2017年高考真题文科数学全国Ⅲ卷Word版
2017年数学真题及解析_2017年全国统一高考数学试卷(文科)(新课标ⅲ)
2017年全国统一高考数学试卷(文科)(新课标Ⅲ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1 B.2 C.3 D.42.(5分)复平面内表示复数z=i(﹣2+i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα﹣cosα=,则sin2α=()A.﹣ B.﹣ C.D.5.(5分)设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x﹣)的最大值为()A.B.1 C.D.7.(5分)函数y=1+x+的部分图象大致为()A. B.C.D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB. C.D.10.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A.B.C.D.12.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣ B.C.D.1二、填空题13.(5分)已知向量=(﹣2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x﹣)>1的x的取值范围是.三、解答题17.(12分)设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx﹣2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤﹣﹣2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
2017年高考全国Ⅲ文科数学试题及答案(word解析版)
2017年普通高等学校招生全国统一考试(全国Ⅲ)数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的.(1)【2017年全国Ⅲ,文1,5分】已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中的元素的个数为( )(A )1 (B )2 (C )3 (D )4【答案】B【解析】集合A 和集合B 有共同元素2,4,则{}2,4A B =I 所以元素个数为2,故选B .(2)【2017年全国Ⅲ,文2,5分】复平面内表示复数i(2i)z =-+的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限【答案】C【解析】化解i(2i)z =-+得22i i 2i 1z =-+=--,所以复数位于第三象限,故选C .(3)【2017年全国Ⅲ,文3,5分】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )(A )月接待游客量逐月增加 (B )年接待游客量逐年增加(C )各年的月接待游客量高峰期大致在7,8月(D )各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .(4)【2017年全国Ⅲ,文4,5分】已知4sin cos ,3αα-=,则sin 2α=( ) (A )79- (B )29- (C )29(D )79 【答案】A【解析】()2167sin cos 12sin cos 1sin 2,sin 299αααααα-=-=-=∴=- ,故选A . (5)【2017年全国Ⅲ,文5,5分】设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( ) (A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,3【答案】B【解析】由题意,画出可行域,端点坐标()0,0O ,()0,3A ,()2,0B .在端点,A B 处分别取的最小值与最大值. 所以最大值为2,最小值为3-,故选B .(6)【2017年全国Ⅲ,文6,5分】函数1()sin()cos()536f x x x ππ=++-的最大值为( ) (A )65 (B )1 (C )35 (D )15【答案】A【解析】11113()sin()cos()(sin cos cos sin sin 5365225f x x x x x x x x x ππ=++-=⋅+++⋅=+6sin()53x π=+,故选A .(7)【2017年全国Ⅲ,文7,5分】函数2sin 1x y x x=++的部分图像大致为( )(A )(B )(C )(D )【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .(8)【2017年全国Ⅲ,文8,5分】执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )(A )5 (B )4 (C )3 (D )2【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .(9)【2017年全国Ⅲ,文9,5分】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A )π (B )3π4(C )π2 (D )π4 【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC == 22314V r h πππ==⨯⨯=⎝⎭,故选B . (10)【2017年全国Ⅲ,文10,5分】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ) (A )11A E DC ⊥ (B )1A E BD ⊥ (C )11A E BC ⊥ (D )1A E AC ⊥【答案】C【解析】11A B ⊥ 平面11BCC B 111A B BC ∴⊥,11BC B C ⊥又1111B C A B B = ,1BC ∴⊥平面11A B CD ,又1A E ⊂平面11A B CD 11A E BC ∴⊥,故选C .(11)【2017年全国Ⅲ,文11,5分】已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )(A (B (C (D )13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,c e a ==A . (12)【2017年全国Ⅲ,文12,5分】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( )(A )12- (B )13 (C )12 (D )1【答案】C【解析】()()11220x x f x x a e e --+'=-+-= ,得1x =,即1x =为函数的极值点,故()10f =,则1220a -+=,12a =,故选C . 二、填空题:本大题共4小题,每小题5分,共20分. (13)【2017年全国Ⅲ,文13,5分】已知向量()2,3a =- ,()3,b m = ,且a b ⊥ ,则m =______. 【答案】2 【解析】因为a b ⊥ 0a b ∴⋅= ,得630m -+=,2m ∴=.(14)【2017年全国Ⅲ,文14,5分】双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =__ ____. 【答案】5 【解析】渐近线方程为b y x a=±,由题知3b =,所以5a =. (15)【2017年全国Ⅲ,文15,5分】ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A _______.【答案】075【解析】根据正弦定理有:03sin 60=sin B ∴=b c > 045=∴B 075=∴A . (16)【2017年全国Ⅲ,文16,5分】设函数1,0,()2,0,x x x f x x +≤⎧=⎨>⎩,则满足1()()12f x f x +->的x 的取值范围是_______. 【答案】1(,)4-+∞ 【解析】由题意得:当12x >时12221x x -+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即 102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞. 三、解答题:共70分。
2017年高考真题——文科数学(全国Ⅲ卷)】
根据该折线图,下列结论错误的是 A.月接待游客逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7,8 月 D.各年 1 月至 6 月的月接待游客量相对于 7 月至 12 月,波动性更小,变化比较平稳
【答案】A
【解析】由折线图,7 月份后月接待游客量减少,A 错误; 本题选择 A 选项.
