七年级数学垂线
七年级下册数学垂直知识点
七年级下册数学垂直知识点在数学中,垂直是一种常见的概念,也是我们学习数学必须熟悉的知识点。
在七年级的下册数学中,垂直知识点是一个非常重要的内容。
本文将介绍七年级下册数学中的垂直知识点,让同学们能够更好地理解和掌握这一知识点。
1. 垂线的概念垂线是指从一个点到一条直线或平面的距离最近的线段。
用符号⊥表示。
在图形中,垂线通常用虚线表示。
需要注意的是,一条直线或平面可以有无数条垂线。
2. 平行线和垂直线的关系平行线是指一直线与另外一条直线在同一平面上,但不相交的直线。
而垂直线则是指两条直线或线段之间成90度角的情况。
在平面几何中,当两条直线相交时,它们互为垂线。
因此,平行线和垂直线是互不相容的概念。
3. 垂直平分线垂直平分线是指一个线段的中垂线,它是将这个线段平分并垂直于线段的一条直线。
垂直平分线可以能够将一个线段分成相等的两部分,并且它们互相垂直。
4. 垂线的性质垂线有一些特殊的性质,这些性质对于理解垂线的概念和运用垂线进行计算是非常有帮助的。
- 垂线的长度:垂线的长度等于点到垂线所在的直线或平面的距离。
- 垂线的斜率:垂线的斜率是与被垂线的直线或平面的斜率相反的倒数。
- 垂线的平方:当垂线从一个点到另一个点垂直时,它的平方是两个点之间的距离的平方。
5. 垂线的应用垂线在实际生活中有着广泛的应用。
例如,在建筑设计中,垂线被广泛地用来检查建筑的垂直性和水平性。
在地图制图中,垂线被用来确定两个点之间的最短距离。
在数学中,垂线也是解决几何问题的重要工具。
总之,在七年级下册数学中,垂直知识点是数学学习过程中的一个必备知识点。
通过学习垂直知识点,同学们能够更好地理解和应用数学概念,提高自己的数学成绩。
七年级数学垂线知识点总结
七年级数学垂线知识点总结数学中,垂线是非常重要且常用的一个概念。
在利用垂线解决问题的时候,我们要掌握某些关键的知识点。
在这篇文章中,我们将对七年级数学中垂线的知识点进行总结。
一、垂线的概念
垂线是指一个线段或一个向量与另一条直线所交的线段,它与这条直线的交点就是垂足。
一个线段或向量与另一条直线所成的角度为90度。
二、垂线的性质
(1)垂线所在的直线与另一条直线的夹角是90度。
(2)同一条直线上的垂线长度相等。
(3)如果两条垂线在一条直线上,则这两条垂线互相垂直。
(4)平行的直线上的垂线互相平行。
三、垂线的分类
(1)高线:就是指一个顶点到对边的垂线。
(2)中线:就是指一个三角形的一个顶点到对边中点的垂线。
(3)中垂线:就是指一个三角形的一个角的平分线与对边的
垂线所交的线段。
四、垂线的应用
(1)垂线的交点可以确定两直线之间的距离。
(2)找重心:在一个三角形中,三条中线交于一个点,这个
交点就是重心。
(3)找垂心:在一个三角形中,三条高线交于一个点,这个交点就是垂心。
(4)找中心:在一个三角形中,三条中垂线交于一个点,这个交点就是三角形的内心。
以上就是七年级数学垂线知识点的总结。
希望这篇文章对大家掌握垂线的概念、性质和应用有所帮助。
人教版数学七年级下册5.1.2垂线 课件
感悟新知
例 1 如图5.1-11,直线AB,CD 相交于点O,OE ⊥ AB 于 点O,且∠ COE=40°,求∠ BOD 的度数. 解题秘方:利用垂直的定 义及对顶角的性质,将要 求的角向已知角转化.
感悟新知
解:因为OE ⊥ AB, 所以∠ AOE=90°. 又因为∠ AOE= ∠ AOC+ ∠ COE,∠ COE=40°, 所以∠ AOC=90°-40°=50°. 所以∠ BOD= ∠ AOC=50°
所以AC·BC=AB·CD,进而可得CD=2.4 cm.
感悟新知
(2)点P 为直线m 外一点,点A,B,C 为直线m 上的三点,
PA=4 cm,PB=5 cm,PC=2 cm,则点P 到直线m 的距
离( D )
A. 等于4 cm
B. 等于2 cm
C. 小于2 cm
D. 不大于2 cm
感悟新知
解题秘方:根据点到直线的距离的定义,找出垂线段. 解:点到直线的距离是该点到这条直线的垂线段的 长度,而垂线段是该点与直线上各点的连线中最短 的. 从条件看,PC是三条线段中最短的,但不一定 是所有连线中最短的,所以点P 到直线m 的距离应 该是不大于2 cm.
感悟新知
1-1. [中考·河南] 如图,直线AB,CD相交于点O,EO⊥ CD,垂足为O,若∠ 1=54°,则∠ 2 的度数为( B ) A. 26° B. 36° C. 44° D.54°
感悟新知
例2 将一张长方形纸片按如图5.1-12 所示方式折叠,EF, EG 为折痕,判断EF 与EG 的位置关系. 解题秘方:利用折叠的性 质求出两线的夹角,根据 夹角是90°判断两条直线 的位置关系.
