北京市海淀区2018届高三第二学期期中练习(一模)数学(文)试卷(含答案)-精
北京市海淀区2018届高三数学下学期期中练习(一模)试题理
则称数表 A 为一个“ N 数表” ai, j 为数表 A 的一个“ N 值”,
对任意给定的 n ,所有“ N 数表”构成的集合记作 n .
(I) 判断下列数表是否是“ N 数表”.若是,写出它的一个“ N 值”;
1 2 3
1 4 7
A 4 5 6 , B 8 2 5
7 8 9
6 9 3
, co s 2C
.
6
(13)一次数学会议中,有五位教师来自 A,B,C 三所学校,其中 A 学校有 2 位,B 学校有 2
位,C 学校有 1 位.现在五位教师排成一排照相,若要求来自同一所学校的教师不相邻,则
共有
种不同的站队方法.
(
14)设函数
f
(
x)
x
2
x, 3x,
xa xa.
①若 f (x) 有两个零点,则实数 a 的取值范围是
( 19)(本小题 14 分)
已知椭圆
C:x a
2 2
y2 b2
1( a
b
0 )的离心率为
3 ,且点 T (2,1) 在椭圆 C 上,设 2
与 OT 平行的直线 l 与椭圆 C 相交于 P ,Q 两点,直线TP ,TQ 分别与 x 轴正半轴交于 M ,
N 两点. (I)求椭圆 C 的标准方程; (Ⅱ)判断 OM ON 的值是否为定值,并证明你的结论.
15. (本题满分 13 分)
(Ⅰ)
f
(
)
2
3 sin
cos
2 cos2
1
6
66
6
2
3 1 2
3 2
2
3 2
2
1
2 ····················································································· 3 分
北京市海淀区2018届高三第一次模拟考试数学(文)试卷(有答案)
北京市海淀区2018届高三第一次模拟考试数学(文)试卷2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4) (3)下列函数满足()()=0f x f x +-的是(A) ()f x =()ln f x x =(C) 1()1f x x =- (D) ()cos f x x x =(4)执行如图所示的程序框图,输出的S 值为(A)2 (B)6 (C)8 (D) 10 (5)若抛物线22(0)y px p=上任意一点到焦点的距离恒大于1,则p 的取值范围是 (A) 1p (B) 1p (C) 2p(D) 2p(6)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(7)已知n S 是等差数列{}n a 的前n 项和,则“nn S na 对,2n ≥恒成立”是“数列{}n a 为递增 数列”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(8)已知直线l :(4)y k x =+与圆22(2)4x y ++=相交于A B ,两点,M 是线段AB 的中点,则点M 到直线3460x y --=的距离的最大值为(A)2 (B)3 (C)4 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案
普通高等学校2018届高三招生全国统一考试模拟试题(二)数学(文)试题word含答案普通高等学校招生全国统一考试模拟试题——文科数学(二)本试卷满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上。
2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题纸上,写在本试卷上无效。
3.考试结束后,将本试卷和答题纸一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=\{x|x-\frac{1}{2}<0\}$,$B=\{x|x-\frac{(2a+8)}{a(a+8)}<0\}$,若 $A\cap B=A$,则实数 $a$ 的取值范围是A。
$(-4,-3)$B。
$[-4,-3]$C。
$(-\infty,-3)\cup(4,+\infty)$D。
$(-3,4)$2.已知复数 $z=\frac{3+i}{2-3i}$,则 $z$ 的实部与虚部的和为A。
$-\frac{2}{5}+\frac{1}{5}i$B。
$-\frac{2}{5}-\frac{1}{5}i$C。
$\frac{2}{5}+\frac{1}{5}i$D。
$\frac{3}{5}+\frac{2}{5}i$3.某景区管理部门为征求游客对景区管理方面的意见及建议,从景区出口处随机选取 $5$ 人,其中 $3$ 人为跟团游客,$2$ 人为自驾游散客,并从中随机抽取 $2$ 人填写调查问卷,则这 $2$ 人中既有自驾游散客也有跟团游客的概率是A。
$\frac{2}{3}$B。
$\frac{1}{5}$C。
$\frac{2}{5}$D。
$\frac{3}{5}$4.已知双曲线 $E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$ 的离心率为$\frac{\sqrt{10}}{3}$,斜率为 $-\frac{3}{2}$ 的直线 $l$ 经过双曲线的右顶点 $A$,与双曲线的渐近线分别交于 $M$,$N$ 两点,点 $M$ 在线段$AN$ 上,则 $\frac{AN}{AM}$ 等于A。
北京市海淀区2018届高三第二学期期中练习(一模)文综试卷 附答案
海淀区高三年级第二学期期中练习文科综合能力测试第一部分(选择题共140分)本部分共35小题,每小题4分,共140分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
北京某中学地理小组同学利用寒假开展研究性学习,对郊区某村落实施考察,使用小型无人机对村落进行拍摄(图1左),并绘制地图(图1右)。
考察中发现村民利用地下水进行自流灌溉。
读图,回答第1、2题。
1.图中A.民居占地面积约8千平方米 B.灌溉水渠流向为东北向西南C.聚落形态受气候和地形制约 D.拦水坝可实现水能梯级开发2.地理小组的研究课题最可能是:基于无人机遥感进行A.村落土地利用现状调查 B.叶片光谱分析水稻估产C.山区泥石流等地质灾害监测 D.农田土壤化肥污染现状调查表1为我国甲、乙两山基带气象要素及雪线高度资料。
读表,回答第3、4题。
表13.据表中资料推断 A .甲山北坡相对高度大于南坡 B .甲山南坡的垂直带谱最丰富 C .乙山南坡的河流补给以大气降水为主 D .乙山的森林蓄积量大于甲山 4.与乙山相比,甲山雪线分布特点形成的主导因素是①纬度位置 ②山体海拔高度 ③水汽来源方向④人类活动 A .①② B.②③ C.①③ D .③④图2为某种地貌形态的形成过程示意图。
读图,回答第5、6题。
5.图中地貌A .主要因风力作用形成B .所在地区主要通过蒸发参与水循环甲山(海拔7782m ) 乙山(海拔7435m ) 南坡北坡 南坡 北坡基带气象要素海拔(m)1100292012291848年均温(℃)16.17.9 7.4 2.8 年降水量( mm) 2276.6512.1 96.1 519.2 雪线高度(m)4750500043503980C.形成顺序是④③①② D.岩石类型为变质岩6.能减缓该地貌形成进程的是A.气候异常、降水增多 B.矿产资源的开采加剧C.地壳运动活跃度增加 D.区域植被覆盖率提高可燃冰是主要分布于深海、由天然气与水在高压低温条件下形成的结晶物质。
2018届高三数学下学期期中练习(一模)试题 文(含解析)
