第八章塔设备强度设计计算.

合集下载

第八章 塔设备的机械设计(化工技术)

第八章 塔设备的机械设计(化工技术)

塔壁间的密封
碳钢制塔板与 塔盘圈厚度,一 般3-4mm,用不锈 钢时取2-3mm
2
分块式塔盘第八章图\分块塔板一.rm 第八 章图\分块塔板二.rm
塔身为焊制的整体圆筒,塔盘分成数块, 由人孔送入塔内,安装到塔盘固定件上。
塔径在800~900mm以上时建议采用
特点:
1)结构简单,装拆方便 2)制造方便,模具简单
二 裙座设计 结构: 1)座体 2)基础环 3)螺栓座 4)管孔
1
座体设计
初选座体有效厚度δes,然后验算危险
截面应力。
1)
基底为危险截面时,应满足
操作时,
0 0 M max m0 g Fv0 0 t min KB; K S Z sb Asb


水压试验时,
0.3 M


水压试验时,
0.3 M M e m g min 0.9 K s ; KB Z sm Asm
1 1 w 1 1 max
2
基础环设计
基础环尺寸的确定
1)
Dob Dis 160 ~ 400 mm Dib Dis 160 ~ 400 mm

7)稳定条件

ii max
cr
4
塔体拉应力校核
1)假设有效厚度δei
2)计算最大组合轴向拉应力
内压,正常操作时 外压,非操作时
max 1
i i 2
ii 3
max
ii 3

ii 2
• 3)强度校核条件

ii max
K
5)最大组合轴向压应力
外压,正常操作时 max 1

塔设备强度计算-裙座基础环和螺栓计算

塔设备强度计算-裙座基础环和螺栓计算

㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。

2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。

对低碳钢取[σ]b=140MPa。

(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。

此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。

基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按表4-35计算,N·mm/mm。

无论无筋板或有筋板的基础环厚度均不得小于16mm。

㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。

在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。

塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。

当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。

当σB>0时,塔设备必须设置地脚螺栓。

地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。

第八章-塔设备的机械设计

第八章-塔设备的机械设计

Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。

塔设备强度计算 裙座基础环和螺栓计算

塔设备强度计算 裙座基础环和螺栓计算

㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。

2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。

对低碳钢取[σ]b=140MPa。

(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。

此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。

基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。

无论无筋板或有筋板的基础环厚度均不得小于16mm。

㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。

在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。

塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。

当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。

当σB>0时,塔设备必须设置地脚螺栓。

地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。

8.3塔强度设计

8.3塔强度设计

国设计规范规定:各地均取一个大气压、10℃
时的干空气密度,即ρ =1.25kg/m3; vo ——基本风速,m/s,随当地季节和离地面的高度而
异,中国设计规范规定:取当地30年一遇、离
地面10m高处、以10min为时距所得的最大风速 的平均值。
29
② 风压随高度变化的系数fi(fi可直接查表) 地表通常是凸凹不平的,当风刮过时,不平的地表对风速、
d0—— 塔顶管线的外径,m;
δps——塔顶管线的保温层厚度,m; k3 ——笼式扶梯的当量宽度,无确定数据时,取k3=0.40m; 38

操作平台
k4 ——操作平台的当量宽度,m:
式中:
投影宽度
2 A k4 h0
h0
li
ΣA——第i段内操作平台构件在风力方向的 投影面积(不计空挡的投影面积), m2; h0 ——第i段内操作平台的高度,m 系数2——操作平台在迎风侧半周和背风侧 半周均能产生投影面积ΣA 。 注:k4是投影宽度的当量尺寸。
风压产生阻碍作用,使其产生梯度。研究表明:在一定高度内,
高度越大,风速、风压就越小,风速、风压随高度变化呈指数 关系。 注:风压不是气压,地表处空气密度大,气压也大,而风 压(均布载荷)却小。
30
31
32
b. 风振系数k2i
脉动风力的大小会影响塔振幅(摇晃度)的大小,脉动风力越大,振
幅也越大,振动周期也越长; 塔在迎风的振动行程内,会使脉动风力相对增大,振幅越大即振动周 期越长,脉动风力增大得也越多。 若塔高H≤20m,取k2i=1.70
h k1.5 k1
n i 1 1.5 m h i i n
i 1
3 m h i i
式中: hk——第k段塔的集中质量mk(质心)离地面的距