1. 垂线段:
特别解读 垂线、垂直与垂线段之间的区别与联系: 1. 区别:垂线是一条与已知直线垂直的直线;垂
人教版七年级数学下《垂线》知识全解
《垂线》知识全解课标要求1.理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线;2.理解点到直线的距离的意义,能度量点到直线的距离;3.识别同位角、内错角、同旁内角.知识结构内容解析1.垂线的定义:两条直线相交所成的四个角中有一个角是90°时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.2.垂线的性质一:过一点有且只有一条直线与已知直线垂直.3.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线是一条直线,而垂线段是一条线段.4.垂线的性质二:连接直线外一点与直线上各点的所有线段中,垂线段最短.(垂线段最短)5.同位角、内错角、同旁内角(1)同位角:①位于两条被截直线AB、CD的同方;②在第三条直线EF的同侧.(2)内错角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的两侧.(3)同旁内角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的同侧.注意:(1)同位角、内错角、同旁内角都是成对出现的.(2)两条直线被第三条直线所截中共有4对同位角、2对内错角、2对同旁内角.重点难点本节的重点是:两条直线互相垂直的概念、性质和画法;点到直线的距离的概念及其简单应用.理解同位角,内错角,同旁内角的概念是本节的重点本节的难点是:对点到直线的距离的概念的理解.在“三线八角”中,学生不易分清角的类别,所以正确识别同位角,内错角,同旁内角是本节的难点教法导引在本节的教学中过程中要借助模型、实物、图形及计算机等学习手段使学生得到直观的感性认识,进而在感知的基础上进行抽象知识的学习,这样才能有助于培养逻辑思维的能力,同时应鼓励学生多观察、多动手、勤思考增强学生学习几何知识的兴趣.在本节的概念和相关结论的教学中,应结合图形去讲解并通过画图、度量等实践活动,让学生理解知识.教学中应继续渗透数形结合、转化、分类等数学思想方法.教学中要注意与以前学生学习过的相关知识进行衔接,比如在垂线段最短的教学中可以把上学期所学的“两点之间线段最短”的知识进行对比.教学中让学生把所学知识用准确、精炼的几何语言表述出来,同时还要注意培养学生的识图能力.学法建议学习中应结合具体实例深刻掌握垂线、点到直线的距离、同位角、内错角、同旁内角的概念,深刻理解垂线的两个性质,并且能够运用垂线的性质来解释生活中的具体实例,例如如何开挖沟渠能使输水管道最短的问题.本节的易错点是混淆垂线和垂线段,大家只要记住垂线是一条直线,垂线段是一条线段就能把他们区别了.本节的一个难点是“三线八角”中判断两个角的关系.解答此类问题把握以下两个方面即可:(1)要弄清楚每对角与哪三条直线有关,第三条直线就是这两个角的公共边所在的直线,另两条直线是角的另两边;(2)当图形比较复杂时,把这两个角有关的三条线画出来,注意图形的结构特点.。
七年级数学垂线知识点
七年级数学垂线知识点数学中的垂线是指与另一条直线或平面相交且所交的角度为90度的线段。
在七年级数学中,垂线是一个重要的知识点,应该掌握其定义、性质、应用以及解题方法等方面的知识。
一、垂线的定义和性质定义:垂线是指从点到一条直线或平面所引下的线段,且该线段与直线或平面相交的角度为90度。
性质:(1)垂线是最短的线段;(2)两条互相垂直的线段的乘积相等;(3)垂线可以将一个角分成两个互相垂直的角。
二、垂线的应用在日常生活中,垂线可以被广泛地应用到各个领域。
例如,建筑学中的垂线是指对于一条直线,相对于该直线且垂直于地面的线段;医学中的垂线可以用于测量身体各部分之间的距离;在制图学中,垂线可以用于测量任意两条线之间的距离。
在数学中,垂线常被用于解决各种几何问题。
例如,在求解三角形的中位线、高线、中心线时,常常需要利用垂线的性质进行计算。
三、垂线的解题方法1. 在求解垂线的长度时,可以使用勾股定理计算。
例如,在三角形中,点P在边AB上,PA垂直于BC,求PA的长度。
解:根据勾股定理得到$PA^2 = AB^2 - BP^2$又因为BP = PC,所以$PA^2 = AB^2 - \frac{BC^2}{4}$2. 在求解垂线所在的直线的方程时,可以使用点斜式或一般式。
例如,已知直线L经过点P(2,3)且与$x$轴垂直,求直线L的方程。
解:由于L与$x$轴垂直,所以L的斜率$k$为0。
又因为直线经过点$P(2,3)$,所以L可以由点斜式表示为$y - 3 = 0(x - 2)$化简得到$y = 3$所以直线L的方程为$y = 3$。
以上是七年级数学垂线知识点的介绍,希望同学们掌握垂线的定义、性质、应用和解题方法,能够在解决各种几何问题时灵活运用垂线知识点,取得更好的学习成绩。
北师大版七年级数学下册《2.1 第2课时 垂线》教案
北师大版七年级数学下册《2.1 第2课时垂线》教案一. 教材分析《2.1 第2课时垂线》这一课时主要让学生了解垂线的概念,掌握垂线的性质,并能够运用垂线的性质解决一些简单的问题。
教材通过生活实例引入垂线的概念,接着引导学生探究垂线的性质,最后通过一些练习题让学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一些几何的基本知识,对图形的认知有一定的基础。
但是,对于垂线的概念和性质可能还比较陌生,需要通过实例和探究活动来理解和掌握。
三. 教学目标1.了解垂线的概念,掌握垂线的性质。
2.能够运用垂线的性质解决一些简单的问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.垂线的概念和性质。
2.运用垂线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入垂线概念,激发学生的学习兴趣。
2.探究教学法:引导学生通过观察、操作、讨论等方式探究垂线的性质。
3.实践教学法:通过练习题让学生运用垂线的性质解决实际问题。
六. 教学准备1.教学课件:制作课件,展示垂线的概念和性质。
2.练习题:准备一些有关垂线的练习题,用于巩固所学知识。
3.教学工具:直尺、三角板等。
七. 教学过程1.导入(5分钟)利用生活实例引入垂线的概念,如建筑工人测量的场景,让学生初步了解垂线。
2.呈现(10分钟)展示垂线的性质,引导学生观察并总结垂线的性质。
3.操练(10分钟)让学生分组合作,利用直尺、三角板等工具,画出一些垂线,并验证垂线的性质。
4.巩固(10分钟)出示一些有关垂线的练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)出示一些实际问题,让学生运用垂线的性质解决,如在建筑设计中如何确定墙体的垂直方向等。
6.小结(5分钟)总结本节课所学内容,强调垂线的概念和性质。
7.家庭作业(5分钟)布置一些有关垂线的练习题,让学生回家巩固所学知识。
8.板书(5分钟)根据教学内容,设计板书,突出垂线的概念和性质。
七年级数学垂线
A
.P
B
已知直线AB及一点P,试过点 P作直线AB的垂线。
.P
A
B
点在直线外
垂线的性质1
经过直线外或直线上一点,有且 只有一条直线与已知直线垂直。 “有且只有”的含义:
“有”代表“存在”; “只有”代表“唯一”
试一试
1.如图, ∠ABD=90°,则
(1) 直线( AC )⊥直线( BD ), 垂足为点( B ); (2)过点D有且只有( 一 )条直 线与直线AC垂直。
二、一辆汽车在直线型公路AB 上由A向B 行驶,M、N分别是位于公路两侧的村庄, 设汽车行驶到P位置时离村庄M最近;行 驶到Q位置时离村庄N最近,请在图中公 路AB上分别画出P、Q两点的位置
M · A N · B
三、如图,直线AB与CD相交于点O,OE⊥CD, OF⊥AB,∠DOF=65o,求∠BOE和∠AOC的 度数。 F
七年级数学
课题
垂线
设计者
谢汝荡
学习目标:
1、理解垂线的概念,会用三角板、量 角器过一点画一条直线的垂线。 2、理解点到直线的距离的概念,并会 度量点到直线的距离。
两直线相交
A
2 1
C O B
几何语言:
D “直线AB、CD相交于点O”
∠1、 ∠2分别是什么角?