海淀区高三年级2017-2018 学年度第二学期期中练习数学试卷(文科)本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.已知集合A ={}|23x z x ∈-≤<,B ={}|21x x -≤<,则A B =A .{}2,1,0--B .{}2,1,0,1--C .{}|21x x -<<D .{}|21x x -≤< 【知识点】集合的运算【试题解析】由题知:A={-2,-1,0,1,2},所以故答案为:A 【答案】A2、已知向量(1,),(,9)a t b t == ,若a b,则t = A .1 B .2 C .3 D .4 【知识点】平面向量坐标运算 【试题解析】因为所以故答案为:C 【答案】C3.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i【知识点】算法和程序框图【试题解析】n=1,否,s=i ,n=2,否,s=i n=3,否,s=i n=4,否,s=i n=5, 否,s=in=6,是,则输出的值为。
故答案为:D 【答案】D4.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .4【知识点】线性规划 【试题解析】作可行域:由图知:当目标函数线过点C (1,3)时,目标函数值最大,为故答案为:C 【答案】C5.某三棱锥的三视图如图所示,则其体积为A BC D 【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图【试题解析】该三棱锥的底面是以2为底,以为高的三角形,高为1,所以故答案为:A 【答案】A6、已知点P 00(,)x y 在抛物线W :24y x 上,且点P 到W 的准线的距离与点P 到x 轴的距离相等,则0x 的值为A、12B、1C、32D、2【知识点】抛物线【试题解析】抛物线的准线为:x=-1,所以点到的准线的距离为:点到轴的距离为:根据题意有:又解得:故答案为:B【答案】B7.已知函数sin(),0()cos(),0x a xf xx b x+≤⎧=⎨+>⎩,则“4πα=”是“函数()f x是偶函数“的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【知识点】函数的奇偶性充分条件与必要条件【试题解析】若,,当x>0时,-x<0,所以所以函数为偶函数成立;反过来,若函数为偶函数,则,即不一定。
北京市海淀区2018年高三一模数学文科试题
2018年海淀区高三年级第二学期期中练习数 学 (文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -2. 已知集合{}{}1,0,1,sin π,,A B y y x x A AB =-==∈=则A.{}1-B.{}0C. {}1 D.Æ 3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1 B. 3 C.5D. 75. 函数()2sin f x x x =+的部分图象可能是A B C D6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 7. 已知()x f x a =和()x g x b =是指数函数,则“(2)(2)f g >”是“a b >”的 A.充分不必要条件 B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件OyxOyxOyxOyx8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4二、填空题:本大题共6小题,每小题5分,共30分.9. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)10. 李强用流程图把早上上班前需要做的事情做了如下几种方案,则所用时间最少的方案是_______方案一: 方案二: 方案三:11. 在ABC ∆中,3a =,5b =,120C =,则sin ______,_______.sin Ac B== 12. 某商场2013年一月份到十二月份月销售额呈现先下降后上升的趋势,现有三种函数模型:①()x f x p q =⋅,(0,1)q q >≠;②()log (0,1)xp f x q p p =+>≠;③2()f x x px q =++.能较准确反映商场月销售额()f x 与月份x 关系的函数模型为_________(填写相应函数的序号),若所选函数满足(1)10,(3)2f f ==,则()f x =_____________.13.一个空间几何体的三视图如图所示,该几何体的表面积为__________.14. 设不等式组20,20x y x ay ++≥⎧⎨++≤⎩表示的区域为1Ω,不等式221x y +≤表示的平面区域为2Ω.(1) 若1Ω与2Ω有且只有一个公共点,则a =;俯视图主视图侧视图(2) 记()S a 为1Ω与2Ω公共部分的面积,则函数()S a 的取值范围是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17. (本小题满分14分)如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F ,将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示.(Ⅰ)若M 是FC 的中点,求证:直线DM //平面1A EF ; (Ⅱ)求证:BD ⊥1A F ;(Ⅲ)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由.18. (本小题满分13分)已知函数()ln f x x x =. (Ⅰ)求()f x 的单调区间;(Ⅱ) 当1k ≤时,求证:()1f x kx ≥-恒成立.19. (本小题满分14分)已知1122(,),(,)A x y B x y 是椭圆22:24C x y +=上两点,点M 的坐标为(1,0).(Ⅰ)当,A B 关于点(1,0)M 对称时,求证:121x x ==;(Ⅱ)当直线AB 经过点(0,3) 时,求证:MAB ∆不可能为等边三角形.20. (本小题满分13分)在平面直角坐标系中,对于任意相邻三点都不共线的有序整点列(整点即横纵坐标都是整数的点)()A n :123,,,,n A A A A 与()B n :123,,,,n B B B B ,其中3n ≥,若同时满足:①两点列的起点和终点分别相同;②线段11i i i i A A B B ++⊥,其中1,2,3,,1i n =-,则称()A n 与()B n 互为正交点列.1图 图 2(Ⅰ)试判断(3)A :123(0,2),(3,0),(5,2)A A A 与(3)B :123(0,2),(2,5),(5,2)B B B 是否互为正交点列,并说明理由;(Ⅱ)求证:(4)A :12340,0),3,1),6,0)(((,9,1)(A A A A 不存在正交点列(4)B ; (Ⅲ)是否存在无正交点列(5)B 的有序整数点列(5)A ?并证明你的结论.。
【高三数学试题精选】2018海淀区高三数学理下学期期中试卷(有答案)
2018海淀区高三数学理下学期期中试卷(有答案)
5 海淀区高三年级2018-2018 学年度第二学期期中练习
数学试卷(理科) 20184
本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上
作答无效.考试结束后,将本试卷和答题卡一并交回.
