1.5.1 曲边梯形的面积
(完整版)1.5.1曲边梯形的面积(优秀教案)
1.5.1 曲边梯形的面积一、教学目标1、知识与技能目标:(1)通过问题情景,经历求曲边梯形面积的过程,初步了解、感受定积分概念的实际背景。
(2)理解求曲边梯形面积的“四步曲”——分割、近似代替、求和、取极限。
2、过程与方法目标:(1)通过问题的探究体会“以直代曲、无限逼近”的思想。
(2)通过类比体会从具体到抽象、从特殊到一般的数学思想方法。
3、情感、态度与价值观目标:在探究中进一步感受极限的思想,体会直与曲虽然是对立矛盾的,但它们可以相互转化,体现对立统一的辩证关系,在问题解决中体验成功的愉悦,感受数学的魅力。
二、学情分析本节课的教学对象是民语班的学生。
学生在本节课之前已经具备的认知基础有:一是学生已学习过如何通过割补的方法计算不规则直边图形的面积;学生在必修3的阅读与思考内容中对刘徽的“割圆术”求圆面积的方法已经有所了解。
二是学生虽然未学习过极限的有关知识,但通过导数的学习,对极限有了初步的认识。
学生在本节课学习中将会面临的难点:一是部分学生汉语程度相对较为薄弱,一些数学名词难以准确理解,因此需要借助民语教材对部分名词做民语标注,帮助学生准确掌握和学习;此外,学生的汉语表达能力较差,需要即时引导学生进行准确表述和学习。
二是本节课的学习过程中如何“以直代曲”,即学生如何将割圆术中“以直代曲,无限逼近”的思想灵活地迁移到一般的曲边梯形上.具体说来就是:如何选择适当的直边图形(矩形、三角形或梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算。
三、重点难点教学重点:探究求曲边梯形面积的方法。
教学难点:把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。
四、教学过程一、问题情境—生活中的数学原型【教师提问】观察下面的图片,从图片中截取一个平面图形,观察图形,如何求图形的面积?图片一:图形一:【教师提问】观察下面的图片,从图片中截取一个平面图形,观察图形,如何求图形的面积?图片二:图形二:【教师提问】观察下面的图片,从图片中截取一个平面图形,观察图形,如何求图形的面积?图片三:图形三:【思考】“曲边梯形”与“直边图形”的主要区别是什么?【设计意图】1.从生活实际出发,让学生充分感受数学与生活息息相关,生活中处处都能找到数学的原型。
人教版高中数学第一章导数及其应用1.5定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概
1.5 定积分的概念1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念学习目标:、1.了解定积分的概念(难点).2.理解定积分的几何意义.(重点、易错点).3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想(难点).4.能用定积分的定义求简单的定积分(重点).[自 主 预 习·探 新 知]1.曲边梯形的面积和汽车行驶的路程 (1)曲边梯形的面积①曲线梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图151①所示).②求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图151②所示).图① 图②图151③求曲边梯形面积的步骤:分割,近似代替,求和,取极限. (2)求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s .2.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n )作和式∑n i =1f (ξi )Δx =∑n i =1 b -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )d x =lim n→∞∑n i =1 b -anξ.其中a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.思考:⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a b f (x )d x 与积分变量有关系吗?[提示]由定义可得定积分⎠⎛a b f (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛ab f (u )d u .3.定积分的几何意义与性质 (1)定积分的几何意义由直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )所围成的曲边梯形的面积设为S ,则有:① ② ③图152①在区间[a ,b ]上,若f (x )≥0,则S =⎠⎛a b f (x )d x ,如图152①所示,即⎠⎛a b f (x )d x=S .②在区间[a ,b ]上,若f (x )≤0,则S =-⎠⎛a b f (x )d x ,如图152②所示,即⎠⎛a b f (x )d x =-S .③若在区间[a ,c ]上,f (x )≥0,在区间[c ,b ]上,f (x )≤0,则S =⎠⎛a c f (x )d x -⎠⎛cbf (x )d x ,如图152③所示,即⎠⎛ab=SA -SB(S A ,S B 表示所在区域的面积).(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). [基础自测]1.思考辨析(1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012xd x <⎠⎛022xd x ( ) [答案] (1)√ (2)× (3)√2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确C [作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是[x i ,x i +1]上任一值f (ξi ).]3.图153中阴影部分的面积用定积分表示为( )图153A.⎠⎛012xd x B.⎠⎛01(2x -1)d x C.⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x B [根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .]4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.