高三数学新题型练习题
高三数学新题型试卷优质
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且f(1) = 3,f(2) = 5,f(3) = 7,则f(4)的值为:A. 9B. 11C. 13D. 152. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且a^2 + b^2 = 2c^2,则三角形ABC为:A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形3. 设函数g(x) = x^3 - 3x^2 + 2x - 1,若g(x)在x=1处取得极值,则该极值为:A. 0B. 1C. -1D. -24. 已知数列{an}满足an = 2an-1 - 1,且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 25. 设平面直角坐标系中,点P(2, 3),点Q在直线y = 2x + 1上,且PQ的中点为M,则M的坐标为:A. (2, 1)B. (1, 2)C. (3, 4)D. (4, 3)6. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 已知函数h(x) = log2(x - 1) - log2(x + 1),则h(x)的定义域为:A. (1, +∞)B. (-∞, -1) ∪ (1, +∞)C. (-∞, -1) ∪ (1, +∞)D. (-∞, -1) ∪ (1, +∞)8. 若等差数列{bn}的首项为b1,公差为d,则b1 + b2 + ... + bn的和为:A. (n + 1)b1 + n(n - 1)d/2B. nb1 + n(n - 1)d/2C. (n - 1)b1 + n(n -1)d/2 D. (n + 1)b1 + (n - 1)(n - 2)d/29. 设函数f(x) = e^x - x - 1,则f'(x)的值恒大于:A. 0B. 1C. eD. e^x10. 已知向量a = (2, 3),向量b = (-1, 2),则向量a·b的值为:A. 7B. -1C. -7D. 1二、填空题(本大题共5小题,每小题10分,共50分)11. 已知函数f(x) = x^2 - 4x + 4,则f(x)的顶点坐标为__________。
高三数学题型练习题
高三数学题型练习题题一:函数的定义与性质1. 已知函数$f(x)=2x+3$,求函数$f(5)$的值。
解析:将$x$的值代入函数$f(x)$中,得$f(5)=2(5)+3=13$。
2. 函数$f(x)$的图像在直线$y=x$上方,$f(0)=-1$,求函数$f(x)$的解析式。
解析:由函数图像在直线$y=x$上方可知,对于任意$x$,都有$f(x)>x$。
又已知$f(0)=-1$,代入函数得$-1>f(0)=2(0)+3=3$,矛盾。
因此,不存在满足条件的解析式。
题二:函数的图像与性质1. 函数$f(x)=(x-2)^2+1$的图像在平面直角坐标系中的形状是什么?解析:函数$f(x)$是二次函数,图像为抛物线。
由$(x-2)^2$的形式可以知道顶点坐标为$(2,1)$,开口方向向上。
2. 函数$f(x)=\sqrt{x^2-3x}$的定义域是什么?解析:由于根号下的表达式必须大于等于0,即$x^2-3x\geq 0$。
对不等式进行因式分解得$x(x-3)\geq 0$,解得$x\leq 0$或$x\geq 3$。
因此,函数$f(x)$的定义域为$(-\infty, 0]\cup [3,+\infty)$。
题三:函数的求导与应用1. 已知函数$f(x)=3x^2+2x+1$,求$f'(x)$和$f''(x)$。
解析:对多项式函数$f(x)$求导,得到$f'(x)=6x+2$;再对$f'(x)$求导,得到$f''(x)=6$。
2. 函数$y=x^3-4x^2+2$在$x=2$处的切线方程是什么?解析:在$x=2$处,函数$y=x^3-4x^2+2$的导数为$y'=3x^2-8x$。
代入$x=2$得$y'=3(2)^2-8(2)=-10$,即切线的斜率为$-10$。
又因为切线经过点$(2,f(2))=(2,2)$,所以切线方程为$y-2=-10(x-2)$。
新高三数学测试题及答案
新高三数学测试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 6x + 8,则f(3)的值为:A. -1B. 1C. 9D. 11答案:B2. 已知等差数列{a_n}中,a_1 = 2,公差d = 3,求a_5的值。
A. 14B. 17C. 20D. 23答案:A3. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,圆心坐标为:A. (2, 3)B. (-2, -3)C. (0, 0)D. (3, 2)答案:A4. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, 2]答案:B5. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B =:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B6. 已知向量a = (3, 4),b = (-4, 3),则向量a与向量b的夹角θ满足:A. cosθ = 1/7B. cosθ = -1/7C. cosθ = 7/√50D. cosθ = -7/√50答案:A7. 函数y = x^3 - 3x^2 + 4x的导数y'为:A. 3x^2 - 6x + 4B. x^2 - 3x + 4C. 3x^2 - 6x + 1D. x^2 - 3x + 2答案:A8. 已知复数z = 2 + 3i,求|z|的值。
A. √13B. √19C. √7D. √17答案:A9. 已知双曲线方程为x^2/9 - y^2/16 = 1,求其渐近线方程。
A. y = ±(4/3)xB. y = ±(3/4)xC. y = ±(16/9)xD. y = ±(9/16)x答案:A10. 已知等比数列{b_n}中,b_1 = 2,公比q = 2,求b_4的值。
A. 16B. 32C. 64D. 128答案:A二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = _______。
新高考高三数学新题型试卷
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各式中,属于对数式的是()A. 2^x = 8B. x^3 = 27C. log_2(4) = 2D. sin(x) = 12. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f'(2) = 4,则a = ()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (3,2)B. (2,3)C. (3,3)D. (2,2)4. 若复数z满足|z-1| = |z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限5. 下列函数中,在定义域内单调递增的是()A. y = 2^xB. y = log_2(x)C. y = x^2D. y = -x6. 已知数列{an}满足an = 2an-1 - 1(n ≥ 2),且a1 = 1,则数列{an}的通项公式为()A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 27. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC = ()A. 1/2B. √3/2C. √2/2D. 18. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的公差一定为正数C. 对数函数y = log_2(x)在定义域内单调递增D. 二项式定理中,展开式中第r+1项的系数为C(n,r)9. 若复数z = a + bi(a,b∈R),且|z| = √(a^2 + b^2) = 1,则z的共轭复数是()A. a - biB. -a - biC. a + biD. -a + bi10. 已知函数f(x) = x^3 - 3x,则f(x)的极值点为()A. x = -1B. x = 0C. x = 1D. x = -1 或 x = 1二、填空题(本大题共5小题,每小题10分,共50分。
高考数学试题2024新高考新题型考前必刷卷01(参考答案)
2024年高考考前信息必刷卷(新题型地区专用)01数学·答案及评分标准(考试时间:120分钟试卷满分:150分)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
12345678DDBDADAA二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
91011ADABCAC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
12.513.①④14.①③四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
15.(13分)【解析】(1)当1a =时,函数31()ln 222f x x x x x =--+的定义域为(0,)+∞,求导得21()ln 212f x x x '=+-,(2分)令21()ln ,0212g x x x x =+->,求导得233111()x g x x x x-'=-=,(4分)当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在(0,1)上递减,在(1,)+∞上递增,()(1)0g x g ≥=,即(0,)∀∈+∞x ,()0f x '≥,当且仅当1x =时取等号,所以函数()f x 在(0,)+∞上单调递增,即函数()f x 的递增区间为(0,)+∞.(6分)(2)依题意,5(2)2ln 204f a =->,则0a >,(7分)由(1)知,当1x ≥时,31ln 2022x x x x--+≥恒成立,当1a ≥时,[1,)x ∀∈+∞,ln 0x x ≥,则3131()ln 2ln 202222f x ax x x x x x x x=--+≥--+≥,因此1a ≥;(9分)当01a <<时,求导得231()(1ln )22f x a x x '=+-+,令231()(1ln )22h x a x x =+-+,(11分)求导得()23311a ax h x x x x -=-=',当1x <<时,()0h x '<,则函数()h x ,即()f x '在上单调递减,当x ∈时,()(1)10f x f a ''<=-<,因此函数()f x 在上单调递减,当x ∈时,()(1)0f x f <=,不符合题意,所以a 的取值范围是[1,)+∞.(13分)16.(15分)【解析】(1)由题意得584018x =-=,422220y =-=;(4分)(2)由22()()()()()n ad bc a b c d a c b d χ-=++++,得22100(40221820) 4.625 3.84158426040χ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%以上的把握认为“生育意愿与城市级别有关”.(8分)(3)抽取6名育龄妇女,来自一线城市的人数为20624020⨯=+,记为1,2,来自非一线城市的人数为40644020⨯=+,(10分)记为a ,b ,c ,d ,选设事件A 为“取两名参加育儿知识讲座,求至少有一名来自一线城市”,基本事件为:(1,2),(1,),(1,),(1,),(1,),(2,),(2,),(2,),(2,),(,),(,)a b c d a b c d a b a c ,(,),(,),(,),(,)a d b c b d c d ,事件(1,2),(1,),(1,),(1,),(1,),(2,),(2,)(2,),(2,)A a b c d a b c d 共有9个,(13分)93()155P A ==或63()1155P A ⎛⎫=-= ⎪⎝⎭(15分)17.(15分)【解析】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,(2分)又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,(4分)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;(6分)(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,(7分)如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,(9分)所以()0,2,0CD =- ,()1,0,1AD =--.设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =-,(11分)假设存在点N ,使得AN 与平面ACD 所成角为60 ,(12分)设BN BC λ=uuu r uu u r,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 60n ANn AN⋅︒==(13分)整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN与平面ACD 所成角为60︒,此时14=BN BC .(15分)18.(17分)【解析】(1)由已知得()11,0F -,22220000313434x y x y +=⇒=-(2分)则10122PF x ==+.所以当012x =时,194PF =;(5分)(2)设(),0M m ,在12F PF △中,PM 是12F PF ∠的角平分线,所以1122PF MF PF MF =,(6分)由(1)知10122PF x =+,同理20122PF x =-,(8分)即0012121122x m m x ++=--,解得014m x =,所以01,04M x ⎛⎫ ⎪⎝⎭,过P 作PH x ⊥轴于H .