准一维ACr3As3(A=RbCs)的合成、晶体结构与物理性质(英文)
新型一维Cd_配位聚合物的合成_晶体结构和光致发光性质_英文_
收稿日期:2009-11-03。
收修改稿日期:2010-01-20。
国家自然科学基金资助项目(No.20871022)。
*通讯联系人。
E -mail :wangxiuli@第一作者:刘国成,男,31岁,硕士研究生,实验师;研究方向:配位化学。
****************研究简报新型一维Cd 髤配位聚合物的合成、晶体结构和光致发光性质刘国成张金霞王秀丽*陈勇强(渤海大学化学化工学院,锦州121000)关键词:草酸;晶体结构;镉髤配合物;光致发光性质中图分类号:O614.24+2文献标识码:A文章编号:1001-4861(2010)05-0913-04Synthesis,Crystal Structure and Photoluminescence ofa New 1D Cd 髤Coordination PolymerLIU Guo -ChengZHANG Jin -XiaWANG Xiu -Li *CHEN Yong -Qiang(Faculty of Chemistry and Chemical Engineering,Bohai University,Jinzhou,Liaoning 121000)Abstract:A new 1D chain coordination polymer [Cd(dpq)(ox)0.5Cl]n (1)(dpq=dipyrido[3,2-d:2′,3′-f]quinoxaline and ox=oxalate)has been hydrothermally synthesized and structurally characterized by elemental analysis,IR and single crystal X -ray diffraction pound 1(CdClC 15H 8N 4O 2):monoclinic,space group P 21/c ,a =0.85404(5)nm,b =2.09490(13)nm,c =0.83922(5)nm,Z =4,V =1.438(15)nm 3,M r =424.11,D c =1.959g ·cm -3,F (000)=828.0,μ=1.719mm -1,S =1.028,the final R =0.0258and wR =0.0575.The crystal structure analysis indicates that the cadmium ion is coordinated by two oxygen atoms from a oxalate,two chelating nitrogen atoms from a dpq molecule and two Cl -anions.The adjacent Cd 髤ions are linked by Cl -anions and oxalate ligands in alternate sequence to form a 1D chain coordination polymer and the adjacent chains are further connected by π-πstacking interactions to form a 2D supramolecular network.Moreover,the title compound exhibits blue emission in the solid state at room DC:680748.Key words:oxalic acid;crystal structure;cadmium 髤complex;photoluminescence propertyIntroductionThe design and synthesis of extended supramole -cular architectures has been a particularly active field of chemical research in recent years due to their intriguing structural topologies and potential applica -tions in host -guest chemistry,luminescence,and magnetism [1-3].Weak intermolecular forces,such as π-πstacking interactions and hydrogen bonds,play an important role in construction of complicated supra -molecular arrays through self -assembly of molecules in the field of supramolecular chemistry [4-7].Dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq)with large conjugated sys -tems for π-πstacking interactions as a terminal ligand has been widely used in construction of various compli -cated complexes by Chen [8],Che [9]and our group [10-12].On第26卷第5期2010年5月Vol .26No .5913-916无机化学学报CHINESE JOURNAL OF INORGANIC CHEMISTRY第26卷无机化学学报the other hand,many d10metal halide complexes have attracted extensive interest in recent years for the fact that they not only exhibit appealing structures but also possess photoluminescent properties[13-15].However,to our knowledge,there is no report on cadmium髤complex with Cl-anions and oxalate ligands in alternate sequence in1D chain coordination polymer.In this work,a new1D chain coordination polymer[Cd(dpq) (ox)0.5Cl]n(ox=oxalate)has been prepared.1Experimental1.1General proceduresAll chemicals purchased were of reagent grade and used without further purification.dpq was synth-esized by the methods of the literature[16]and chara-cterized by1H NMR spectrometer