【导学号:31062080】[解析] ∵⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,∴⎠⎛02(x 2+1)d x =⎠⎛01x 2d x +⎠⎛12x 2d x +⎠⎛021d x=13+73+2 =83+2=143. [答案]143[合 作 探 究·攻 重 难]图154[解] (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,n n ,简写作⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上任取一点ξi(i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈-f (ξi )Δx =-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n (i =1,2,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形面积S 的近似值,即S =∑i =1nΔS i ≈-∑i =1nf(ξi)Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n=-1n3[02+12+22+…+(n -1)2]+1n2[0+1+2+…+(n -1)]=-1n3·16n (n -1)(2n -1)+1n2·-2=--n2+16n2=-16⎝ ⎛⎭⎪⎫1n2-1. (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞, 此时-16⎝ ⎛⎭⎪⎫1n2-1趋向于S .从而有 S =lim n→∞ ⎣⎢⎡⎦⎥⎤-16⎝ ⎛⎭⎪⎫1n2-1=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.[规律方法] 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如1+2+3+…+n =+2,12+22+32+…+n 2=++6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤+22. [跟踪训练]1.求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.【导学号:31062081】[解] ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =,y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =-n.(2)近似代替求和S n =∑ni =1 ⎣⎢⎡⎦⎥⎤-n2·2n =8n3[12+22+32+…+(n -1)2] =83⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n .(3)取极限S =lim n→∞S n =lim n→∞ 83⎝⎛⎭⎪⎫1-1n ⎝⎛⎭⎪⎫1-12n=83.∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.(单位:km/h),求它在1≤t ≤2这段时间行驶的路程是多少?[解] 将时间区间[1,2]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n , 在第i 个时间段的路程近似为Δs i =v ⎝ ⎛⎭⎪⎫1+i n Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n,i =1,2,…,n .所以s n =∑n i =1Δs i =∑n i =1 ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+…+2n ]=-1n3⎣⎢⎡⎦⎥⎤++6-++6+2n2·+1+2=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n,s =lim n→∞s n =lim n→∞⎣⎢⎡⎦⎥⎤-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,所以这段时间行驶的路程为23 km.[规律方法]求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.[跟踪训练]2.一物体自200 m 高空自由落下,求它在开始下落后的第3秒至第6秒之间的距离.(g =9.8 m/s 2)【导学号:31062082】[解] 自由落体的下落速度为v (t )=gt . 将[3,6]等分成n 个小区间,每个区间的长度为3n.在第i 个小区间⎣⎢⎡⎦⎥⎤3+-n,3+3i n (i =1,2,…,n )上,以左端点函数值作为该区间的速度.所以s n =∑n i =1v ⎣⎢⎡⎦⎥⎤3+-n3n=∑n i =1⎣⎢⎡⎦⎥⎤3g +3g n -·3n =⎩⎨⎧⎭⎬⎫3ng +3gn [1+2+…+-·3n =9g +9gn2·-2=9g +92g ·⎝⎛⎭⎪⎫1-1n .所以s =lim n→∞s n =lim n→∞ ⎣⎢⎡⎦⎥⎤9g +92g·⎝ ⎛⎭⎪⎫1-1n =9g +92g =272×9.8=132.3(m).故该物体在下落后第3 s 至第6 s 之间的距离是132.3 m.1.在定积分的几何意义中f (x )≥0,如果f (x )<0,⎠⎛ab f (x )d x 表示什么?提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方(如图所示),由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分⎠⎛a b f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即⎠⎛a b f (x )d x =-S 或S =-⎠⎛a b f (x )d x . 2.⎠⎛024-x2d x 的几何意义是什么? 提示:是由直线x =0,x =2,y =0和曲线y =4-x2所围成的曲边梯形面积,即以原点为圆心,2为半径的14圆的面积即⎠⎛024-x2d x =π.3.若f (x )为[-a ,a ]上的偶函数,则f (x )d x 与f (x )d x 存在什么关系?