2017 年普通高等学校招生全国统一考试
文科数学
注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
9.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体 积为
A. π
3π
B.
4
π
C.
2
π
D.
4
【解析】如果,画出圆柱的轴截面
-5-
AC 1, AB 1 ,所以 r BC 2
3 2
,那么圆柱的体积是 V
r 2h
3 2
2
1
3 4
,
故选 B.
10.在正方体 ABCD A1B1C1D1 中,E 为棱 CD 的中点,则
4.已知 sin cos 4 ,则 sin 2 = 3
A. 7 9
B. 2 9
2
C.
9
【答案】A
【解析】 sin 2 2sin cos sin cos 2 1 7 .
1
9
本题选择 A 选项.
7
D.
9
2017年高考文科数学全国新课标3卷
绝密★启用前2017年普通高等学校招生全国统一考试(III卷)文科数学(适用地区:云南、XX、贵州、四川)注意事项:1.答卷前,考生务必将自己的XX、XX号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(﹣2+i)的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.﹣B.﹣C.D.5.设x,y满足约束条件则z=x﹣y的取值范围是A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3]6.函数f(x)=sin(x+)+cos(x﹣)的最大值为A.B.1 C.D.7.函数y=1+x+的部分图象大致为A. B.C. D.8.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为A.5 B.4 C.3 D.29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.C.D.10.在正方体ABCD﹣A1B1C1D1中,E为棱CD的中点,则A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为A.B.C.D.12.已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=A.﹣B.C.D.1二、填空题:本题共4小题,每小题5分,共20分。
2017年高考文科数学试题全国各地高考试卷8套精校Word版真题含答案
2017年全国各地数学高考试题精校Word版目录-2017年全国卷文科数学试题(全国Ⅰ卷)Word版试卷精校版含答案······-2017年全国卷文科数学试题(全国Ⅱ卷)Word版试卷精校版含答案·······-2017年全国卷文科数学试题(全国Ⅲ卷)Word版试卷精校版含答案·······-2017年北京卷文科数学试题Word版试卷精校版含答案·················-2017年天津卷文科数学试题Word版试卷精校版含答案·················-2017年江苏卷数学试题Word版试卷精校版含答案······················-2017年浙江卷数学试题Word版试卷精校版含答案·····················-2017年山东卷文科数学试题Word版试卷精校版含答案··················绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。
2017高考新课标全国3卷文科数学
2017年普通高等学校招生全国统一考试〔新课标Ⅲ〕文科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限 C.第三象限 D.第四象限3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20XX1月至2016年12月期间月接待游客量〔单位:万人〕的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.已知4sin cos3αα-=,则sin2α=A.79-B.29-C.29D.795.设x,y满足约束条件3260x yxy+-≤⎧⎪≥⎨⎪≥⎩,则z=x-y的取值X围是A.[–3,0]B.[–3,2]C.[0,2] D.[0,3]6.函数f (x )=15sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .35D .157.函数y =1+x +2sin xx的部分图像大致为A .B .C .D .8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π410.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥11.已知椭圆C :22221x y a b+=,〔a >b >0〕的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3D .1312.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .1 二、填空题:本题共4小题,每小题5分,共20分。
2017年全国III卷高考文科数学真题及答案
2017 年全国 III 卷高考文科数学真题及答案注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后, 再选涂其他答案标号。
回答非选择题时, 将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
5 分,共 60 分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是 A .月接待游客逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月D .各年 1 月至 6 月的月接待游客量相对于 7月至 12 月,波动性更小,变化比较平稳4.已知 sin cos4,则 sin 2 =37227A .B .C .D .99 9 9、选择题:本大题共 12 小题,每小题 1. 已知集合 A={1,2,3,4} , B={2,4,6,8} ,则 B 中元素的个数为 2. 3.A .1B .2C .D .4复平面内表示复数 z=i( –2+i) 的点位于 A .第一象限B .第二象限C . 第三象限D .第四象限 某城市为了解游客人数的变化规律,提高旅游服务质量, 收集并整理了 2014 年 1 月至3x 2y 5.设 x ,y 满足约束条件 x 0yB 1 D5A BCD .C .3D .2 B .4 A .5 B .1C .[0,2]D .[0,3]60C .35A .65 8.执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数N 的最小值为9.已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的[ – 3,2]16.函数 f (x )= sin( x + )+cos( x - ) 的最大值为 5 3 67.函数 y =1+x + sin 2 x 的部分图像大致为 x 20 ,则 z =x -y 的取值范围是A .[ –3,0]A . A 1E ⊥DC 1B . A 1E ⊥BDC . A 1E ⊥BC 1D . A 1E ⊥ AC2 y 2 1,( a >b >0)的左、右顶点分别为 b1(a >0)的一条渐近线方程为 y 3x , 95A ,B ,C 的对边分别为 a ,b ,c 。
[精品]2017年人教版高考真题文科数学全国ⅲ卷和答案