analyses and FTIR spectra.1H NMR analyses were performed on a Varian Mercury Vx300spectrometer analyzer and FTIR spectra were taken on a Magna FTIR560spectrometer (500~4000cm-1)with KBr pellets.Fluorescence spectra were performed on an F-4500fluorescence/phosphores-cence spectrophotometer at room temperature and elemental analyses(C,H and N)were performed on a Perkin-Elmer240C analyzer.1.2Synthsis of[Cd(dpq)(ox)0.5Cl]nA mixture of CdCl2(0.1mmol),dpq(0.1mmol), oxalic acid(0.1mmol),NaOH(0.2mmol),H2O(8mL), stirred for20minutes,was sealed to a Teflon-lined stainless steel autoclave(25mL)and kept at170℃for 4days.After the mixture was slowly cooled to room temperature,yellow block crystals suitable for X-ray diffraction of1were obtained in25%yield(based on Cd).Anal.Calcd.for CdClC15H8N4O2(%):C,42.44;H, 1.89;N,13.20;Found(%):C,42.48;H,1.98;N,13.24. IR(KBr,cm-1):1624s,1579m,1560m,1541w,1527w, 1508w,1487m,1390s,1340w,1313m,1267w,1244 w,1211w,1120w,1082m,879w,823s,794s,738s, 704m,638m.1.3X-ray crystallographyA yellow single crystal with dimensions of0.22 mm×0.36mm×0.43mm was selected for X-ray struc-ture analysis.Data were collected on a Bruker Smart ApexⅡCCD diffractometer with Mo Kα(λ=0.071073 nm)at293K(-10≤h≤9,-23≤k≤26,-10≤l≤10) in the range of1.94°≤θ≤27.0°by using anω-2θscan mode.A total of8484reflections were collected,of which3132were independent(R int=0.0251)and2514 reflections were used in the succeeding refinement.The structures were solved by the direct method and refined by the Full-matrix least-squares on F2using the SHELXL-97software[17-18].All the non-hydrogen atoms were refined anisotropically.All H atoms were positi-oned geometrically(C-H=0.093nm)and refined as riding mode.The final R=0.0258and wR=0.0575(w= 1/[σ2(F o2)+(0.0254P)2+0.0280P],where P=(F o2+2F c2)/3. S=1.028.The highest peak and deepest hole in the final difference Fourier map are313and-301e·nm-3.The crystal data and structure refinement details for1are given in Table1.Selected bond lengths and angles are listed in Table2.CCDC:680748.Table1Crystal data and structure refinement for1Empirical formula CdClC15H8N4O2D c/(g·cm-3) 1.959Crystal size/mm0.43×0.36×0.22μ/mm-1 1.719Formula weight424.11F(000)828Crystal system Monoclinicθrange/(°) 1.94~27Space group P21/c Reflections collected8484a/nm0.85404(5)Unique reflections/R int3132/0.0251b/nm 2.0949(13)Data/restraints/parameters3132/0/208c/nm0.83922(5)Goodness-of-fit on F2 1.028β/(°)106.719(10)Final R indices[I>2σ(I)]R1=0.0258,wR2=0.0542 V/nm3 1.438(15)R indices(all data)R1=0.0367,wR2=0.0575 Z4Largest diff.peak and hole/(e·nm-3)313/-301914第5期刘国成等:新型一维Cd髤配位聚合物的合成、晶体结构和光致发光性质2Results and discussion2.1Description of the structureSingle-crystal X-ray analysis reveals that each Cd髤in1is coordinated by two nitrogen atoms from a chelating dpq ligand,two Cl-,and two oxygen atoms from an oxalate to form a octahedron coordination sphere,as shown in Fig.1.The pyrazine nitrogen atoms of dpq ligands do not coordinate to the Cd髤.In the coordination octahedron,the bond angles around Cd髤vary from70.19(7)°(O-Cd-O)to164.69(5)°(N-Cd-Cl), indicating the octahedron is slightly distorted,which may be induced by the steric effect.The angle of Cd-Cl-Cd