∠1是锐角, ∠2是钝角。
两直线垂直
2.如图,∠ABD=90°,则 (1)度量线段PA、PB、 PC长,比较它们的大小。 PA > PC > PB (2)最短的线段是什么?(线段AB) 垂线的性质2:直线外一点与直线上各点连 结的所有线段中,垂线段最短。 简称:“垂线段最短”
点到直线的距离: 直线外一点到直线的 垂线段的长度,叫做 点到直线的距离。
七年级数学平行线与垂直线
七年级数学平行线与垂直线平行线与垂直线是七年级数学中的重要概念。
本文将详细介绍平行线和垂直线的定义、性质以及应用。
一、平行线的定义和性质平行线是指在同一个平面上没有交点的直线。
具体来说,如果两条直线在平面上任何一个点处的夹角都相等,那么这两条直线就是平行线。
平行线的性质如下:1. 平行线上的任意两条线段之间的夹角都相等。
2. 平行线的斜率相等,而且无限大或无限小。
3. 平行线之间的距离始终保持不变。
二、垂直线的定义和性质垂直线是指在同一个平面上与另一条直线相交,且相交角度为90度的直线。
通常用垂直符号“⊥”表示。
垂直线的性质如下:1. 垂直线上的任意两条线段之间的夹角都是90度。
2. 垂直线的斜率相乘为-1。
三、平行线和垂直线的关系1. 如果两条直线相交的夹角为90度,则这两条直线互为垂直线。
2. 如果两条直线是平行线,那么它们的斜率相等且不相交。
3. 如果两条直线相互垂直,并且其中一条直线与另一条直线的斜率都存在,那么这两条直线的斜率相乘等于-1。
四、平行线和垂直线的应用平行线和垂直线在日常生活和建筑设计中有着广泛的应用。
1. 建筑设计中常常需要利用垂直线确保墙壁、楼梯等结构的垂直性。
2. 平行线的应用包括平行线测量、交通规划、线性编码等。
3. 垂直线可以用于制作正交图,例如建筑、机械等图纸的绘制。
4. 在地理学中,纬度线和经度线是一种特殊的平行线和垂直线,用于确定地点的位置。
总结:平行线和垂直线是七年级数学中的重要概念。
通过理解和掌握平行线和垂直线的定义、性质以及应用,我们可以更好地理解和应用这些概念。
无论是在几何学、建筑设计还是其他实际场景中,平行线和垂直线都扮演着重要的角色,对我们的生活和工作有着积极的影响。
文本共计606字。
初一七年级数学 人教版垂线
一条.
新知探究
知识点2: 垂线的画法及性质
l
A
B
1.落.2.移.3.画.
如图,已知直线 l 和 l 外的一点 A ,过点 A 作 l 的垂线.
这样画直线 l 的垂线可以画几条?
一条.
新知探究
知识点2: 垂线的画法及性质
经过一点画已知直线的垂线,通常有两种画法.(1)用三角尺画:1.落:让三角尺的一条直角边落在已知直线上,使其与已知直线重合.2.移:沿已知直线移动三角尺,使其另一条直角边经过已知点.3.画:沿此直角边画直线,则这条直线就是已知直线的垂线.
垂直
第2题图
2.如图, <m></m> .若 <m></m> ,则 <m></m> 的度数是( )
A
A. <m></m> B. <m></m> C. <m></m> D. <m></m>
跟踪练习
第3题图
3.如图,直线 <m></m> , <m></m> 相交于点 <m></m> ,<m> ,垂足为 <m></m> .若 <m></m> ,则 <m></m> 的度数为( )
2.垂线的性质1:在同一平面内,过一点有且只有一条直线与已知直线垂直.
跟踪练习
1. 如图,AB⊥AC,已知∠1=33°,则∠2的度数是 ( )A.33° B.57° C.67° D.167°
七年级数学,垂线的定义、画法
四、练习与小结
2.画一条线段或射线的垂线,就是画它们所在直线
的垂线.如图,请你过点P画出射线AB或线段AB的垂线.
过一点画一条线段的垂线,其实就是画这条线段所
在的直线的垂线.
四、练习与小结
小结:谈谈你对垂线的认识. (1)垂线的定义、几何符号语言. (2)垂线的性质及画法. (3)垂直是相交的一种特殊情况,垂直属于相 交,但又不同于一般的相交,只有两条直线相交成 直角时,它们的位置关系才能称作互相垂直.
选做题:第6题.
叫做这两条直线互相垂直,它是直线相交的一种特殊情
形.其交点叫垂足.
A C O B D
如图,记作:AB⊥CD,垂足是O.“⊥”是垂直符号.
二、探究垂线的概念
2.发现生活中的垂直实例. 生活中有许多直线互相垂直的例子,你能举出一 些例子吗?
你能再举出其他
二、探究垂线的概念
二、探究垂线的概念
围棋盘的横线和竖线
四、练习与小结
小结:谈谈你对垂线的认识. (4)垂直与垂线不同,垂直是指两条直线的位 置关系,而垂线是指两条直线互相垂直时,其中的
一条叫做另一条的垂线.两者也有联系,只有在垂
直的情况下,才会有垂线. (5)在同一平面内,过一点有且只有一条直
线与已知直线垂直.
五、布置作业
必做题:习题5.1第3,4,5题.
铅垂线和水平线
三、探究垂线的画法
问题1:用三角尺或量角器画已知直线 l 的垂线,这
样的直线你能画几条?
无数 问题2:经过直线l上一点A画直线 条 l 的垂线,这样
一条 问题3:经过直线l外一点B画直线 源自 的垂线,这样的垂线能画几条?
的直线能画几条?