绝密★启用前2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A⋂B中元素的个数为A.1 B.2 C.3 D.4【答案】B【解析】由题意可得:{}A B= .本题选择B选项.2,42.复平面内表示复数z=i(–2+i)的点位于A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】由题意:12=-- .本题选择B选项.z i3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【解析】由折线图,7月份后月接待游客量减少,A错误;本题选择A选项.4.已知4sin cos 3αα-=,则sin 2α=A .79- B .29- C . 29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===-- . 本题选择A 选项.5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩,则z =x -y 的取值范围是 A .–3,0] B .–3,2] C .0,2] D .0,3]【答案】B【解析】绘制不等式组表示的可行域,结合目标函数的几何意义可得函数在点()0,3A 处取得最小值033z =-=- . 在点()2,0B 处取得最大值202z =-= . 本题选择B 选项.6.函数f (x )= sin(x +3π)+cos(x −6π)的最大值为A .65B .1C .D .【答案】A【解析】由诱导公式可得:cos cos sin 6233x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则:()16sin sin sin 53353f x x x x πππ⎛⎫⎛⎫⎛⎫=+++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 函数的最大值为65. 本题选择A 选项.7.函数y =1+x +2sin x x的部分图像大致为A .B .C .D .【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A,C,当x →+∞时,1y x →+,故排除B,满足条件的只有D,故选D.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A.5 B.4 C.3 D.2 【答案】D【解析】若2N=,第一次进入循环,12≤成立,100100,1010S M==-=-,2i=2≤成立,第二次进入循环,此时101001090,110S M-=-==-=,3i=2≤不成立,所以输出9091S=<成立,所以输入的正整数N的最小值是2,故选D.9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【解析】如果,画出圆柱的轴截面11,2AC AB ==,所以r B ==,那么圆柱的体积是22314V r h πππ==⨯⨯=⎝⎭,故选B.10.在正方体1111ABCD A BC D -中,E 为棱CD 的中点,则A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C11.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a = ,c e a ==,故选A.12.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A .12- B .13C .12D .1【答案】C二、填空题:本题共4小题,每小题5分,共20分。
数学-2017年高考真题——全国Ⅲ卷(文)(精校解析版)
2017年普通高等学校招生全国统一考试(全国Ⅲ卷)文科数学一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·全国Ⅲ文,1)已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( ) A .1 B .2 C .3 D .42.(2017·全国Ⅲ文,2)复平面内表示复数z =i(-2+i)的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(2017·全国Ⅲ文,3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 4.(2017·全国Ⅲ文,4)已知sin α-cos α=43,则sin 2α等于( )A .-79B .-29C .29D .795.(2017·全国Ⅲ文,5)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是( )A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]6.(2017·全国Ⅲ文,6)函数f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6的最大值为( ) A .65 B .1 C .35 D .157.(2017·全国Ⅲ文,7)函数y =1+x +sin xx2的部分图象大致为( )8.(2017·全国Ⅲ文,8)执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )A .5B .4C .3D .29.(2017·全国Ⅲ文,9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .π B .3π4 C .π2 D .π410.(2017·全国Ⅲ文,10)在正方体ABCDA 1B 1C 1D 1中,E 为棱CD 的中点,则( ) A .A 1E ⊥DC 1 B .A 1E ⊥BD C .A 1E ⊥BC 1D .A 1E ⊥AC11.(2017·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则椭圆C 的离心率为( ) A .63 B .33 C .23 D .1312.(2017·全国Ⅲ文,12)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a 等于( )A .-12B .13C .12D .1二、填空题(本题共4小题,每小题5分,共20分)13.(2017·全国Ⅲ文,13)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. 14.(2017·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.15.(2017·全国Ⅲ文,15)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.16.(2017·全国Ⅲ文,16)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答) (一)必考题:共60分17.(2017·全国Ⅲ文,17)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.18.(2017·全国Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.19.(2017·全国Ⅲ文,19)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.20.(2017·全国Ⅲ文,20)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.21.(2017·全国Ⅲ文,21)已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性;(2)当a <0时,证明f (x )≤-34a -2.