若f (x )为[-a ,a ]上的奇函数,则f (x )d x 等于多少?提示:若f (x )为偶函数,则f (x )d x =2f (x )d x ;若f (x )为奇函数,则f (x )d x=0.说明下列定积分所表示的意义,并根据其意义求出定积分的值. (1)⎠⎛012d x ;(2)⎠⎛12x d x ; (3)1-x2d x .[解] (1)⎠⎛012d x 表示的是图①中阴影部分所示的长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.① ② ③(2)⎠⎛12x d x 表示的是图②中阴影部分所示的梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32. (3)1-x2d x 表示的是图③中阴影部分所示的半径为1的半圆的面积,其值为π2,所以1-x2d x =π2.母题探究:1.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011-x2d x .[解]⎠⎛011-x2d x 表示的是图④中阴影部分所示半径为1的圆的14的面积,其值为π4, ∴⎠⎛011-x2d x =π4.2.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011--d x .[解] ⎠⎛011--d x 表示的是图⑤中阴影部分所示半径为1的14圆的面积,其值为π4,∴⎠⎛011--d x =π4.3.(变条件)将例3(3)改为利用定积分的几何意义求 (x +1-x2)d x .[解] 由定积分的性质得,(x +1-x2)d x = x d x +1-x2d x .∵y =x 是奇函数,∴x d x =0.由例3(3)知1-x2d x =π2.∴(x +1-x2)d x =π2.[当 堂 达 标·固 双 基]1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3nD.12nB [区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.]2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关A [由定积分的定义可知A 正确.]3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:31062083】[解析] ∵0<x <π2, ∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为sin x d x .[答案] sin x d x4.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为__________.[解析] ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.[答案] 555.计算: (2-5sin x )d x . 【导学号:31062084】[解] 由定积分的几何意义得,2d x =⎝ ⎛⎭⎪⎫3π2-π2×2=2π. 由定积分的几何意义得,sin x d x =0. 所以 (2-5sin x )d x=2d x-5sin x d x=2π.。
高二数学学案:曲边梯形的面积汽车行驶的路程含解析
1.5。
1曲边梯形的面积1.5.2汽车行驶的路程[目标]1.知道“以直代曲”的意义.2.学会求曲边梯形面积和汽车行驶路程的步骤。
3。
感受解决问题过程中渗透的思想方法.[重点] 求曲边梯形面积与计算汽车行驶的路程问题.[难点] 求曲边梯形面积的方法与步骤.知识点一曲边梯形的面积[填一填]1.连续函数如果函数y=f(x)在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数.2.曲边梯形的面积(1)曲边梯形:由直线x=a,x=b(a≠b),y=0和曲线y=f(x)所围成的图形称为曲边梯形(如图①).(2)求曲边梯形面积的方法把区间[a,b]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲",即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图②).(3)求曲边梯形面积的步骤:①分割,②近似代替,③求和,④取极限.[答一答]1.“曲边梯形”与“直边梯形”有什么联系与区别?提示:曲边梯形与直边梯形都有四条边,直边梯形的四条边都是线段,而曲边梯形有一条边是曲线段,其余三条边都是线段.2.“以直代曲”思想的本质是什么?提示:曲边梯形的边中有曲线,不方便直接求出其面积,因此,我们把曲边梯形分割成一系列的小曲边梯形,再用小矩形近似代替之,“以直代曲”求和,无限“细分”去“逼近”面积的精确值,这种极限的思想是学习定积分的一种重要的思想.3.分割步骤中,小区间的多少对最终结果有何影响?提示:对区间[a,b]划分的越细,估计值就越接近精确值,即小矩形面积的和越趋近曲边梯形的面积.4.近似代替步骤中,f(ξi)有何要求?提示:“近似代替”中每一个小区间上函数f(x)的值可用f(ξi)来代替,ξi∈[x i-1,x i],不影响极限的值.为了计算方便,可以取区间上的一些特殊点,如区间的端点或中点等.知识点二 求变速直线运动的位移(路程)[填一填]如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s 。
高中数学(新课标)选修2课件1.5.1-2曲边梯形的面积
(3)求和
小曲边梯形的面积和
n
n
Sn= ΔSi=
i=1
i=1
n n+i-1n+i
=nn1-n+1 1+n+1 1-n+1 2+…+n+1n-1-n+1 n=nn1-21n=12. (4)取极限 当 n 趋向于无穷大,即 Δx 趋向于 0 时,Sn 越来越趋向于 S,
从而有 linm→∞Sn=12,所以由直线 x=1,x=2,y=0 和曲线 y=x12围成
=-n13[02+12+22+…+(n-1)2]+n12[0+1+2+…+(n-1)] =-n13·16n(n-1)(2n-1)+n12·nn2-1 =--n62n+2 1=-16n12-1.
(4)取极限
当分割无限变细,即 Δx 趋向于 0 时,n 趋向于∞,此时
-16n12-1趋向于
S.从而有
S=li m n→∞
跟踪训练 1 求由直线 x=1,x=2,y=0 及曲线 y=x12围成图 形的面积 S.