一条
三、探究垂线的画法
七年级数学垂线的概念、画法、性质与角度计算
相交线之垂线在相交线的模型中,固定木条a,转动木条b。
当b的位置变化时,a、b所成的∠α也会发生变化。
当∠α=90°时(如图1),你能得到什么结论?我们说a与b互相垂直,记作a⊥b。
(图1)【知识梳理1】垂线的相关概念及推理1.当∠α=90°时(如图1)此时,我们说a与b互相垂直,记作a⊥b。
(图2)2.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂线,它们的交点叫作垂足。
如图2,AB⊥CD,垂足为O。
注:(1)∠α可以是四个角中的任意一个角,不是限定不变的某一个角。
(2)在画图时,要标记直角符号“┐”,垂线是一条直线而不是线段或射线。
3.推理格式∵∠AOC=90°(已知)∴AB⊥CD(垂直的定义)反过来也成立:∵AB⊥CD于点O(已知)∴∠AOC=∠BOC=∠BOD=∠AOD=90°(垂直的定义)注:垂直的定义既是垂直的性质,也是垂直的判定方法。
【重点剖析】遇到线段、射线的垂直问题,指的是它们所在的直线互相垂直,画线段或射线的垂线是指画它们所在直线的垂线,垂足可能在线上,也可能在其延长线上。
【知识梳理2】垂线的画法经过一点作(已知直线上或直线外),画已知直线的垂线,步骤如下:①靠线:让直角三角板的一条直角边(或某条刻度线)与已知直线重合;②靠点:沿直线移动,使直角三角板的另一条直角边经过已知点;③画线:沿直角边画线,则这条直线就是经过这个点的已知直线的垂线。
例:1.在下列各图中,过点P 画出射线AB 或线段AB 的垂线 2.过点P 作∠AOB 两边的垂线【例题精讲】例1.下列说法正确的有( )①两条直线相交,交点叫垂足;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③在同一平面内,一条直线有且只有一条垂线;④在同一平面内,一条线段有无数条垂线;⑤过任意一点不可能向一条射线或线段所在的直线作垂线;⑥若直线1l ⊥2l ,则1l 是2l 的垂线,2l 不是1l 的垂线。
七年级数学垂线的知识点
七年级数学垂线的知识点数学是我们日常生活中不可或缺的一部分,而垂线是数学中一个重要的概念。
在七年级的数学学习中,垂线也是重要的知识点之一。
那么,我们应该如何理解和掌握垂线的概念呢?接下来,我们将从以下几个方面进行探讨。
一、垂线的定义和性质垂线是指从一条线段的一个端点引出的,与这条线段垂直相交的线段。
垂线的性质包括以下几点:1. 垂线和被垂直的直线之间的夹角为90度。
2. 如果线段AB和CD在一个平面内,且AB和CD不平行,则它们至少有一条公共垂线。
3. 如果两条垂线在同一个点相交,那么这两条垂线所在的直线垂直。
二、垂线的作用垂线在数学中有着广泛的应用。
以下是几个常见的应用场景:1. 求两条直线的垂直关系。
如果两条直线相交且相互垂直,那么它们可以构成一个直角。
2. 在平面几何中,垂线可以用来构造各种图形,如三角形、梯形、正方形等。
3. 在计算机科学中,垂线可以用来计算向量和向量之间的夹角,从而实现计算机图形的旋转和变形。
三、垂线的求解在实际问题中,我们常常需要求解垂线的长度和坐标。
以下是几个求解垂线的方法:1. 使用勾股定理和垂线的性质。
如果我们知道线段的两个端点的坐标,那么我们可以通过勾股定理和垂线的性质求出垂线的长度和坐标。
2. 利用向量的知识。
如果我们知道两个向量的坐标,那么我们可以通过向量的点积和长度求解垂线。
3. 利用函数的知识。
如果我们知道函数的方程和点的坐标,那么我们可以通过函数的导数求解垂线。
总之,垂线是数学中一个重要的概念。
掌握垂线的定义、性质和使用方法,对我们的数学学习和应用都有很大的帮助。
人教版七年级数学下册《垂线》教学课件
探究
你知道在体育课上老师是怎样测量跳远成绩的吗?
你能说说其中的道理吗?
垂
直
性
质
的
实
际 应
P
用
垂线段最短
O
做一做
2、如图:在铁路旁边有一张庄,现在要建一火车站,为了使张庄
人乘火车最方便(即距离最近),请你在铁路上选一点来建火车站 ,并说明理由。
拓展延伸
2、如图,AC垂直BC于点C,CD垂直AB于点D,DE垂直BC于点E, 试比较四条线段AC,DC,DE和AB的大小。
解:∵AC⊥BC,(已知) ∴AC<AB,(垂线的性质二) ∵CD⊥AB,(已知) ∴DC<AC,(垂线的性质二) ∵DE⊥BC,(已知) ∴DE<DC,(垂线的性质二) ∴DC<DC<AC<AB.
4.如图, BO ⊥AO, ∠BOC与∠BOA的度数之 比为1:5,那么∠COA7=2° 。 ∠BOC的补角为 (16)2 度。
探究新知
活动二:探究垂线的画法
工具:直尺、三角板
如图,已知直线 l,作l的垂线.
A
问题1:这样画l的垂线
可以画几条?
O
无数条
1、靠 2、移 3、画线
l
版权所有 盗版必究
探究新知 如图,已知直线 l和l上的一点A ,作l的垂线.
D
∴∠AOD=90°(垂直的定义)
判断两条直线互相垂直的关键: 只要找到两条直线相交时四个交角中一个角是直角.
牛刀小试
1、如图,∠ACB=90°,D是AB上一点,且∠ADC=∠BDC,请写出
图中互相垂直的线段,并简要说明理由.
解:图中互相垂直的线段有
人教版初中数学七年级下册 垂线
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂
线段最短.
探索新知
二.垂线的性质
垂线的性质2:
连接直线外一点,与直线上各点的所有线段中,垂
线段最短.
探索新知
点到直线的距离:
直线外一点到这条直线的垂线段的长度,叫做点
到直线的距离.
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
1.贴 2.靠 3.移
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
直.
1.贴 2.靠 3.移 4.画
探索新知
过已知直线上一点能画这条直线的垂线吗?能画几条?
结论:过直线上一点有且只有一条直线与已知直线垂
如图,线段PO的长度即为点P到直线l的距离。
注意:距离是一个数量.
PO是点P到直线l的距离
学以致用
1.已知,如图, ⊥ ,垂足为,为过点的
一条直线,则∠1与∠2的关系一定成立的是(
A.相等
B.互余
D.互为对顶角
5.1.2垂线 课件(共29张PPT)
线垂直的是( C )
A.有两个角相等
B.有两对角相等
C.有三个角相等
D.有四对邻补角
随堂检测 4.过点P画出射线AB或线段AB的垂线.
P
A
PB
A
人教版数学七年级下册
B
巩固练习
人教版数学七年级下册
1.已知,如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1
与∠2的关系一定成立的是( B )
A.①② B.①③ C.②③ D.①②③ 2. 如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若 ∠1=54°,则∠2的度数为 ( B ) A.26° B.36° C.44° D.54°
于点O,∠AOD=90°,那么AB⊥CD.
A
符号语言表示:
∵∠AOD=90°
C
O
D
∴AB⊥CD(垂直的定义)
B
探究新知
人教版数学七年级下册
日常生活中,两条直线互相垂直的情形很常见,说出下 图中的一些互相垂直的线条.
