青海师范大学附属中学七年级上册数学期末试卷及答案-百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青海师范大学附属中学七年级上册数学期末试卷及答案-百度文库
一、选择题
1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )
A .
B .
C .
D .
2.以下选项中比-2小的是( ) A .0
B .1
C .-1.5
D .-2.5
3.下列数或式:3
(2)-,6
1()3
-,25- ,0,21m +在数轴上所对应的点一定在原点右边
的个数是( ) A .1 B .2 C .3 D .4 4.一个角是这个角的余角的2倍,则这个角的度数是( )
A .30
B .45︒
C .60︒
D .75︒
5.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )
A .1
212∠-∠
B .132122
∠-∠
C .1
2()12
∠-∠
D .21∠-∠
6.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=
D .32(72)30x x +-=
7.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( ) A .2
B .8
C .6
D .0
8.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
A .2
B .4
C .6
D .8
9.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元
B .赔了10元
C .赚了50元
D .不赔不赚
10.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )
A .a =32
b
B .a =2b
C .a =
52
b D .a =3b
11.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( ) ①AP=BP;②.BP=
1
2
AB;③AB=2AP;④AP+PB=AB .
A .1个
B .2个
C .3个
D .4个
12.把 1,3,5,7,9,⋯排成如图所示的数表,用十字形框中表内的五个数,当把十字形上下左右移动,保证每次十字形要框中五个数,则框中的五个数的和不可能是( )
A .1685
B .1795
C .2265
D .2125
二、填空题
13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.
14.把53°30′用度表示为_____.
15.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个
b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++

⎪⎝

元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.
16.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
17.若1
2x y =⎧⎨=⎩
是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.
18.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______. 19.若a 、b 是互为倒数,则2ab ﹣5=_____.
20.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.
21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 22.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(
x y
)2019
的值为_____. 23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是
2400米高的山上的气温是____________________.
24.已知关于x 的方程4mx x -=的解是1x =,则m 的值为______. 三、压轴题
25.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;
(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.
(3)在(2)的条件下,当∠COF =14°时,t = 秒.
26.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。

点A 表示的数为—2,点B 表示的数为1,动点P 从点B 出发,以每秒1个单位长度的速度沿数轴向左匀速运动,设点P 运动时间为t (t>0)秒.
(1)长方形的边AD 长为 单位长度;
(2)当三角形ADP 面积为3时,求P 点在数轴上表示的数是多少;
(3)如图2,若动点Q 以每秒3个单位长度的速度,从点A 沿数轴向右匀速运动,与P 点出发时间相同。