is92.52(2)°,which is slightly smaller than that in [Ph4P][Cd(TP)0.5Cl2]·H2O(Cd-Cl-Cd is93.09(5)°)[14].The Cd-Cl[0.25554(7)nm for Cd-Cl i(i1-x,1-y,1-z)and 0.26307(7)nm for Cd-Cl]are also similar to the complex found in the related cadmium-chlorate[14].The bond distances of Cd-N[0.2351(2)nm for Cd-N(2),0.2393(2)nm for Cd-N(1)],Cd-O[0.22626(17)nm for Cd-O(2)ii(ii1-x,1-y,2-z)and0.22868(18)nm for Cd-O(1)]are similar to those found in the related complexes[8-12].In compound1,Cd髤are linked by Cl-and oxalate in alternate sequence to form a1D chain coordination polymer(Fig.2).The Cd…Cd(1-x,1-y, 1-z)distance linked by two Cl-is0.37475(3)nm, which is slightly longer than that in[Ph4P][Cd(TP)0.5Cl2]·H2O(0.372nm)[14].The Cd…Cd(1-x,1-y,2-z) distance linked by oxalate is0.58473(4)nm.The adjacent chains are further linked through intermole-cularπ-πstacking interactions between pyridyl rings [Cg1is the center of ring N(1)/C(1)/C(2)/C(3)/C(10)/ C(11)]and the central rings of dpq ligands[Cg2is the center of ring C(4)/C(5)/C(9)/C(10)/C(11)/C(12)]to formTable2Selected bond lengths(nm)and angles(°)for1Cd-N(1)0.2393(2)Cd-Cl0.26307(7)Cd-O(2)ii0.22626(17) Cd-N(2)0.2351(2)Cd-Cl i0.25554(7)Cd-O(1)0.22868(18)O(2)ii-Cd-O(1)73.62(6)O(1)-Cd-N(1)87.35(7)N(2)-Cd-Cl i101.92(5) O(2)ii-Cd-N(2)94.10(7)N(2)-Cd-N(1)70.19(7)N(1)-Cd-Cl i92.08(5) O(1)-Cd-N(2)152.53(7)O(2)ii-Cd-Cl i162.75(5)O(2)ii-Cd-Cl84.78(5) O(2)ii-Cd-N(1)99.41(7)O(1)-Cd-Cl i94.27(5)O(1)-Cd-Cl107.95(5) Cd i-Cl-Cd92.52(2)N(1)-Cd-Cl164.69(5)N(2)-Cd-Cl94.92(5) *Symmetry codes:i1-x,1-y,1-z;ii1-x,1-y,2-z.Symmetry codes:i1-x,1-y,1-z;ii1-x,1-y,2-z Fig.1Coordination environment in1with30% probability thermal ellipsoids Fig.2A view of2D supramolecular network formed by1D zigzag coordination polymers throughintermolecularπ-πstacking interactions915第26卷无机化学学报a2D supramolecular layer,as shown in Fig.2.The distance of center to center,Cg1…Cg2,is0.36834(16) nm and the perpendicular distance of Cg1…Cg2from face to face is0.3497nm.The dihedral angle is7.28°. Up to now,only one1D chain coordination polymer linked by carboxylate and Cl-in alternate sequence has been prepared by Wu[14].In that report,Cd髤was five coordinated and there were no chelating ligands coordinated to the metal cations,which is structurally different from that of1.2.2IR spectra and photoluminescence emissionThe main features in the IR spectra of the title compound mainly concern the carboxylate groups and the dpq ligands.The absorptions at1579and1390 cm-1are attributed to the asymmetric stretching vibration νasym(COO-)and the symmetricνsym(COO-),respectively[2]. The absorptions at794and738cm-1are assigned to the dpq ligands[8-12].The photoluminescence spectrum of1 in solid state at room temperature is shown in Fig.3. The free dpq ligand displays two photoluminescence emission peaks at436nm(main peak)and562nm (shoulder peak)upon excitation at360nm[11-12].Compo-und1exhibits blue photoluminescence with an emission maximum at ca.451nm upon excitation at 410nm.The red-shift main peak compared with that of dpq can be mainly assigned toπ*→πtransition of the coordinated dpq ligands.The blue-shift shoulder peak at530nm,compared with that of dpq,may be attributed to the chelating