所以34PM MH PNOH ==.(10分)(3)记1F N P 面积的面积为S ,由(1)可得,(100001114423612S F M y y x x =⋅+=+=+()()02,00,2x ∈-⋃,则)20022S xx =+'-,(12分)当()()02,00,1x ∈-⋃时,0,S S '>单调递增;当)01,2x ∈时,0,S S '<单调递减.(16分)所以当01x =-时,S 最大.(17分)19.(17分)【解析】(1)由题意得124n a a a +++= ,则1124++=或134+=,故所有4的1减数列有数列1,2,1和数列3,1.(4分)(2)因为对于1i j n ≤<≤,使得i j a a >的正整数对(),i j 有k 个,且存在m 的6减数列,所以2C 6n ≥,得4n ≥.(6分)①当4n =时,因为存在m 的6减数列,所以数列中各项均不相同,所以1234106m ≥+++=>.(7分)②当5n =时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m ≥.(8分)若6m =,满足要求的数列中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.(9分)③当6n ≥时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m >.综上所述,若存在m 的6减数列,则6m >.(10分)(3)若数列中的每一项都相等,则0k =,若0k ≠,所以数列A 存在大于1的项,若末项1n a ≠,将n a 拆分成n a 个1后k 变大,所以此时k 不是最大值,所以1n a =.(12分)当1,2,,1i n =- 时,若1i i a a +<,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≥.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将i a 改为1i a -,并在数列末尾添加一项1,所以k 变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.(14分)若数列A 中存在相邻的两项13,2i i a a +≥=,设此时A 中有x 项为2,将i a 改为2,并在数列末尾添加2i a -项1后,k 的值至少变为11k x x k ++-=+,所以此时k 不是最大值,所以数列A 的各项只能为2或1,所以数列A 为2,2,,2,1,1,,1 的形式.设其中有x 项为2,有y 项为1,因为存在2024的k 减数列,所以22024x y +=,所以()2220242220242(506)512072k xy x x x x x ==-=-+=--+,(16分)所以,当且仅当506,1012x y ==时,k 取最大值为512072.所以,若存在2024的k 减数列,k 的最大值为512072.(17分)。
高考数学新题型选编(共70个题)
高考数学新题型选编(共70个题)1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n n a b a b a b n N *++≥>>∈;(Ⅲ)定理:若123,,k a a a a 均为正数,则有123123()n n nn nk k a a a a a a a a k k++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a + 均为正数时,12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++ .解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故 ()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++只要证:112311231(1)()()n n n n n nk k k a a a a a a a a -+++++++≥++++设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++ …………………7分 则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++令'()0g x =得12ka a a x k+++=…………………………………………………….8分当0x ≤≤12ka a a k+++ 时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++≤111212()()0n n k k n a a a x n a a a x --++++-++++=故12()[0,]k a a a g x k +++ 在上递减,类似地可证12()(,)ka a a g x k++++∞ 在递增所以12()k a a a x g x k +++=当时,的最小值为12()ka a a g k+++ ………………10分而11212121212()(1)[()]()n n n n n n k k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++ =1121212(1)[()()(1)()]n n n n nn n k k k nk k a a a a a a k a a a k -++++++++-++++ =11212(1)[()()]n n n n n n k k nk k a a a k a a a k -++++-+++ =1112121(1)[()()]n n n n n n k k n k k a a a a a a k---++++-+++ 由定理知: 11212()()0n n n nn k k k a a a a a a -+++-+++≥ 故12()0ka a a g k+++≥1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥故112311231(1)()()n n n n n n k k k a a a a a a a a -+++++++≥++++即: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++ .…………………………..14分答案:5354321b b b b b b =∙∙∙∙3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
高三数学试卷创新题目答案
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 1,求f(x)在x=1处的切线方程。
A. y = 1B. y = 3x - 2C. y = 2x - 1D. y = -3x + 2答案:B解析:首先求出f(x)在x=1处的导数f'(x) = 3x^2 - 3。
代入x=1,得f'(1) = 0。
因此,切线斜率为0,切线方程为y = f(1) = 1。
2. 已知等差数列{an},首项a1=1,公差d=2,求第10项an。
A. 19B. 21C. 23D. 25答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d。
代入a1=1,d=2,n=10,得an = 1 + (10 - 1)×2 = 23。
3. 已知函数f(x) = x^2 - 4x + 3,求f(x)的对称轴方程。
A. x = 2B. x = 1C. x = -2D. x = -1答案:A解析:对称轴方程为x = -b/2a。
代入a=1,b=-4,得x = -(-4)/2×1 = 2。
4. 已知函数f(x) = 2x + 1,求f(x)在区间[0, 3]上的最大值和最小值。
A. 最大值3,最小值1B. 最大值1,最小值3C. 最大值2,最小值1D. 最大值1,最小值2答案:A解析:由于f(x)在区间[0, 3]上单调递增,所以最大值出现在x=3处,最小值出现在x=0处。
代入x=3,得f(3) = 2×3 + 1 = 7;代入x=0,得f(0) = 2×0 + 1 = 1。
5. 已知等比数列{an},首项a1=2,公比q=3,求第n项an。
A. 2×3^(n-1)B. 2×3^nC. 2×3^(n+1)D. 2×3^(n-2)答案:A解析:等比数列的通项公式为an = a1×q^(n-1)。
73高三数学新题型练习题73
高三数学新题型练习题(附参考答案)
1. 已知函数f (x )2
x sin x cos x +x ∈R (Ⅰ)设角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边过点P (122
,),求f (α)的值。
(Ⅱ)试讨论函数f (x )的基本性质(直接写出过程)
2. 曲线C 是平面内与两个定点1F (-1,0)和2F (1,0)的距离的积等于常数2
a (a>1)
的点的轨迹。
给出下列三个结论:
① 曲线C 过坐标原点;
② 曲线C 关于坐标原点对称;
③ 若点P 在曲线C 上,则△1F P 2F 的面积大于12
2
a 。
其中,正确的结论的序号是_______________
3. △ABC 的三个内角A,B,C 所对的边分别为a,b,c ,向量m =(-1,1),n =(cosBcosC ,
,且m ⊥n 。
① 求A 的大小
② 现给出下列四个条件:
Ⅰa=1;Ⅱb=2sinB ;Ⅲ2c-)b=0;ⅣB=45°
试从中再选择两个条件以确定△ABC ,求出你所确定的△ABC 的面积。
(注:只需选择一个方案答题,若用多种方案答题,则按第一种方案给分)
4.
4.。
高中数学高三新高考试卷
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = x^3 - 3x在区间[-1, 2]上的极值点个数为:A. 0B. 1C. 2D. 32. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S10 = 45,则第15项a15的值为:A. 9B. 10C. 11D. 123. 下列命题中正确的是:A. 若函数f(x)在区间[a, b]上单调递增,则f(a) < f(b)B. 若函数f(x)在区间[a, b]上连续,则f(a) ≤ f(x) ≤ f(b)C. 若函数f(x)在区间[a, b]上可导,则f(a) ≤ f(x) ≤ f(b)D. 若函数f(x)在区间[a, b]上连续,则f(a) < f(x) < f(b)4. 已知复数z满足|z - 1| = |z + 1|,则复数z的取值范围是:A. 实轴上除原点外的所有点B. 实轴上所有点C. 虚轴上所有点D. 平面上所有点5. 下列不等式中,正确的是:A. x^2 + 1 ≥ 0B. x^2 - 1 ≥ 0C. x^2 + 1 ≤ 0D. x^2 - 1 ≤ 06. 已知等比数列{an}的首项a1 = 1,公比q = 2,则第n项an的表达式为:A. an = 2n - 1B. an = 2nC. an = 2n - 2D. an = 2n + 17. 函数y = (x - 1)^2 + 1的图像关于直线x = 1对称,下列说法正确的是:A. 函数在x = 1处有极大值B. 函数在x = 1处有极小值C. 函数在x = 1处无极值D. 函数在x = 1处无拐点8. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 5,则f(3)的值为:A. 8B. 9C. 10D. 119. 下列数列中,不是等差数列的是:A. 1, 4, 7, 10, ...B. 2, 4, 8, 16, ...C. 1, 3, 6, 10, ...D. 1, 3, 5, 7, ...10. 函数y = log2(x - 1)的图像与直线y = x相交于点P,则点P的坐标为:A. (2, 1)B. (3, 1)C. (2, 2)D. (3, 2)11. 已知函数f(x) = x^3 - 3x,则f(x)的对称中心为:A. (0, 0)B. (1, 0)C. (-1, 0)D. (0, -1)12. 下列函数中,不是奇函数的是:A. f(x) = x^3B. f(x) = x^2C. f(x) = x^4D. f(x) = x^5二、填空题(本大题共8小题,每小题5分,共40分。
高三新高考数学刷题试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数$f(x)=ax^2+bx+c$,其中$a\neq0$,且$f(1)=2$,$f(2)=5$,$f(3)=8$,则下列选项中正确的是:A. $a=1$,$b=2$,$c=1$B. $a=1$,$b=1$,$c=1$C. $a=2$,$b=1$,$c=1$D. $a=1$,$b=1$,$c=2$2. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5=35$,$S_8=64$,则第10项$a_{10}$的值为:A. 11B. 12C. 13D. 143. 下列命题中正确的是:A. 若$A\subseteq B$,则$A\cup B=B$B. 若$A\cap B=\varnothing$,则$A\subseteq B$C. 若$A\subseteq B$,则$A\cap B=A$D. 若$A\cap B=A$,则$A\subseteq B$4. 在$\triangle ABC$中,$a=3$,$b=4$,$c=5$,则$\sin A$的值为:A. $\frac{3}{5}$B. $\frac{4}{5}$C. $\frac{5}{3}$D. $\frac{5}{4}$5. 函数$f(x)=x^3-3x^2+4x$的图像与$x$轴的交点个数为:B. 2C. 3D. 46. 若复数$z=a+bi$(其中$a,b\in\mathbb{R}$)满足$|z|=1$,则$\operatorname{arg}(z)$的取值范围是:A. $[0,\frac{\pi}{2}]$B. $[-\frac{\pi}{2},\frac{\pi}{2}]$C. $[0,\pi]$D. $[-\pi,0]$7. 下列不等式中恒成立的是:A. $x^2+y^2\geq2xy$B. $x^2+y^2\leq2xy$C. $x^2-y^2\geq2xy$D. $x^2-y^2\leq2xy$8. 若函数$f(x)=x^2-2ax+a^2$的图像关于直线$x=a$对称,则$a$的值为:A. 0B. 1C. 2D. $\frac{1}{2}$9. 已知向量$\vec{a}=(2,3)$,$\vec{b}=(1,-1)$,则$\vec{a}\cdot\vec{b}$的值为:A. 1B. 2D. 410. 下列选项中,函数$y=\log_2(x-1)$的定义域是:A. $x>1$B. $x\geq1$C. $x<1$D. $x\leq1$11. 若$\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}$,则$\sin\alpha\cos\alpha$的值为:A. $\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{3}{4}$D. $\frac{1}{3}$12. 在直角坐标系中,点$P(2,3)$关于直线$x+y=5$的对称点为$Q$,则$Q$的坐标为:A. $(1,4)$B. $(4,1)$C. $(3,2)$D. $(2,4)$二、填空题(本大题共6小题,每小题10分,共60分)13. 函数$f(x)=\frac{x^2-3x+2}{x-1}$的定义域为______。