一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目
要求的一项.
1.函数的定义域为
A.[0,+) B.[1,+) c.(-,0] D.(-,1]
2.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为
A.-1
B.1
c.-i
D.i
3.若x,满足,则的最大值为
A. B.3
c. D.4
4.某三棱锥的三视图如图所示,则其体积为
A. B.
c. D.
5.已知数列的前n 项和为Sn,则“ 为常数列”是“ ”的
A.充分不必要条 B.必要不充分条
c.充分必要条 D.既不充分也不必要条
6.在极坐标系中,圆c1 与圆c2 相交于 A,B两点,则|AB|。
最新-北京市海淀区2018届高三第二学期期中练习理科数
海淀区高三年级2018-2018 学年度第二学期期中练习数学试卷(理科) 2018.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项. 1.函数()f x =A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1] 2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 ABC.3 D.35.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1 BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t == ,若a b,则t = _______.10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b-=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得 |()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα= ;(Ⅱ)若,,62AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2018 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x-1,1()ln x g x x -=(Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
最新-北京市海淀区2018届高三第二学期期中练习理科数
海淀区高三年级2018-2018 学年度第二学期期中练习数学试卷(理科) 2018.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项. 1.函数()f x =A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为 A .-1 B .1 C .-i D .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为A .52 B .3 C .72D .44.某三棱锥的三视图如图所示,则其体积为 ABC.3 D.35.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1 BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则 下列叙述正确的是A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b-=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得 |()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)= _______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα= ;(Ⅱ)若,,62AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推 广.2018 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法 上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中 分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4 株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据, 试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求 随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . (Ⅰ)求证: BC ⊥平面P AB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当P A =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x ) =ln x +1x-1,1()ln x g x x -=(Ⅰ)求函数 f (x )的最小值;(Ⅱ)求函数g (x )的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g (x )的切线。
2018届北京市海淀区高三第二学期期中练习(一模)数学文
海淀区高三年级第二学期期中练习数 学(文科) 2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4) (3)下列函数满足()()=0f x f x +-的是 (A)()f x =()ln f x x =(C) 1()1f x x =- (D) ()cos f x x x =(4)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10 (5)若抛物线22(0)y px p=上任意一点到焦点的距离恒大于1,则p 的取值范围是 (A) 1p (B) 1p (C) 2p(D) 2p(6)如图,格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(7)已知n S 是等差数列{}n a 的前n 项和,则“nn S na 对,2n ≥恒成立”是“数列{}n a 为递增 数列”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(8)已知直线l :(4)y k x =+与圆22(2)4x y ++=相交于A B ,两点,M 是线段AB 的中点,则点M 到直线3460x y --=的距离的最大值为(A)2 (B)3 (C)4 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区2018届高三第二学期期中练习(一模)数学(理)试卷(含答案)