of the dpq ligand to the metal ion(LMCT)[19-20].Therefore,the title complex may be good candidate for blue photoactive material because it is stable in air at ambient temperature and insoluble in the common solvents such as water,alcohol,toluene, and acetone.References:[1]Tabellion F M,Seidel S R,Arif A M,et al.J.Am.Chem.Soc.,2001,123:11982-11990[2]Wang X L,Qin C,Wu S X,et al.Angew.Chem.Int.Ed.,2009,48:5291-5295[3]Li C H,Huang K L,Chi Y N,et al.Inorg.Chem.,2009,48(5):2010-2017[4]Xu X X,Lu Y,Wang E B,et al.Cryst.Growth Des.,2006,9:2029-2035[5]Qi Y J,Wang Y H,Hu C W,et al.Inorg.Chem.,2003,42:8519-8523[6]Dang D B,Sun J D,Bai Y,et al.J.Synth.Cryst.,2009,38:608-624[7]HUANG Yan-Ju(黄艳菊),CUI Yun-Cheng(崔运成),DU Gang(杜刚).Chinese J.Inorg.Chem.(Wuji Huaxue Xuebao), 2009,25(10):1882-1884[8]Han Z B,Cheng X N,Chen X M.Cryst.Growth Des.,2005,5:695-700[9]Che G B,Liu C B,Liu B,et al.CrystEngComm.,2008,10:184-191[10]Wang X L,Bi Y F,Liu G C,et al.CrystEngComm.,2008,10:349-356[11]Wang X L,Bi Y F,Lin H Y,et al.Cryst.Growth Des.,2007,7:1086-1091[12]Liu G C,Chen Y Q,Wang X L,et al.J.Solid State Chem.,2009,182:566-573[13]Dai J C,Wu X T,Fu Z Y,et mun.,2002,1:12-13[14]Lian Y X,Yang G D,Dai J C,et al.J.Chem.Crystallogr.,2009,39:1074-1542[15]Shen Y C,Yin P X,Li Z J,et al.Chinese J.Struct Chem.,2007,26:1345-1348[16]Collins J G,Sleeman A D.Inorg.Chem.,1998,37:3133-3141[17]Sheldrick G M.SHELXS-97,Program for Crystal StructureSolution,University of G觟ttingen,Germany,1997.[18]Sheldrick G M.SHELXL-97,Program for Crystal StructureRefinement,University of G觟ttingen,Germany,1997.[19]Chen X M,Liu G F.Chem.Eur.J.,2002,8:4811-4817[20]Valeria A,Luigi F,Francesco F,et al.Coord.Chem.Rev.,2006,250:273-299Fig.3Solid-state emission spectrum of compound1 at room temperature916。
固体物理英语
固体物理英语固体物理基本词汇(汉英对照)一画一维晶格 One-dimensional crystal lattice一维单原子链 One-dimensional monatomic chain 一维双原子链 One-dimensional diatomic chain 一维复式格子One-dimensional compound lattice 二画二维晶格 Two-dimensional crystal lattice二度轴 Twofold axis二度对称轴 Twofold axis of symmetry几何结构因子 Geometrical structure factor三画三斜晶系 Triclinic system三方晶系 Trigonal system三斜晶系 Triclinic system刃位错 Edge dislocation小角晶界 Low angle grain boundary马德隆常数 Madelung constant四画元素晶体 Element crystal元素的电负性 Electronegativities of elements元素的电离能 Ionization energies of the elements 元素的结合能 Cohesive energies of the elements 六方密堆积 Hexagonal close-packed六方晶系 Hexagonal system反演 Inversion分子晶体 Molecular Crystal切变模量 Shear module双原子链 Diatomic linear chain介电常数 Dielectric constant化学势 Chemical potential内能 Internal energy分布函数 Distribution function夫伦克耳缺陷 Frenkel defect比热 Specific heat中子散射 Neutron scattering五画布喇菲格子 Bravais lattice布洛赫函数 Bloch function布洛赫定理 Bloch theorem布拉格反射 Bragg reflection布里渊区 Brillouin zone布里渊区边界 Brillouin zone boundary 布里渊散射 Brillouin scattering正格子 Direct lattice正交晶系 Orthorhombic crystal system正则振动 Normal vibration正则坐标 Normal coordinates立方晶系 Cubic crystal system立方密堆积 Cubic close-packed四方晶系 Tetragonal crystal system对称操作 Symmetry operation对称群 Symmetric group正交化平面波 Orthogonalized plane wave电子-晶格相互作用 Electron-lattice interaction 电子热容量 Electronic heat capacity电阻率 Electrical resistivity电导率 Conductivity电子亲合势 Electron affinity电子气的动能 Kinetic energy of electron gas 