《化工设备机械基础》第八章习题解答

《化工设备机械基础》第八章习题解答

第八章 塔设备的机械设计 二、填空题A 组:1.自支撑式塔设备设计时,除了考虑操作压力以外,还必须考虑( 自重载荷 )、( 风载荷 )、( 地震载荷 )、( 偏心载荷 )等载荷。

2.内压操作的塔设备,最大组合轴向压应力出现在( 停车 )时的( 背 )风面,其最大组合轴向压应力为=-ii max σ(ii ii --+32σσ)。

3. 外压操作的塔设备,最大组合轴向拉应力出现在( 非操作 )时的( 迎 )风面,其最大组合轴向拉应力为=-i i max σ(ii i i ---23σσ)。

4.当地震烈度≥( 7 )度时,设计塔设备必须考虑地震载荷。

5.内压操作的塔设备,最大组合轴向压应力的稳定条件是:)(32maxσσσ+=≤中较小值。

6.外压操作塔设备,最大组合轴向拉应力的强度条件是:)(23maxσσσ-=≤)][(φσt K 。

7.裙式支座基底截面水压试验时最大组合轴向压应力满足的强度与稳定条件是:sbsb e w A gm Z M M +++=-max 00max3.0σ≤ 中的较小值。

8.裙式支座人孔或较大管线引出孔处,水压试验时,最大组合轴向压应力应满足的强度与稳定条件是:smsm e w A g m Z M M ⋅++=--11max 11max3.0σ≤ 中的较小值。

9.裙座与塔体的连接焊缝,如采用对接焊缝,则( 只需 )验算焊缝强度;如采用搭接焊缝,则焊缝同时承受( 载荷 )和( 剪力 )作用,所以操作或水压试验时,焊缝承受复合剪切应力作用,其验算的强度条件为:wJJ w J J v J J Z M A F g m ---++⋅maxweJJ w w J J Z M M A g m ++⋅--3.0maxB 组:1.塔设备质量载荷包括:(1)(塔设备壳体(包括裙座)质量)01m ;(2)(塔设备内件质量)02m ; (3)(塔设备保温材料质量)03m ;(4)(平台、扶梯质量)04m ; (5)(操作时塔内物料质量)05m ;)][(t K σ)9.0(s K σ≤(t w K ][8.0σ)≤(s K σ72.0))(KB )9.0(s K σ τ)KB )(KB(6)(人孔、法兰、接管等附属件质量)a m ; (7)(液压试验时,塔器内充液质量)w m ;2.内压操作的塔设备,最大组合轴向拉应力出现在( 正常操作 )时的( 迎 )风面,其最大组合轴向拉应力)(321max σσσσ+-=-i i 。

化工设备设计基础第八章_塔设备强度设计计算

化工设备设计基础第八章_塔设备强度设计计算

二、 裙座
按所支承设备 的高度与直 径比,裙座 分成两种:
一种是圆筒形, 一种是圆锥形。
圆筒形裙座制造方便和节省材 料,被广泛采用。
圆锥形裙座:地角螺栓较多和 基础环承受面积较大,承受 较大风载荷和地震载荷。
群座体 (Q235-A或
16Mn)、 基础环板、 螺栓座、 基础螺栓,
(一)圆筒形群座体壁厚的验算
周向拉应力只进行强度校核,因为不 存在稳定性问题。
轴向压应力既要满足强度要求,又必 须满足稳定性要求,进行双重校核。
表4-34 轴向最大应力的校核条件
名称
周向最大拉应 力max
强度校 核
稳定性校核
≤K[]tf
轴向最大压应 力max
≤K[]t ≤K0.06Etei/Ri
K为载荷组合系数,取K=1.2。
(1)水平风力的计算
迎风面产生风压。与风速、 空气密度、地区和季节有关。 各地离地面10m处30年一遇 10分钟内平均风速最大值作为计算风压,
得到该地区的基本风压q0,见表4-26。
风速随地面高度而变化。塔高于10m,应 分段计算风载荷,视离地面高度的不同乘
以高度变化系数fi,见表4-27。
风压还与塔高度、直径、形状以及自振周 期有关。两相邻计算截面间的水平风力为:
m2:内件质量; m3:保温材料质量; m4:平台、扶梯质量; m5:操作时塔内物料; ma:人孔、接管等附件; me:偏心质量; mw:液压试验塔内充液
M0=m1+m2+m3 +m4+m5+ma+me
设备最大质量 (水压试验时):
Mmax=m1+m2+m3 +m4+mw+ma+me