海淀区高三年级第二学期期中练习数 学(理科) 2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x =-p p ,且A B ⊆,则a 可以是 (A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为 (A)1 (B)2 (C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a f ,1b f ”是“lg lg 0a b +f ”的 (A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转 动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面 上的投影的面积记作S ,则S 的值不可能是(A) 1 (B) 65 (C) 43 (D) 32(7)下列函数()f x 中,其图像上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是 (A) 3()f x x =(B) ()f x =()1x f x e =- (D) ()ln(1)f x x =+(8)已知点M 在圆1C :22(1)(1)1x y -+-=上,点在圆2C :22(+1)(+1)1x y +=上,则下列说法错误的是(A) OM ON u u u u r u u u rg的取值范围为[3-- (B )OM ON +u u u u r u u u r取值范围为[0,(C)OM ON -u u u u r u u u r的取值范围为2,2](D)若OM ON λ=u u u u r u u u r,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区2018届高三第二学期期中练习(一模)数学理
海淀区高三年级第二学期期中练习数学(理科)2018.4 本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合0,A a ,12B x x ,且A B ,则a 可以是(A)1 (B)0 (C)l (D)2(2)已知向量a =(l ,2),b =(1,0),则a +2b =(A)(1,2) (B)(1,4)(C)(1,2)(D) (1,4)(3)执行如图所示的程序框图,输出的S 值为(A)2 (B)6(C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M,(,)P x y 为M 中任意一点,则y x 的最大值为(A)1 (B)2(C)1 (D) 2(5)已知a ,b 为正实数,则“1a ,1b ”是“lg lg 0a b ”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面上的投影的面积记作S ,则S 的值不可能是(A)1 (B)65 (C)43 (D)32(7)下列函数()f x 中,其图像上任意一点(,)P x y 的坐标都满足条件y x 的函数是(A) 3()f x x (B) ()f x x (C)()1x f x e (D)()ln(1)f x x(8)已知点M 在圆1C :22(1)(1)1x y 上,点在圆2C :22(+1)(+1)1x y 上,则下列说法错误的是(A) OM ON 的取值范围为[322,0](B )OM ON 取值范围为[0,22](C)OM ON 的取值范围为[222,222](D)若OM ON ,则实数的取值范围为[322,322]第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
2018年北京市海淀区高三4月一模文科数学试题及答案 精
海淀区高三年级第二学期期中练习数 学 (文科) 2018.4 本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 集合2{6},{30}A x x B x x x =∈≤=∈->N | N | ,则AB =A. {1,2}B. {3,4,5}C.{4,5,6}D.{3,4,5,6} 2.等差数列{}n a 中, 2343,9,a a a =+= 则16a a 的值为A. 14B. 183. 某程序的框图如图所示,执行该程序,若输入的x 值为5为A. 12B. 1C. 2D.1-4. 已知0a >,下列函数中,在区间(0,)a 上一定是减函数的是 A. ()f x ax b =+ B. 2()21f x x ax =-+ C. ()x f x a = D. ()log a f x x =5. 不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A. 0B. 1C. 2D.3 6. 命题:p ∃,α∈R sin(π)cos αα-=;命题:q 0,m ∀>双曲线22221x y m m-=则下面结论正确的是A. p 是假命题B.q ⌝是真命题C. p ∧q 是假命题D. p ∨q 是真命题 7.已知曲线()ln f x x =在点00(,())x f x 处的切线经过点(0,1)-,则0x 的值为 A. 1eB. 1C. eD.108. 抛物线24y x =的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,其面积为A. B. 4 C. 6D.二、填空题:本大题共6小题,每小题5分,共30分.9. 在复平面上,若复数1+i b (b ∈R )对应的点恰好在实轴上,则b =_______. 10.若向量,a b 满足||||||1==+=a b a b ,则⋅a b 的值为______. 11.某几何体的三视图如图所示,则它的体积为______.12.在ABC ∆中,若4,2,a b ==1cos 4A =,则______.c =13.已知函数22, 0,(), 0x a x f x x ax a x ⎧-≥⎪=⎨++<⎪⎩有三个不同的零点,则实数a 的取值范围是_____. 14.已知函数()y f x =,任取t ∈R ,定义集合:侧视图{|t A y =()y f x =,点(,())P t f t ,(,())Q x f x 满足||PQ ≤. 设,t t M m 分别表示集合t A中元素的最大值和最小值,记()t t h t M m =-.则 (1) 若函数()f x x =,则(1)h =______; (2)若函数π()sin 2f x x =,则()h t 的最小正周期为______.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题满分13分)已知函数2()2cos )f x x x =--.(Ⅰ)求π()3f 的值和()f x 的最小正周期; (Ⅱ)求函数在区间ππ[,]63-上的最大值和最小值.16. (本小题满分13分)在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生的两科考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(I )求该考场考生中“阅读与表达”科目中成绩为A 的人数; (II )若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A. 