电子气的压力 Pressure of electron gas电子分布函数 Electron distribution function 电负性 Electronegativity电磁声子 Electromagnetic phonon功函数 Work function长程力 Long-range force立方晶系 Cubic system平面波方法 plane wave method平移对称性 Translation symmetry平移对称操作 Translation symmetry operator 平移不变性 Translation invariance石墨结构 Graphite structure闪锌矿结构 Blende structure六画负电性 Electronegativity共价结合 Covalent binding共价键 Covalent bond共价晶体 Covalent crystals共价键的饱和 Saturation of covalent bonds 光学模 Optical modes光学支 Optical branch光散射 Light scattering红外吸收 Infrared absorption压缩系数 Compressibility扩散系数 Diffusion coefficient扩散的激活能 Activation energy of diffusion 共价晶体 Covalent Crystal价带 Valence band导带 Conduction band自扩散 Self-diffusion有效质量 Effective mass有效电荷 Effective charges弛豫时间 Relaxation time弛豫时间近似 Relaxation-time approximation扩展能区图式 Extended zone scheme自由电子模型 Free electron model自由能 Free energy杂化轨道 Hybrid orbit七画纯金属 Ideal metal体心立方 Body-centered cubic体心四方布喇菲格子 Body-centered tetragonal Bravais lattices 卤化碱晶体 Alkali-halide crystal劳厄衍射 Laue diffraction间隙原子 Interstitial atom间隙式扩散 Interstitial diffusion肖特基缺陷 Schottky defect位错 Dislocation滑移 Slip晶界 Grain boundaries伯格斯矢量 Burgers vector杜隆-珀替定律 Dulong-Petit’s law粉末衍射 Powder diffraction里查孙-杜师曼方程 Richardson-Dushman equation 克利斯托夫方程 Christofell equation克利斯托夫模量Christofell module位移极化 Displacement polarization声子 Phonon声学支 Acoustic branch应力 Stress 应变 Strain切应力 Shear stress切应变 Shear strain八画周期性重复单元 Periodic repeated unit底心正交格子 Base-centered orthorhombic lattice 底心单斜格工 Base-centered monoclinic lattices 单斜晶系 Monoclinic crystal system金刚石结构 Diamond structure金属的结合能 Cohesive energy of metals金属晶体 Metallic Crystal转动轴 Rotation axes转动-反演轴 Rotation-inversion axes转动晶体法 Rotating crystal method空间群 Space group空位 Vacancy范德瓦耳斯相互作用 Van der Waals interaction 金属性结合 Metallic binding单斜晶系 Monoclinic system单电子近似 Single-erection approximation极化声子 Polarization phonon拉曼散射 Raman scattering态密度 Density of states铁电软模 Ferroelectrics soft mode空穴 Hole万尼尔函数 Wannier function平移矢量 Translation vector非谐效应 Anharmonic effect周期性边界条件 Periodic boundary condition九画玻尔兹曼方程 Boltzman equation点群 Point groups迪. 哈斯-范. 阿耳芬效应 De Hass-Van Alphen effect胡克定律Hooke’s law氢键 Hydrogen bond亲合势 Affinity重迭排斥能 Overlap repulsive energy结合能 Cohesive energy玻恩-卡门边界条件 Born-Karman boundary condition费密-狄喇克分布函数 Fermi-Dirac distribution function费密电子气的简并性 Degeneracy of free electron Fermi gas 费密 Fermi费密能 Fermi energy费密能级 Fermi level费密球 Fermi sphere费密面 Fermi surface费密温度 Fermi temperature费密速度 Fermi velocity费密半径 Fermi radius恢复力常数 Constant of restorable force绝热近似 Adiabatic approximation十画原胞 Primitive cell原胞基矢 Primitive vectors倒格子 Reciprocal lattice倒格子原胞 Primitive cell of the reciprocal lattice 倒格子空间 Reciprocal space倒格点 Reciprocal lattice point倒格子基矢Primitive translation vectors of the reciprocal lattice倒格矢 Reciprocal lattice vector倒逆散射 Umklapp scattering粉末法 Powder method原子散射因子 Atomic scattering factor配位数 Coordination number原子和离子半径 Atomic and ionic radii原子轨道线性组合 Linear combination of atomic orbits离子晶体的结合能 Cohesive energy of inert crystals离解能 Dissociation energy离子键 Ionic bond离子晶体 Ionic Crystal离子性导电 Ionic conduction洛伦兹比 Lorenz ratio魏德曼-佛兰兹比 Weidemann-Franz ratio 缺陷的迁移 Migration of defects缺陷的浓度 Concentrations of lattice defects 爱因斯坦 Einstein爱因斯坦频率 