你能再举出其他例子吗?
探究新知
人教版数学七年级下册
探究 (1)画已知直线l的垂线能画几条? (2)过直线l上的一点A画l的垂线,这样的垂线能画几条? (3)过直线l外的一点B画l的垂线,这样的垂线能画几条?
(6)线段AB是点B到AC的距离.
其中正确的有( B )
A.1个
B.2个 C.3个 D.4个
人教版数学七年级下册
巩固练习
人教版数学七年级下册
3.如图,直线AB、CD相交于点O,OE⊥AB,∠EOC=35°,求
∠AOD的度数.
解:∵AB⊥OE∴ ∠EOB=90° ∵∠EOC=35° ∴∠AOC=35° ∴∠AOD=180°-∠AOC =180°- 35°=145 °
七年级下册数学知识点垂线
七年级下册数学知识点垂线垂线作为一种基本的图形要素,在数学中应用广泛。
在七年级下册数学学习中,垂线是必须要掌握的重要知识点。
本文将就垂线的概念、性质和应用等方面进行介绍,以便给七年级下学生提供有用的帮助。
一、垂线的概念垂线是从一点到一条给定直线的线段,且这个线段与给定直线垂直。
可简单理解为一条竖直的线段。
在学习垂线的时候,我们需要了解一下两个相关概念:垂线段和垂足。
垂线段指垂线与原直线的交点所连接的线段,而垂足指垂线与原直线的交点。
这两个概念在后续的学习中会经常出现。
二、垂线的性质1.垂线的长度是不变的不论你在给定的直线上选择哪个点来作垂线,它的长度都是相同的,因为所有的垂线都是垂直于给定直线的。
这需要我们在实际计算中注意。
2.相交直线的垂线是垂直的对于两条相交的直线,它们的垂线必定相互垂直。
因为垂直的定义就是两线段夹角为90度,而垂线恰好和直线垂直,它们的夹角自然为90度。
3.垂足在线段的中点在同一直线上作一条垂线,那么垂足一定在该线段的中点。
这是因为垂线恰好垂直于该线段,而在该线段的中点悬空之处其实并不存在具体的角度,所以是垂足的理想位置。
三、垂线的应用垂线在数学中是一个十分重要的概念,常常用在解决几何问题中。
1.垂线的应用于求解三角形的面积我们可以通过连接三角形的一个顶点和对边的垂线,将原三角形分为两个小三角形和一个矩形,从而求解三角形的面积。
2.垂线的应用于求解两个直线之间的距离我们可以通过向两个直线各作一条垂线,并连接这两条垂线的垂线段,从而求解出这两条直线之间的距离。
3.垂线的应用于解决线段间的垂直问题对于不在同一直线上的两条线段,我们可以通过连接它们的垂线来判断它们是否互相垂直。
如果垂线互相垂直,则两条线段也互相垂直。
四、总结垂线是七年级下册数学学习中重要的知识点,它可以被应用于各种不同的几何问题。
在学习垂线的过程中,需要掌握垂线的概念和性质,并能够灵活运用垂线来解决实际问题。
希望通过本文的介绍,能够对七年级下学生深入理解垂线有所帮助。
初一数学下册:垂线(含知识点、练习和答案)
初一数学下册:垂线(含知识点、练习和答案)知识点总结一、定义1、垂直:两条直线相交所成的四个角中,如果如果有一个角为90度,那么这两条直线互相垂直。
2、垂线:垂直是相交的一种特殊情形,如果两条直线垂直,其中一条直线叫做另一条直线的垂线。
3、垂足:两条垂线的交点叫垂足。
4、垂直三要素:垂直关系,垂直记号,垂足。
5、垂线特点:过一点有且只有一条直线与已知直线垂直。
二、三角形的高1、做直角三角形的高:两条直角边即是钝角三角形的高,只要做出斜边上的高即可。
2、做钝角三角形的高:最长的边上的高只要向最长边引垂线即可,另外两条边上的高过边所对的顶点向该边的延长线做垂线。
三、垂直公理:过一点有且只有一条直线与已知直线垂直。
四、垂线段最短;点到直线的距离:直线外一点到这条直线的垂线段的长度。
五、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
同步练习1、如图,OA⊥OB,若∠1=55°,则∠2的度数是( )A、35°B、40°C、45°D、60°2、如图,直线AB与直线CD相交于点O,已知OE⊥AB,∠BOD=45°,则∠COE的度数是( )A、125°B、135°C、145°D、155°3、过线段外一点,画这条线段的垂线,垂足在( )A、这条线段上B、这条线段的端点4、在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数为( )A、1个B、2个C、3个D、4个5、下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线。
七年级下册数学垂线知识点
七年级下册数学垂线知识点
数学是一门比较抽象的学科,但是在生活中却处处可见。
今天
我们要讲的垂线知识点,在几何图形中起到了重要的作用。
下面
我们将逐步讲解垂线的定义和相关概念。
一、垂线的定义
垂线是与另一条直线或平面相交,且相交点与另一条直线或平
面上一点连线垂直的线段。
其特点是与所相交的直线或平面垂直。
二、垂线的性质
1.垂线与直线或平面垂直相交,且在相交点处的角度为90度。
2.垂线的长度是从垂足(垂线与直线或平面的交点)到相交点的
距离。
3.同一点到直线或平面上的垂线只有一条。
三、垂线的应用
垂线在解决数学问题中有广泛的应用,下面我们将具体讲解。
1.求两直线间的距离
在解决两直线间的距离问题时,可将一条直线上的点到另一条直线上的垂线长作为距离。
2.求三角形中心
在三角形中,三条垂线交于一点,称为垂心。
此时垂心是三角形的中心,可以帮助我们解决三角形的相关问题。
3.求线段的中垂线
线段的中垂线是指垂直于线段中点连线的线段。
线段的中垂线与线段垂直且平分线段。
以上是垂线在数学中的一些应用,可以帮助我们解决很多几何
问题。
在学习垂线时,需要掌握几何基础知识,例如:角度,直线,平面等等。
还需要多做习题,加深对垂线的理解和应用。
结语
垂线是几何图形中的基础概念之一,掌握了垂线的定义和性质,可以更好的理解几何问题。
本文通过详细讲解,希望能为大家的
学习提供一些帮助。
同时,也希望大家能够在学习过程中注重理
解和巩固,提高数学水平。
垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)
