行班) 初中八年级上册数学教案教学设计课后反思 人教版
16.2.3整数指数幂
【课题】:整数指数幂(平行班)
【设计与执教者】:增城市石滩镇港侨中学,袁智光,yzhg313@ 【教学时间】:40分钟
【学情分析】:(适用于平行班)
学习本课内容前,学生已经掌握正整数指数幂的运算性质,可以让学生通过练习的方式来认识和归纳整数指数幂的运算性质. 【教学目标】: 1.知道负整数指数幂n
a
-=
n
a 1
(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.
3.会用科学计数法表示小于1的数.
【教学重点】:掌握整数指数幂的运算性质.
【教学难点】:会用科学计数法表示小于1的数.
【教学突破点】:通过学习课堂知识使学生懂得任何事物之间是相互联系的,理论来源于实践,服务于实践。
能利用事物之间的类比性解决问题。
【教法、学法设计】:我在本节课主要采用“引导—发现教学法”,借助于计算机课件,通过“问题情境—建立模型—解释、应用与拓展”的模式展开教学。
【课前准备】:课件。
1523整数指数幂教案
1523整数指数幂教案一、教学目标:1.知识目标:掌握整数指数幂的定义和性质,熟练运用整数指数幂的运算法则;2.技能目标:能够解决与整数指数幂相关的实际问题;3.情感目标:培养学生的逻辑思维和数学推理能力。
二、教学内容:1.整数指数幂的定义;2.整数指数幂的运算法则;3.整数指数幂实际问题的解决。
三、教学过程:Step 1:导入新知教师通过提出一个问题引起学生的思考:“如果我们想算108的值,要如何计算?”引导学生思考,探讨怎样才能简便地计算这个数。
Step 2:整数指数幂的定义与性质1. 整数指数幂的定义:如果a是一个实数,n是一个正整数,那么a 的n次幂表示a相乘n次,记作an。
2.整数指数幂的性质:a)a^0=1,其中a≠0;b)a^m*a^n=a^(m+n),其中a≠0;c) (a^m)^n = a^(mn),其中a≠0;d) (ab)^m = a^m * b^m,其中a、b≠0;e)(a/b)^m=a^m/b^m,其中a≠0,b≠0。
Step 3:整数指数幂的运算法则1.a^m*a^n=a^(m+n),其中a≠0;2. a^m * b^m = (ab)^m,其中a、b≠0;3. (a^m)^n = a^(mn),其中a≠0;4.a^m/a^n=a^(m-n),其中a≠0;5.(a/b)^m=a^m/b^m,其中a≠0,b≠0。
Step 4:整数指数幂的实际问题教师提出一些与整数指数幂相关的实际问题,如计算一些物体的体积、面积、重量等。
学生通过运用整数指数幂的运算法则解决这些问题,培养他们的应用能力。
Step 5:巩固与拓展学生进行练习,包括计算整数指数幂的值和解决实际问题。
可以设置一些思考题,如“-2^3等于多少?”“0的任何正整数次幂等于多少?”,以检验学生是否理解了整数指数幂的定义和性质。
四、教学反思整数指数幂是数学中的重要概念,对于培养学生的逻辑思维和数学推理能力具有重要意义。
在教学过程中,应该注重引导学生进行思考和探索,通过实际问题的解决来加深对整数指数幂的理解。
整数指数幂教案
整数指数幂教案陶琦一、条件分析1.学情分析在上个单元中,学生学习了函数的概念、表示方法、单调性、奇偶性,对函数有了初步的认识,但是还远远不够,函数是个大家庭,需要我们继续深入学习已到达实际运用的目的。
对于这个章节的内容,学生在初中已经学过,加之初数内容的补充,学生对这方面的知识掌握起来比较容易,难点在于对六个公式的记忆可能混淆,因此在学习本章节的内容时应多做练习巩固所学知识。
2.教材分析本节内容由整数指数幂、n次根式、分数指数幂构成,这三个内容环环相扣,层层递进,所以,在学习这个章节的内容时,应注意知识的内在联系。
二、三维目标1.知识与技能目标(1)理解有理数指数幂的概念;(2)识记整数指数幂的运算法则;2.过程与方法目标讲授法、练习法、游戏法。
在学习有理数指数运算时通过竞答游戏激发学生学习兴趣,通过练习加深学生对所学知识的巩固。
3.情感态度和价值观目标通过对整数指数幂的探究,培养学生观察、归纳、抽象的能力和语言表达能力;通过学习整数指数幂的知识,让学生明白,对于问题的解决,我们可以采用多种方法,其中有效的方法是转化,把不熟悉的问题转化成我们所熟悉的问题就能轻松解决。
三、教学重点整数指数幂的运算法则四、教学难点识记整数指数幂的运算法则;五、教学手段:传统教学六、教学进程:(一)故事导入谣言的力量某人听到一则谣言后一小时内传给两人,以后他没有再传给别人.而那两人同样在一小时内每人又分别传给另外的两人。
如此下去,一昼夜能传遍一个千万人口的大城市吗?能?还是不能?请注意,一小时内,一个人只传给两个人,一昼夜只有24小时,一个千万人口的大城市能传遍吗?只凭直觉,是很难正确判断的。
可靠的办法还是算一算:第1个小时,传给2人;第2个小时,传给22人,即4人;第3个小时,传给23人,即8人;第4个小时,传给24人,即16人;……第23个小时,传给223人,即8388608人;第24个小时,传给224人,即16777216人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《15.2.3整数指数幂》教学设计
一、内容和内容解析
本节选自义务教育课程标准实验教科书《数学》(人教版)八年级上册,是第15章“分式”第2节“分式的运算”第3课时的内容.