解析:(1)分割 在区间[1,2]上等间隔地插入 n-1 个点,将它分成 n 个小区间 为n+ni-1,n+n i(i=1,2,…,n),其长度为 Δx=1n.分别过上述 n -1 个点作 x 轴的垂线,把曲边梯形分成 n 个小曲边梯形,它们的 面积记 ΔSi(i=1,2,…,n). (2)近似代替 在区间n+ni-1,n+n i上,当 n 趋向于无穷大,即 Δx 趋向于 0 时,我们用小矩形面积近似地代替 ΔSi,则有 ΔSi≈n+i-n12n+i·1n
状元随笔 曲边梯形面积的求解过程,其实可以用下面的表
述:
(1)将区间[a,b]分割,等分为 n 个小区间,每个小区间的长度 为 Δx=b-n a;
(2)“近似代替”中每个小区间上函数 f(x)的值可任意取一点 ξi∈[xi -1,xi],用 f(ξi)来代替,不影响极限的值.为了计算方便, 可以取区间的一些特殊点,如区间的端点或中点等;
2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.5 1.5.1 曲边梯形的面积
栏 目 链 接
值的变化逐渐缩小,当 n 很大时,f(x)的值变化很小. 答案:D
自 测 自 评
i-1 i 2. 当 n 很大时, 函数 f(x)=x 在区间 ,n上的值可 n
2
以用下列哪个值近似代替(
1 A .f n 2 B.f n
)
i C.f n
2 y = x ,x≥0, 由 得交点为(2,4), y=4, 2
栏 目 链 接
跟 踪 训 练
如图所示,先求由直线 x=2,y=0 和曲线 y=x2 围成的曲边梯形的面积.
栏 目 链 接
跟 踪 训 练
2 (1)分割:将区间[0,2]n 等分,则 Δx=n, 取小矩形的
2i-1 . 高为 f n
栏 目 链 接
nn+1
2
;1 +2 +3 +„+n =
2
2
2
2
nn 训 练
2. 求由抛物线 y=x2 与直线 y=4 所围成的曲边梯形的面积.
解析:因为 y=x2 为偶函数,图象关于 y 轴对称, 所以所求曲边梯形的面积应为抛物线 y=x (x≥0)与 直线 x=0,y=4 所围图形面积 S 的 2 倍,下面求阴 影部分的面积 S.
栏 目 链 接
自 测 自 评
i-1 i 1.函数 f(x)=x 在区间 ,n上( n
2
)
A.f(x)的值变化很小 B.f(x)的值变化很大 C.f(x)的值不变化 D.当 n 很大时,f(x)的值变化很小
i-1 i 解析:函数 f(x)=x 在区间 ,n上,随着 n 的增大,f(x)的 n
第一章
导数及其应用
1.5 定积分的概念 1.5.1 曲边梯形的面积
定积分的概念(1.5.1-1.5.3)
思维导航
-----割圆术
割圆术:刘徽在《九章算术》注中讲到
“…割之弥细,所 失弥少,割之又割, 以至于不可割,则 与圆周合体而无所 失矣…” ——刘徽
以“直”代“曲” 无限逼近
刘徽的这种研究方法对你有什么启示?
案例探究
如何求由直线 x 0, x 1, y 0 与抛物线
y x2 所围成的平面图形的面积 S? y
当分割点无限增多时,小矩形的面积和=曲边梯形的面积
• 通过动画演示我们可以看出,n越大,区间分的越细, 各个结果就越接近真实值。为此,我们让n无限变大, 这就是一个求极限的过程。
y
f ( i ) ( i )2 nn
f (i 1) (i 1)2
n
n
O
y=x2
f ( i ) ( i )2 nn
i 1 i nn
2
1 n
i
1 n
2
1 n
2 n
(i 1, 2,
,n) ①
(3)求和 由①得,
Sn
n
Si
i 1
n i 1
v
i
n
1
t
n i 1
i
1 n
2
1 n
2 n
=
0
1 n
1 n
2
1 n
n
n
1
2
1 n
2
温馨提示: 12 +22 +32 + +n 2
=
1 n3
12
O 1 2 i 1 i n 11 x
n n nn n
案例探究
2、近似代替(以直代曲)思考3:对每个小曲边梯形
y
如何“以直代曲”?
1.5.1 曲边梯形的面积 课件(22张PPT)
上的值,可以用( C )近似代替
A. C.
1 f ( ) n
i f ( ) n
2 B.f ( n )
D. f 0
练 习
2、在“近似代替”中,函数f(x)在区间 xi , xi1 上的近似值等于( C ) A.只能是左端点的函数值 B.只能是右端点的函数值
f ( xi )
f ( xi 1 )
n 2
2
= = = =
1 1 1 1- 1 得到S(曲边梯形面积) S ≈ Sn = 3 n 2n
1 1 1 1 n -1 0 + +…+ n n n n n 1 2 2 2 1 + 2 + … + n 1 3 n 1 n - 1 n 2n - 1 n3 6 1 1 1 1 1 3 n 2n
' i 2
i -1 1 = i = 1, 2, ,n . n n
2
则阴影部分面积 s n
i -1 S n = ΔS 'i = f Δx = n i =1 i =1
n n 2
1 i -1 n i =1 n
i
练习:求直线x=0,x=2,y=0与曲线y=x2所围成的曲 边梯形的面积
p42
小结
求由连续曲线yf(x)围成的曲边梯形 面积的方法 (1)分割
(2)近似代替
(3)求和
(4)取极限
n
练 习
1. 当n很大时,函数 f ( x) x 在区间
2
i 1 i , n n
i f i -1 n
i -1 i n n
1.5.1曲边梯形的面积
第二步:近似代替,“以直代曲”。用矩形的面积近似 代替小曲边梯形的面积,求出每个小曲边梯形面积的 近似值.