塔设备设计方案

塔设备设计方案

塔设备设计方案1. 引言塔设备是指用于支撑和传输电力、电信等各种设备和信号的结构设施。

在现代社会中,塔设备的重要性不言而喻。

本文将就塔设备的设计方案进行详细介绍,包括设计目标、设计原则、设计流程以及设计注意事项等。

2. 设计目标塔设备的设计目标是确保其具有合理的结构强度和稳定性,以及满足特定的使用需求。

具体的设计目标包括以下几个方面:1.结构强度:塔设备需要能够承受各种外部力的作用,如风力、重力等。

设计时需要考虑结构材料的强度、断面尺寸以及连接方式等因素,以确保塔设备的结构强度。

2.稳定性:塔设备需要具有良好的抗倾倒和抗侧移的稳定性。

设计时需要考虑塔设备的重心位置、基础设计以及防倾倒和抗侧移的措施等因素。

3.使用需求:塔设备的设计需要满足特定的使用需求,例如承载电力线路、通信设备、天线等。

设计时需要考虑设备的尺寸、布置、重量限制等因素,以满足使用需求。

3. 设计原则在进行塔设备设计时,需要遵循以下几个设计原则:1.安全性原则:塔设备的设计应该以安全为首要原则。

设计时需要考虑到可能的风险和危险因素,并采取相应的安全措施,保证人员和设备的安全。

2.经济性原则:塔设备的设计应该追求经济性,即在满足使用需求的前提下,尽可能减少成本和资源的消耗。

3.可靠性原则:塔设备设计需要考虑结构的可靠性和稳定性,从而确保设备长期稳定运行。

4.环境友好性原则:塔设备的设计应该尽量减少对环境的影响,例如减少材料的使用、减少能源的消耗等。

4. 设计流程设计塔设备的流程可以分为以下几个步骤:4.1. 确定使用需求首先需要明确塔设备的使用需求,包括承载的电力线路或通信设备的类型和要求等。

4.2. 设计草图根据使用需求,绘制塔设备的设计草图,包括设备的形状、尺寸、材料等。

4.3. 结构分析进行塔设备的结构分析,包括承载能力的计算、结构强度和稳定性的评估等。

4.4. 优化设计基于结构分析的结果,进行优化设计,包括调整材料的尺寸、布置加强筋等,以改善结构的强度和稳定性。

化工机械基础 塔设备强度设计计算课件

化工机械基础 塔设备强度设计计算课件
首页 末页 向上 向下 返回 结束 调音
4. 地震载荷 地震烈度七度及以上地区,设计时必须考虑地震载荷。 地震波作用下:
水平方向振动 垂直方向振动 扭转
其中以水平方向振动危害较大。 计算地震力时,仅考虑水平地震力,并把塔设备看成是悬
臂梁。
首页 末页 向上 向下 返回 结束 调音
(1)水平地震力 实际全塔质量按全塔或分段均 布。 计算地震载荷与计算风载荷一 样,将全塔沿高度分成若干段, 每一段质量视为集中于该段1/2 处。
操作压力、质量载荷、 风载荷、地震载荷、 偏心载荷等。
首页 末页 向上 向下 返回 结束 调音
㈠ 按设计压力计算筒体及封头壁厚
按第十章"容器设计基础"中内压、外压容器的设计方法, 计算塔体和封头的有效厚度。
㈡ 塔设备所承受的各种载荷计算
以下要讨论的载荷主要有: 操作压力; 质量载荷; 风载荷; 地震载荷; 偏心载荷。
meq-塔设备的当量质量, meq=0.75m0
任意质量i处垂直地震力:
Fii nmihi F00 i1,2,,n
mkhk
k1
首页 末页 向上 向下 返回 结束 调音
(3)地震弯矩
任意截面i-i基本振型地震弯矩:
n
Mii Ei

FK1 hKh
i1
任意截面的风弯矩:
M ii w

Pi
Li 2
Pi1 Li

Li1 2


Pi2 Leabharlann LiLi1

Li2 2


首页 末页 向上 向下 返回 结束 调音
等直径、等壁厚塔体和裙座, 风弯矩最大值为最危险截面。 变截面塔体及开有人孔的裙 座体,各个可疑的截面各自 进行应力校核。 图中0-0、1-1、2-2各截面都 是薄弱部位,可选为计算截 面。