根据教材内容和学生情况,本节学习的主要内容是让学生经历观察、猜想、归纳、验证等数学活动,在了解负整数指数幂定义合理性的基础上,探究负整数指数幂的性质,并运用于简化计算.
在此之前,学生已经学过正整数指数幂和零指数幂,特别是正整数指数幂,学生已经学过了它的5条运算性质:同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法、商的乘方,其中对同底数幂的除法,要求被除式的指数要大于除式的指数.教学中抓住这个条件,引导学生类比0指数幂展开探索,从约分和同底数幂的除法两个角度“殊途同归”说明了定义负整数指数幂的合理性,这样,就在运算需求之下,实现了指数的扩充,然后引导学生通过验证的方式,针对以前的5条性质进行再探讨,不难发现,在负指数的约定下,其他性质的使用条件也能推广到整数指数幂,这不仅给式的计算带来更大的便利,也为后续科学记数法的扩充作下铺垫.不仅如此,教学中对于负整数指数幂性质的探究方法,对于后续扩大数域范围后验证运算封闭性的问题具有类比和启示作用(如以后随着认识分数指数和无理数指数,对指数的认识还要扩大到有理数范围和实数范围),是初中代数的重要内容之一.
在负整数指数幂性质的教学中,通过数与数量、运算结果观察等方面进一步培养学生的数感;学生用符号表示数、数量关系和变化规律,用符号进行运算并得到一般性的结果,进一步提高了符号意识.在性质验证的教学中渗透了从特殊到一般和整体的思想方法.
本节的重点是扩充范围后整数指数幂运算性质的应用,学生能够灵活选择各类性质进行简化计算.
二、目标和目标解析
1.目标
(1) 知识与技能:
①了解负指数幂的意义.
②举例说明扩充范围后整数指数幂性质的合理性.
③能够运用整数指数幂运算性质解决幂的运算问题.
(2) 过程与方法:
学生经历观察、猜想、归纳、验证等数学活动,探索负整数指数幂的运算性质,进一步体会幂的意义,发展推理能力和运算能力.
(3) 情感态度与价值观:
在数学法则中渗透简洁美、和谐美.学生围绕着扩大数的范围后性质是否成立的问题进行探究,感受数学充满着探索与创造,在师生、生生的交流活动中,学会合作学习,学会倾听、欣赏和感悟.
2. 目标解析
达成知识与技能目标①的标志是:学生知道负指数幂的意义,能从具体情境中辨认或举例说明负指数幂.达成目标②的标志是:学生能够举出具体的例子验证扩充范围后整数指数幂的性质仍然成立.达成目标③的标志是:在理解整数指数幂性质的基础上,学生能够应用性质解决整数指数幂的计算问题.
三、教学问题诊断分析
八年级的学生思维活跃,对观察、猜想、探索性的问题充满好奇.针对学生的心理特征,本课时对于负整数指数幂的性质的推导适合设计探究活动,让学生感受到探索的乐趣.
在此之前,学生虽然已经学习了正整数指数幂和零指数幂,然而什么是负整数指数幂,为什么
1
(0,)n n a a n a
-=
≠是正整数,要让学生从心理上接纳有一定的困难,因而说明定义负整数指数幂的合理性是本节课的难点之一.在认可负整数指数幂的定义之后,如何验证扩大数的范围后原本正整数指数幂的性质仍然成立,无论是验证的思路还是验证的方法,对于学生而言都是全新的挑战,因而负整数指数幂性质的推导也是本节课的难点.教学中应尽可能地让学生明白性质从何而来,再运用性质,既关注知识的生成过程,也体现了循序渐近的教学原则.当然,这两个难点都不是本节课的重点,教学中不应被运算性质的推导所累,能让学生通过验证的方式认可即可,对于基础薄弱的学生而言,更应将重心放在性质的简单应用上.
四、教学支持条件分析
教师准备:幻灯片课件、实物投影仪.
学生准备:小组合作学习.本文的“合作学习”均为“四人小组合作学习”,笔者对本班“小组合作学习”制定相应的机制.
五、教学过程设计
7a a a •个
,0a =
六.目标检测设计:1.3
5-可以表示为()
.(5)(5)(5)
A-⨯-⨯-.555
B⨯⨯
111
.
555
C⨯⨯
111
.()()()
555
D-⨯-⨯-
设计意图:了解负整数指数幂的意义.
2.计算3
4(1)a
a -÷; 22(2)32a
b ab --• ;13(3)(3)ab -- ;
233(4)()b a
-; 22233(5)(2)3m n m n --•; 221
(6)4(2)xy z x yz --÷-.
设计意图:掌握运用整数指数幂的性质进行运算的技能.
3. 3
4
1
3
(1)()x x x y --÷+; 223
3
(2)()()b ab a
---. 设计意图:在混合运算的背景下,学生先懂得选择运算顺序,再选择恰当的性质进行计算,进一步提高运算能力.。