那么当三角形BDQ ,三角形BPC 两者面积之差为1
2
时,直接写出运动时间t 的值.
27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,
122
x x +,
123
3
x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,
()212
+-=
1
2,
()2133
+-+=43,所以数列2,-1,3的最佳值为
1
2
. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为
1
2
;数列3,-1,2的最佳值为1;….经过研
究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳
值的最小值为1
2
.根据以上材料,回答下列问题:
(1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值
的最小值为,取得最佳值最小值的数列为(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数
列的最佳值为1,求a的值.
28.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填
数之和都相等.
6a b x-1-2...
(1)可求得x =______,第 2021 个格子中的数为______;
(2)若前k 个格子中所填数之和为 2019,求k 的值;
(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算
|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,
求所有的|m-n|的和.
29.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点
C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为
0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=1
2
AE,且此时点E为点A、B的“n节
点”,求n的值.
30.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;
(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,
P、Q两点之间的距离为8?请说明理由.
31.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;
(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.
32.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).
(1)当甲追上乙时,x = .
(2)请用含x的代数式表示y.
当甲追上乙前,y= ;
当甲追上乙后,甲到达C之前,y= ;
当甲到达C之后,乙到达C之前,y= .
问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.
(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.
【详解】
解:A、5+3×6+1×6×6=59(颗),故本选项错误;
B、1+3×6+2×6×6=91(颗),故本选项正确;
C、2+3×6+1×6×6=56(颗),故本选项错误;
D、1+2×6+3×6×6=121(颗),故本选项错误;
故选:B.
【点睛】
本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.
2.D
解析:D
【解析】
【分析】
根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.
【详解】
根据题意可得:
-<-<-<<,
2.52 1.501
故答案为:D.
【点睛】
本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.
3.B
解析:B 【解析】 【分析】
点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】
()3
2-=-8,6
13⎛⎫- ⎪⎝⎭
=1719,25-=-25 ,0,21m +≥1 在原点右边的数有6
13⎛⎫- ⎪⎝⎭
和 21m +≥1 故选B 【点睛】
此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.
4.C
解析:C 【解析】 【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解. 【详解】
解:根据题意列方程的:2(90°-α)=α, 解得:α=60°. 故选:C . 【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
5.C
解析:C 【解析】 【分析】
由图知:∠1和∠2互补,可得∠1+∠2=180°,即1
2
(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的1
2
(∠1+∠2)代入②中,即可求得结果. 【详解】
解:由图知:∠1+∠2=180°, ∴
1
2
(∠1+∠2)=90°,
∴90°-∠1=1
2
(∠1+∠2)-∠1=
1
2
(∠2-∠1).
故选:C.
【点睛】
此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.
6.A
解析:A
【解析】
【分析】
设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.
【详解】
设女生x人,
∵共有学生30名,
∴男生有(30-x)名,
∵女生每人种2棵,男生每人种3棵,
∴女生种树2x棵,男生植树3(30-x)棵,
∵共种树72棵,
∴2x+3(30-x)=72,
故选:A.
【点睛】
本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.
7.B
解析:B
【解析】
【分析】
由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.
【详解】
∵2018÷4=504…2,
∴32018﹣1的个位数字是8,
故选B.
【点睛】
本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.8.D
解析:D
【解析】
【分析】
【详解】
解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….
2015÷4=503…3,
∴22015的末位数字和23的末位数字相同,是8.
故选D.
【点睛】
本题考查数字类的规律探索.
9.A
解析:A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
10.B
解析:B
【解析】
【分析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
11.A
解析:A
【解析】
①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;
②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;
③项,点P 可能是在线段BA 的延长线上且在点A 的一侧,此时也满足AB =2AP ,故③项错误;
④项,因为点P 为线段AB 上任意一点时AP +PB =AB 恒成立,故④项错误.
故本题正确答案为①.
12.B
解析:B
【解析】
【分析】
寻找这五个数和的规律,设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,这五个数的和为5a ,用每个数字除以5,可得中间数字,结果的末位只能是3或5或7,不能是1或9.
【详解】
解:设中间数字为a ,则上边数字为10a -,下边数字为10a +,左边数字为2a -,右边数字为2a +,1010225a a a a a a +-+++-++=,
A 选项51685,357a a ==,可以作为中间数;
B 选项51795,359a a ==,不能作为中间数;
C 选项52265,453a a ==,可以作为中间数;
D 选项52125,425a a ==,可以作为中间数.
故选:B
【点睛】
本题考查了数的表示及规律探究,找准这五个数与中间数的规律是解题的关键.
二、填空题
13.80°
【解析】
【分析】
由轴对称的性质可得∠B′OG =∠BOG ,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG =∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG =
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B ′OG =∠BOG ,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B ′OG =∠BOG
又∠AOB ′=20°,可得∠B ′OG +∠BOG =160°
∴∠BOG =12
×160°=80°.
故答案为80°.
【点睛】
本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:5330’用度表示为53.5,
故答案为:53.5.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以
解析:5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53︒30’用度表示为53.5︒,
故答案为:53.5︒.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
15.33
【解析】
【分析】
根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价.
【详解】
解:设6斤重的西瓜卖x 元
解析:33
【解析】
【分析】
根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再
根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝
⎭元”可得出(12+6)斤重西瓜的定价. 【详解】
解:设6斤重的西瓜卖x 元,
则(6+6)斤重的西瓜的定价为:
36
3
(21)
6
x
x x=+
++元,
又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.
故6斤重的西瓜卖10元.
又18=6+12,
∴(6+12)斤重的西瓜定价为:
612
1021=33
36

++(元).
故答案为:33.
【点睛】
本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 16.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人),
故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.
17.3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】
解:把代入方程组得:,
①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.

解析:3
【解析】
【分析】
把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.
【详解】
解:把12x y =⎧⎨=⎩
代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,
则a +b =3,
故答案为:3.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
18.【解析】
【分析】
设应派往甲处x 人,则派往乙处人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.
【详解】
解:设应派往甲处x 人,则派往乙处人,
解析:()27x 21920x ⎡⎤+=+-⎣⎦
【解析】
【分析】
设应派往甲处x 人,则派往乙处()20x -人,根据甲处参加社会实践的人数是乙处参加社会实践人数的2倍,即可得出关于x 的一元一次方程,此题得解.
【详解】
解:设应派往甲处x 人,则派往乙处()20x -人,
根据题意得:()27x 21920x ⎡⎤+=+-⎣⎦.
故答案为()27x 21920x ⎡⎤+=+-⎣⎦.
【点睛】
本题考查由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
19.-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒
解析:-3.
【解析】
【分析】
根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.
【详解】
解:∵a、b是互为倒数,
∴ab=1,
∴2ab﹣5=﹣3.
故答案为﹣3.
【点睛】
本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键. 20.2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2
【解析】
【分析】
直接利用有理数的加法运算法则得出符合题意的答案.
【详解】
解:如图所示:x的值为2.
故答案为:2.
【点睛】
此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.
21.8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一
解析:8
【解析】
【分析】
把x=﹣2代入方程2x+a﹣4=0求解即可.
【详解】
把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.
故答案为:8.
【点睛】
本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】
由题意得:x+2=0,y﹣2=0,
解得:x=﹣2,y=2,
所以,()2019=()201
解析:﹣1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】
由题意得:x+2=0,y﹣2=0,
解得:x=﹣2,y=2,
所以,(x
y
)2019=(
2
2
-
)2019=(﹣1)2019=﹣1.
故答案为:﹣1.
【点睛】
本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
23.【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是
解析:18.4C
-︒
【解析】
【分析】
从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.
【详解】
解:由题意可得,
高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,
故答案为:-18.4℃.
【点睛】
本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.
24.5
【解析】
【分析】
把方程的解代入方程即可得出的值.
【详解】
把代入方程,得