塔设备强度设计计算模板共49页

塔设备强度设计计算模板共49页
Байду номын сангаас
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
塔设备强度设计计算模板
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

塔设备图结构设计与强度计算

塔设备图结构设计与强度计算

F、液体、气体进料口
液体进料口
气体进料口
二、塔体强度计算 1、塔体载荷与校、风载荷、地 震载荷。 ●校核部位 a、塔体壁厚校核 b、裙座各截面校核 包括裙座底部截面、裙座人孔中心线及裙座 与塔体焊缝
2、各种载荷计算
●各截面重量的确定 裙座底部(0-0截面) a、正常操作时该截面重量——壳体、接管、塔内件、 平台、扶梯、保温层、介质重量、再沸器(如有固定在塔 体上的话) b、停工时该截面重量——壳体、接管、塔内件、平台、 扶梯、保温层、再沸器(如有固定在塔体上的话) c、水压试验时该截面重量——壳体、接管、塔内件、平 台、扶梯、保温层、充满水水重、再沸器(如有固定在塔 体上的话) 重量——可查表(平台、扶梯)或计算(筒体、封头、塔 板等)、或预估(保温层、小附件等)确定 裙座人孔中心线(1-1截面) 裙座与塔体焊缝(2-2截面)
●地震载荷
震型与及地震弯矩(本设计质量近似沿塔高均匀分布) H/D>15
对高振型 塔H/D>5, 按左式计 算后在乘 以1.25倍
地震载荷计算示例
●裙座人孔处的截面计算
裙座人孔中心线处截面抗弯模量
●混凝土强度表
3、塔体壁厚強度校核
●筒体与封头厚度计算 由筒体承受的计算压力,根据筒体及封头壁厚计算公 式计算初步壁厚;壁厚计算公式用到的是计筒体算压力 一般筒体计算压力=筒体设计压力 筒体设计压力=(1.05-1.1)倍的筒体正常工作时最大操 作压力 注意:当液柱压力达到设计压力的5%时, 筒体计算压力=设计压力+液柱压强
●双流塔板组件结构
D、分块塔板结构与尺寸
分块塔板结构——有自身梁式a和槽式b,增强抗弯变形能力。
大多采用自身梁结构; 碳钢塔板厚度一般3-4mm,不锈钢为2-3mm(根据液位及 载荷可计算出)

塔设备强度设计计算概述

塔设备强度设计计算概述

塔设备强度设计计算概述1. 引言塔设备强度设计计算是在塔式结构工程中十分重要的环节。

塔式结构广泛应用于电力、通信、航空等领域,在保障设备可靠性和安全性方面起着至关重要的作用。

本文将概述塔设备强度设计计算的基本原理和方法。

2. 设计目标塔设备的强度设计主要目标是确保设备在外部负荷作用下不发生破坏或失效。

一般而言,塔设备的设计目标包括以下几个方面:•承受外部荷载的能力:塔设备需要能够承受各种外部荷载,如风荷载、重力荷载、地震荷载等。

设计中需要考虑这些荷载的大小和方向,以确定设备的主要强度参数。

•抗震能力:特别是在地震频发地区,塔设备需要具备足够的抗震能力,以保护设备的安全运行。

•稳定性:塔设备需要保持稳定,不发生失稳现象。

在设计中需要考虑设备的结构刚度和形状参数。

3. 强度计算方法塔设备的强度计算通常基于力学原理和结构力学方法,常用的计算方法包括以下几种:•静力计算方法:根据外部荷载的大小和方向,通过应力分析和形变计算,确定设备的强度参数。