3.求曲边梯形面积的四个步骤:
第三步:求和.
第四步:取极限。 说明:1.归纳以上步骤,其流程图表示为:
分割→近似代替→求和→取极限 2.最后所得曲边形的面积不是近似值,而是 真实值
在区间
i
n
1
,
i n
上,可以认为函数
f
x
x2 的值
变化很小,近似的等于一个常数,不妨认为它近似
的等于左端点
i
1 n
处的函数值
f
i
1 n
,从图形上
看,就是用平行于 x 轴的直线段近似的代替小曲边
梯形的曲边(如图).
这样,在区间
i
1 n
,
i n
问题转化为求“直边图形”面积的问题?。
分析:曲边梯形与“直边图形”的主要区别:曲边梯形有
一边是曲线段,“直边图形”的所有边都是直线段.“以直
代曲”的思想的应用.
y
y
y
y
y x2
x
x
x
1x
1x
O
0.2 0.4 0.6 0.8 1
x
把区间 0 ,1 分成许多个1 小x 区间,进而把区边梯形拆为一些
S
lim
n
Sn
lim
n
n i 1
f
(i
1) n
1 n
lim 1 (1 n 3
1 )(1 n
1) 2n
原创1:1.5.1 曲边梯形的面积
矩形面积和与曲边梯形面积的关系。
观察以下演示,注意当分割加细时,
矩形面积和与曲边梯形面积的关系。
观察以下演示,注意当分割加细时,
矩形面积和与曲边梯形面积的关系。
观察以下演示,注意当分割加细时,
矩形面积和与曲边梯形面积的关系。
观察以下演示,注意当分割加细时,
矩形面积和与曲边梯形面积的关系。
观察以下演示,注意当分割加细时,
1.5.1
平第
面二
之章
间:
的点
位、
置直
关线
系、
这些图形的面积该怎样计
算?
曲边梯形的概念:如图所示,我们把由直线 =
, = ( ≠ ), = 和曲线 = ()所围成的图形称为曲
边梯形.
y
y=f(x)
f(b)
如何求曲边梯形的面
积?
f(a)
O
a
2与直线 =
−1
0, , , , … ,
, ,…,
,
每个区间长度为 ∆ =
过各区间端点作轴的垂线,从而得到
个小曲边梯形,他们的面积分别记作
∆1 , ∆2 , … , ∆ , … , ∆
−
−
∆ ≈
∆ =
(2) 以直代曲
(3)作和
= ∆ + ∆ + ⋯ + ∆ = ∆
对任意一个小曲边梯形,用“直边”代替“曲边”(即在很小范围内以直
代曲),有以下三种方案“以直代曲” 。
y
方案1
O
1
x
方案2
方案3
y
a
O
原创3:1.5.1 曲边梯形的面积
需要探讨的课题.
O
=()
探究(一):三角形面积的算法
思考1:设△ABC的底边AB=,AB边上的高CD=,将CD分成等分,过每个
分点按如图所示作-1个矩形,则从下到上各矩形的长分别为多少?宽为多
少?
第i个矩形的长为
−
−
+
+
1
− )(1
(4)求极限 = lim − = 9
→0
−
1
)+9
2
3
1
(1− )+9
小结:求由连续曲线y=f(x)对应的曲边梯形面积的方法
(1)分割
(2)近似代替
(3)求和
(4)取极限
当堂达标
一、选择题
2
1.当 n 很大时,函数 f(x)=x
i-1
1.5.1
用第
一
章
:
导
数
及
其
应
问题提出
1.任何一个平面图形都有面积,其中矩形、正方形、三角形、平行四边形、
梯形等平面多边形的面积,可以利用相关公式进行计算.
2.如果函数=()在某个区间I上的图象是一条连续不断的曲线,则称函
数()为区间I上的连续函数.
3.如图所示的平面图形,是由直线 =,=( ≠ ),=和曲线
它体现了对立统一,量变与质变的辨证关系.
2.求曲边梯形的面积的基本思路是:把曲边梯形分割成n个小曲边梯形→用
小矩形近似替代小曲边梯形→求各小矩形的面积之和→求各小矩形面积之和
的极限.