Einstein frequency爱因斯坦温度 Einstein temperature格波 Lattice wave格林爱森常数 Gruneisen constant索末菲理论 Sommerfeld theory热电子发射 Thermionic emission热容量 Heat capacity热导率 Thermal conductivity热膨胀 Thermal expansion能带 Energy band能隙 Energy gap能带的简约能区图式 Reduced zone scheme of energy band 能带的周期能区图式 Repeated zone scheme of energy band 能带的扩展能区图式 Extended zone scheme of energy band 配分函数 Partition function准粒子 Quasi- particle准动量 Quasi- momentum准自由电子近似 Nearly free electron approximation十一画第一布里渊区 First Brillouin zone密堆积 Close-packing密勒指数 Miller indices接触电势差 Contact potential difference基元 Basis基矢 Basis vector弹性形变 Elastic deformation排斥能Repulsive energy弹性波 Elastic wave弹性应变张量 Elastic strain tensor弹性劲度常数 Elastic stiffness constant弹性顺度常数 Elastic compliance constant 弹性模量 Elastic module弹性动力学方程 Elastic-dynamics equation 弹性散射 Elastic scattering十二画等能面 Constant energy surface晶体 Crystal晶体结构 Crystal structure晶体缺陷 Crystal defect晶体衍射 Crystal diffraction晶列 Crystal array晶面 Crystal plane晶面指数 Crystal plane indices晶带 Crystal band晶向 direction晶格 lattice晶格常数 Lattice constant晶格周期势 Lattice-periodic potential 晶格周期性 Lattice-periodicity晶胞 Cell, Unit cell晶面间距 Interplanar spacing晶系 Crystal system晶体 Crystal晶体点群 Crystallographic point groups晶格振动 Latticevibration晶格散射 Lattice scattering散射 Scattering等能面 surface of constant energy十三画隋性气体晶体的结合能 Cohesive energy of inert gas crystals 滑移 Slip滑移面 Slip plane简单立方晶格 Simple cubic lattice简单晶格 Simple lattice简单单斜格子 Simple monoclinic lattice简单四方格子 Simple tetragonal lattice简单正交格子 Simple orthorhombic lattice简谐近似 Harmonic approximation简正坐标 Normal coordinates简正振动 Normal vibration简正模 Normal modes简约波矢 Reduced wave vector简约布里渊区 Reduced Brillouin zone禁带 Forbidden band紧束缚方法 Tight-binding method零点振动能 Zero-point vibration energy 雷纳德-琼斯势 Lenard-Jones potential 满带 Filled band十四画磁致电阻 Magnetoresistance模式密度 Density of modes漂移速度 Drift velocity漂移迁移率 Drift mobility十五至十七画德拜 Debye德拜近似 Debye approximation德拜截止频率 Debye cut-off frequency 德拜温度 Debye temperature霍耳效应 Hall effect螺位错 Screw dislocation赝势 Pseudopotential。
准一维超导体K2Mo3As3中超导电性的再现
Reemergence of superconductivityin pressurized quasi-one-dimensional superconductor K2Mo3As3Cheng Huang1,2*, Jing Guo1,4*, Kang Zhao1,2*, Fan Cui1,2, Shengshan Qin1,2, Qingge Mu1, Yazhou Zhou1, Shu Cai1,2, Chongli Yang1, Sijin Long1,2, Ke Yang3, Aiguo Li3,Qi Wu1, Zhian Ren1,2, Jiangping Hu1,2 and Liling Sun1,2,4†1Institute of Physics and Beijing National Laboratory for Condensed Matter Physics,Chinese Academy ofSciences, Beijing 100190, China2University of Chinese Academy of Sciences, Beijing 100190, China3Shanghai Synchrotron Radiation Facilities, Shanghai Institute of Applied Physics, Chinese Academy of Sciences,Shanghai 201204, China4Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China Here we report a pressure-induced reemergence of superconductivity in recently discovered superconductor K2Mo3As3, which is the first experimental case observed in quasi-one-dimensional superconductors. We find that, after full suppression of the ambient-pressure superconducting (SC-I) state at 8.7 GPa, an intermediary non-superconducting state sets in and prevails to the pressure up to 18.2 GPa, however, above this pressure a new superconducting (SC-II) state appears