这种方法一般适用于静态荷载情况下的强度计算。

•动力计算方法:根据外部荷载的动态特性,通过振动分析和响应计算,确定设备的强度参数。

这种方法适用于考虑塔设备在地震或风荷载下的强度计算。

•有限元方法:利用有限元分析软件,在计算机上建立塔设备的有限元模型,通过数值求解得到设备的应力分布和形变情况。

这种方法适用于复杂的塔式结构和荷载情况。

4. 设计要点在塔设备强度设计计算中,需要注意以下几个要点:•荷载分析:对于各种可能的外部荷载,需要进行详细的分析和计算,确定荷载的大小和方向。

•强度参数选取:根据实际情况和设计要求,选取适当的强度参数,并结合设计规范进行计算。

•材料选择:塔设备所使用的材料需要具备足够的强度和韧性,能够满足设计要求。

•施工质量控制:在塔设备的施工过程中,需要严格控制质量,确保各个构件和连接部位的强度和稳定性。

5. 设计规范塔设备的强度计算需要遵循相应的设计规范,以确保设计的合理性和安全性。

塔设备的机械设计

塔设备的机械设计
塔设备的机械设计
b. 塔盘板之间下可拆的螺纹连接。
塔设备的机械设计
c. 塔盘板间双面可拆的螺纹连接。
塔设备的机械设计
(2)螺纹卡 板紧固件
塔设备的机械设计
(3)楔形紧固件 龙门楔结构和楔卡结构
塔设备的机械设计
二、塔盘的机械计算
需要进行强度校核和挠度计算,以满足其强度和刚度 要求。
(一)塔盘的设计载荷
fmax35q8lE44 If 塔设备的机械设计
塔设备的机械设计
三、塔盘构件的最小厚度
为保证塔盘在制造、安装过程中的强度和刚度, 规定了塔盘构件的最小厚度。
四、塔节简介
塔设备的机械设计
第三节 填料塔结构设计
一、液体分布装பைடு நூலகம் 二.液体收集及再分布装置 三、填料支承装置 四、填料压板和床层限制板
塔设备的机械设计
支承圈和支承板的尺寸参见表。
塔设备的机械设计
塔盘紧固件
是连接构件,用于塔盘之间的连接,塔盘板与支 承圈、支承板、受液盘或支承梁,以及降液板与支持 板之间的连接。
常用紧固件有螺纹、螺纹卡板 楔卡等结构。
塔设备的机械设计
(1)螺纹紧固件
a.塔盘之间上可拆的螺纹连接。
(a)为槽式塔板之间可拆螺纹结构。 (b)为自身梁式塔盘板之间上可拆螺纹连接结构。
塔径D=400 ~ 600mm, δ =3~4mm 塔径D=700 ~ 1200mm, δ =4~6mm 分布器定位块外缘与塔壁的间隙:8~12mm 塔径〉600mm,分布盘常设计成分块式结构,一般分 2~3块
塔设备的机械设计
液体通过分布盘上方的中心管加入盘内的,中心管口距 围环上缘~200mm。
塔设备的机械设计
3.降液管结构

塔设备的机械设计

塔设备的机械设计
=(
T ) max

计算,但不得小于0.2αmax 式中 Tg—— 各类场地土的特征周期,见表6-3; amax—— 地震影响系数a的最大值,按表6-2选取; T—— 塔设备自振周期,s; T1—— 塔设备基本自振周期,按式(6-7),式(6-8) 计算,s。

等直径等壁厚塔器的基本自振周期
M
00 E
8CZ 1m0 g (10 H 3.5 14 H 2.5 h 4h3.5 ) 175H 2.5
(Nmm)

底部截面的地震弯矩 16 I I M E CZ 1mo gH 35
(Nmm)
(3)风载荷的计算

图6-28(c)所示为自支承式塔设备受风压作用的 示意图。塔体会因风压而发生弯曲变形。吹到 塔设备迎风面上的风压值,随设备高度的增加 而增加。为了计算简便,将风压值按设备高度 分为几段,假设每段风压值各自均布于塔设备 的迎风面上,如图6-33所示。
Fk Cz α1k mk g (N )



式中 Cz—— 结构综合影响系数,对圆筒形 直立设备取Cz=0. 5; α1—— 对应于塔器基本自振周期T(利用图630查取α1值时,应使T =T1)的地震影响系数 α值; ηk—— 基本震型参与系数;

关于 α—— 地震影响系数,按图6-30确定;图中曲 Tg 0.9 线部分按公式
三、 支承结构





填料的支承结构不但要有足够的强度和刚度,而 且须有足够的自由截面,使在支承处不致首先发生液 泛。 在填料塔中,最常用的填料支承是栅板,如图6-26所 示。在设计栅板的支承结构时,需要注意下述各点。 (1)栅板必须有足够的强度和耐腐蚀性; (2)栅板必须有足够的自由截面,一般应和填料的自由 截面大致相等; (3)槽板扁钢条之间的距离约为填料外径的60%~80 %; (4)栅板可以制成整块的或分块的。

塔设备图结构设计与强度计算37页PPT

塔设备图结构设计与强度计算37页PPT
塔设备图结构设计与强度计算
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰


28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
37
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档