选考题:共10分,请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(2017·全国Ⅲ文,22)[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt (t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C 的交点,求M 的极径.23.(2017·全国Ⅲ文,23)[选修4-5:不等式选讲] 已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.参考答案一、选择题(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】∵A ={1,2,3,4},B ={2,4,6,8}, ∴A ∩B ={2,4}.∴A ∩B 中元素的个数为2. 故选B. 2.【答案】C【解析】∵z =i(-2+i)=-1-2i ,∴复数z =-1-2i 所对应的复平面内的点为Z (-1,-2),位于第三象限. 故选C. 3.【答案】A【解析】对于选项A ,由图易知月接待游客量每年7,8月份明显高于12月份,故A 错; 对于选项B ,观察折线图的变化趋势可知年接待游客量逐年增加,故B 正确; 对于选项C ,D ,由图可知显然正确. 故选A. 4.【答案】A【解析】∵sin α-cos α=43,∴(sin α-cos α)2=1-2sin αcos α=1-sin 2α=169,∴sin 2α=-79.故选A. 5.【答案】B【解析】画出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =x -z 过点A (2,0)时,z 取得最大值,即z max =2-0=2;当直线y =x -z 过点B (0,3)时,z 取得最小值,即z min =0-3=-3.所以z =x -y 的取值范围是[-3,2]. 故选B. 6.【答案】A【解析】方法一 ∵f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6 =15⎝⎛⎭⎫12sin x +32cos x +32cos x +12sin x =110sin x +310cos x +32cos x +12sin x =35sin x +335cos x =65sin ⎝⎛⎭⎫x +π3, ∴当x =π6+2k π(k ∈Z )时,f (x )取得最大值65.故选A.方法二 ∵⎝⎛⎭⎫x +π3+⎝⎛⎭⎫π6-x =π2, ∴f (x )=15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫x -π6 =15sin ⎝⎛⎭⎫x +π3+cos ⎝⎛⎭⎫π6-x =15sin ⎝⎛⎭⎫x +π3+sin ⎝⎛⎭⎫x +π3 =65sin ⎝⎛⎭⎫x +π3≤65. ∴f (x )max =65.故选A. 7.【答案】D【解析】当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx 2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx 2>0,故排除选项A ,C.故选D. 8.【答案】D【解析】假设N =2,程序执行过程如下: t =1,M =100,S =0,1≤2,S =0+100=100,M =-10010=-10,t =2,2≤2,S =100-10=90,M =--1010=1,t =3,3>2,输出S =90<91.符合题意.∴N =2成立.显然2是N 的最小值.故选D. 9.【答案】B【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形. ∴r =1-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B. 10.【答案】C【解析】方法一 如图,∵A 1E 在平面ABCD 上的投影为AE ,而AE 不与AC ,BD 垂直,∴B ,D 错;∵A 1E 在平面BCC 1B 1上的投影为B 1C ,且B 1C ⊥BC 1, ∴A 1E ⊥BC 1,故C 正确;(证明:由条件易知,BC 1⊥B 1C ,BC 1⊥CE ,又CE ∩B 1C =C ,∴BC 1⊥平面CEA 1B 1. 又A 1E ⊂平面CEA 1B 1, ∴A 1E ⊥BC 1)∵A 1E 在平面DCC 1D 1上的投影为D 1E ,而D 1E 不与DC 1垂直,故A 错. 故选C.方法二 (空间向量法)建立如图所示的空间直角坐标系,设正方体的棱长为1,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),C 1(0,1,1),E ⎝⎛⎭⎫0,12,0,∴A 1E →=⎝⎛⎭⎫-1,12,-1,DC 1→=(0,1,1),BD →=(-1,-1,0),BC 1→=(-1,0,1),AC →=(-1,1,0),∴A 1E →·DC 1→≠0,A 1E →·BD →≠0,A 1E →·BC 1→=0,A 1E →·AC →≠0,∴A 1E ⊥BC 1. 故选C. 11.【答案】A【解析】由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a =13, ∴e =c a =a 2-b 2a =1-⎝⎛⎭⎫b a 2=1-⎝⎛⎭⎫132=63.故选A. 12.【答案】C【解析】方法一 f (x )=x 2-2x +a (e x -1+e-x +1)=(x -1)2+a [e x -1+e-(x -1)]-1,令t =x -1,则g (t )=f (t +1)=t 2+a (e t +e -t )-1. ∵g (-t )=(-t )2+a (e -t +e t )-1=g (t ),∴函数g (t )为偶函数.∵f (x )有唯一零点,∴g (t )也有唯一零点. 又g (t )为偶函数,由偶函数的性质知g (0)=0, ∴2a -1=0,解得a =12.故选C.方法二 f (x )=0⇔a (e x -1+e-x +1)=-x 2+2x .e x -1+e-x +1≥2e x -1·e-x +1=2,当且仅当x =1时取“=”.-x 2+2x =-(x -1)2+1≤1,当且仅当x =1时取“=”. 若a >0,则a (e x -1+e-x +1)≥2a ,要使f (x )有唯一零点,则必有2a =1,即a =12.若a ≤0,则f (x )的零点不唯一. 故选C.二、填空题(本题共4小题,每小题5分,共20分) 13.【答案】2【解析】∵a =(-2,3),b =(3,m ),且a ⊥b , ∴a·b =0,即-2×3+3m =0,解得m =2. 14.【答案】5【解析】∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.15.【答案】75°【解析】如图,由正弦定理,得3sin 60°=6sin B ,∴sin B =22.又c >b ,∴B =45°, ∴A =180°-60°-45°=75°. 16.【答案】⎝⎛⎭⎫-14,+∞ 【解析】由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x +x +12>1,显然成立.当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x 的取值范围是⎝⎛⎭⎫-14,+∞. 三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答) 17.解 (1)因为a 1+3a 2+…+(2n -1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1), 两式相减,得(2n -1)a n =2, 所以a n =22n -1(n ≥2).