专题5.4垂线(知识讲解)1.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;2.理解并运用“垂线段最短”解决实际问题;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.特别说明:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).特别说明:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.特别说明:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.特别说明:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、垂线➽➼定义的理解➼➻垂直✬✬直角1.如图,直线AB ,CD 相交于点O ,下列条件:90AOD ∠=︒①;AOC BOC ∠=∠②;AOC BOD ∠=∠③,其中能说明AB CD ⊥的有()A .①B .①或②C .①或③D .①或②或③【答案】B 【分析】根据垂直定义“当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直”进行判定即可.解:90AOD ∠=︒①,可以得出AB CD ⊥,故符合题意;180AOC BOC ∠+∠=︒ ②,AOC BOC ∠=∠,故符合题意,90AOC BOC ∴∠=∠=︒,可以得出AB CD ⊥;AOC BOD ∠=∠③,不能得到AB CD ⊥,故不符合题意;故能说明AB CD ⊥的有①②.故选:B .【点拨】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90︒.举一反三:【变式1】如图,同一平面内的三条直线交于点O ,130∠=︒,260∠=︒,AB 与CD 的关系是()A .平行B .垂直C .重合D .以上均有可能【变式2】如图,120∠=︒,则2∠的度数是()A.50︒B.60︒C.70︒D.80︒【答案】C【分析】根据图象可得:∠1+∠2=90°,代入求解即可得出结果.解:∵∠1+∠2+90°=180°,∴∠1+∠2=90°,∵∠1=20°,∴∠2=70°,故选:C.【点拨】题目主要考查角度计算,从图中得出∠1+∠2=90°是解题关键.类型二、垂线➽➼垂线的画法条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点拨】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.举一反三:【变式1】下列用三角板过点P画AB的垂线CD,正确的是()【变式2】过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以【答案】D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.解答:由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点拨】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.类型三、垂线➽➼点到直线的距离✬✬垂线段画法3.如图,90AOB ∠=︒,P 是OB 上的一点,用刻度尺分别度量点P 到直线OA 和到直线OC 的距离.【答案】点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm【分析】过点P 作PD OC ⊥,用刻度尺分别度量PO 和PD 的长度,即可得到点P 到直线OA 和到直线OC 的距离.【详解】解:过点P 作PD OC ⊥,用刻度尺分别度量,可得点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm .【点拨】本题考查了点到直线的距离,解题的关键是清楚点到直线的距离是垂线段的长度.举一反三:【变式1】如图,AB 、CD 、NE 相交于点O ,OM 平分BOD ∠,OM ON ⊥,55AOC ∠=︒.(1)线段______的长度表示点M 到NE 的距离;(2)比较MN 与MO 的大小(用“<”号连接):____________,并说明理由:____________;(3)求AON ∠的度数.【答案】(1)MO ;(2)MO MN <,是因为垂线段最短;(3)62.5︒【分析】(1)根据点到直线的距离求解即可;(2)根据垂线段最短求解即可;(3)根据垂直的定义和角之间的关系求解即可.(1)解:线段MO 的长度表示点M 到NE 的距离,故答案为:MO ;(2)解:比较MN 与MO 的大小为:MO MN <,是因为垂线段最短,故答案为:MO MN <,是因为垂线段最短;(3)解:55BOD AOC ∠=∠=︒ ,OM 平分BOD ∠,27.5BOM ∴∠=︒,18018027.59062.5AON BOM MON ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】本题考查了点到直线的距离、角平分线、垂线段最短,解题的关键是掌握点到直线的距离.【变式2】已知:点P 是直线MN 外一点,点A 、B 、C 是直线MN 上三点,分别连接PA 、PB 、PC .(1)通过测量的方法,比较PA 、PB 、PC 的大小,直接用“>”连接;(2)在直线MN 上能否找到一点D ,使PD 的长度最短?如果有,请在图中作出线段PD ,并说明它的理论依据;如果没有,请说明理由.【答案】(1)PA PB PC >>;(2)见解析,垂线段最短【分析】(1)直接测量,比较大小即可;(2)作MN 的垂线,垂足为D ,PD 即所求.解:(1)通过测量可知, 3.7PA =cm , 3.2PB =cm , 2.8PC =cm ,故PA PB PC >>;(2)过点P 作PD MN ⊥,则PD 最短.理由:垂线段最短【点拨】本题考查了垂线段最短的性质,解题关键是能熟练的测量线段的长度,知道垂线段最短.类型四、垂线➽➼点到直线的距离✬✬垂线段的长4.如图,在ABC 中,90ACB ∠=︒,8cm AC =,6cm BC =,10cm AB =,点P 从点A 出发,沿射线AB 以2/cm s 的速度运动,点Q 从点C 出发,沿线段CB 以1cm /s 的速度运动,P 、Q 两点同时出发,当点Q 运动到点B 时P 、Q 停止运动,设Q 点的运动时间为t 秒.(1)当t =______时,2BP CQ =;(2)当t =______时,BP BQ =;(3)画CD AB ⊥于点D ,并求出CD 的值;(4)当t =______时,有2ACP ABQ S S = .举一反三:【变式1】如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP⊥AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.解:当MP⊥AB时,MP有最小值,∵AB=10,MB=6,MA=8,∠AMB=90°,∴AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点拨】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关键.【变式2】如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC 上(不与点A,C重合)移动,则线段BP最短时的长为_________________.中考真题专练4.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .【点拨】本题考查垂线段最短,熟知垂线段最短是解答的关键.