最新高三数学专项训练-高三数学新题型汇编
高三数学新题型汇编(一)1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n n a b a b a b n N *++≥>>∈;(Ⅲ)定理:若123,,ka a a a 均为正数,则有123123()n n nnn k ka a a a a a a a kk++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明: 当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++. 解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a xx a --=+∴=+∴= (2)分当0x a ≤≤时,2x x a <+'()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a = (4)分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥ 故 ()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++只要证:112311231(1)()()n n n n n n k k k a a a a a a a a -+++++++≥++++设()g x =1123123(1)()()n n n n n n k a a a x a a a x -+++++-++++…………………7分则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++令'()0g x =得12ka a a x k+++= (8)分 当0x ≤≤12ka a a k+++时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++≤111212()()0n n k k n a a a x n a a a x --++++-++++=故12()[0,]ka a a g x k+++在上递减,类似地可证12()(,)ka a a g x k++++∞在递增所以12()ka a a x g x k+++=当时,的最小值为12()ka a a g k+++ (10)分 而11212121212()(1)[()]()n n n n n nkk k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++ =1121212(1)[()()(1)()]n n n n nn n k k k nk k a a a a a a k a a a k-++++++++-++++ =11212(1)[()()]n n n n n nk k n k k a a a k a a a k -++++-+++=1112121(1)[()()]n n n n n n k k n k k a a a a a a k---++++-+++由定理知:11212()()0n n n n n k k k a a a a a a -+++-+++≥ 故12()0k a a a g k+++≥1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥故112311231(1)()()n n n n nn k k k a a a a a a a a -+++++++≥++++即:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.…………………………..14分2、用类比推理的方法填表答案:5354321b b b b b b =••••3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
新高三数学练习题及答案
新高三数学练习题及答案一、选择题1. 设集合 A = {x | x > 0},集合 B = {x | x < 0},则下列哪个选项是关于 A 和 B 的正确描述?A) A ∪ B = {x | x ≠ 0}B) A ∩ B = {x | x > 0}C) A - B = {x | x > 0}D) A - B = {x | x < 0}答案:C2. 若 f(x) = -2x + 5,则 f(-3) 的值为:A) -9B) -11C) 11D) 9答案:B3. 已知函数 f(x) = 3x^2 - 2x + 1,求 f(-1) 的值为:A) -6B) 6C) 4D) 3答案:D二、填空题1. 设集合 A = {1, 2, 3},集合 B = {2, 3, 4},则 A ∪ B = ________。
答案:{1, 2, 3, 4}2. 若 f(x) = 4x - 3,则 f(2) 的值为 ________。
答案:53. 已知函数 f(x) = 2x^2 - 3x + 2,求 f(1) 的值为 ________。
答案:1三、计算题1. 已知函数 f(x) = 3x^2 + 2x - 1,求函数的对称轴方程及顶点坐标。
解答过程:首先,对称轴的方程可以通过公式 x = -b / (2a) 来求得,其中 a、b、c 分别是二次项、一次项和常数项的系数。
对于函数 f(x) = 3x^2 + 2x - 1,a = 3,b = 2,c = -1。
代入公式可得:x = -2 / (2 * 3) = -1/3。
所以,对称轴的方程为 x = -1/3。
接下来,求顶点坐标可以将对称轴的 x 坐标代入函数中。
代入 f(-1/3) 可得:f(-1/3) = 3*(-1/3)^2 + 2*(-1/3) - 1 = 4/9 - 2/3 - 1 = -19/9。
所以,顶点坐标为 (-1/3, -19/9)。
高考新数学试卷题型及答案
1. 若函数f(x) = 2x^3 - 3x^2 + 4x + 1在x = 1处的切线斜率为多少?A. 1B. 2C. 3D. 4答案:C解析:首先求导数f'(x) = 6x^2 - 6x + 4,代入x = 1得f'(1) = 4,即切线斜率为4。
2. 若a、b、c为等差数列,且a + b + c = 12,b = 4,则c的值为多少?A. 2B. 4C. 6D. 8答案:D解析:由等差数列的性质,得2b = a + c,代入a + b + c = 12和b = 4,得a + c = 8,又因为b = 4,所以c = 8。
3. 若x^2 + 2x + 1 = 0,则x的值为多少?A. 1B. -1C. 0D. 无法确定答案:A解析:由完全平方公式,得(x + 1)^2 = 0,解得x = -1。
4. 若log2x + log4x + log8x = 3,则x的值为多少?A. 2B. 4C. 8D. 16答案:C解析:利用对数的换底公式,得log2x + log2x^(1/2) + log2x^(3/4) = 3,即log2x^((1 + 1/2 + 3/4)) = 3,解得x^((7/4)) = 2^3,即x = 8。
5. 若a、b、c、d为等比数列,且a + b + c + d = 32,a = 2,则d的值为多少?A. 8B. 16C. 32D. 64答案:D解析:由等比数列的性质,得a d = b c,代入a + b + c + d = 32和a = 2,得2 + b + c + d = 32,即b + c + d = 30,又因为a d = b c,所以2d = 30,解得d = 15。
二、填空题6. 若函数f(x) = x^2 - 4x + 3的对称轴方程为x = ________。
答案:2解析:对称轴方程为x = -b/2a,代入a = 1,b = -4,得x = 2。
高三数学新高考试卷题
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = x^3 - 3x + 2$,则$f(x)$的对称中心为()A. $(1, -1)$B. $(-1, 0)$C. $(0, 2)$D. $(0, -1)$2. 在等差数列$\{a_n\}$中,若$a_1 = 3$,$a_5 = 13$,则公差$d$为()A. 2B. 3C. 4D. 53. 下列命题中,正确的是()A. 函数$y = x^2$在$(-\infty, 0)$上单调递减B. 函数$y = \ln x$在$(0, +\infty)$上单调递增C. 函数$y = e^x$在$(-\infty, +\infty)$上单调递减D. 函数$y = \sqrt{x}$在$(0, +\infty)$上单调递增4. 已知向量$\vec{a} = (2, 3)$,$\vec{b} = (1, 2)$,则$\vec{a} \cdot\vec{b}$的值为()A. 5B. 7C. 9D. 115. 函数$f(x) = \frac{x^2 - 1}{x - 1}$的定义域为()A. $(-\infty, 1) \cup (1, +\infty)$B. $(-\infty, 1] \cup [1, +\infty)$C. $(-\infty, 1) \cup [1, +\infty)$D. $(-\infty, 1] \cup (1, +\infty)$6. 在直角坐标系中,点$(2, 3)$关于直线$y = x$的对称点为()A. $(3, 2)$B. $(2, 3)$C. $(-3, -2)$D. $(-2, -3)$7. 若等比数列$\{a_n\}$中,$a_1 = 2$,$a_4 = 16$,则公比$q$为()A. 2B. 4C. 8D. 168. 下列函数中,在定义域内连续的是()A. $f(x) = |x|$,$x \in \mathbb{R}$B. $f(x) = \frac{1}{x}$,$x \in \mathbb{R}$C. $f(x) = \sqrt{x}$,$x \in [0, +\infty)$D. $f(x) = \sqrt{x}$,$x \in (-\infty, 0)$9. 若$\sin \alpha = \frac{3}{5}$,则$\cos \alpha$的值为()A. $\frac{4}{5}$B. $-\frac{4}{5}$C. $\frac{3}{5}$D. $-\frac{3}{5}$10. 已知等差数列$\{a_n\}$中,$a_1 = 1$,$a_3 + a_5 = 16$,则$a_5$的值为()A. 8B. 9C. 10D. 11二、填空题(本大题共5小题,每小题10分,共50分。
高三数学:2024年新高考新题型数学选填压轴好题汇编04(解析版)
2024年新高考新题型数学选填压轴好题汇编04一、单选题1(2024·广东·一模)已知集合A=-12,-13,12,13,2,3,若a,b,c∈A且互不相等,则使得指数函数y =a x,对数函数y=log b x,幂函数y=x c中至少有两个函数在(0,+∞)上单调递增的有序数对(a,b,c)的个数是()A.16B.24C.32D.48【答案】B【解析】若y=a x和y=log b x在(0,+∞)上单调递增,y=x c在(0,+∞)上单调递减,则有A22⋅C12=4个;若y=a x和y=x c在(0,+∞)上单调递增,y=log b x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=log b x和y=x c在(0,+∞)上单调递增,y=a x在(0,+∞)上单调递减,则有C12⋅C12⋅C12=8个;若y=a x、y=log b x和y=x c在(0,+∞)上单调递增,则有A22⋅C12=4个;综上所述:共有4+8+8+4=24个.故选:B.2(2024·广东江门·一模)物理学家本·福特提出的定律:在b进制的大量随机数据中,以n开头的数出现的概率为P b n =log b n+1n.应用此定律可以检测某些经济数据、选举数据是否存在造假或错误.若80n=kP10(n)=log4811+log25k∈N*,则k的值为()A.7B.8C.9D.10【答案】C【解析】80n=k P10(n)=P10(k)+P10(k+1)+⋯+P10(80)=lg k+1k +lg k+2k+1+⋯+lg8180=lg81k,而log4811+log25=lg81lg41+lg5lg2=4lg32lg21+lg5lg2=2lg3=lg9,故k=9.故选:C.3(2024·广东·模拟预测)在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.33468B.3434C.21717D.1734【答案】A【解析】依题意,记BC的中点为F,连接DF,记正△BCD的中心为O,连接AO,因为在正三棱锥A-BCD中,AO⊥底面BCD,在正△BCD中,DF⊥BC,在平面BCD中过F点作z轴⊥底面BCD,则AO⎳z轴,以F点为原点,建立空间直角坐标系,如图,因为在正三棱锥A-BCD中,△BCD的边长为6,侧棱长为8,所以DF=32CD=32×6=33,2DF=23,AO=AD2-OD2=64-12=213,故B -3,0,0 ,C 3,0,0 ,D 0,33,0 ,O 0,3,0 ,A 0,3,213 ,则E -32,32,13 ,CE =-92,32,13 ,BD =3,33,0 ,所以cos CE ,BD =CE ⋅BDCE BD =-92×3+32×33-92 2+32 2+13×9+27=-33468,则异面直线CE 与BD 所成角的余弦值为33468.