在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率.17. (本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,ABC ∆是正三角形,AC 与BD 的交点M 恰好是AC 中点,又30CAD ∠=,4PA AB ==,点N 在线段PB 上,且13PN NB =.(Ⅰ)求证:BD PC ⊥; (Ⅱ)求证://MN 平面PDC ;(Ⅲ)设平面PAB 平面PCD =l ,试问直线l 是否与直线CD 平行,请说明理由.18. (本小题满分13分)函数31()3f x x kx =-,其中实数k 为常数.(I) 当4k =时,求函数的单调区间; (II) 若曲线()y f x =与直线y k =只有一个交点,求实数k的取值范围.19. (本小题满分14分)已知圆M :227(3x y +=,若椭圆C:22221x y a b+=(0a b >>)的右顶点为圆M (I )求椭圆C 的方程;(II )已知直线l :y kx =,若直线l 与椭圆C 分别交于A ,B 两点,与圆M 分别交于G ,H 两点(其中点G 在线段AB 上),且AG BH =,求k 的值.20. (本小题满分13分)设(,),(,)A A B B A x y B x y 为平面直角坐标系上的两点,其中,,,A A B B x y x y ∈Z .令B A x x x ∆=-,B A y y y ∆=-,若x ∆+=3y ∆,且||||0x y ∆⋅∆≠,则称点B 为点A 的“相关点”,记作:()B A τ=.(Ⅰ)请问:点(0,0)的“相关点”有几个?判断这些点是否在同一个圆上,若在,写出圆的方程;若不在,说明理由;(Ⅱ)已知点(9,3),(5,3)H L ,若点M 满足(),()M H L M ττ==,求点M 的坐标; (Ⅲ)已知0P 0000(,)(,)x y x y ∈∈Z Z 为一个定点,点列{}i P 满足:1(),i i P P τ-=其中1,2,3,...,i n =,求0nP P 的最小值.海淀区高三年级第二学期期中练习数 学 (文)参考答案及评分标准2018.4说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分,共30分)三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I)2π1()2)1322f =--=………………2分 因为2()2cos )f x x x =--222(3sin cos cos )x x x x =-+- 22(12sin )x x =-+………………4分212sin x x =-cos2x x =………………6分π= 2sin(2)6x +………………8分所以 ()f x 的周期为2π2ππ||2T ω===………………9分 9. 0 10. 21-11.16 12.4 13. 4a >14.2,2(II )当ππ[,]63x ∈-时, π2π2[,]33x ∈-,ππ5π(2)[,]666x +∈- 所以当6x π=-时,函数取得最小值()16f π-=-………………11分当6x π=时,函数取得最大值()26f π=………………13分16.解: (I)因为“数学与逻辑”科目中成绩等级为B 的考生有10人, 所以该考场有100.2540÷=人………………2分所以该考场考生中“阅读与表达”科目中成绩等级为A 的人数为40(10.3750.3750.150.025)400.0753⨯----=⨯=………………4分(II )求该考场考生“数学与逻辑”科目的平均分为1(400.2)2(400.1)3(400.375)4(400.25)5(400.075)2.940⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=………………8分(Ⅲ)因为两科考试中,共有6人得分等级为A ,又恰有两人的两科成绩等级均为A ,所以还有2人只有一个科目得分为A ………………9分设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是A 的同学,则在至少一科成绩等级为A 的考生中,随机抽取两人进行访谈,基本事件空间为{Ω={甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6个基本事件 ………………11分设“随机抽取两人进行访谈,这两人的两科成绩等级均为A ”为事件B ,所以事件B 中包含的基本事件有1个,则1()6P B =. ………………13分 17.解:(I )证明:(I) 因为ABC ∆是正三角形,M 是AC 中点, 所以BM AC ⊥,即BD AC ⊥………………1分又因为PA ABCD ⊥平面,BD ⊂平面ABCD ,PA BD ⊥………………2分 又PA AC A =,所以BD ⊥平面PAC ………………4分 又PC ⊂平面PAC ,所以BD PC ⊥………………5分(Ⅱ)在正三角形ABC 中,BM =………………6分 在ACD ∆,因为M 为AC 中点,DM AC ⊥,所以AD CD =30CAD ∠=,所以,DM =:3:1BM MD =………………8分 所以::BN NP BM MD =,所以//MN PD ………………9分又MN ⊄平面PDC ,PD ⊂平面PDC ,所 以//MN 平面PDC ………………11分(Ⅲ)假设直线//l CD ,因为l ⊂平面PAB ,CD ⊄平面PAB , 所以//CD 平面PAB ..................12分 又CD ⊂平面ABCD ,平面PAB 平面ABCD AB =,所以//CD AB (13)分这与CD 与AB 不平行,矛盾所以直线l 与直线CD 不平行………………14分18.解:(I )因为2'()f x x k =-………………2分当4k =时,2'()4f x x =-,令2'()40f x x =-=,所以122,2x x ==-'(),()f x f x 随x 的变化情况如下表:………………4分所以()f x 的单调递增区间是(,2)-∞-,(2,)+∞ 单调递减区间是(2,2)-………………6分(II )令()()g x f x k =-,所以()g x 只有一个零点………………7分 因为2'()'()g x f x x k ==- 当k =时,3()g x x =,所以()g x 只有一个零点0 ………………8分 当0k <时,2'()0g x x k =->对R x ∈成立,所以()g x 单调递增,所以()g x 只有一个零点………………9分当0k >时,令2'()'()0g x f x x k ==-=,解得1x =2x =……………10分 所以'(),()g x g x 随x 的变化情况如下表:()g x 有且仅有一个零点等价于(0g <………………11分即2(03g k =<,解得904k <<………………12分 综上所述,k 的取值范围是94k <………………13分 19.解:(I)设椭圆的焦距为2c ,因为a =,c a =,所以1c =………………2分 所以1b = 所以椭圆C :2212x y +=………………4分 (II )设A (1x ,1y ),B (2x ,2y )由直线l 与椭圆C 交于两点A ,B ,则22220y kx x y =⎧⎨+-=⎩所以22(12)20k x +-=, 则120x x +=,122212x x k =-+………………6分所以AB ==8分 点M()到直线l的距离d =………………10分则GH =………………11分 显然,若点H 也在线段AB 上,则由对称性可知,直线y kx =就是y 轴,矛盾, 因为AG BH =,所以AB GH =所以22228(1)724()1231k k k k +=-++ 解得21k =,即1k =±………………20.