故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
解析:5
【解析】
【分析】
把方程的解代入方程即可得出m 的值.
【详解】
把1x =代入方程,得
141m ⨯-=
∴5m =
故答案为5.
【点睛】
此题主要考查根据方程的解求参数的值,熟练掌握,即可解题.
三、压轴题
25.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.
【解析】
【分析】
(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;
(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;
(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+
,解方程即可求出t 的值. 【详解】
解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022
︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;
(2)∠AOE ﹣∠BOF 的值是定值
由题意∠BOC =3t°,
则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,
∵OE 平分∠AOC ,OF 平分∠BOD ,
()
11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()
113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛
⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭

∴∠AOE ﹣∠BOF 的值是定值,定值为35°;
(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+
, 解得4t =.
故答案为4.
【点睛】
本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.
26.(1)4;(2)-3.5或-0.5;(3)t 的值为
1116、1316、138或118. 【解析】
【分析】
(1)先求出AB 的长,由长方形ABCD 的面积为12,即可求出AD 的长;
(2)由三角形ADP 面积为3,求出AP 的长,然后分两种情况讨论:①点P 在点A 的左边;②点P 在点A 的右边.
(3) 分两种情况讨论:①若Q 在B 的左边,则BQ = 3-3t .由|S △BDQ -S △BPC |=
12,解方程即可;②若Q 在B 的右边,则BQ = 3t -3.由|S △BDQ -S △BPC |=
12,解方程即可. 【详解】
(1)AB =1-(-2)=3.
∵长方形ABCD 的面积为12,∴AB ×AD =12,∴AD =12÷3=4.
故答案为:4.
(2)三角形ADP 面积为:
12AP •AD =12AP ×4=3, 解得:AP =1.5,
点P 在点A 的左边:-2-1.5=-3.5,P 点在数轴上表示-3.5;
点P 在点A 的右边:-2+1.5=-0.5,P 点在数轴上表示-0.5.
综上所述:P 点在数轴上表示-3.5或-0.5.
(3)分两种情况讨论:①若Q 在B 的左边,则BQ =AB -AQ =3-3t .
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,680.5t -=±,解得:t =1316或1116; ②若Q 在B 的右边,则BQ =AQ -AB =3t -3.
S △BDQ =12BQ •AD =1(33)42t -⨯=66t -,S △BPC =12BP •AD =142
t ⨯=2t , 1(66)22
t t --=,460.5t -=±,解得:t =138或118.
综上所述:t的值为11
16

13
16

13
8

11
8

【点睛】
本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离公式.
27.(1)3;(2)1
2
;-3,2,-4或2,-3,-4.(3)a=11或4或10.
【解析】
【分析】
(1)根据上述材料给出的方法计算其相应的最佳值为即可;
(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a的数值即可.
【详解】
(1)因为|−4|=4,-4-3
2
=3.5,
-4-31
2
+
=3,
所以数列−4,−3,1的最佳值为3.故答案为:3;
(2)对于数列−4,−3,2,因为|−4|=4,
43
2
--

7
2

432
||
2
--+

5
2

所以数列−4,−3,2的最佳值为5
2

对于数列−4,2,−3,因为|−4|=4,||
4
2
2
-+
=1,
432
||
2
--+

5
2

所以数列−4,2,−3的最佳值为1;
对于数列2,−4,−3,因为|2|=2,2
2
4
-
=1,
432
||
2
--+

5
2

所以数列2,−4,−3的最佳值为1;
对于数列2,−3,−4,因为|2|=2,2
2
3
-

1
2

432
||
2
--+

5
2

所以数列2,−3,−4的最佳值为1 2
∴数列的最佳值的最小值为2
2
3
-

1
2

数列可以为:−3,2,−4或2,−3,−4.
故答案为:1
2
,−3,2,−4或2,−3,−4.
(3)当2
2
a

=1,则a=0或−4,不合题意;