3. 上述求曲边梯形面积的方法有一定的局限性,如果用一般方法不能求
教学设计6: 1.5.1曲边梯形的面积
1.5.1 曲边梯形的面积一、教学内容解析微积分的创立是数学发展中的里程碑,为研究变量和函数提供了重要的方法和手段.导数和定积分都是微积分的核心概念,它们有极其丰富的实际背景和广泛的应用.曲边梯形的面积是定积分概念的几何背景,求曲边梯形面积的过程蕴含着定积分的基本思想方法,为引入定积分的概念和体会定积分的基本思想奠定基础二、学生学情分析:学生的思维比较活跃,数学基础较好,理解能力、运算能力和学习交流能力较强.学生在本节课之前已经具备的认知基础有如下几个方面.(1)在过去的学习中,学生已经知道“直边图形”面积的求法,知道通过割补的方法将不规则图形转化为若干规则图形来计算面积.(2)学生在学习本节前已经知道如何对数列进行求和.学生在本节课学习中将会面临两个难点:一是如何“以直代曲”,即学生如何将割圆术中“以直代曲、无限逼近”的思想灵活地迁移到一般的曲边梯形上,具体来说就是:如何选择适当的直边图形(矩形、三角形、梯形)代替曲边梯形,并使细分的过程程序化且便于操作和计算;二是对“极限”和“无限逼近”的理解,即理解为什么将直边图形面积和取极限正好是曲边梯形面积的精确值.三、教学目标分析依据教学大纲,结合教材内容和学生的认知水平,我将本节课的教学目标确定如下:(1)知识与技能:从问题情境中了解定积分的实际背景;掌握求曲边梯形面积的方法及步骤;(2)过程与方法:经历求曲边梯形面积的过程,体会“以直代曲”、“无限逼近”的微积分基本思想方法;(3)情感、态度与价值观:让学生亲身经历数学知识产生的过程,提升学生的交流合作意识,体验“有限与无限对应统一”的辩证观点.四、教学重点、难点:重点:探究求曲边梯形面积的方法.难点:把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”思想的方法.五、教学策略分析:根据本节课的教学内容,学生情况和教学目标,为了突出教学重点,突破难点,体现新课标“以人为本,主动发展”的教学理念,教学中采用“教师设疑引导,学生交流合作”的教学方法,通过问题激发学生的思维,鼓励学生发现、探究、合作、交流、展示,使其在探究中对问题本质的思考逐步深入,思维水平不断提高。
151曲边梯形的面积
16
可以从数值
32
上可以看出
64
这一变化趋
128
势
256
512
0.273 437 50 0.302 734 50 0.317 871 09 0.325 561 52 0.329 437 26 0.331 382 75 0.332 357 41
1024
0.332 845 21
2048
0.333 089 23
可以是该区间内任一点的函数值
练习
求直线x 0, x 2, y 0与曲线y x2 所围成的曲边梯形的面积.
小结
一.求曲边梯形面积的步骤:
分割
近似代替
求和
取极限
二.运用的数学思想: 1.以直代曲思想 2.逼近思想
作业
导学测评 (六)
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
S
lim n
n i 1
ba n
f
xi
练习
1.
当n很大时,函数
f (x)
x2
在区间
i
Hale Waihona Puke n1,i n
上的值,可以用( C )近似代替
A.
f
(
1 n
)
B.
f
(2) n
C.
f
(
i n
)
D. f 0
2、在“近似代替”中,函数f(x)在区间xi , xi1
上的近似值等于 f (xi )(xi xi , xi1 )
O 12 nn
y x2
y x2
k n
nx
12
n
nn
k n
nx
n
1.5.1曲边梯形的面积
4 取极限
分别将区间0, 1 等分成4,8,,20,...等份
图1.5 - 5 ,可以看到,当n趋向于无穷大,即Δx趋向
1 1 1 于0时,S n = 1 - 1 - 趋向于S,从而有S = 3 n 2n 1 i 1 1 1 1 1 lim S n lim f lim 1 1 . n n n n 3 n 2n 3 i 1 n
n
i - 1 i 可以证明,取f x = x 在区间 , 上任意一 n n 点ξ处的值 f ξ 都有 i i 作近似值 ,
2
1 1 S = lim f ξ Δx = lim f ξ . i i = Δx 0 n→∞ i 1 n 3 i=1
的函数值f ξ 情况又怎样? i 作为近似值,
y
(过剩近似值)
y x2
1 n
2 n
k n
n n
x
1 i 1 2 2 S= lim Sn lim f lim 3 [1 2 (n 1)2 n2 ] n n n n i 1 n n 1 n( n 1)(2n 1) 1 1 1 1 = lim (1 )(2 ) . = lim 3 n 6 n n 3 n n 6
n
n
归纳概括
一般曲边梯形的面积的表达式
ba S lim f i n n i 1
n
课堂小结
一个案例 两种思想 三个方案 四个步骤
求一个具体曲边梯形的面积 “以直代曲”和“无限逼近”思想
方案一、方案二、方案三 分割、近似代替、求和、求极限
原创2:1.5.1 曲边梯形的面积
汽车行驶的路程
y
o
x
3
利用导数我们解决了“已知物体运动路程与时间的关系,求物体运动速度”的 问题.反之,如果已知物体的速度与时间的关系,如何求其在一定时间内经过的路 程呢?