解: (I)因为x ∆+=3(,y x y ∆∆∆为非零整数) 故1,2x y ∆=∆=或2,1x x ∆=∆=,所以点(0,0)的“相关点”有8个………………1分又因为22()()5x y ∆+∆=,即2211(0)(0)5x y -+-= 所以这些可能值对应的点在以(0,0)3HGB A分(II)设(,)M M M x y ,因为(),()M H L M ττ== 所以有|9||3|3M M x y -+-=,|5||3|3M M x y -+-=………………5分 所以|9||5|M M x x -=-,所以7,M x =2M y =或4M y = 所以(7,2)M 或(7,4)M ………………7分 (III)当*2,N n k k =∈时,0||n P P 的最小值为0………………8分当=1n 时,可知0||n P P 9分 当=3n 时,对于点P ,按照下面的方法选择“相关点”,可得300(,+1)P x y : 000(,)P x y →100200300(+2,+1)(+1,+3)(,+1)P x y P x y P x y →→ 故0||n P P 的最小值为1………………11分 当231,,*, N n k k k =+>∈时,对于点P ,经过2k 次变换回到初始点000(,)P x y ,然后经过3次变换回到00(,+1)n P x y ,故0||n P P 的最小值为1综上,当=1n 时,0||n P P 当*2,N n k k =∈时,0||n P P 的最小值为0 当21*, N n k k =+∈时,0||n P P 的最小值为1 ………………13分。
北京市海淀区高三数学下学期期中练习(一模)试题 理
北京市海淀区2018届高三数学下学期期中练习(一模)试题 理本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a,1b ”是“lg”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转 动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面 上的投影的面积记作S ,则S 的值不可能是(A) 1 (B) 65 (C) 43 (D)32(7)下列函数()f x 中,其图像上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x =()1x f x e =- (D) ()ln(1)f x x =+(8)已知点M 在圆1C :22(1)(1)1x y -+-=上,点在圆2C :22(+1)(+1)1x y +=上,则下列说法错误的是(A) OM ON 的取值范围为[3--(B )OM ON +取值范围为[0,(C)OM ON -的取值范围为2,2](D)若OM ON λ=,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区高三数学下学期期中练习(一模)试题 理
北京市海淀区2018届高三数学下学期期中练习(一模)试题 理本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4)(3)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10(4)如图,网格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为(A)1 (B)2 (C) 1- (D) 2-(5)已知a ,b 为正实数,则“1a,1b ”是“lg”的(A)充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件(6)如图所示,一个棱长为1的正方体在一个水平放置的转盘上转 动,用垂直于竖直墙面的水平光线照射,该正方体在竖直墙面 上的投影的面积记作S ,则S 的值不可能是(A) 1 (B) 65 (C) 43 (D)32(7)下列函数()f x 中,其图像上任意一点(,)P x y 的坐标都满足条件y x ≤的函数是(A) 3()f x x = (B) ()f x =()1x f x e =- (D) ()ln(1)f x x =+(8)已知点M 在圆1C :22(1)(1)1x y -+-=上,点在圆2C :22(+1)(+1)1x y +=上,则下列说法错误的是(A) OM ON 的取值范围为[3--(B )OM ON +取值范围为[0,(C)OM ON -的取值范围为2,2](D)若OM ON λ=,则实数λ的取值范围为[33---+第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
北京市海淀区2018届高三第二学期期中练习(一模)文综试卷(含答案)
海淀区高三年级第二学期期中练习文科综合能力测试第一部分(选择题共140分)2018.4本部分共35小题,每小题4分,共140分。
在每小题列出的四个选项中,选出最符合题目要求的一项。
北京某中学地理小组同学利用寒假开展研究性学习,对郊区某村落实施考察,使用小型无人机对村落进行拍摄(图1左),并绘制地图(图1右)。
考察中发现村民利用地下水进行自流灌溉。
读图,回答第1、2题。
1.图中A.民居占地面积约8千平方米 B.灌溉水渠流向为东北向西南C.聚落形态受气候和地形制约 D.拦水坝可实现水能梯级开发2.地理小组的研究课题最可能是:基于无人机遥感进行A.村落土地利用现状调查 B.叶片光谱分析水稻估产C.山区泥石流等地质灾害监测 D.农田土壤化肥污染现状调查表1为我国甲、乙两山基带气象要素及雪线高度资料。
读表,回答第3、4题。
表13.据表中资料推断A .甲山北坡相对高度大于南坡B .甲山南坡的垂直带谱最丰富C .乙山南坡的河流补给以大气降水为主D .乙山的森林蓄积量大于甲山4.与乙山相比,甲山雪线分布特点形成的主导因素是①纬度位置 ②山体海拔高度 ③水汽来源方向④人类活动A .①②B .②③C .①③D .③④图2为某种地貌形态的形成过程示意图。
读图,回答第5、6题。
5.图中地貌A .主要因风力作用形成B .所在地区主要通过蒸发参与水循环C .形成顺序是④③①②D .岩石类型为变质岩6.能减缓该地貌形成进程的是A .气候异常、降水增多B .矿产资源的开采加剧C .地壳运动活跃度增加D .区域植被覆盖率提高可燃冰是主要分布于深海、由天然气与水在高压低温条件下形成的结晶物质。
2017年5月18日,我国在南海北部神狐海域(图中水合物钻探区)进行的可燃冰试采获得成功。
图3为我国局部海域海水等深浅(米)示意图。
读图,回答第7、8题。