举一反三:【变式1】(2022·河南·中考真题)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A .26°B .36°C .44°D .54°【答案】B 【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解.解: EO ⊥CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,2180905436∴∠=︒-︒-︒=︒.故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.【变式2】(2021·北京·中考真题)如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A .30︒B .40︒C .50︒D .60︒【变式3】(2021·浙江杭州·中考真题)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则()A .PT PQ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ≤【答案】C 【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,∴是垂线段,即连接直线外的点P与直线上各点的所有线段中距离最短,PQ=,当点T与点Q重合时有PQ PT≥,综上所述:PT PQ故选:C.【点拨】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.。
七年级数学 垂线
垂线例题【例1】 如图,直线AB 与CD 相交于O,OE ⊥CD, ∠DOF=650,求∠BOE 和∠AOC 的度数. 分析 由已知条件和图形可知: ∠BOE 与∠BOD 互余, ∠AOC 与∠BOD 是对顶角,可先求出∠BOD,则∠BOE, ∠AOC 立即可求.解 ∵OF ⊥AB (已知)∴∠BOF=900,(垂直定义)又∵∠DOF=650,∴∠BOD=900-650=250∴∠AOC=∠BOD=250(对顶角相等)∵OE ⊥CD∴∠DOE=900 (垂直定义)∴∠BOE=900-250=650.评注 垂线概念是本节重点,若两条直线垂直,那么它们相交所成的四个角都是900,根据问题需要选用一个即可.【例2】 如图 ,已知AOB 为一条直线,OC 为任一条射线,OD 平分∠BOC,OE 平分∠AOC,试判断OD 和OE 的位置关系,并加以说明.分析观察图形可猜测OD ⊥OE,根据垂直定义,只需说明OE,OD 的夹角为900即可.解 ∵OD 平分∠BOC, ∴∠COD=21∠BOC. 同理可得: ∠COE=21∠AOC. 又∵∠AOC+∠BOD=1800(平角定义)∴∠EOD=∠COE+∠COD=21∠AOC+21∠BOC=900∴OE ⊥OD (垂直定义)评注本题解题过程中的”同理”是在条件相同,推理过程相同的情况下,常用它来缩短书写过程.另外,垂直定义既可作性质用,又可作判定用.几何定义一般都有这两个方面的作用,希同学们细细品味.【例3】 在给出的下图上,完成下列作图:⑴作出点A 到BC 的垂线段AD,并量出点A 到直线BC 的距离;⑵过点B 作AC 的垂线,垂足为E,过点C 作AB 的垂线,垂足为F;⑶延长DA,你能发现什么有趣的结论?解 ⑴⑵的作图如图⑶DA,BF,CE 交于同一点.评注过已知一点画直线的垂线,可借助直角三角板来完成,其要领是“一贴”即直角三角板的一直角板贴在已知直线上,“二靠”即三角板的另一直角边经过已知点,“三画线”即过已知点的直角边画垂线画一条线段或射线的垂线,就是画这条线段或射线所在直线的垂线,垂足可能在线段或射线的延长线上.点A到BC的垂线段是线段AD,而点到直线BC的距离是指垂线段AD的长度,应注意区别.【例4】如图在长方体中,棱AB与哪些面垂直?哪些棱与面A’B’C’D’垂直,面A’ABB’与哪些面垂直?哪些面与面A’D’DA垂直?分析此题考查线面垂直,面面垂直的概念,紧紧抓住概念的意义,结合图形来回答.解棱AB与面BCC`B`,面ADD`A`垂直;棱AA`,CC`,DD`与面A`B`C`D`垂直;面A`ABB`与面ABCD,面A`B`C`D`,面AA`D`D,面BB`C`C垂直;面A`B`C`D`,面A`ABB`,面ABCD,面CDD`C`与面A`D`DA垂直.评注在长方体中,棱与面,面与面之间存在如下关系:与每个面垂直的棱有四条;与每条棱垂直的面共有两个;与每个面垂直的面共有四个.垂线同步测试一1.(2004年北京海淀)若∠A=34°,则∠A的余角的度数为().A.54°B.56°C.146° D.66°2.(2004年江苏常州)若∠α的余角是30°,则∠α= °.3.(2004年江苏南通)如图,在正方体ABCD-A1B1C1D1中,下列棱中与面CC1D1D垂直的棱是().A.A1B11C.BCD.CD4.点到直线的距离是指().A. 从直线外一点到这条直线的垂线.B.从直线外一点到这条直线的垂线段.C. 从直线外一点到这条直线的垂线的长.D. 从直线外一点到这条直线的垂线段的长.5.下面四种说法:⑴过一点有一条线和已知直线垂直;⑵过一点有且只有一条直线和已知直线垂直.⑶直线的垂线和直线上的任一线段垂直.⑷对顶角中有一个角是直角时,相邻的边互相垂直.其中说法正确的个数有().A. 1个B. 2个C. 3个D. 4个6.如图,已知ON⊥a,OM⊥a,所以OM与ON重合的理由是().A 过二点只有一条直线B 经过一点有且只有一条线段垂直于已知直线C 过一点只能作一条垂线D垂线段最短7.如图,已知直线AB,CD,EF相交于O,且AB⊥CD,若∠COE=3501`,则∠AOE= .8.如图,已知OA⊥OB,∠AOC=∠BOD,由此判定OC⊥OD,下面是推理过程,请在横线上填空.∵OA⊥OB (已知)∴ =900()∵ =∠AOC-∠BOC, =∠BOD-∠BOC∠AOC=∠BOD∴ =(等量代换)∴ =900.∴CO⊥OD.()9.定点P在直线AB外,动点O在直线AB上移动,当线段PO最短时,∠POA= 度,这时线段PO所在的直线是AB的.线段PO叫做直线AB的.点P到直线AB 的距离就是线段.10.作∠AOB=900,在OA上取一点C,使OC=3cm,在OB上取一点D,使OD=4cm,用三角尺过C点作OA的垂线,经过点D作OB的垂线,两条垂线交于点E.⑴量出∠CED的大小;⑵量出点E到OA的距离,点E到OB的距离.11.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=200,求∠AOM的度数.12.如图,点A表示小明家,点B表示小明外婆家,若小明先去外婆家拿鱼具,然后再去河边钓鱼,怎样走路最短,请画出行走路径,并说明理由.参考答案1.B2.6003.C4.D5. D6.B7. 54059`8. ∠AOB,垂直定义∠AOB,∠DOC,∠AOB, ∠DOC ,∠DOC,垂直定义9. 900垂线垂线段 PO的长10.略11. 500 12.行走路径如图,从A到B再到C.理由是两点之间线段最短,垂线段最短.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微信支付上下分捕鱼游戏 www.txrwຫໍສະໝຸດ