问题:汽车以速度 v t 组匀速直线运动时,经过时间 所行驶的路程为 S vt .如
t v t 果汽车作变速直线运动,在时刻 的速度为 t 2 2(单位:km/h),
W1
,
W2
,…,
Wn
(2)近似代替
有条件知:
Wi
'
F
i
1
n
b
x
k
i
1
n
b
b n
(i 1 , 2 , n, )
14
练习:弹簧在拉伸的过程中,力与伸长量成正比,即力 F x kx
( k 为常数, x 是伸长量),求弹簧从平衡位置拉长 b 所作的功
(3)求和
n
n
Wn Wi ' k
b x 数, 是伸长量),求弹簧从平衡位置拉长 所作的功
解: 将物体用常力 F 沿力的方向移动距离 x ,则所作的功为W F x .
1.分割 在区间 0 , b 上等间隔地插入 n 1个点,将区间0 ,1等分成 n 个小区
间:
0
,
b n
,
b n
,
2b n
,…,
n
1
n
b
,
b
记第 i
个区间为 i
i
n
1
处的函数值
v
i
1 n
i
1 n
2
2
,从物理意义上看,即
使汽车在时间段
i
【精品】第一章1.5-1.5.1曲边梯形的面积
1 解析:三个小矩形的一边长都为 ,易求得另一边的 2 4 4 4 长分别为 , , ,所以三个小矩形的面积之和为 S = 3 5 7
4 4 4 1 142 142 + + × = . 即曲边梯形的面积大约为 . 5 7 2 105 105 3
答案:
142 105
1.用极限逼近原理求曲边梯形的面积,是一种“以 直代曲”的思想,它体现了对立统一、量变与质变的辩 证关系. 2.求曲边梯形的面积的基本思路是:把曲边梯形分 割成 n 个小曲边梯形→用小矩形近似替代小曲边梯形→ 求各小矩形的面积之和→求各小矩形面积之和的极限.
第一章
导数及其应用
[知识提炼· 梳理] 1.连续函数 如果函数 y=f(x)在某个区间 I 上的图象是一条连续
不断的曲线,那么就把它称为区间 I 上的连续函数. 温馨提示 连续函数是指在某区间上, 而不是指在定
1 义域上.如 y=x在定义域上不是连续函数,但在区间[1,
2. 曲边梯形的面积 (1) 曲边梯形:由直线 线 x= a, x= b(a≠ b), y= 0 和曲
解: (1)分割:如图所示,分割将区间[0,3]n 等分,
3(i—1) 3 i 则每个小区间 (i=1,2, , n n
3 3.…,n)的长度为Δx= .分别过各分点 n 作 x 轴的垂线,把原曲边梯形分成 n 个小曲边梯形.
2 n 9(i-1) 3(i-1) 3 = - 2 +2× +3· n n n i1
[思考尝试· 夯基] 1.思考判断(正确的打“√”,错误的打“×”). (1) 曲 边 梯 形 是 由 曲 线 段 和 直 线 段 所 围 成 的 平 面 图 形.( )
(2)求曲边梯形的面积时,将其分割为 n 个小的曲边 梯形,这些小曲边梯形的面积和等于原曲边梯形的面 积.( )
定积分的概念
小曲边梯形的曲边.这样,在区间 [n i 1上,n, i用]
nn
小矩形面积ΔSi′近似地代替ΔSi,即在局部小范围
内“以直代曲”,则有ΔSi≈ΔSi′=
f( n i 1 n i )x nn
n2
n i 1n i
1 n
n
i
n
1n
i
(i
1,2,,n).
(3)求和
小曲边梯形的面积和Sn=
n
Si
n
Si
i1
i1
n
i1
n
i
n
1
n
i
n
n
n
1
n
n
1n
2
n
n
n
1n
n
n( 1 1 1 1 1 1 )
n n 1 n 1 n 2
n n 1 n n
n( 1 1 ) 1 . n 2n 2
从而得到S的近似值S≈Sn=
1 2
.
(4)取极限
分别将区间[1,2]等分成8,16,20,…等份时,
【对点训练】 1.在“近似代替”中,函数f(x)在区间[xi,xi+1]上 的近似值等于 ( ) A.只能是左端点的函数值f(xi) B.只能是右端点的函数值f(xi+1)
C.可以是该区间内任一点的函数值f(ξi)(ξi∈ [xi,xi+1]) D.以上答案均不正确 【解析】选C.由求曲边梯形面积的“近似代替”知, C正确.
【解题指南】利用曲边梯形面积的求法去判断.