7.可燃冰A .蕴藏于浅海大陆架,开采难度小B .海底分布状况可用GIS 技术进行普查C .是清洁能源,其开发对海洋生物无影响D.开发利用可优化能源消费结构8.五月份A.曾母暗沙昼渐长夜渐短B.我国南部沿海进入伏旱季节C.珠江口的人海泥沙减少D.海南岛上桃李芬芳图3图4为“我国某新能源汽车企业生产基地的空间扩展过程示意图”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海淀区高三年级第二学期期中练习数 学(文科) 2018.4本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将答题纸交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{}0,A a =,{}12B x x=-,且A B ⊆,则a 可以是(A) 1- (B)0 (C)l (D)2 (2)已知向量a =(l ,2),b =(1-,0),则a +2b =(A)(1-,2) (B)(1-,4) (C)(1,2) (D) (1,4) (3)下列函数满足()()=0f x f x +-的是(A) ()f x =()ln f x x =(C) 1()1f x x =- (D) ()cos f x x x =(4)执行如图所示的程序框图,输出的S 值为 (A)2 (B)6 (C)8 (D) 10 (5)若抛物线22(0)y px p=上任意一点到焦点的距离恒大于1,则p 的取值范围是 (A) 1p (B) 1p(C) 2p(D) 2p(6)如图,格纸上小正方形的边长为1,若四边形ABCD 及其内部的点组成的集合记为M ,(,)P x y 为M 中任意一点,则y x -的最大值为 (A)1 (B)2 (C) 1- (D) 2-(7)已知n S 是等差数列{}n a 的前n 项和,则“n n S na 对,2n ≥恒成立”是“数列{}n a 为递增 数列”的(A)充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件(8)已知直线l :(4)y k x =+与圆22(2)4x y ++=相交于A B ,两点,M 是线段AB 的中点,则点M 到直线3460x y --=的距离的最大值为(A)2 (B)3 (C)4 (D)5第二部分(非选择题,共110分)二、填空题共6小题,每小题5分,共30分。
(9)复数21ii=+ . ( 10)已知点(2,0)是双曲线C :2221x y a-=的一个顶点,则C 的离心率为 .( 11)在ABC ∆中,若2c =,a =,6A π∠=,则s i n C = ,s2co C = .( 12) .( 13)已知函数1()=cos f x x x+,给出下列结论: ①()f x 在0)2π(,上是减函数;②()f x 在0)π(,上的最小值为2π; ③()f x 在0)π(,2上至少有两个零点,其中正确结论的序号为 .(写出所有正确结论的序号)( 14)将标号为1,2,…,20的20张卡片放入下列表格中,一个格放入一张卡片.把每列标号最小的卡片选出,将这些卡片中标号最大的数设为a ;把每行标号最大的卡片选出,将这些卡片中标号最小的数设为b .甲同学认为a 有可能比b 大,乙同学认为a 和b 有可能相等.那么甲乙两位同学中说法正确的同学是 .三、解答题共6小题,共80分。
解答应写出文字说明、演算步骤或证明过程。
( 15)(本小题13分)已知等比数列{}n a 满足以,1=1a ,521=8a a . ( I)求数列{}n a 的通项公式;(Ⅱ)试判断是否存在正整数n ,使得{}n a 的前n 项和n S 为52?若存在,求出n 的值;若不存在,说明理由.( 16)(本小题13分)函数()3sin ()f x x x ωϕ=+(0,2πωϕ)的部分图象如图所示,其中0x 是函数()f x 的一个零点. (I)写出ωϕ,及0x 的值; (Ⅱ)求函数()f x 在区间[,0]2π-上的最大值和最小值.( 17)(本小题13分)流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在a %~b %时记为区间[,)a b .(I)求上述数据中空气相对湿度使病毒死亡较快的频率;(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).(18)(本小题14分)如图,四棱锥E ABCD -中,1//,12AD BC AD Ab AE BC ====,且BC ⊥平面ABE ,M 为棱CE 的中点.(I)求证:DM ∥平面ABE ; (Ⅱ)求证:平面CDE ⊥平面CBE ;(Ⅲ)当四面体D ABE -的体积最大时,判断直线AE 与直线CD 是 否垂直,并说明理由.( 19)(本小题14分)已知椭圆C 的两个焦点为12(1,0),(1,0)F F -,离心率为12. (I)求椭圆C 的方程;(Ⅱ)设点A 是椭圆C 的右顶点,过点1F 的直线与椭圆C 交于P ,Q 两点,直线AP ,AQ 与直线4x =-分别交于M ,N 两点.求证:点1F 在以MN 为直径的圆上.( 20)(本小题13分)已知函数()=e sin x f x x ax -(I)当0a =时,求曲线()y f x =在(0,(0))f 处的切线方程; (Ⅱ)当0a ≤时,判断()f x 在3[0,]4π上的单调性,并说明理由; (Ⅲ)当1a时,求证:3[0,]4x π∀∈,都有()0f x ≥. 海淀区高三年级第二学期期中练习数学(文)参考答案与评分标准2018.4一.选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.二.填空题:本大题共6小题,每小题5分,共30分. 9.1i + 1013, 12.3+32π13.①③ 14. 乙三.解答题:本大题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程.15.解:(Ⅰ)设{}n a 的公比为q , 因为 521=8a a ,且352=a a q , 所以 318q =, 得 21=q 所以1111(1,2,)2n n n a a q n --=== (6)分(Ⅱ)不存在n ,使得{}n a 的前n 项和n S 为52因为11a =,21=q , 所以⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=n nn S 2112211211 ………………10分 方法1:令52n S =,则152(1)22n -= 得24n =-,该方程无解. 所以不存在n ,使得{}n a 的前n 项和n S 为52. ………………13分 方法2:因为对任意*∈N n ,有1211<-n , 所以 22112<⎪⎭⎫⎝⎛-=n n S 所以不存在n ,使得{}n a 的前n 项和n S 为52。