9
2
a
-+
=1,则a=11或7;
当a=7时,数列为−9,7,2,因为|−9|=9,
97
2
-+
=1,
972
2
-+

=0,
所以数列2,−3,−4的最佳值为0,不符合题意;

97
2
a
-+

=1,则a=4或10.
∴a=11或4或10.
【点睛】
此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.
28.(1)6,-1;(2)2019或2014;(3)234
【解析】
【分析】
(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得
b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.
(2)可先计算出这三个数的和,再照规律计算.
(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.
【详解】
(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.
∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.
故答案为:6,-1.
(2)∵6+(-1)+(-2)=3,∴2019÷3=673.
∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.
故答案为:2019或2014.
(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.
故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.
【点睛】
本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.29.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.
【解析】
【分析】
(1)根据“n节点”的概念解答;
(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;
(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在
AB延长线上时,根据BE=1
2
AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.
【详解】
(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,
∴n=AC+BC=2+6=8.
(2)如图所示:
∵点D是数轴上点A、B的“5节点”,
∴AC+BC=5,
∵AB=4,
∴C在点A的左侧或在点A的右侧,
设点D表示的数为x,则AC+BC=5,
∴-2-x+2-x=5或x-2+x-(-2)=5,
x=-2.5或2.5,
∴点D表示的数为2.5或-2.5;
故答案为-2.5或2.5;
(3)分三种情况:
①当点E在BA延长线上时,
∵不能满足BE=1
2 AE,
∴该情况不符合题意,舍去;
②当点E在线段AB上时,可以满足BE=1
2
AE,如下图,
n=AE+BE=AB=4;
③当点E在AB延长线上时,
∵BE=1
2 AE,
∴BE=AB=4,
∴点E表示的数为6,
∴n=AE+BE=8+4=12,
综上所述:n=4或n=12.
本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.
30.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-44
3
或4;(3) 当Q点开始运动后第
6、21秒时,P、Q两点之间的距离为8,理由见解析
【解析】
【分析】
(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;
(2)分两种情况讨论可求点P的对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.
【详解】
(1)∵|a+24|+|b+10|+(c-10)2=0,
∴a+24=0,b+10=0,c-10=0,
解得:a=-24,b=-10,c=10;
(2)-10-(-24)=14,
①点P在AB之间,AP=14×
2
21
=
28
3

-24+28
3
=-
44
3

点P的对应的数是-44
3

②点P在AB的延长线上,AP=14×2=28,
-24+28=4,
点P的对应的数是4;
(3)∵AB=14,BC=20,AC=34,
∴t P=20÷1=20(s),即点P运动时间0≤t≤20,
点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;
当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);
当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=46
3
<17(舍去);
当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=62
3
>20(舍去),
当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,
综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.
【点睛】
此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.
31.(1)45°;(2)45°;(3)45°或135°.
【解析】
【分析】
(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;
(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;
(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.
【详解】
(1)如图,∠AOC=90°﹣∠BOC=20°,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=∠AOC=10°,∠COE=1
2
∠BOC=35°,
∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:
∠DOE=∠COD+∠COE=1
2
∠AOC+
1
2
∠COB=
1
2
(∠AOC+∠COB)=1
2
∠AOB=45°;
(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,
分两种情况:如图3所示,
∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=1
2
∠AOC,∠COE=
1
2
∠BOC,
∴∠DOE=∠COD﹣∠COE=1
2
(∠AOC﹣∠BOC)=45°;
如图4所示,∵OD、OE分别平分∠AOC和∠BOC,
∴∠COD=1
2
∠AOC,∠COE=
1
2
∠BOC,
∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC )=12
×270°=135°.
【点睛】 此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
32.问题一、(1)32;(2)3-2x ;2x -3;13-6x ;问题一、(1)35;120;24011
. 【解析】
【分析】
问题一根据等量关系,路程=速度⨯时间,路程差=路程1-路程2,即可列出方程求解。

【详解】
问题一:(1)当甲追上乙时,甲的路程=乙的路程+3
所以,863x x =+ 23x =
32
x = 故答案为
32. (2) 当甲追上乙前,路程差=乙所行的路程+3-甲所行的路程;
所以,63832y x x x =+-=-.
当甲追上乙后,甲到达C 之前,路程差=甲所行的路程-3-乙所行的路程;
所以,83623y x x x =--=-.
当甲到达C 之后,乙到达C 之前,路程差=总路程-3-乙所行的路程;
所以,1636136y x x =--=-.
问题二:(1)由题意AB 为钟表外围的一部分,且∠AOB=30° 可知,钟表外围的长度为31236cm ⨯=
分针OD 的速度为336605cm min ÷=
时针OE 的速度为136020
cm min ÷=。

相关文档
最新文档