又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =22n -1. (2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1,则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.18.解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300;若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8. 因此Y 大于零的概率的估计值为0.8.19.(1)证明 如图,取AC 的中点O ,连接DO ,BO .因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO .又DO ∩OB =O ,所以AC ⊥平面DOB ,故AC ⊥BD .(2)解 连接EO .由(1)及题设知∠ADC =90°,所以DO =AO .在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.由题设知△AEC 为直角三角形,所以EO =12AC . 又△ABC 是正三角形,且AB =BD ,所以EO =12BD . 故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1∶1. 20.(1)解 不能出现AC ⊥BC 的情况.理由如下:设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0,所以x 1x 2=-2.又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12, 所以不能出现AC ⊥BC 的情况.(2)证明 BC 的中点坐标为⎝⎛⎭⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝⎛⎭⎫x -x 22. 由(1)可得x 1+x 2=-m ,所以AB 的中垂线方程为x =-m 2. 联立⎩⎨⎧ x =-m 2,y -12=x 2⎝⎛⎭⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎨⎧ x =-m 2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝⎛⎭⎫-m 2,-12,半径r =m 2+92. 故圆在y 轴上截得的弦长为2 r 2-⎝⎛⎭⎫m 22=3,即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.21.(1)解 f (x )的定义域为(0,+∞),f ′(x )=1x +2ax +2a +1=(x +1)(2ax +1)x. 若a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增.若a <0,则当x ∈⎝⎛⎭⎫0,-12a 时,f ′(x )>0; 当x ∈⎝⎛⎭⎫-12a ,+∞时,f ′(x )<0. 故f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)证明 由(1)知,当a <0时,f (x )在x =-12a处取得最大值,最大值为f ⎝⎛⎭⎫-12a =ln ⎝⎛⎭⎫-12a -1-14a, 所以f (x )≤-34a -2等价于ln ⎝⎛⎭⎫-12a -1-14a ≤-34a-2,即ln ⎝⎛⎭⎫-12a +12a +1≤0.设g (x )=ln x -x +1,则g ′(x )=1x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. 故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ⎝⎛⎭⎫-12a +12a +1≤0,即f (x )≤-34a -2.22.解 (1)消去参数t ,得l 1的普通方程l 1:y =k (x -2); 消去参数m ,得l 2的普通方程l 2:y =1k (x +2).设P (x ,y ),由题设得⎩⎪⎨⎪⎧ y =k (x -2),y =1k (x +2).消去k 得x 2-y 2=4(y ≠0).所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).联立⎩⎪⎨⎪⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0,得 cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,从而cos 2θ=910,sin 2θ=110.代入ρ2(cos 2θ-sin 2θ)=4,得ρ2=5,所以交点M 的极径为 5.23.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得 m ≤|x +1|-|x -2|-x 2+x . 而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x | =-⎝⎛⎭⎫|x |-322+54≤54,当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54.。
2017年全国高考文科全国3卷数学试题及答案-
4.已知 sin cos43,则sin2 =2017年普通高等学校招生全国统一考试文科数学卷3注意事项:1 •答题前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
一项是符合题目要求的。
2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图根据该折线图,下列结论错误的是 A. 月接待游客逐月增加 B. 年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在 7, 8月D.各年1月至6月的月接待游客量相对于 7月至12月,波动性更小,变化比较平稳改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
、选择题:本大题共 12小题,每小题5分,60分。
在每小题给出的四个选项中,只有1. 已知集合A={1,2,3,4},B={2,4,6,8},则 AI B 中元素的个数为2. 3. A . 1B. 2C.D. 4复平面内表示复数 z i( 2 i)的点位于A .第一象限B.第二象限C. 第三象限D.第四象限 某城市为了解游客人数的变化规律,提高旅游服务质量, 收集并整理了2014年1月至73x 2y 6 05•设x, y 满足约束条件x 0,则z x y 的取值范围是y 0A . [-3 , 0]B .[-3 , 2] C.[0 , 2] D. [0 , 3]6.函数f(x)1 — sin(x 5 3)cos(x -)的最大值为 6631A.-B 1C.D.—55 5A .92 c.—97 D.-9V J1\""""―—\I*vVr1 v/——J------------ 1&执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为 A. 5B. 4C. 3D. 29.已知圆柱的高为1 ,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .B. 3 4c.—D.-fW10MI ■■ 100』口 P10•在正方体 ABCD A 1B 1C 1D 1中,E 为棱CD 的中点,则1(a 0)的一条渐近线方程为y 3x ,则a = 515 . ABC 的内角A, B,C 的对边分别为a,b,c 。
2017年全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
A. —6
5
5
3
B. 1
6
C. —3
5
D
1 _5
7. Cs 分)函数 y=l+x+兰坚-的部分图象大致为(
X2
C.
