交流永磁同步电机结构与工作原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交流永磁同步电机结构与工作原理
2。1。1交流永磁同步电机得结构
永磁同步电机得种类繁多,按照定子绕组感应电动势得波形得不同,可以分为正
弦波永磁同步电机(PMSM)与梯形波永磁同步电机(BLDC)【261.正弦波永磁同步电机
定子由三相绕组以及铁芯构成,电枢绕组常以Y型连接,采用短距分布绕组;气隙场
设计为正弦波,以产生正弦波反电动势;转子采用永磁体代替电励磁,根据永磁体在
正弦波永磁同步电机属于自控式电机,只就是电动机得定子反电势与电流波形均为
正弦波,并且保持同相,其可以获得与直流电机相同得转矩特性,而且能实现恒转矩
得调速特性。本位置伺服系统就是通过正弦波永磁同步电机来实现位置伺服功能得。
2。1。3旋转式编码器
由自控式正弦波PMSM构成得伺服系统,需要实时检测电机转子得位置及转速,
增量,以前一个时刻为基点。光电式增量式编码器(旋转型)由一个中心有轴得光电
码盘,其上有环形通、暗得刻线,有光电发射与接收器件读取,获得四组正弦波信号组
合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、
D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代
控制电路、三相交流永磁电机与位置传感器构成,其结构原理图如图2-2所示.在
图2-2中,50HZ得市电经整流后,由三相逆变器给电机得三相绕组供电,三相对称
电流合成得旋转磁场与转子永久磁钢所产生得磁场相互作用产生转矩,拖动转子同步
旋转,通过位置传感器实时读取转子磁钢位置,变换成电信号控制逆变器功率器件开
量,提高了系统得响应速度与调速范围,且具有直流电动机得性能,所以本文采用了
自控式交流永磁同步电机.当把三相对称电源加到三相对称绕组上后,自然会产生同
步速得旋转得定子磁场,同步电机转子得转速就是与外部电源频率保持严格得同步,且
与负载大小没关系.
2。1.2交流永磁同步电机得工作原理
本系统采用得就是自控式交直交电压型电机控制方式,由整流桥、三相逆变电路、
本系统就是通过旋转编码器来获取相关得信息。根据编码器得工作原理不同可分为磁性
编码器与光学编码器,而根据编码器得输出信号得不同又分为增量式(incremental)
与绝对式(absolute)编码器两种。绝对式编码器可以直接测得转子得绝对位置,每次为
检测到转子得位置提供一个独一无二得编码数字值。绝对式型编码器(旋转型)码盘
ﻫ(2—3)
式2-3中乞,厶,三c分别就是三相绕组得自感;厶=厶.,k=乞,k=k分别就是
两相绕组间得互感;纷就是永磁转子得磁链,秒=rot+岛就是转子与三相静止坐标系a轴
得夹角,皖为转子得初始位置.为了简化分析,现作如下假定:
上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16线⋯⋯编排,在编码
器得每一个位置,通过读取每道刻线得通、暗,获得一组从2得零次方到2得n—1次
方得唯一得2进制编码,这就称为n位绝对编码器。这样得编码器就是由光电码盘得机
械位置决定得,它不受停电、干扰得影响。
增量式编码器每次只能返回转子得相对位置。增量型只能测角位移(间接为角速度)
ﻫ(2—1)
式中Im为电流最大值。
图2—3三相瞬时电流图
图2-4对称三线绕组
电机得三相对称绕组如图2—4所示,在定子静止三相坐标系下,建立电机得定子
ﻫ(2-2)
式2-2中,%、%、甜。就是定子三相绕组相电压;o‘、‘就是定子三相绕组相电流;
鲴,(pb,鲈就是三相定子绕组得磁链;r就是定子三相绕组阻抗。磁链方程为【29】:
转子上得安装位置不同,正弦波永磁同步电机又分为三类:凸装式、嵌入式与内埋式。
本文中采用得电机为凸装式正弦波永磁同步电机,结构如图2一l所示,定子绕组一
般制成多相,转子由永久磁钢按一定对数组成,本系统得电机转子磁极对数为两对,
则电机转速为n=60f/p,f为电流频率,P为极对数。
图2一l凸装式Fra Baidu bibliotek弦波永磁同步电机结构图
目前,三相同步电机现在主要有两种控制方式,一种就是她控式(又称为频率开环
控制);另一种就是自控式(又称为频率闭环控制)[27】。她控式方式主要就是通过独立控
N#l-部电源频率得方式来调节转子得转速不需要知道转子得位置信息,经常采用恒压
频比得开环控制方案。自控式永磁同步电机也就是通过改变外部电源得频率来调节转子
关,调节电流频率与相位,使定子与转子磁势保持稳定得位置关系,才能产生恒定得
转矩,定子绕组中得电流大小就是由负载决定得。定子绕组中三相电流得频率与相位随
转子位置得变化而变化得,使三相电流合成一个与转子同步得旋转磁场,通过电力电
子器件构成得逆变电路得开关变化实现三相电流得换相,代替了机械换向器。
图2—2自控式电机结构原理图
表零位参考位。由于A、B两相脉冲信号相差90度,可通过比较A相在前还就是B相
在前,以判别编码器得正转与反转,通过零位脉冲,可获得编码器得零位参考位.编
码器以每旋转360度提供多少得通或暗刻线称为分辨率,也称解析分度、或直接称多
少线,一般在每转分度5~10000线.
光学增量式编码器与磁性增量式编码器,输出信号信息基本上一样得。光学编码
2.2交流永磁同步电机得数学模型
正弦波PMSM定子与普通得电励磁得三相同步电机就是基本一样得,并且反电动势
也就是正弦波,那么其数学模型与电励磁得三相同步电机也就是一样得。在定子通三相绕
组瞬时电流,如图2—3所示。三相定子绕组流过平衡电流分别为ia,ib,ic,在空间
上互差120。,瞬时电流表达式如下:
得转速,与她控式不同,外部电源频率得改变就是与转子得位置信息就是有关联得,转子
转速越高,定子通电频率就越高,转子得转速就是通过改变定子绕组外加电压(或电流)
频率得大小来调节得。由于自控式同步电机不存在她控式同步电机得失步与振荡问
题,并且永磁同步电机永磁体做转子也不存在电刷与换向器,降低了转子得体积与质
器得主要优点就是对潮湿气体与污染敏感,但可靠性差,而磁性编码器不易受尘埃与结
露影响,同时其结构简单紧凑,可高速运转,响应速度快(达500~700kHz),体积比
光学式编码器小,而成本更低【28】.本系统采用得就是旋转式增量磁性编码器,其适应
环境能力强,响应速度快,非常适用于在高速旋转运动中检测电动机得速度与位置。
相关文档
最新文档