故选:A .4(2024·天津滨海新·一模)已知抛物线C 1:y 2=2px p >0 的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为()A.2B.322C.113D.222【答案】D【解析】求得抛物线的焦点和准线,可得EF 的长度,由题意可得p =6a ,求出两曲线交点坐标,代入双曲线方程可得a ,b 的关系,利用离心率公式可求得结果.抛物线y 2=2px 的焦点为F p 2,0 ,准线方程为x =-p2,E -p2,0 ,|EF |=p ,因为线段EF 被双曲线C 2:x 2a 2-y 2b2=1(a >0,b >0)顶点三等分,所以2a =p 3,即p =6a ,因为两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,所以两个交点为p 2,p 、p2,-p ,将p 2,p 代入双曲线x 2a 2-y 2b 2=1得p 24a 2-p 2b2=1,所以36a 24a 2-36a 2b 2=1,所以9-36a 2b 2=1,所以b 2a2=92,所以双曲线C 2的离心率e =c a =c 2a 2=a 2+b 2a 2=1+b 2a2=1+92=222.故选:D5(2024·湖南·二模)已知函数f x =sin ωx +3cos ωx ,若沿x 轴方向平移f x 的图象,总能保证平移后的曲线与直线y =1在区间0,π 上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.2,83B.2,103C.103,4 D.2,4【答案】A【解析】由f x =sin ωx +3cos ωx 可得:f x =2sin ωx +π3,若沿x 轴方向平移,考虑其任意性,不妨设得到的函数g x =2sin ωx +φ .令g x =1,即sin ωx +φ =12,x ∈[0,π],取z =ωx +φ,则z ∈[φ,ωπ+φ].依题意知,sin z =12在φ,ωπ+φ 上至少有2解,至多有3解,则须使区间[φ,ωπ+φ]的长度在2π到8π3之间,即2π≤ωπ<8π3,解得2≤ω<83.6(2024·湖南·二模)过点P -1,0 的动直线与圆C :(x -a )2+(y -2)2=4(a >0)交于A ,B 两点,在线段AB 上取一点Q ,使得1PA +1PB =2PQ ,已知线段PQ 的最小值为2,则a 的值为()A.1B.2C.3D.4【答案】A【解析】圆心C a ,2 ,半径为2,则圆C 与x 轴相切,设切点为M a ,0 ,则PM =a +1,则|PM |2=PA PB =(a +1)2,设AB 的中点为D ,连接CD ,则CD ⊥AB ,令圆心C 到直线AB 的距离为d ,则0≤d <2,|PA |+|PB |=|PD |-|AD |+|PD |+|AD |=2|PD |,由1PA +1PB =2PQ ,得PQ =2PA PB PA +PB =(a +1)2|PC |2-d 2=(a +1)2(a +1)2+4-d 2,因此(a +1)2(a +1)2+4-0≤PQ <(a +1)2(a +1)2+4-4,而PQ 的最小值为2,所以a +12a +1 2+4=2,则a =1.故选:A7(2024·高三·浙江宁波·阶段练习)如图1,水平放置的直三棱柱容器ABC -A 1B 1C 1中,AC ⊥AB ,AB =AC =2,现往内灌进一些水,水深为2.将容器底面的一边AB 固定于地面上,再将容器倾斜,当倾斜到某一位置时,水面形状恰好为三角形A 1B 1C ,如图2,则容器的高h 为()A.3B.4C.42D.6【答案】A【解析】在图1中水的体积V =12×2×2×2=4,在图2中水的体积V =VABC -A 1B 1C 1-V C -A 1B 1C 1=12×2×2×h -13×12×2×2×h =43h ,4h =4⇒h =3.8(2024·江西·高考真题)已知F 1、F 2是椭圆的两个焦点,满足MF 1 ⋅MF 2=0的点M 总在椭圆内部,则椭圆离心率的取值范围是A.(0,1) B.0,12C.0,22D.22,1 【答案】C【解析】设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c .因为MF 1 ·MF 2=0所以点M 的轨迹为以原点为圆心,半径为c 的圆.与因为点M 在椭圆的内部,所以c <a ,c <b ,所以c 2<b 2=a 2-c 2,所以2c 2<a 2∴e 2=c 2a2<12,所以e ∈0,22,故选C .9(2024·高二·湖北鄂州·阶段练习)已知双曲线x 2a 2-y 2b2=1a >0,b >0 的焦距为2c ,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1-d 2 ≤c ,则双曲线的离心率的取值范围为()A.1,233B.233,+∞ C.1,2D.2,+∞【答案】C【解析】由题意可知,直线AB 经过双曲线的右焦点,且垂直于x 轴,不妨设A c ,y 0 ,代入椭圆方程c 2a 2-y 02b2=1,又c 2=a 2+b 2,所以y 0=b 2a ,所以A c ,b 2a ,B c ,-b 2a,任取双曲线的一条渐近线为直线bx +ay =0,由点到直线的距离公式可得点A 到渐近线的距离d 1=bc +b 2a 2+b2=bc +b 2c ,点B 到渐近线的距离d 2=bc -b 2a 2+b 2=bc -b 2c ,所以d 1-d 2 =bc +b 2c -bc -b 2c =2b 2c=2b 2c,因为d 1-d 2 ≤c ,所以2b 2c≤c ,因c >0,所以2b 2≤c 2,即2c 2-a 2 ≤c 2,所以c 2≤2a 2,所以c 2a 2≤2,因为双曲线离心率c a >1,所以1<ca≤2,所以双曲线的离心率的取值范围为1,2 .故选:C .10(2024·高二·广东深圳·期末)已知抛物线C :y 2=2px p >0 的焦点为F ,斜率为k 的直线l 经过点F ,并且与抛物线C 交于A 、B 两点,与y 轴交于点M ,与抛物线的准线交于点N ,若AF =2MN,则k =()A.3B.2C.±2D.±3【答案】D【解析】当A 在第一象限时,设准线与x 轴的交点为P ,过A 作准线的垂线,垂足为A ,因为OM ∥PN ,且O 为PF 的中点,所以OM 为三角形PFN 的中位线,即FM =MN ,所以AF =2MN =FN ,又根据抛物线的定义AF =AA ,所以AN =2AF =2AA ,所以在直角三角形AA N 中,∠A AN =60°,所以∠AFx =60°,此时k =3,根据对称性,当A 在第四象限时,k =-3,故选:D .11(2024·湖北·一模)设直线l :x +y -1=0,一束光线从原点O 出发沿射线y =kx x ≥0 向直线l 射出,经l 反射后与x 轴交于点M ,再次经x 轴反射后与y 轴交于点N .若MN =136,则k 的值为()A.32B.23C.12D.2【答案】B【解析】如图,设点O 关于直线l 的对称点为A x 1,y 1 ,则x 12+y12-1=0y 1x 1×-1 =-1得x 1=1y 1=1 ,即A 1,1 ,由题意知y =kx x ≥0 与直线l 不平行,故k ≠-1,由y =kx x +y -1=0 ,得x =1k +1y =k k +1,即P 1k +1,k k +1 ,故直线AP 的斜率为k AP =kk +1-11k +1-1=1k ,直线AP 的直线方程为:y -1=1kx -1 ,令y =0得x =1-k ,故M 1-k ,0 ,令x =0得y =1-1k ,故由对称性可得N 0,1k-1 ,由MN =136得(1-k )2+1k -1 2=1336,即k +1k 2-2k +1k =1336,解得k +1k=136,得k =23或k =32,若k =32,则第二次反射后光线不会与y 轴相交,故不符合条件.故k =23,故选:B 12(2024·湖北·二模)能被3个半径为1的圆形纸片完全覆盖的最大的圆的半径是()A.263B.62C.233D.33+12【答案】C【解析】要求出被完全覆盖的最大的圆的半径,由圆的对称性知只需考虑三个圆的圆心构成等边三角形的情况,设三个半径为1的圆的圆心分别为O 1,O 2,O 3,设被覆盖的圆的圆心为O ,如图,设OO 1=OO 2=OO 3=x ,则O 1H =3x 2,OH =x 2,OA =OH +HA =x 2+1-32x 2=12(x +4-3x 2),又OC =OO 3+O 3C =x +1>OA ,因此圆O 的最大半径为OA ,令f (x )=12(x +4-3x 2),求导得f(x )=4-3x 2-3x 24-3x 2,由f (x )=0,得x =33,当0<x <33时,f (x )>0,当33<x <233时,f (x )<0,因此f (x )在0,33上单调递增,在33,233 上单调递减,f (x )max =f 33 =233,所以被完全覆盖的最大的圆的半径为233,此时O 1O 2=O 2O 3=O 3O 1=1,即圆O 1、圆O 2、圆O 3中的任一圆均经过另外两圆的圆心.故选:C13(2024·高三·浙江嘉兴·期末)已知正实数a ,b ,c 满足a 2-b =2ln ab>0,7b -2b =a +4 c ,则()A.0<c <b <1<aB.0<b <c <1<aC.0<c <b <a <1D.0<b <c <a <1【答案】A【解析】因a >0,b >0,由ln a b >0可得:ab >1,则a >b .由a 2-b =2lnab 化简得:a 2-2ln a =b -2ln b ,分别设函数f x =x 2-2ln x ,g x =x -2ln x .由f(x )=2x 2-1 x,(x >0),则当0<x <1时,f (x )<0,当x >1时,f (x )>0,则f x 在0,1 上递减,在1,+∞ 上递增,故f x min =f 1 =1.又g x =x -2x,(x >0),则当0<x <2时,g (x )<0,当x >2时,g (x )>0,则g x 在0,2 上递减;在2,+∞ 上递增,故g x min =g 2 =2-2ln2.由f x -g x =x 2-x =x x -1 ,则0<x <1时,f x <g x ;x =1时,f x =g x ;x >1时,f x >g x .函数f x 与g x 的图象如图.令f a =f b =k .由于a >b ,则0<b <1,1<a ,排除C ,D ;由于a >1,7b-2b=a +4c>5c,则7b -2b >5c -b .令h x =75 x -25x,其在R 上单调递增.由于0<b <1,则0=h (0)<h b <h (1)=1,则有5c -b <1,即c -b <0得c <b .综上,0<c <b <1<a .故选:A .14(2024·高二·北京西城·期末)在直角坐标系xOy 内,圆C :(x -2)2+(y -2)2=1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,则实数m 的取值范围是()A.-2,2B.-4-2,-4+2C.-2-2,-2+2D.-2+2,2+2【答案】A【解析】连接OP ,设∠POx =θ(即以x 轴正方向为始边,OP 为终边的角),由题意对于直线l :x +y +m =0上任意一点P x ,y ,存在a =x 2+y 2,θ∈R ,使得P a cos θ,a sin θ ,则直线l :x +y +m =0绕原点O 顺时针旋转90°后,点P a cos θ,a sin θ 对应点为P 1a cos θ-π2 ,a sin θ-π2 ,即P 1a sin θ,-a cos θ ,因为P a cos θ,a sin θ 在直线l :x +y +m =0上,所以满足a cos θ+a sin θ+m =0设x 1=a sin θ,y 1=-a cos θ,所以-y 1+x 1+m =0,即P 1a sin θ,-a cos θ 所在直线方程为l 1:x -y +m =0,而圆C :(x -2)2+(y -2)2=1的圆心,半径分别为2,2 ,r =1,若直线l :x +y +m =0绕原点O 顺时针旋转90°后与圆C 存在公共点,所以圆心C 2,2 到直线l 1:x -y +m =0的距离d =m2≤r =1,解得-2≤m ≤ 2.故选:A .15(2024·山东青岛·一模)已知A (-2,0),B (2,0),设点P 是圆x 2+y 2=1上的点,若动点Q 满足:QP⋅PB =0,QP =λQA |QA |+QB|QB |,则Q 的轨迹方程为()A.x 2-y 23=1B.x 23-y 2=1C.x 25+y 2=1D.x 26+y 22=1【答案】A【解析】由QP ⋅PB=0,可得QP ⊥PB ,而QP =λQA QA +QBQB,可知点P 在∠BQA 的平分线上.圆x 2+y 2=1,圆心为原点O ,半径r =1,连接AQ ,延长BP 交AQ 于点C ,连接OP ,因为∠PQB =∠PQC 且PQ ⊥BC ,所以QB =QC ,且P 为BC 中点,OP ∥AC ,OP =1AC因此,QA -QB =QA -QC =AC =2OP =2,点Q 在以A 、B 为焦点的双曲线上,设双曲线方程为x 2a 2-y 2b2=1a >0,b >0 ,可知c =2,a 2+b 2=c 2=4,由2a =QA -QB =2,得a =1,故b 2=3,双曲线方程为x 2-y 23=1.故选:A .16(2024·山东青岛·一模)∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,则f (2024)的值为()A.2B.1C.0D.