unexpectedly. High pressure x-ray diffraction measurements demonstrate that the pressure-induced dramatic change of the lattice parameter c contributes mainly to the emergence of the SC-II state. Combined with the theioretical calculations on band strcture, our results suggest that the reemergemce of superconductivity is associated with the change of the complicated interplay among different orbital electrons, driven by the pressure-induced unisotropic change of the lattice.The discoveries of the copper oxide and iron-based high-T c unconventional superconductors have generated considerable interest over the past 30 years due to their unusal superconducting mechanism and great potential for application. A common feature of these superconductors is that they contain d orbital electrons in their quasi-two-dimentional lattice that results in intriguing superconductivity and other exotic properties [1-6]. Recently, a family of CrAs-based superconductors with superconducting transition temperatures (T c) of 2.2 - 8.6 K were found in X2Cr3As3 (X=Na, K, Rb, Cs) compounds, which possess the features of containing d orbital electrons in a quasi-one-dimensional lattice [7-10] and many unconventional properties [11]. Soon after, a new family of quasi-one-dimmensional MoAs-based superconductors Y2Mo3As3(Y= K, Rb, Cs) with T c s from 10.4 K to 11.5 K was discovered [12-14]. The properties of the upper critical field and specific-heat coefficient of the Y2Mo3As3 superconductors are similar to those of X2Cr3As3.The crystal structure of the Y2Mo3As3 superconductors is same as that of X2Cr3As3, crystallized in a hegxagonal unit cell without an inversion symmetry [12]. The alkali metallic atoms serve as the charge reservoir and the Mo-As chains are responsible for their superconductivity [12]. Since these superconductors host non-centrosymmetric structure that usually connects to the unconventional pairings and exotic physics, they have received considerable attentions in the field of superconductivity researches [15-19].Pressure tuning is a clean way to provide significant information on evolution among superconductivity, electronic state, and crystal structure without changing the chemical composition, and eventually benefits for a deeper understanding of the underlying physics of the puzzling state emerged from ambient-pressure materials[2,20-24]. Earlier high pressure studies on X2Cr3As3(X=K and Rb) below ~4 GPa found that its superconductivity can be dramatically suppressed by external pressure [25,26], however, high pressure studies on the K2Mo3As3 superconductor is still lacking. In this study, we performed the in-situ high pressure transport measurements on the K2Mo3As3 sample up to 50 GPa to know what is new for this compound under high pressure.The polycrystalline (wire-like) samples, as shown in the inset of Fig. 1a, were synthesized using a conventional solid-state reaction method, as described in Ref. [12]. High pressure was generated by a diamond anvil cell made from a Be-Cu alloy with two opposing anvils. Diamond anvils with 300 culets (flat area of the diamond anvil) were used for the experiments. In the resistance measurements, we used platinum foil