D.
8. Cs 分)执行如图的程序框图,为使输出 S 的值小千 91, 则输入的正整数 N 的最小值为(
A. 5
B. 4
C. 3
D. 2
9. cs 分)已知圆柱的高为 1, 它的两个底曲的圆周在直径为 2 的同一个球的球血上,则该圆柱的休
={ (5 分)设函数 f 16.
(x) x+l , x<o ,则满足 f (x) +f (x- 上) >1 的 x 的取值范围是
.
产, x >o
2
19. (12 分)如图四面体 ABCD 中,^ ABC 是正二伯形, AD=CD.
(1) 证明: AC 上 BD: (2) 已知^ ACD 是直伯二川形, AB=BD, 若 E 为棱 BD 上与 D 个重合的点,且 AE 上 EC, 求四面体 ABCE
7.【解答】解:函数y=l+x+兰坚一, 可知:f(x) =x+王坚-是奇函数, 所以函数的图象关千原点对称, 则函数y=l+x+主皿-的图象关千(O, 1) 对称, 当x➔o', f Cx) >o, 排除A、c, 当x=rr时,y=l顷, 排除B. 第4页(共9页)
故选:D. 【点评】本题考查函数 的图象的 判断,函数的奇偶性以及特殊点是常用方 法.
A
y
x 【点评】本题考查线线垂直的 判断,是中档题,斛题时要认真审题,注意向量法的合理运用.
【点评】本题考查曲圆柱 的体积的 求法,考查圆柱、球等基础知识,考查推理论证能力、运算求 解能 力、空间想象 能力,考查化归与转化思想,是中档题.
2017年高考数学全国卷3文(附参考答案及详解)
!#'$1;#
在直角坐标系 #6) 中#直 线:! 的 参 数 方 程 为 )'?;# $;为 参
,#' )$13#数%ຫໍສະໝຸດ 直线:$的参
数
方
程
为+ -)'
3 ?
#
$3 为 参 数 %!设:! 与:$
的交点为 *#当? 变化时#* 的轨迹为曲线&!
$!%写出 & 的普通方程*
$$%以坐标原点为极点## 轴正半轴为极轴建立极坐标 系#设:(&
!"
"#!$年普通高等学校招生全国统一考试全国卷*
!!)!解析5 $&!!#"#'#/"#"&!"#/#4#0"#6 $%"&!"#/"!
6 $%" 中元素的个数为"!
故选 )!
"!*!解析5 .&+%(",+&&(!("+#6 复 数.& (!("+所 对 应 的复平面内的点为 I%(!#("&#位于第三象限!
!!
年 普 通 高 等 学 校 招 生 全 国 统 一 考 试 数 学
!!请 考 生 在 第 $$$$( 题 中 任 选 一 题 作 答如 果 多 做则 按 所 做
的 第 一 题 计 分 !作 答 时 请 写 清 题 号 !
$$!$本 小 题 满 分 !# 分 %选 修 252&坐 标 系 与 参 数 方 程
排
除
选
项
%#*!
故选 .!
0!.!解析假设 -&"#程序执行过程如下'
2017年全国统一高考新课标版Ⅲ卷全国3卷文科数学试卷及参考答案与解析
2017年全国统一高考新课标版Ⅲ卷全国3卷文科数学试卷及参考答案与解析一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为( )A.1B.2C.3D.42.(5分)复平面内表示复数z=i(-2+i)的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)已知sinα-cosα=,则sin2α=( )A.-B.-C.D.5.(5分)设x,y满足约束条件则z=x-y的取值范围是( )A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]6.(5分)函数f(x)=sin(x+)+cos(x-)的最大值为( )A. B.1 C. D.7.(5分)函数y=1+x+的部分图象大致为( )A. B.C. D.8.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A.5B.4C.3D.29.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.C.D.10.(5分)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC11.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为( )A. B. C. D.12.(5分)已知函数f(x)=x2-2x+a(e x-1+e-x+1)有唯一零点,则a=( )A.-B.C.D.1二、填空题13.(5分)已知向量=(-2,3),=(3,m),且,则m=.14.(5分)双曲线(a>0)的一条渐近线方程为y=x,则a=.15.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.(5分)设函数f(x)=,则满足f(x)+f(x-)>1的x的取值范围是.三、解答题17.(12分)设数列{an }满足a1+3a2+…+(2n-1)an=2n.(1)求{an}的通项公式;(2)求数列{}的前n项和.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19.(12分)如图四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE 与四面体ACDE的体积比.20.(12分)在直角坐标系xOy中,曲线y=x2+mx-2与x轴交于A、B两点,点C的坐标为(0,1),当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A、B、C三点的圆在y轴上截得的弦长为定值.21.(12分)已知函数f(x)=lnx+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)-=0,M为l3与C的交点,求M的极径.[选修4-5:不等式选讲]23.已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.2017年全国统一高考数学试卷(文科)(新课标Ⅲ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
2017年高考真题——文科数学(全国Ⅲ卷)+Word版含解析
4 ,则 sin 2α 称 3
B. −
致. −
7 9
2 9
件.