-1【答案】B【解析】由题意知∀x ∈R ,f (x )+f (x +3)=1-f (x )f (x +3),f (-1)=0,令x =-1,则f (-1)+f (2)=1-f (-1)f (2),∴f (2)=1显然f (x )=-1时,-1+f (x +3)=1+f (x +3)不成立,故f (x )≠-1,故f (x +3)=1-f (x )1+f (x ),则f (x +6)=1-1-f (x )1+f (x )1+1-f (x )1+f (x )=f (x ),即6为函数f (x )的周期,则f (2024)=f (337×6+2)=f (2)=1,故选:B17(2024·山东聊城·一模)已知P 是圆C :x 2+y 2=1外的动点,过点P 作圆C 的两条切线,设两切点分别为A ,B ,当PA ⋅PB的值最小时,点P 到圆心C 的距离为()A.42 B.32 C.2 D.2【答案】A【解析】设P x ,y ,则OP =x 2+y 2,则PA ⋅PB =PO +OA PO +OB =PO 2+PO ⋅OA +OB +OA ⋅OB ,OA ⋅OB =OA ⋅OBcos ∠AOB =cos ∠AOB =cos2∠POA =2cos 2∠POA -1=2×OA2OP2-1=2x 2+y 2-1,PO ⋅OA =PO ⋅OB =PO ⋅OA cos 180°-∠POA =-PO ⋅OAcos ∠POA=-PO ⋅OA ⋅OA OP=-1,故PA ⋅PB =x 2+y 2-2+2x 2+y2-1≥2x 2+y 2 ⋅2x 2+y 2-3=22-3,当且仅当x 2+y 2=2x 2+y2,即x 2+y 2=2时,等号成立,故当PA ⋅PB的值最小时,点P 到圆心C 的距离为42.故选:A .18(2024·山东聊城·一模)在三棱柱ABC -A 1B 1C 1中,点D 在棱BB 1上,且△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,点M 在棱A 1C 1上,且A 1M =2MC 1,点N 在直线BB 1上,若MN ⎳平面ADC 1,则BB 1NB 1=()【答案】D【解析】如图,连接AB 1,则V A -A 1B 1C 1=13V ABC -A 1B 1C1,又△ADC 1所在的平面将三棱柱ABC -A 1B 1C 1分割成体积相等的两部分,所以V A -DB 1C 1=12V ABC -A 1B 1C 1-13V ABC -A 1B 1C 1=16V ABC -A 1B 1C1,即VA -DB 1C 1=12V A -A 1B 1C1,即V C 1-ADB 1=12V C 1-AA 1B1,设C 1到平面ABB 1A 1的距离为d ,则V C 1-ADB 1=13S △ADB 1⋅d ,V C 1-AA 1B 1=13S △AA 1B1⋅d ,所以S △ADB 1=12S △AA 1B 1=12S △ABB 1,所以D 为BB 1的中点,在AA 1上取点E ,使得A 1E =2AE ,连接EN 、EM ,因为A 1M =2MC 1,所以EM ⎳AC 1,又EM ⊄平面ADC 1,AC 1⊂平面ADC 1,所以EM ⎳平面ADC 1,又MN ⎳平面ADC 1,EM ∩MN =M ,EM ,MN ⊂平面EMN ,所以平面EMN ⎳平面ADC 1,又平面EMN ∩平面ABB 1A 1=EN ,平面ADC 1∩平面ABB 1A 1=AD ,所以AD ⎳EN ,又AE ⎳ND ,所以四边形ADNE 为平行四边形,所以ND =AE =13AA 1=13BB 1,所以B 1N =B 1D -ND =12BB 1-13BB 1=16BB 1,所以BB 1NB 1=6.故选:D19(2024·山东烟台·一模)在平面直角坐标系xOy 中,点A -1,0 ,B 2,3 ,向量OC =mOA +nOB,且m -n -4=0.若P 为椭圆x 2+y 27=1上一点,则PC 的最小值为()A.4510B.10C.8510D.210【答案】A 【解析】设点C (x ,y ),由A -1,0 ,B 2,3 及OC =mOA +nOB ,得(x ,y )=(-m +2n ,3n ),即x =-m +2ny =3n,而m -n -4=0,消去m ,n 得:3x -y +12=0,设椭圆x 2+y 27=1上的点P (cos θ,7sin θ),θ∈R ,则点P 到直线3x -y +12=0的距离d =|3cos θ-7sin θ+12|32+(-1)2=12-4sin (θ+φ)10,其中锐角φ由tan φ=37确定,当sin (θ+φ)=1时,d min =4510,而PC ≥d ,所以PC 的最小值为4510.故选:A 20(2024·山东济宁·一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与y 轴相交于M 点,与双曲线C 在第一象限的交点为P ,若F 1M =2MP ,F 1P ⋅F 2P=0,则双曲线C 的离心率为()A.2B.3C.332D.3+1【答案】D【解析】设∠PF 1F 2=θ,θ为锐角,因为F 1M =2MP ,F 1P ⋅F 2P =0,所以PF 1⊥PF 2,PF 1 =32MF 1 ,∴MF 1 =c cos θ,∴|PF 1|=32|MF 1|=3c2cos θ,又|PF 2|=2c sin θ,∴|PF 1|2+|PF 2|2=|F 1F 2|2,∴9c 24cos 2θ+4c 2sin 2θ=4c 2,∴9+16sin 2θcos 2θ=16cos 2θ,∴9+16(1-cos 2θ)cos 2θ=16cos 2θ,∴9-16cos 4θ=0,∴cos 2θ=34,∴cos θ=32(负值舍去),∴θ=30°,∴|PF 1|=32|MF 1|=3c2cos θ=3c ,|PF 2|=2c sin θ=c ,∴双曲线C 的离心率e =2c 2a =|F 1F 2||PF 1|-|PF 2|=2c3c -c=3+1.故选:D .21(2024·山东济宁·一模)设函数f (x )定义域为R ,f (2x -1)为奇函数,f (x -2)为偶函数,当x ∈[0,1]时,f (x )=x 2-1,则f (2023)-f (2024)=()A.-1 B.0C.1D.2【答案】C【解析】因为函数f (x )定义域为R ,f (2x -1)为奇函数,所以f (2x -1)=-f (-2x -1),所以函数f (x )关于点-1,0 中心对称,且f -1 =0,因为f (x -2)为偶函数,所以f (x -2)=f (-x -2),所以函数f (x )关于直线x =-2轴对称,又因为f x =-f -2-x =-f -2+x =--f -4+x ,所以函数f (x )的周期为4,因为当x ∈[0,1]时,f (x )=x 2-1,所以f (2023)=f 4×506-1 =f -1 =0,f (2024)=f 4×506 =f 0 =-1,所以f (2023)-f (2024)=1.故选:C .22(2024·山东淄博·一模)已知F 1,F 2是椭圆和双曲线的公共焦点,P ,Q 是它们的两个公共点,且P ,Q 关于原点对称,∠PF 2Q =2π3,若椭圆的离心率为e 1,双曲线的离心率为e 2,则e 21e 21+1+3e 22e 22+3的最小值是()A.2+33B.1+33C.233D.433【答案】A【解析】如图,设椭圆的长半轴长为a 1,双曲线的实半轴长为a 2,则根据椭圆及双曲线的定义得:PF 1 +PF 2 =2a 1,PF 1 -PF 2 =2a 2,∴PF 1 =a 1+a 2,PF 2 =a 1-a 2,设F 1F 2 =2c ,∠PF 2Q =2π3,根据椭圆与双曲线的对称性知四边形PF 1QF 2为平行四边形,则∠F 1PF 2=π3,则在△PF 1F 2中,由余弦定理得,4c 2=a 1+a 2 2+a 1-a 2 2-2a 1+a 2 a 1-a 2 cosπ3,化简得a 21+3a 22=4c 2,即1e 21+3e 22=4,则e 21e 21+1+3e 22e 22+3=11e 21+1+33e 22+1=11e 21+1+33e 22+1 1e 21+1+3e 22+1×16=16×4+3e 22+11e 21+1+31e 21+1 3e 22+1≥16×4+23e 22+11e 21+1×31e 21+1 3e 22+1=16×4+23 =2+33,当且仅当3e 22+1 2=31e 21+121e 21+3e 22=4,即e 21=33+411<1e 22=38-33=24+9337>1时等号成立,故选:A .23(2024·广东茂名·一模)若α∈π4,3π4 ,6tan π4+α +4cos π4-α =5cos2α,则sin2α=()A.2425B.1225C.725D.15【答案】C 【解析】令t =π4+α,t ∈π2,π ,得α=t -π4,则6tan t +4cos π2-t =5cos 2t -π2,即6tan t +4sin t =5sin2t =10sin t cos t ,整理得5cos t +3 cos t -1 =0,且cos t <0,那么cos t =-35,则sin2α=sin 2t -π2 =-cos2t =1-2cos 2t =725.故选:C .二、多选题24(2024·广东江门·一模)已知曲线E :x x 4+y y8=1,则下列结论正确的是()A.y 随着x 增大而减小B.曲线E 的横坐标取值范围为-2,2C.曲线E 与直线y =-1.4x 相交,且交点在第二象限D.M x 0,y 0 是曲线E 上任意一点,则2x 0+y 0 的取值范围为0,4 【答案】AD【解析】因为曲线E :x x 4+y y8=1,当x ≥0,y ≥0时x 24+y 28=1,则曲线E 为椭圆x 24+y 28=1的一部分;当x >0,y <0时x 24-y 28=1,则曲线E 为双曲线x 24-y 28=1的一部分,且双曲线的渐近线为y =±2x ;当x <0,y >0时y 28-x 24=1,则曲线E 为双曲线y 28-x 24=1的一部分,且双曲线的渐近线为y =±2x ;可得曲线的图形如下所示:由图可知y 随着x 增大而减小,故A 正确;曲线E 的横坐标取值范围为R ,故B 错误;因为-1.4>-2,所以曲线E 与直线y =-1.4x 相交,且交点在第四象限,故C 错误;因为2x 0+y 0 =3×2x 0+y 022+12,即点M x 0,y 0 到直线2x +y =0的距离的3倍,当直线2x +y +c =0与曲线x 24+y 28=1x ≥0,y ≥0 相切时,由x 24+y 28=12x +y +c =0,消去y 整理得4x 2+22cx +c 2-8=0,则Δ=22c 2-16c 2-8 =0,解得c =4(舍去)或c =-4,又2x +y =0与2x +y -4=0的距离d =4 2 2+12=43,所以2x 0+y 0 max =3d =4,所以2x 0+y 0 的取值范围为0,4 ,故D 正确;故选:AD25(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【解析】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD26(2024·广东·一模)已知正方体ABCD -A 1B 1C 1D 1的各个顶点都在表面积为3π的球面上,点P 为该球面上的任意一点,则下列结论正确的是()A.有无数个点P ,使得AP ⎳平面BDC 1B.有无数个点P ,使得AP ⊥平面BDC 1C.若点P ∈平面BCC 1B 1,则四棱锥P -ABCD 的体积的最大值为2+16D.若点P ∈平面BCC 1B 1,则AP +PC 1的最大值为6【答案】ACD【解析】令正方体ABCD -A 1B 1C 1D 1的外接球半径为r ,4πr 2=3π,r =32,则BD 1=3,AB =1,连接AB 1,AD 1,B 1D 1,由四边形ABC 1D 1是该正方体的对角面,得四边形ABC 1D 1是矩形,即有AD 1⎳BC 1,而BC 1⊂平面BDC 1,AD 1⊄平面BDC 1,则AD 1⎳平面BDC 1,同理AB 1⎳平面BDC 1,又AB 1∩AD 1=A ,AB 1,AD 1⊂平面AB 1D 1,因此平面AB 1D 1⎳平面BDC 1,令平面ABD 1截球面所得截面小圆为圆M ,对圆M 上任意一点(除点A 外)均有AP ⎳平面BDC 1,A 正确;对于B ,过A 与平面BDC 1垂直的直线AP 仅有一条,这样的P 点至多一个,B 错误;对于C ,平面BCC 1B 1截球面为圆R ,圆R 的半径为22,则圆R 上的点到底面ABCD 的距离的最大值为2+12,因此四棱锥P -ABCD 的体积的最大值为13×1×2+12=2+16,C 正确;对于D ,显然AB ⊥平面BCC 1B 1,在平面BCC 1B 1内建立平面直角坐标系,如图,令点P 22cos θ,22sin θ,而B -12,-12 ,C 112,12,因此AP =1+22cos θ+122+22sin θ+122=2+22(sin θ+cos θ),PC 1=22cos θ-122+22sin θ-122=1-22(sin θ+cos θ),令22(sin θ+cos θ)=x ,AP +PC 1=2+x +1-x =2+x +1-x 2≤22+x 2+1-x 2 =6,当且仅当x =-12取等号,此时22(sin θ+cos θ)=-12,即sin θ+π4 =-12,因此AP +PC 1的最大值为6,D 正确.故选:ACD27(2024·广东·一模)已知偶函数f (x )的定义域为R ,f 12x +1 为奇函数,且f (x )在0,1 上单调递增,则下列结论正确的是()A.f -32<0 B.f 43>0 C.f (3)<0D.f 20243>0【答案】BD【解析】因为f x 为偶函数,所以f -x =f x ;因为f 12x +1 是R 上的奇函数,所以f 1 =0,且f x +22 的图象是由f x 2 的图象向左平移2个单位得到的,所以f x 2 的图象关于2,0 点对称,进一步得f x 的图象关于点1,0 中心对称,即f 1+x =-f 1-x .所以f x +2 =f 1+1+x =-f 1-1+x =-f -x =-f x ,所以f x +4 =-f x +2 =f x .所以函数f x 是周期函数,且周期为4;又f x 在0,1 上单调递增,所以在0,1 上,有f x <0.所以函数的草图如下:由图可知:f -32 >0,故A 错;f 43>0,故B 对;f 3 =0,故C 错;f 20243=f 674+23 =f 4×168+2+23 =f 2+23>0,故D 对.