【解析】由曲边梯形面积的求法知只有当n无穷大时 求出的矩形的面积和才是曲边梯形的面积,故结果与 小区间上的取值无关,只有④正确,对于③当n很大 时,并未点明有多大,应该是无穷大时Sn对应的极限 值. 答案:④
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i i 1 1 每个区间的长度为 x . n n n
过各区间端点作x轴的垂线,从而得到n个 小曲边梯形,他们的面积分别记作
S1 , S2 , , Si , , Sn .
新宁一中数学备课组
(2) 以直代曲
i 1 i 1 2 1 S i f ( ) x ( ) n n n (3) 作和
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
2. 曲边梯形:在直角坐标系中,由连续曲
线 y=f(x) ,直线 x=a 、 x=b 及 x 轴所围成的图
形叫做曲边梯形. y
y=f (x)
x=a x=b b x
O a
新宁一中数学备课组
3. 以直代曲
P
放大
P
再放大
P
我们可以用一条直线l来代替点P附近的曲线, 也就是说:在点P附近,曲线可以看作直线 (即在很小范围内以直代曲).
y
O
1
x
方案1 方案2 方案3
新宁一中数学备课组
y
y = f(x)
A1 O a b x
用一个矩形的面积A1近似代替曲边梯形的 面积 A,得
A A1 .
新宁一中数学备课组
y
y = f(x)
A1 O a
A2 b x
用两个矩形的面积 近似代替曲边梯形的面 积A, 得
A A1 A2 .
新宁一中数学备课组
分割
以直代曲
作和
逼近
新宁一中数学备课组
探究:在“近似替代”中,当函数f(x)在区间
i i 1 i [ , ](i 1, 2,, n) 上的值近似地以右端点 n n n i 处的函数值 f ( ) 代替,能同样地求出S的值吗? n 1 若能求出,这个值也是 吗? 3
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
S lim
x 0 i 1 n
1 1 f ( i )x lim f ( i ) . n 3 i 1 n
n
新宁一中数学备课组
新宁一中数学备课组
二、新授:曲边梯形的面积 例如:求直线x0、x1、y0及曲线 yx2 所围成 的平面图形(曲边三角形)面积S是多少?
y
O
1
x
新宁一中数学备课组
为了计算曲边三角形的面积S,将它分割成许 多小曲边梯形
对任意一个小曲边梯形,用“直边”代替“曲边”
(即在很小范围内以直代曲),有以下三种方案 “以直代曲” .
S S 1 S 2 S n S i
i 1 n i -1 1 i -1 2 1 f( ) ( ) n n i 1 n n i 1 1 2 2 3 [0 1 2 2 (n 1) 2 ] n n n
新宁一中数学备课组
y
y = f(x)
A1 O
A2
A3
A4
a
b
x
用四个矩形的面积 近似代替曲边梯形的面
积A, 得
A A1 A 2 A 3 A 4 .
新宁一中数学备课组
y
y = f(x)
A1 O a
Ai
An b x
将曲边梯形分成 n个小曲边梯形,并用小矩 阵形的面积代替小曲边梯形的面积, 于是曲边 梯形的面积A近似为 A A1+ A2 + + An . —— 以直代曲,无限逼近
(4) 逼近
当分割无限变细,即x 0(亦即n )时, 1 2 1 1 2 2 2 [0 1 2 (n 1) ] 3 (n 1)n(2n 1) 3 n n 6 1 1 1 1 (1 )(2 ) . 6 n n 3
1 1 所以S ,即所求曲边三角形的面积为 . 3 3
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
分割越细,面积的近似值就越精确. 当分割 无限变细时,这个近似值就无限逼近所求曲边
梯形的面积S.
下面用第一种方案为例,说明“以直代曲” 的具体操作过程
新宁一中数学备课组
(1) 分割 把区间[0, 1]等分成n个小区间:
1 1 2 i 1 i n 1 n [0, ], [ , ], , [ , ], , [ , ], n n n n n n n
新宁一中数学备课组
微积分在几何上有两个基本问题:
1. 如何确定曲线上一点处切线的斜率;
2. 如何求曲线下方“曲边图形”的面积。
y
y
y
O 直线
x O
x O 曲线?
x
几条线段连成的折线
新宁一中数学备课组
一、预备知识: 在已学过的函数中,许多函数的图象都是某个 区间I上的一条连续不断的曲线. 1. 如果函数y=f(x)在某个区间I上的图象是一条 连续不断的曲线,那么就把它称为区间I上的连 续函数.
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
Байду номын сангаас
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
i 1 i , ] 处的函数值 f ( i ) 作为近 取任意 i [ n n
似值,情况又怎样? 可以证明:
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系
新宁一中数学备课组
观察以下演示,注意当分割加细时, 矩形面积和与曲边梯形面积的关系