2 9
价.
7 9
答案 致
解析
( sin α − cos α ) sin 2α = 2 sin α cos α =
−1
2
−1
=−
7 . 9
本题选择 致 选项.
5.设 x,y 满足约束条
3 x + 2 y − 6 ≤ 0 ,则 z称x-y 的取值范围是 x≥0 y≥0
-7-
.
答案 5 解析 由双曲线的标准方程可得渐近线方程为 y = ±
3 结合题意可得 a = 5 . x , a
令5.△致B件 的内角 致,B,件 的对边 别为 a,b,c
π
3
)+cos(x− B.令
π
6
)的最大值为 件. 价.
6 5
答案 致 解析 由诱导
式可得
π π cos x − = cos 6 2
π π − x + = sin x + , 3 3
-3-
则
1 π π 6 π f ( x ) = sin x + + sin x + = sin x + , 5 3 3 5 3
答案 件
令令. 知椭圆 件
x2 y2 + = 1 , a己b己代 的左 右顶点 别为 致令,致以,且 线段 致令致以 为直 的 a 2 b2
,则 件 的离心率为
圆
直线 bx − ay + 2ab = 0 相
致.
6 3
B.
3 3
(word完整版)2017年高考全国三卷文科数学试卷
2017年普通咼等学校招生全国统一考试(III卷)文科数学2017.6、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A {123,4}, B {2,4,6,8},则A AB中元素的个数为3 x 2y 60,5.设x、y满足约束条件X0,则z = x - y的取值范围是y0,A. [-3,0]B. [-3,2]C. [0,2]’si n(x5D. [0,3]6.函数f(X)3)cos(x—)的取大值为6A. B. 153 1C. -D. -5 5D. 44. 已知sin cos则sin 2A.12. 复D.第四象限2014年1月至2016年12月期间月接待/ sin x7.函数y 1 x 厂的部分图象大致为x8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数 N 的最小值为A. 5B. 4C. 3D. 29.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 3 A. B.4 C.—210.在正方体 ABCD-A i B i C i D i 中,E 为棱CD 的中点,则A. A 1E 丄 DC 1B. A 1E 丄 BDD.—4C. A 1E 丄D. A 1E 丄 AC2 2x y11.已知椭圆C : —221(a b 0)的左、右顶点分别为 A 1、A 2,且以线段A 1A 2为直径的圆与直线a bbx ay 2ab 0相切,则C 的离心率为,6<321A.B.C—D.-333 312.已知函数 f(x) x 2x 1x 2x a(ee 1)有唯一零点,则a =111A.B.-C—D. 1232二、填空题::本题共 4小题,每小题 5分,共20分。
y 3x ,则 a =515. △ ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c ,已知 C = 60° , b =J3 , c = 3,贝U A = _________16.设函数f (x)x 1,x 0,x则满足f (x)2 ,x 0,1 f(x ?)1的X 的取值范围是B.= 7-117~21题为必考题,每个试三、解答题:共70分。
2017年高考真题——文科数学(全国Ⅲ卷)
【答案】C
11.已知椭圆 C:
x2 y2 1, (a>b>0)的左、右顶点分别为 A1,A2,且以线段 A1A2 为直径的 a 2 b2
圆与直线 bx ay 2ab 0 相切,则 C 的离心率为
A.
6 3
B.
3 3
C.
2 3
D.
1 3
-6-
学科知识供应商
【答案】A 【解析】以线段 A1 A2 为直径的圆是 x 2 y 2 a 2 ,直线 bx ay 2ab 0 与圆相切,所以圆 心到直线的距离 d
cos x sin x , 6 3 3 2
1 6 则: f x sin x sin x sin x , 5 3 3 5 3
【答案】75°
b sin C b c 【解析】由题意: ,即 sin B c sin B sin C
得 B 45 ,则 A 180 B C 75
6
3 2 2 3 2
,结合 b c 可
x 1,x 0, 1 16.设函数 f ( x) x 则满足 f ( x) f ( x ) 1 的 x 的取值范围是__________。 2 2 ,x 0,
[20,25) : y 300 6 150 2 450 4 300 ;
不低于 25 C : y 450 (6 4) 900 ∴ Y 大于 0 的概率为 P
2 16 1 . 90 90 5
19. (12 分) 如图,四面体 ABCD 中,△ABC 是正三角形,AD=CD.