故选:BD 28(2024·广东·模拟预测)已知函数f x 的定义域为R ,f x -1 是奇函数,f x +1 为偶函数,当-1≤x ≤1时,f x =2x +1-13x +1,则()A.f x 的图象关于直线x =1对称B.f x 的图象关于点-1,0 对称C.f x +6 =f xD.f 2021 =-34【答案】ABD【解析】设g x =f x -1 ,因为g x 是奇函数,所以g -x =f -x -1 =-g x =-f x -1 ,即f -1+x +f -1-x =0,即f x 关于-1,0 对称,B 正确;设h x =f x +1 ,因为h x 为偶函数,所以h -x =h x ,即f -x +1 =f x +1 ,f 1+x =f 1-x ,所以f x 的关于直线x =1对称,A 正确;由f x 关于-1,0 对称可得f x +f -2-x =0,由f x 的关于直线x =1对称,可得f x =f 2-x ,两式联立得f 2-x +f -2-x =0,令x =x +2得:f -x +f -4-x =0,即f x +f x -4 =0,令x =x -4,得f x -4 +f x -8 =0,即f x =f x -8 ,故f x 的周期为8,故f x +8 =f x ,C 错误;因为T =8,所以f 2021 =f 252×8+5 =f 5 =f -3 ,又f -1+x +f -1-x =0,令x =-2得f -3 +f 1 =0,f 1 =22-131+1=34,所以f 2021 =f -3 =-f 1 =-34,故D 正确.故选:ABD29(2024·高二·福建三明·期中)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中正确的是()A.异面直线AE 、BF 所成角为定值B.AC ⊥BFC.△AEF 的面积与△BEF 的面积相等D.三棱锥A -BEF 的体积为定值【答案】BD【解析】则A 1,0,0 ,B 1,1,0 ,设E a ,a ,1 ,则F a +24,a +24,1,其中0≤a ≤1-24,AE =(a -1,a ,1),BF =a +24-1,a +24-1,1 ,cos <AE ,BF >=AE ∙BF|AE |∙|BF |=(2a -1)a +24-1 +1(a -1)2+a 2+1∙2a +24-1 2+1.取a =12时,cos <AE ,BF >=442-122,取a =1-24时,cos <AE ,BF >=29-22,∵442-122≠29-22,∴异面直线AE 、BF 所成角不是定值,故A 错误;由正方体的结构特征可知,DD 1⊥AC ,BD ⊥AC ,又BD ∩DD 1=D ,BD ,DD 1⊂平面BDD 1B 1∴AC ⊥平面BDD 1B 1,又BF ⊂平面BDD 1B 1,则AC ⊥BF ,故B 正确;B 到B 1D 1的距离为BB 1=1,A 到B 1D 1的距离大于上下底面中心的连线,则A 到B 1D 1的距离大于1,∴△AEF 的面积大于△BEF 的面积,故C 错误;∵AC ⊥平面BDD 1B 1,∴A 到平面BDD 1B 1的距离为22,△BEF 的面积为定值,∴三棱锥A -BEF 的体积为定值,故D 正确.故选:BD .30(2024·湖南·二模)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,F 是线段A 1B 1的中点,则()A.若点P 满足AP ⊥B 1C ,则动点P 的轨迹长度为42B.三棱锥A -PB 1D 1体积的最大值为163C.当直线AP 与AB 所成的角为45°时,点P 的轨迹长度为π+42D.当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,线段PF 长度最大值为22【答案】CD【解析】对于A ,易知B 1C ⊥平面ABC 1D 1,A ∈平面ABC 1D 1,故动点P 的轨迹为矩形ABC 1D 1,动点P 的轨迹长度为矩形ABC 1D 1的周长,即为42+4,所以A 错误;对于B ,因为V A -PD 1D 1=V P -AB 1D 1,而等边△AB 1D 1的面积为定值23,要使三棱锥P -AB 1D 1的体积最大,当且仅当点P 到平面AB 1D 1的距离最大,易知点C 是正方体到平面AB 1D 1距离最大的点,所以V A -PB 1D 1max =V C -AB 1D 1,此时三棱锥C -AB 1D 1即为棱长是22的正四面体,其高为h =22 2-262=43,所以V =1×1×22×22×3×43=8,B 错误;对于C :连接AC ,AB 1,以B 为圆心,BB 1为半径画弧B 1C,如图1所示,当点P 在线段AC ,AB 1和弧B 1C上时,直线AP 与AB 所成的角为45°,又AC =AB 2+BC 2=4+4=22,AB 1=AB 2+BB 21=4+4=22,弧B 1C 长度14×π×22=π,故点P 的轨迹长度为π+42,故C 正确;对于D ,取A 1D 1,D 1D ,DC ,CB ,BB 1,AB 的中点分别为Q ,R ,N ,M ,T ,H ,连接QR ,QF ,FT ,TM ,MN ,NR ,FH ,HN ,HM ,如图2所示,因为FT ∥D 1C ,FT ⊄平面D 1B 1C ,D 1C ⊂平面D 1B 1C ,故FT ∥平面D 1B 1C ,TM ∥B 1C ,TM ⊄平面D 1B 1C ,B 1C ⊂平面D 1B 1C ,故TM ∥平面D 1B 1C ;又FT ∩TM =T ,FT ,TM ⊂平面FTM ,故平面FTM ∥平面D 1B 1C ;又QF ∥NM ,QR ∥TM ,RN ∥FT ,故平面FTMNRQ 与平面FTM 是同一个平面.则点P 的轨迹为线段MN :在三角形FNM 中,FN =FH 2+HN 2=4+4=22;FM =FH 2+HM 2=4+2=6;NM =2;则FM 2+MN 2=8=FN 2,故三角形FNM 是以∠FMN 为直角的直角三角形;故FP max =FN =22,故FP 长度的最大值为22,故D 正确.故选:CD .31(2024·湖南·二模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且c =b 2cos A +1 ,则下列结论正确的有()A.A =2BB.若a =3b ,则△ABC 为直角三角形C.若△ABC 为锐角三角形,1tan B -1tan A 的最小值为1D.若△ABC 为锐角三角形,则c a 的取值范围为22,233【答案】ABD【解析】对于A ,△ABC 中,由正弦定理得sin C =2sin B cos A +sin B ,由sin C =sin A +B ,得sin A cos B -cos A sin B =sin B ,即sin A -B =sin B ,由0<A ,B <π,则sin B >0,故0<A -B <π,所以A -B =B 或A -B +B =π,即A =2B 或A =π(舍去),即A =2B ,A 正确;对于B ,若a =3b ,结合A =2B 和正弦定理知a sin A=3b sin2B =b sin B ,cos B =32,又0<A ,B <π,所以可得A =2B =π3,C =π2,B 正确;πππππ3<1.故1tan B -1tan A=1tan B -1-tan 2B 2tan B =1+tan 2B 2tan B >1,C 错误;对于D ,在锐角△ABC 中,由π6<B <π4,22<cos B <32,c a =sin C sin A=sin3B sin2B =sin2B cos B +cos2B sin B sin2B =2cos B -12cos B ,令cos B =t ∈22,32 ,则c a =f t=2t -12t,易知函数f t =2t -12t 单调递增,所以可得c a ∈22,233,D 正确;故选:ABD .32(2024·高二·广东江门·期末)已知抛物线C :y 2=4x 的焦点为F ,直线l :x =-1,过F 的直线交抛物线C 于A x 1,y 1 ,B x 2,y 2 两点,交直线l 于点M ,MA =λ1AF ,MB =λ2BF,则()A.△ABO 的面积的最大值为2 B.y 1y 2=-4C.x 1x 2=1 D.λ1+λ2=0【答案】BCD【解析】设直线AB :x =my +1,由x =my +1y 2=4x得:y 2-4my -4=0.选项A :S △ABO =12OF ·y 1-y 2 =12y 21+y 22 -4y 1y 2=1216m 2+16≥12×4=2,应是最小值为2,故A 错误;选项B :y 1y 2=-4,故B 正确;选项C :x 1=y 214,x 2=y 224,则x 1x 2=(y 1y 2)216=1,故C 正确;选项D :由MA =λ1AF ,MB =λ2BF ,M -1,-2m,得:y 1+2m =-λ1y 1,y 2+2m=-λ2y 2,∴λ1+λ2=-2-2m 1y 1+1y 2=-2-2m ⋅y 1+y 2y 1y 2=-2-2m ⋅4m-4=0,故D 正确.故选:BCD33(2024·高三·黑龙江哈尔滨·阶段练习)已知函数f x =sin ωx +π4ω>0 在区间0,π 上有且仅有3条对称轴,给出下列四个结论,正确的是()A.f x 在区间0,π 上有且仅有3个不同的零点B.f x 的最小正周期可能是2π3C.ω的取值范围是94,134D.f x 在区间0,π15 上单调递增【答案】BD【解析】由函数f x =sin ωx +π4ω>0 ,令ωx +π4=π2+k π,k ∈Z ,则x =(1+4k )π4ω,k ∈Z ,函数f (x )在区间0,π 上有且仅有3条对称轴,即0≤(1+4k )π4ω≤π有3个整数k 符合,由0≤(1+4k)π4ω≤π,得0≤1+4k4ω≤1⇒0≤1+4k≤4ω,则k=0,1,2,即1+4×2≤4ω<1+4×3,∴9 4≤ω<134,故C错误;对于A,∵x∈(0,π),∴ωx+π4∈π4,ωπ+π4,∴ωπ+π4∈5π2,7π2 ,当ωx+π4∈5π2,3π时,f(x)在区间(0,π)上有且仅有2个不同的零点;当ωx+π4∈3π,7π2时,f(x)在区间(0,π)上有且仅有3个不同的零点,故A错误;对于B,周期T=2πω,由94≤ω<134,则413<1ω≤49,∴8π13<T≤8π9,又2π3∈8π13,8π9,所以f(x)的最小正周期可能是2π3,故B正确;对于D,∵x∈0,π15,∴ωx+π4∈π4,ωπ15+π4,又94≤ω<134,∴ωπ15+π4∈2π5,7π15,又7π15<π2,所以f(x)在区间0,π15上一定单调递增,故D正确.故选:BD.34(2024·高一·辽宁丹东·期中)已知f x 是定义在R上的连续函数,且满足f x+y=f x +f y -2xy,当x>0时,f x >0,设g x =f x +x2()A.若f1 ⋅f-1=-3,则f1 =1 B.g x 是偶函数C.g x 在R上是增函数D.x-1g x >0的解集是-∞,0∪1,+∞【答案】ACD【解析】对选项A:取x=y=0得到f0 =f0 +f0 ,即f0 =0,取x=1,y=-1得到f0 =f1 +f-1+2=0,又f1 ⋅f-1=-3,f1 >0,解得f1 =1,正确;对选项B:取y=-x得到f0 =f x +f-x+2x2,即f x +f-x=-2x2,g x +g-x=f x +x2+f-x+x2=0,函数定义域为R,函数为奇函数,错误;对选项C:设x1<x2,则g x2-g x1=f x2+x22-f x1-x21=f x2-x1+x1+x22-f x1-x21=f x2-x1-2x2-x1x1+x22-x21=f x2-x1-2x2x1+x21+x22=f x2-x1+x1-x22,x>0时,f x >0,故f x2-x1>0,x1-x22>0,故g x2-g x1>0,即g x2>g x1,函数单调递增,正确;对选项D:g0 =f0 +0=0,x-1g x >0,当x>1时,g x >0,则x>0,故x>1;当x=1时,不成立;当x<1时,g x <0,则x<0,故x<0;综上所述:x∈-∞,0∪1,+∞,正确;35(2024·湖北·一模)某数学兴趣小组的同学经研究发现,反比例函数y =1x的图象是双曲线,设其焦点为M ,N ,若P 为其图象上任意一点,则()A.y =-x 是它的一条对称轴B.它的离心率为2C.点2,2 是它的一个焦点D.PM -PN =22【答案】ABD【解析】反比例函数的图象为等轴双曲线,故离心率为2,容易知道y =x 是实轴,y =-x 是虚轴,坐标原点是对称中心,联立实轴方程y =x 与反比例函数表达式y =1x得实轴顶点1,1 ,-1,-1 ,所以a =2,c =2,其中一个焦点坐标应为2,2 而不是2,2 ,由双曲线定义可知PM -PN =2a =22.故选:ABD .36(2024·湖北·一模)已知函数f x =ax 3+bx 2+cx +d 存在两个极值点x 1,x 2x 1<x 2 ,且f x 1 =-x 1,f x 2 =x 2.设f x 的零点个数为m ,方程3a f x 2+2bf x +c =0的实根个数为n ,则()A.当a >0时,n =3B.当a <0时,m +2=nC.mn 一定能被3整除D.m +n 的取值集合为4,5,6,7【答案】AB【解析】由题意可知f x =3ax 2+2bx +c 为二次函数,且x 1,x 2x 1<x 2 为f x 的零点,由f f x =3a f x 2+2bf x +c =0得f x =x 1或f x =x 2,当a >0时,令f x >0,解得x <x 1或x >x 2;令f x <0,解得x 1<x <x 2;可知:f x 在-∞,x 1 ,x 2,+∞ 内单调递增,在x 1,x 2 内单调递减,则x 1为极大值点,x 2为极小值点,若x 1≥0,则-x 1≤0<x 2,因为f x 1 >f x 2 ,即-x 1>x 2,两者相矛盾,故x 1<0,则f x =x 2有2个根,f x =x 1有1个根,可知n =3,若f x 2 =x 2>0,可知m =1,mn =3,m +n =4;若f x 2 =x 2=0,可知m =2,mn =6,m +n =5;若f x 2 =x 2<0,可知m =3,mn =9,m +n =6;故A 正确;当a <0时,令f x >0,解得x 1<x <x 2;令f x <0,解得x <x 1或x >x 2;可知:f x 在x 1,x 2 内单调递增,在内-∞,x 1 ,x 2,+∞ 单调递减,则x 2为极大值点,x 1为极小值点,若x 2≤0,则-x 1>0≥x 2,因为f x 1 <f x 2 ,即-x 1<x 2,两者相矛盾,故x 2>0,若f x =-x >0,即x <0,可知m =1,n =3,mn =3,m +n =4;若f x 1 =-x 1=0,即x 1=0,可知m =2,n =4,mn =8,m +n =6;若f x 1 =-x 1<0,即x 1>0,可知m =3,n =5,mn =15,m +n =8;此时m +2=n ,故B 正确;综上所述:mn 的取值集合为3,6,8,9,15 ,m +n 的取值集合为4,5,6,8 ,故CD 错误;故选:AB .37(2024·湖北·二模)如图,棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,F 为正方形C 1CDD 1内一个动点(包括边界),且B 1F ⎳平面A 1BE ,则下列说法正确的有()A.