[单选]一般藏民,无论男女老幼,大都身佩(),认为可以避灾祸。A、哈达B、腰刀C、护身符D、芦笛 [判断题]作布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低。()A.正确B.错误 [单选]放射性皮炎国际标准分型的临床表现有()A.红斑B.干性脱屑、水疱、形成瘙痒C.湿性脱皮溃疡D.剥脱性皮炎、坏死E.以上全是 [单选,B1型题]聚合性痤疮()。A.表现为严重结节、囊肿、窦道及瘢痕,好发于男性青年B.少数患者病情突然加重,并出现发热、关节痛、贫血等全身症状C.雄激素、糖皮质激素、卤素等所致的痤疮样损害D.婴儿期由于母体雄激素在胎儿阶段进入体内E.与月经周期密切相关 [填空题]我国的人类学者一般将完全形成的人分为早期猿人,(),早期智人,()四个阶段. [填空题]公元13世纪是一个天翻地覆的世纪,是一个战火纷飞的世纪,是分裂了()的中国完成第4次统一的世纪。 [单选]小芳的父母均为大学毕业,从小受家庭的影响,很重视学习,初中期间,当她自己在看书学习时,旁边如果有人讲话,就特别反感。进入高中后,小芳成绩优秀,担任了班长,但同学们都认为她自以为是,什么工作都必须顺着她的思路和想法,一些同学很讨厌她,为此她感到十分的苦恼。 [单选,A型题]关于肾上腺腺瘤哪项错误()A.圆形肿块B.低密度C.强化明显D.都有对侧肾上腺萎缩E.MRI可发现脂肪成分 [填空题]往复活塞泵由()和()组成。 [单选]一般住宅内,多层建筑中每层楼的消防栓(箱)内均配置()瓶灭火器。A.1B.2C.3D.4 [判断题]进口旧机电产品未办理备案或者未按照规定进行装运前检验的,按照国家有关规定予以退货。()[2006年第一次、第二次考试真题]A.正确B.错误 [判断题]金属氧化物避雷器的试验应在每年雷雨季节前进行。A.正确B.错误 [单选,A2型题,A1/A2型题]早期结核性脑膜炎的主要临床表现特点是().A.性情改变B.头痛、呕吐C.结核中毒症状D.嗜睡、双眼凝视E.感觉过敏 [单选,A型题]在正常人体肠道中厌氧菌与非厌氧菌的比例约为()A.1000:1B.100:1C.1:1D.1:100E.1:1000 [单选,A1型题]健康喂养的3个月婴儿,体重5kg。用牛奶喂养,每天应给予()A.8%糖牛奶(ml)5.50另给水分(ml)200B.8%糖牛奶(ml)450另给水分(ml)200C.8%糖牛奶(ml)600另给水分(ml)100D.8%糖牛奶(ml)500另给水分(ml)300E.8%糖牛奶(ml)650另给水分(ml)200 [单选,A1型题]关于免疫耐受,错误的是()A.多次注射耐受原可延长免疫耐受状态B.静脉注射抗原易诱导免疫耐受C.聚合的蛋白抗原易诱导免疫耐受D.遗传背景与免疫耐受相关E.克隆清除是形成免疫耐受的机制之一 [单选,A1型题]导致感冒的主因是()。A.寒邪B.热邪C.风邪D.湿邪E.暑邪 [单选]在对安全评价报告附件中检测检验报告的引用正确性审核时不需关注的是()。A.有效期B.检测检验时间C.检测检验结果D.检测单位法定代表人 [单选]酶联免疫吸附实验(ELISA)是()A.中和试验B.补体结合试验C.直接凝集试验D.反向凝集试验E.既可查抗原又可查抗体 [单选,A2型题,A1/A2型题]红细胞糖代谢比例何者是正确的()A.无氧酵解10%,己糖旁路90%B.无氧酵解90%,己糖旁路10%C.无氧酵解30%,己糖旁路70%D.无氧酵解70%,己糖旁路30%E.无氧酵解和己糖旁路各50% [单选,A1型题]下列各项,不属于伤寒证别称的是()。A.外寒证B.表寒证C.寒邪束表证D.太阳表虚证E.太阳伤寒证 [单选]关于朊毒体蛋白PrPsc,下列说法不正确的是()A.由宿主染色体编码B.有2种异构体C.不同重叠的株型之间基因同源性很高D.能抵抗尿酸、苯酚等变性剂E.可以自行复制 [单选]关于校对的说法,错误的是()。A.校对工作具有"校异同"和"校是非"两大功能B.校异同的唯一依据是原稿C.校是非是指判断原稿中的是非D.校异同又称"活校" [单选]下列哪个命令可进行网格渲染:()A.FacedB.WireC.2-sidedD.FaceMap [问答题]油气生产的三大参数是什么? [单选]从我国现行法律规定来看,以以下财产设立信托时无需进行信托登记的是()。A.著作权、商标权B.股票、股权C.船舶、航空器等交通工具D.动产 [单选]TMN至用户终端的通信路经是().A.业务节点—-业务节点接口—-用户-网络接口B.用户—网络接口—-业务节点—-业务节点接口C.业务节点接口—-业务节点—-用户—网络接口 [填空题]测量工作必须遵循的基本原则之一,就是在布局上应从()。 [填空题]()是波音公司在20世纪50年代研制的四发喷气式民航客机,是世界上第一型在商业上取得成功的喷气式民航客机。 [配伍题,B1型题]患者不断地无目的地重复某些简单的言语,该症状为()</br>患者在回答问题时对前一个问题的答案要重复多次才能转入后一个问题。该症状为()A.模仿言语B.持续言语C.赘述症D.刻板言语E.谵妄 [单选]《建筑设计防火规范》规定,老年人建筑及托儿所、幼儿园的儿童用房和儿童游乐厅等儿童活动场所宜设置在()。A.公共建筑内B.独立的建筑内C.民用建筑内 [填空题]在计算地震作用时,建筑物重力荷载代表值为()之和。 [单选]冬天走进橙色的房间里有一种温暖的感觉,这是()现象。A.感觉适应B.感觉对比C.联觉D.视觉 [单选]关于麻醉所致的心脏骤停不正确的是()A.小儿组的发生率明显高于成人组B.择期手术的发生率明显高于急症手术C.大多数病例在麻醉处理中存在明显的失误D.ASA3级、4级病例明显高于1级、2级E.诱导期明显高于维持期 [单选,A1型题]有关动脉瘤的说法中,不恰当的是()A.在我国损伤是最常见的病因B.手术是动脉瘤唯一有效的治疗方法C.最典型的临床表现是搏动性肿块和收缩期杂音D.穿刺、X线、超声显像及动脉造影术均有助于疑难病例的诊断E.多发性动脉瘤,包括伴广泛性动脉粥样硬化的患者均可手术治疗 [单选,A1型题]以下表示疾病严重程度的统计指标是()。A.2周每千人患病人数及患病次数B.健康者占总人口百分数C.每千人患慢性病者人数及患病次数D.患病者人数占总人口百分数E.2周每千人因病休工(学)人数及天数 [填空题]带磨口的玻璃仪器,长期不用时磨口应()以防止时间久后,塞子打不开. [单选,A1型题]下列与社会病的特点无关的是()A.社会病必须具有公共性B.社会病的防治需要全社会共同的努力C.社会病对社会具有严重的危害性D.社会病的产生根源非常复杂,但主要在于社会E.社会病的产生根源非常复杂,但主要在于家庭 [单选,A1型题]关于义齿软衬技术,下列描述正确的是()A.旧义齿软衬应尽可能采用直接法B.间接法软衬比直接法软衬准确度高C.间接法软衬材料物理性能优于直接法软衬材料D.直接法软衬材料厚度必须大于2mmE.间接法软衬材料厚度应小于1mm [多选]以下无形资产中可质押的是()A、专利B、商标C、专有技术D、软件著作权E、营销网络