2017年普通高等学校全国卷Ⅲ文数 高考试题 (真题精编版)
3 2. 4a
(二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修 4―4:坐标系与参数方程](10 分)
x 2+t , 在直角坐标系 xOy 中,直线 l1 的参数方程为 (t 为参数),直线 l2 的参数方程为 y kt , x 2 m , .设 l1 与 l2 的交点为 P,当 k 变化时,P 的轨迹为曲线 C. (m为参数) m y , k
已知函数 f ( x) =│x+1│–│x–2│. (1)求不等式 f ( x) ≥1 的解集; (2)若不等式 f ( x) ≥x2–x +m 的解集非空,求 m 的取值范围.
文档来源:工大教育网络编辑部
更多学习资料尽在学校官网:
也可拨打名师热线:400-63663-138
1 6.函数 f(x)= sin(x+ )+cos(x− )的最大值为 5 3 6
A.
6 5
B. 1
C.
3 5
D.
1 5
7.函数 y=1+x+
sin x 的部分图像大致为 x2
A.
B.
C.
D.
8.执行下面的程序框图,为使输出 S 的值小于 91,则输入的正整数 N 的最小值为
-2-
学校网址:
三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试题考生 都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17. (12 分) 设数列 an 满足 a1 3a2 (2n 1)a n 2n . (1)求 an 的通项公式; (2)求数列 18. (12 分) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,未售出的酸奶 降价处理, 以每瓶 2 元的价格当天全部处理完.根据往年销售经验, 每天需求量与当天最高气温 (单位: ℃) 有关.如果最高气温不低于 25,需求量为 500 瓶;如果最高气温位于区间[20,25) ,需求量为 300 瓶;如 果最高气温低于 20,需求量为 200 瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温 数据,得下面的频数分布表: 最高气温 天数 [10,15) 2 [15,20) 16 [20,25) 36 [25,30) 25 [30,35) 7 [35,40) 4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2017年普通高等学校招生全国统一考试(新课标Ⅲ)
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为
A.1
B.2
C.3
D.4
2.复平面内表示复数z=i(-2+i)的点位于
A.第一象限
B.第二象限
C.第三象限
D.第四象限
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.
根据该折线图,下列结论错误的是
A.月接待游客逐月增加
B.年接待游客量逐年增加
C.各年的月接待游客量高峰期大致在7,8月
D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
4.已知4sin cos 3
αα-=
,则sin 2α= A.79- B.29- C. 29 D.79 5.设x ,y 满足约束条件326000x y x y +-≤⎧⎪≥⎨⎪≥⎩
,则z =x -y 的取值范围是
A.-3,0]
B.-3,2]
C.0,2]
D.0,3]
6.函数f(x)= sin(x+
3π)+cos(x-6π)的最大值为 A.65 B.1
C. D. 7.函数y=1+x+2
sin x x 的部分图像大致为 A. B.
C. D.
8.执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为
A.5
B.4
C.3
D.2
9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为
A. B.3π4 C.π2 D.π4
10.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则
A.11A E DC ⊥
B.1A E BD ⊥
C.11A E BC ⊥
D.1A E AC ⊥
11.已知椭圆C :22
221x y a b
+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为 6 3 C.23 D.13
12.已知函数211()2()x x f x x x a e
e --+=-++有唯一零点则a = A.12- B.13 C.12
D.1 二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量(2,3),(3,)a b m =-=,且a ⊥b ,则m = .
14.双曲线22219x y a -=(a >0)的一条渐近线方程为35
y x =,则a = . 15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。
已知C =60°,b 6c =3,则A =_________。
16.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,
则满足1()()12f x f x +->的x 的取值范围是__________。
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)
设数列{}n a 满足123(21)2n a a n a n +++-=K .
(1)求{}n a 的通项公式;
(2)求数列21n a n ⎧⎫⎨
⎬+⎩⎭
的前n 项和 18.(12分)
某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表: 最高气温
10,15) 15,20) 20,25) 25,30) 30,35) 35,40) 天数 2 16 36 25 7 4 以最高气温位于各区间的频率代替最高气温位于该区间的概率。
(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.
19.(12分)
如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .
(1)证明:AC ⊥BD ;
(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABC E与四面体ACDE 的体积比.
20.(12分)
在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:
(1)能否出现AC ⊥BC 的情况?说明理由;
(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.
21.(12分)
已知函数()f x =ln x +ax 2+(2a +1)x .
(1)讨论()f x 的单调性;
(2)当a ﹤0时,证明3()24f x a
≤--. (二)选考题:共10分。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.选修4―4:坐标系与参数方程](10分)
在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩
(t 为参数),直线l 2的参数方程为2,,x m m m y k =-+⎧⎪⎨=⎪⎩
(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ2,M 为l 3与C 的交点,求M 的极径.
23.选修4—5:不等式选讲](10分)
已知函数f (x )=│x +1│–│x –2│.
(1)求不等式f (x )≥1的解集;
(2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围.。