动点F 轨迹的长度为2B.三棱锥B 1-D 1EF 体积的最小值为13C.B 1F 与A 1B 不可能垂直D.当三棱锥B 1-D 1DF 的体积最大时,其外接球的表面积为252π【答案】ABD【解析】对A ,如图,令CC 1中点为M ,CD 1中点为N ,连接MN ,又正方体ABCD -A 1B 1C 1D 1中,E 为棱DD 1的中点,可得B 1M ⎳A 1E ,MN ⎳CD 1⎳BA 1,∴B 1M ⎳平面BA 1E ,MN ⎳平面BA 1E ,又B 1M ∩MN =M ,且B 1M ,MN ⊂平面B 1MN ,∴平面B 1MN ⎳平面BA 1E ,又B 1F ⎳平面A 1BE ,且B 1∈平面B 1MN ,∴B 1F ⊂平面B 1MN ,又F 为正方形C 1CDD 1内一个动点(包括边界),∴F ∈平面B 1MN ∩平面C 1CDD 1,而MN =平面B 1MN ∩平面C 1CDD 1,∴F ∈MN ,即F 的轨迹为线段MN .由棱长为2的正方体得线段MN 的长度为2,故选项A 正确;对B ,由正方体侧棱B 1C 1⊥底面C 1CDD 1,所以三棱锥B 1-D 1EF 体积为V =13B 1C 1⋅S △D 1FE =23S △D 1FE ,所以△D 1FE 面积S △D 1FE 最小时,体积最小,如图,∵F ∈MN ,易得F 在N 处时S △D 1FE 最小,此时S △D 1FE =12ND 1⋅D 1E =12,所以体积最小值为13,故选项B 正确;对C ,当F 为线段MN 中点时,由B 1M =B 1N 可得B 1F ⊥MN ,又CC 1中点为M ,CD 1中点为N ,∴MN ⎳D 1C ,而A 1B ⎳D 1C ,∴B 1F ⊥A 1B ,故选项C 不正确;对D ,如图,当F 在M 处时,三棱锥B 1-D 1DF 的体积最大时,由已知得此时FD =FD 1=FB 1=5,所以F 在底面B 1DD 1的射影为底面外心,DD 1=2,B 1D 1=22,DB 1=23,所以底面B 1DD 1为直角三角形,所以F 在底面B 1DD 1的射影为B 1D 中点,设为O 1,如图,设外接球半径为R ,由R 2=OO 12+O 1B 12=OO 12+3,R +OO 1=FO 1=2,可得外接球半径R =524,外接球的表面积为4πR 2=252π,故选项D 正确.故选:ABD .38(2024·湖北·二模)我们知道,函数y =f (x )的图象关于坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数.有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数.已知函数f (x )=42x +2,则下列结论正确的有()A.函数f (x )的值域为(0,2]B.函数f (x )的图象关于点(1,1)成中心对称图形C.函数f (x )的导函数f (x )的图象关于直线x =1对称D.若函数g (x )满足y =g (x +1)-1为奇函数,且其图象与函数f (x )的图象有2024个交点,记为A i (x i ,y i )(i =1,2,⋯,2024),则2024i =1(x i +y i ) =4048【答案】BCD【解析】对于A ,显然f (x )的定义域为R ,2x >0,则0<42x +2<2,即函数f (x )的值域为(0,2),A 错误;对于B ,令h (x )=f (x +1)-1=42x +1+2-1=22x +1-1=1-2x 1+2x ,h (-x )=1-2-x 1+2-x =2x -12x+1=-h (x ),即函数y =f (x +1)-1是奇函数,因此函数f (x )的图象关于点(1,1)成中心对称图形,B 正确;对于C ,由选项B 知,f (-x +1)-1=-[f (x +1)-1],即f (1-x )+f (1+x )=2,两边求导得-f (1-x )+f (1+x )=0,即f (1-x )=f (1+x ),因此函数f (x )的导函数f (x )的图象关于直线x =1对称,C 正确;对于D ,由函数g (x )满足y =g (x +1)-1为奇函数,得函数g (x )的图象关于点(1,1)成中心对称,由选项B 知,函数g (x )的图象与函数f (x )的图象有2024个交点关于点(1,1)对称,因此2024i =1(x i +y i ) =2024i =1x i +2024i =1y i =1012×2+1012×2=4048,D 正确.故选:BCD。
新高考数学试卷题型带答案
一、选择题1. 题目:已知函数f(x) = x^2 - 4x + 3,求f(x)的图像与x轴的交点坐标。
答案:将f(x) = 0,解得x = 1 或 x = 3。
因此,f(x)的图像与x轴的交点坐标为(1, 0)和(3, 0)。
2. 题目:在等差数列{an}中,a1 = 2,d = 3,求第10项an的值。
答案:根据等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 2,d = 3,n = 10,得an = 2 + (10 - 1)×3 = 29。
3. 题目:已知三角形ABC中,AB = 5,AC = 8,BC = 10,求sinB的值。
答案:根据勾股定理,得AB^2 + BC^2 = AC^2,即5^2 + 10^2 = 8^2,所以sinB = BC/AC = 10/8 = 5/4。
4. 题目:若向量a = (1, 2),向量b = (2, -3),求向量a与向量b的点积。
答案:向量a与向量b的点积为a·b = 1×2 + 2×(-3) = 2 - 6 = -4。
5. 题目:若函数g(x) = x^3 - 3x^2 + 4x - 2,求g'(x)的值。
答案:对g(x)求导得g'(x) = 3x^2 - 6x + 4。
二、填空题6. 题目:已知函数f(x) = 2x^3 - 3x^2 + 2x - 1,求f'(x)的值。
答案:对f(x)求导得f'(x) = 6x^2 - 6x + 2。
7. 题目:在等比数列{bn}中,b1 = 3,q = 2,求第5项bn的值。
答案:根据等比数列的通项公式bn = b1·q^(n-1),代入b1 = 3,q = 2,n = 5,得bn = 3×2^(5-1) = 48。
8. 题目:若函数h(x) = e^x - x,求h''(x)的值。
高中数学新题型选编(共70个题)
高中数学新题型选编(共70个题)(一)1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N −∗=+−+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n na b a b a b n N ∗++≥>>∈;(Ⅲ)定理:若123,,k a a a a L 均为正数,则有123123()n n nn nk k a a a a a a a a k k++++++++≥L L 成立(其中2,,)k k N k ∗≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +L 均为正数时,12311231(11n n n n nk k a a a a a a a a k k ++++++++++≥++L L .解:(Ⅰ)令111'()2()0n n n f x nx n a x −−−=−+=得11(2)()2n n x a x x a x x a −−=+∴=+∴=…2分当0x a ≤≤时,2x x a<+'()0f x ∴≤故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥=即1()2()()0n n n n f b a b a b −=+−+≥故()(0,0,)22n n na b a b a b n N ∗++≥>>∈.………………………………………5分(Ⅲ)证明:要证:12311231()11n n n n nk k a a a a a a a a k k ++++++++++≥++L L 只要证:112311231(1)()()n n n nn nk k k a a a a a a a a −+++++++≥++++L L 设()g x =1123123(1)()()n n n nn n k a a a x a a a x −+++++−++++L L …………………7分则11112'()(1)()n n n k g x k nx n a a a x −−−=+⋅−++++L 令'()0g x =得12ka a a x k+++=L …………………………………………………….8分当0x ≤≤12ka a a k+++L 时,1112'()[(]()n n k g x n kx x n a a a x −−=+−++++L ≤111212()()0n n k k n a a a x n a a a x −−++++−++++=L L 故12()[0,k a a a g x k +++L 在上递减,类似地可证12()(,)ka a a g x k++++∞L 在递增所以12()k a a a x g x k +++=L 当时,的最小值为12()ka a a g k+++L ………………10分而11212121212()(1)[(](n n n n n nk k k k ka a a a a a a a a g k a a a a a a k k k−+++++++++=+++++−++++L L L L L =1121212(1)[()()(1)()]n n n n n n n k k k nk k a a a a a a k a a a k−++++++++−++++L K L=11212(1)()()]n n n n n n k k nk k a a a k a a a k −++++−+++L L =1112121(1)()()]n n n n n n k k n k k a a a a a a k−−−++++−+++L L 由定理知:11212()()0n n n nn k k k a a a a a a −+++−+++≥L L 故12()0k a a a g k+++≥L 1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥L Q 故112311231(1)()()n n n nn nk k k a a a a a a a a −+++++++≥++++L L 即:12311231()11n n n n n k k a a a a a a a a k k ++++++++++≥++L L .…………………………..14分2、用类比推理的方法填表等差数列{}n a 中等比数列{}n b 中32a a d +=q b b •=233425a a a a +=+5243b b b b •=•1234535a a a a a a ++++=答案:5354321b b b b b b =••••3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f kk 则K ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
高中数学【新高考新题型】专题练习