………………13分16.解:(Ⅰ)0112,,.612x ωϕππ=== ………………6分 (Ⅱ)由(Ⅰ)可知,()3sin(2)6f x x π=+因为[,0]2x π∈-,所以52[,]666x πππ+∈-当2=,62x ππ+- 即 =3x π-时,()f x 的最小值为3-.当2=,66x ππ+ 即 =0x 时,()f x 的最大值为32. ………………13分17.解:(Ⅰ)由已知,当空气相对湿度在45%%55时,病毒死亡较快.而样本在[45,55)上的频数为30, 所以所求频率为301=30010………………3分(Ⅱ)设事件A 为“从区间[15,35)的数据中任取两个数据,恰有一个数据位于[25,35)”设区间[15,25)中的两个数据为12,a a ,区间[25,35)中的三个数据为123,,b b b , 因此,从区间[15,35)的数据中任取两个数据, 包含12111213212223121323(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a a a b a b a b a b a b a b b b b b b b共10个基本事件,而事件A 包含111213212223(,),(,),(,),(,),(,),(,)a b a b a b a b a b a b 共6个基本事件, 所以63()105P A ==. …………………….…10分 (Ⅲ)第6组. …………………….…13分 18.(Ⅰ)证明:取线段EB 的中点N ,连接,MN AN .DABCMEN因为M 为棱CE 的中点,所以在CBE ∆中//MN BC ,12MN BC =. 又//AD BC ,12AD BC =, 所以//,MN AD MN AD =.所以四边形DMNA 是平行四边形, 所以//DM AN . 又DM ⊄平面ABE , AN ⊂平面ABE ,所以//DM 平面ABE . (Ⅱ)因为AE AB =,N 为EB 中点,所以AN BE ⊥. 又BC ⊥平面ABE ,AN ⊂平面ABE ,所以BC AN ⊥ 又BCBE B =,所以AN ⊥平面BCE . 又//DM AN , 所以DM ⊥平面BCE . 因为DM⊂平面CDE ,所以平面CDE ⊥平面CBE . .…………………….…9分(Ⅲ)AE CD ⊥. 设EAB θ∠=,1AD AB AE ===则四面体D ABE -的体积 sin V AE AB AD θ⨯⋅⋅⋅11=321sin 6θ=. 当90θ=︒,即AE AB ⊥时体积最大. 又BC ⊥平面ABE ,AE ⊂平面ABE ,所以AE BC ⊥.因为BCAB B =,所以AE ⊥平面ABC . 因为CD ⊂平面ABCD , 所以AE CD ⊥. .…………………….…14分19.解:(Ⅰ)由题意,设椭圆方程为22221(0)x y a b a b+=>> ,则222112c c a a b c=⎧⎪⎪=⎨⎪⎪=+⎩得2,a b ==所以椭圆方程为221.43x y += .…………………….…5分 (Ⅱ)证明:由(Ⅰ)可得(2,0)A .当直线PQ 不存在斜率时,可得33(1,),(1,)22P Q ---直线AP 方程为()122y x =--,令4,x =-得(4,3)M -, 同理,得(4,3)N --.所以()()113,3,3,3FM F N =-=--, 得110F M F N ⋅=.所以190MF N ∠=︒,1F 在以MN 为直径的圆上.当直线PQ 存在斜率时,设PQ 方程为()1y k x =+ ,()11,y x P 、()22,y x Q .由()221143y k x x y =+⎧⎪⎨+=⎪⎩可得()22223484120k x k x k +++-=.显然0∆>,221212228412,3434k k x x x x k k-+=-=++, 直线AP 方程为11(2)2y y x x =--,得116(4,)2y M x --- , 同理, 226(4,)2y N x ---. 所以12111266(3,),(3,)22y y F M F N x x --=-=---. 121112369(2)()y y F M F N x x ⋅=+--2因为()()11221,1y k x y k x =+=+所以2121212123636(1)(1)(2)()(2)()y y k x x x x x x ++----=22 ()()212121212222222222223612()441283436()3441216121634936369k x x x x x x x x k k k k k k k k k k k +++=-++--+++=-++++-⋅==- 所以110F M F N ⋅= 所以90MFN ∠=︒,F 在以MN 为直径的圆上. .…………………….…14分 综上,F 在以MN 为直径的圆上.20.解:(Ⅰ)当0a =时,()e sin x f x x =,'()e (sin cos )x f x x x x =+∈R .得'(0) 1.f = 又0(0)e sin 0=0f =, 所以曲线()y f x =在(0,(0))f 处的切线方程为.y x = .…………………….…4分(Ⅱ)方法1:因为()e sin xf x x ax =-, 所以'()e (sin cos )x f x x x a =+-.sin(+)4x x a π=-因为3[0,]4x π∈, 所以[,]44x πππ+∈.sin()04x x π+≥.所以 当0a ≤时,'()0f x ≥,所以()f x 在区间3[0,]4π单调递增. .…………………….…8分 方法2:因为()e sin xf x x ax =-,所以'()e (sin cos )xf x x x a =+-.令()'()g x f x =,则 '()e (sin cos )e (cos sin )2e cos x x x g x x x x x x =++-=,(),'()g x g x 随x 的变化情况如下表:当0a ≤时,3(0)10,()04g a g a =->π=-≥.所以3[0,]4x π∈时,()0g x ≥,即'()0f x ≥, 所以()f x 在区间3[0,]4π单调递增. .…………………….…8分(Ⅲ)方法1:由(Ⅱ)可知,当0a ≤时,()f x 在区间3[0,]4π单调递增, 所以3[0,]4x π∈时,()(0)0f x f ≥=. 当01a <<时,设()'()g x f x =,则 '()e (sin cos )e (cos sin )2e cos x x x g x x x x x x =++-=,(),'()g x g x 随x 的变化情况如下表:所以'()f x 在[0,]2π上单调递增,在3(,]24ππ上单调递减因为'(0)10f a =->,3'()04f a π=-<, 所以存在唯一的实数03(,)24x ππ∈,使得0'()0f x =,且当0(0,)x x ∈时,'()0f x >,当03(,]4x x π∈时,'()0f x <, 所以()f x 在0[0,]x 上单调递增,()f x 在03[,]4x π上单调递减.又 (0)0f =,3324433()304242f e a e ππππ=⨯->⨯->>,所以当01a <<时,对于任意的3[0,]4x π∈,()0f x ≥. 综上所述,当1a <时,对任意的3[0,]4x π∈,均有()0f x ≥. .…………………….…13分方法2:由(Ⅱ)可知,当0a ≤时,()f x 在区间3[0,]4π单调递增,所以3[0,]4x π∈时,()(0)0f x f ≥=. 当01a <<时, 由(Ⅱ)可知,'()f x 在[0,]2π上单调递增,在3(,]24ππ上单调递减,因为'(0)10f a =->,3'()04f a π=-<, 所以存在唯一的实数03(,)24x ππ∈,使得0'()0f x =,且当0(0,)x x ∈时,'()0f x >,当03(,]4x x π∈时,'()0f x <, 所以()f x 在0[0,]x 上单调递增,()f x 在03[,]4x π上单调递减.又 (0)0f =,3324433()304242f e a e ππππ=⨯->⨯->>, 所以当01a <<时,对于任意的3[0,]4x π∈,()0f x ≥. 综上所述,当1a <时,对任意的3[0,]4x π∈,均有()0f x ≥. .…………………….…13分欢迎访问“高中试卷网”——。