高中数学【新高考新题型】专题练习新题型一 多选题多选题常对多个对象(知识点)进行考查,也可对同一对象从不同角度进行考查,解法灵活,如直推法、验证法、反例法、数形结合法等均可使用,但必须对每个选项作出正确判断,才能得出正确答案.【例1】 (1)有一组样本数据x 1,x 2,…,x n ,由这组数据得到新样本数据y 1,y 2,…,y n ,其中y i =x i +c (i =1,2,…,n ),c 为非零常数,则( ) A.两组样本数据的样本平均数相同 B.两组样本数据的样本中位数相同 C.两组样本数据的样本标准差相同 D.两组样本数据的样本极差相同(2)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点,则满足MN ⊥OP 的是( )(3)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则( ) A.|OP 1→|=|OP 2→| B.|AP 1→|=|AP 2→|C.OA →·OP 3→=OP 1→·OP 2→D.OA →·OP 1→=OP 2→·OP 3→答案 (1)CD (2)BC (3)AC解析 (1)∵y -=1n (y 1+y 2+…+y n ) =1n (x 1+x 2+…+x n )+c ,∴y -=x -+c 且c ≠0,因此A 错误;显然第一组数据与第二组数据的中位数相差c ,B 错误;因为D (y )=12·D (x )=D (x ),故两组样本数据的方差相同,C 项正确;由极差的定义知:若第一组的极差为x max -x min ,则第二组的极差为y max -y min =x max -x min ,故两组样本数据的极差相同,D 项正确. (2)设正方体的棱长为2.对于A ,如图(1)所示,连接AC ,则MN ∥AC ,故∠POC (或其补角)为异面直线OP ,MN 所成的角.在直角三角形OPC 中,∠POC 为锐角,故MN ⊥OP 不成立,故A 错误;图(1)对于B ,如图(2)所示,取MT 的中点为Q ,连接PQ ,OQ ,则OQ ⊥MT ,PQ ⊥MN .由正方体SBCN-MADT 可得SM ⊥平面MADT ,而OQ ⊂平面MADT ,故SM ⊥OQ ,又SM ∩MT =M ,SM ,MT ⊂平面SNTM ,故OQ ⊥平面SNTM ,又MN ⊂平面SNTM ,所以OQ ⊥MN ,又OQ ∩PQ =Q ,OQ ,PQ ⊂平面OPQ ,所以MN ⊥平面OPQ ,又OP ⊂平面OPQ ,故MN ⊥OP ,故B 正确;图(2) 图(3)对于C ,如图(3),连接BD ,则BD ∥MN ,由B 的判断可得OP ⊥BD ,故OP ⊥MN ,故C 正确;对于D ,如图(4),取AD 的中点Q ,AB 的中点K ,连接AC ,PQ ,OQ ,PK ,OK ,则AC ∥MN .因为DP =PC ,故PQ ∥AC ,故PQ ∥MN ,所以∠QPO (或其补角)为异面直线PO ,MN 所成的角,图(4)因为正方体的棱长为2,故PQ =12AC =2,OQ =AO 2+AQ 2=1+2=3,PO =PK 2+OK 2=4+1=5,QO 2<PQ 2+OP 2,故∠QPO 不是直角,故PO ,MN 不垂直,故D 错误.故选BC. (3)由题意可知,|OP 1→|=cos 2α+sin 2α=1,|OP 2→|=cos 2β+(-sin β)2=1,所以|OP 1→|=|OP 2→|,故A 正确;取α=π4,则P 1⎝ ⎛⎭⎪⎫22,22,取β=5π4,则P 2⎝ ⎛⎭⎪⎫-22,22,则|AP 1→|≠|AP 2→|,故B 错误;因为OA →·OP 3→=cos(α+β),OP 1→·OP 2→=cos αcos β-sin αsin β=cos(α+β),所以OA →·OP 3→=OP 1→·OP 2→,故C 正确;因为OA →·OP 1→=cos α,OP 2→·OP 3→=cos βcos(α+β)-sin βsin(α+β)=cos(α+2β),取α=π4,β=π4,则OA →·OP 1→=22,OP 2→·OP 3→=cos 3π4=-22,所以OA →·OP 1→≠OP 2→·OP 3→,故D 错误.故选AC. 新题型二 多空题与开放型填空题 1.多空题分为三类:(1)并列式(两空相连).根据题设条件,利用同一解题思路和过程,可以一次性得出两个空的答案,两空并答,题目比较简单.会便全会,这类题目在高考中一般涉及较少,常考查一些基本量的求解;(2)分列式(一空一答).两空的设问相当于一个题目背景下的两道小填空题,两问之间没什么具体联系,各自成题,是对于多个知识点或某知识点的多个角度的考查;两问之间互不干扰,不会其中一问,照样可以答出另一问;(3)递进式(逐空解答).两空之间有着一定联系,一般是第二空需要借助第一空的结果再进行作答,第一空是解题的关键,也是解答第二空的基础. 2.开放型填空题的特点是正确的答案不唯一,一般可分为: (1)探索型(一是条件探索型,二是结论探索型); (2)信息迁移型; (3)组合型等类型.【例2】 (1)已知a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =________;a ·b =________.(2)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm ,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm ,10 dm ×6 dm ,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推,则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑nk =1S k =________ dm 2.答案 (1)0 3 (2)5 240⎝⎛⎭⎪⎫3-n +32n解析 (1)计算可得(a +b )·c =(4,0)·(0,1)=0,a ·b =4-1=3.(2)依题意得,S 1=120×2=240(dm 2); S 2=60×3=180(dm 2);当n =3时,共可以得到5 dm ×6 dm ,52 dm ×12 dm ,10 dm ×3 dm ,20 dm ×32 dm 四种规格的图形,且5×6=30,52×12=30,10×3=30,20×32=30, 所以S 3=30×4=120(dm 2);当n =4时,共可以得到5 dm ×3 dm ,52 dm ×6 dm ,54 dm ×12 dm ,10 dm ×32 dm ,20 dm ×34 dm 五种规格的图形,所以对折4次共可以得到不同规格图形的种数为5,且5×3=15,52×6=15,54×12=15,10×32=15,20×34=15,所以S 4=15×5=75(dm 2); ……所以可归纳S k =2402k ·(k +1)=240(k +1)2k(dm 2). 所以∑nk =1S k =240⎝ ⎛⎭⎪⎪⎫1+322+423+…+n 2n -1+n +12n ,① 所以12×∑nk =1S k=240×⎝ ⎛⎭⎪⎪⎫222+323+424+…+n 2n +n +12n +1,② 由①-②得,12·∑nk =1S k=240⎝ ⎛⎭⎪⎪⎫1+122+123+124+…+12n -n +12n +1 =240⎝ ⎛⎭⎪⎫1+122-12n ×121-12-n +12n +1=240⎝ ⎛⎭⎪⎪⎫32-n +32n +1,所以∑nk =1S k =240⎝⎛⎭⎪⎫3-n +32n dm 2.【例3】 (1)若P (cos θ,sin θ)与Q ⎝ ⎛cos ⎝ ⎛⎭⎪⎫θ+π6,⎭⎪⎫sin ⎝ ⎛⎭⎪⎫θ+π6关于y 轴对称,写出一个符合题意的θ值________.(2)写出一个同时具有下列性质①②③的函数f (x ):________. ①f (x 1x 2)=f (x 1)f (x 2);②当x ∈(0,+∞)时,f ′(x )>0;③f ′(x )是奇函数. 答案 (1)5π12⎝ ⎛⎭⎪⎫θ=5π12+k π,k ∈Z ,答案不唯一(2)f (x )=x 4(答案不唯一,f (x )=x 2n (n ∈N *)均满足)解析 (1)由题意知,点P ,Q 都在单位圆上,且θ+θ+π6=π+2k π,k ∈Z ,所以θ=5π12+k π,k ∈Z . (2)取f (x )=x 4,则f (x 1x 2)=(x 1x 2)4=x 41x 42=f (x 1)f (x 2),满足①;f ′(x )=4x 3,x >0时有f ′(x )>0,满足②; f ′(x )=4x 3的定义域为R ,又f ′(-x )=-4x 3=-f ′(x ),故f ′(x )是奇函数,满足③. 新题型三 结构不良型解答题(1)结构不良型解答题多出现在三角函数和解三角形、数列两部分内容,但有时也出现在其他章节,有三选一和三选二两种类型.(2)解答此类题型,要注意仔细审视条件,切忌浅尝辄止,反复变更条件解答. 【例4】在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A = 3sin B ,C =π6,________?(注:如果选择多个条件分别解答,那么按第一个解答计分.)解 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c ,B =C =π6,A =2π3. 由②c sin A =3,解得c =b =23,a =6.因此,选条件②时问题中的三角形存在,此时c =2 3. 方案三:选条件③.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由③c =3b ,与b =c 矛盾.因此,选条件③时问题中的三角形不存在. 【例5】已知在△ABC 中,c =2b cos B ,C =2π3. (1)求B 的大小;(2)在三个条件中选择一个作为已知,使△ABC 存在且唯一确定,并求BC 边上的中线的长度.①c=2b;②周长为4+23;③面积为S△ABC =334.(注:如果选择多个条件分别解答,那么按第一个解答计分.)解(1)由正弦定理bsin B=csin C,得sin C=c sin Bb,又c=2b cos B,所以sin C=2sin B cos B=sin 2B,又A,B,C为△ABC的内角,C=2π3,故C=2B(舍)或C+2B=π,即B=π6.(2)由(1)知,c=3b,故不能选①.选②,由(1)知A=π-2π3-π6=π6,设BC=AC=2x,则AB=23x,故周长为(4+23)x=4+23,解得x=1.从而BC=AC=2,AB=2 3.设BC中点为D,则在△ABD中,由余弦定理,得cos B=AB2+BD2-AD22·AB·BD=12+1-AD243=32,解得AD=7.故BC边上的中线长为7. 选③,设BC=AC=2x,则AB=23x,故S△ABC =12·2x·2x·sin2π3=3x2=334,解得x=32,从而BC=AC=3,AB=3.设BC中点为D,则在△ABD中,由余弦定理,得cos B=AB2+BD2-AD22·AB·BD=9+⎝⎛⎭⎪⎫322-AD233=32,解得AD=212.故BC边上的中线长为212.。
新高考高三数学专题试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = ax^2 + bx + c的图象开口向上,且对称轴为x = -1,则a的取值范围是()A. a > 0B. a < 0C. a ≥ 0D. a ≤ 02. 已知等差数列{an}的前n项和为Sn,若S5 = 50,S9 = 90,则第10项a10的值为()A. 10B. 15C. 20D. 253. 若复数z满足|z - 3| = |z + 1|,则复数z对应的点在()A. x轴上B. y轴上C. 第一象限D. 第二象限4. 函数f(x) = log2(x - 1) + 3x - 2的值域为()A. (2, +∞)B. (-∞, 2]C. (-∞, +∞)D. [2, +∞)5. 若直线y = kx + b与圆(x - 1)^2 + (y - 2)^2 = 1相切,则k和b的关系是()A. k^2 + b^2 = 1B. k^2 + b^2 = 2C. k^2 + b^2 = 3D. k^2 + b^2 = 46. 若函数g(x) = |x - 2| + |x + 3|,则g(x)的最小值为()A. 1B. 2C. 3D. 47. 已知函数f(x) = x^3 - 3x^2 + 4x - 6在区间[1, 2]上单调递增,则f(x)在区间[0, 1]上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增8. 若等比数列{an}的首项a1 = 1,公比q = 2,则数列的前n项和Sn = ()A. 2n - 1B. 2^n - 1C. 2n - 2D. 2^n - 29. 若函数h(x) = x^2 - 4x + 4在区间[0, 2]上的图像关于x = 1对称,则h(x)在区间[0, 2]上的最大值为()A. 0B. 2C. 4D. 610. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在()A. x轴上B. y轴上C. 第一象限D. 第二象限二、填空题(本大题共5小题,每小题5分,共25分)11. 若函数f(x) = ax^2 + bx + c的图象开口向下,且顶点坐标为(1, -2),则a = ,b = ,c = 。
江苏省四校联合2024届高三新题型适应性考试数学试题+答案
江苏省四校联合2024届高三新题型适应性考试数 学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.使用斜二测画法作一个五边形的直观图,则直观图的面积是原来五边形面积的A .12倍 B C .14倍 D 倍 2.已知a ,b 是两个不共线的单位向量,向量 (,)c a b λµλµ=+∈R,则“0λ>且0µ>”是“()0c a b ⋅+>”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知等差数列{}n a 的前n 项和为n S ,41S =,84S =,则17181920a a a a +++=A .7B .8C .9D .104.设i a = A .1−B .1C .0D .25.甲、乙、丙、丁四人参加书法比赛,四人对于成绩排名的说法如下.甲说:“乙在丙之前”,乙说:“我在第三名”,丙说:“丁不在第二名,也不在第四名”,丁说:“乙在第四名”.若四人中只有一个人的说法是错误的,则甲的成绩排名为 A .第一名B .第二名C .第三名D .第四名6.已知P 为抛物线24x y =上一点,过P 作圆22(3)1x y +−=的两条切线,切点分别为A ,B ,则cos APB ∠的最小值为 A .12B .23C .34D .787.若全集为U ,定义集合A 与B 的运算:{|}A B x x A B x A B ⊗=∈∉ 且,则()A B B ⊗⊗= A .A B .BC .U A BD .U B A8.设14a =,112ln(sin cos )88b +,55ln 44c =,则A .a b c <<B .a c b <<C .c b a <<D .b a c <<二、选择题:本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学新题型练习题(附参考答案)
1. 已知函数f (x )2x sin x cos x +x ∈R (Ⅰ)设角α的顶点在坐标原点,始边在x 轴的非负半轴上,终边过点P (122,
),求f (α)的值。
(Ⅱ)试讨论函数f (x )的基本性质(直接写出过程)
2. 曲线C 是平面内与两个定点1F (-1,0)和2F (1,0)的距离的积等于常数2a (a>1)的点的轨迹。
给出下列三个结论:
① 曲线C 过坐标原点;
② 曲线C 关于坐标原点对称;
③ 若点P 在曲线C 上,则△1F P 2F 的面积大于
122a 。
其中,正确的结论的序号是_______________
3. △ABC 的三个内角A,B,C 所对的边分别为a,b,c ,向量m =(-1,1),n =(cosBcosC ,
,且m ⊥n 。
① 求A 的大小
② 现给出下列四个条件:
Ⅰa=1;Ⅱb=2sinB ;Ⅲ2c-)b=0;ⅣB=45°
试从中再选择两个条件以确定△ABC ,求出你所确定的△ABC 的面积。
(注:只需选择一个方案答题,若用多种方案答题,则按第一种方案给分)
4.
4.。