as electrodes, rhenium plate as gasket and cubic boron nitride as insulating material. The four-probe method was employed to determined pressure dependence of superconducting transition temperature. In the high-pressure ac susceptibility measurements, the sample was surrounded by a secondary coil (pickup coil), above which a field-generating primary coil was wounded [21, 27]. High-pressure angle dispersive x-ray diffraction (XRD) measurements were carried out at beamline 15U at the Shanghai Synchrotron Radiation Facility. A monochromatic x-ray beam with a wavelength of 0.6199 Å was adopted. The pressure was determined by ruby fluorescence method [28]. Given that the sample reacts with the pressure transmitting mediums under pressure, no pressure medium was adopted in all high-pressure measurements.Figure1a shows the temperature dependence of the electrical resistance of the ambient-pressure sample with an onset T c of about 10.4 K, in good agreement with the previous report [12]. Figure 1b-1d show the high pressure results. It is seen that theresistance at 1.2 GPa shows a remarkable drop starting at ~9.2 K and reaches zero at ~ 4.5 K (inset of Fig. 1b), indicating that the applied pressure decreases the onset T c from 10.4 K to 9.2 K. Upon further increasing pressure to 1.5 GPa, the sample loses its zero resistance and its T c shifts to lower temperature, reflecting that the superconductivity of this polycrystalline sample is highly sensitive to the applied pressure. Then, T c decreases continuously with a rate of d T c/d P= -1.19 K/GPa until cannot be detected at 8.7 GPa down to 1.6 K (Fig. 1b). The non-superconducting state persists to the pressure of 18.2 GPa, at which unexpectedly another remarkable resistance drop is found at ~ 4.6 K (Fig. 1c). This drop becomes more pronounced with further compression (Fig. 1d), and plunges about 92% at 47.4 GPa. Moreover, we find that the onset temperature of the new resistance drop shifts to high temperature with increasing pressure initially (the inset of Fig. 1d), reaches a maximum (~8.1 K) at ~ 30 GPa and saturats up to ~38 GPa. By applying higher pressure to 47.4 GPa, the temperature of the drop displays a slow decline (inset of Fig. 1d).To confirm whether the new resistance drop observed in K2Mo3As3 is related to a superconducting transition, we applied magnetic field to the sample subjected to 19.6 GPa and 41.8 GPa, respectively (Fig. 2a and 2b). It can be seen that this new resistance drop shifts to lower temperature with increasing magnetic field and almost suppressed under the magnetic field of 3.5 T and 4.0 T for the compressed sample at 19.6 GPa and 41.8 GPa, respectively. These results indicate that the new resistance drop should be resulted from a superconducting transition. The alternating-current (ac) susceptibility measurements were also performed for the sample subjected to 20 GPa - 44 GPa down to 1.5 K, the lowest temperature of our instrument, but the diamagnetism is not detected. By our analysis, the failure of the measurements on the diamagnetism may be related to the low volume fraction of the pressure-induced superconducting phase.We extract the field (H) dependence of T c for K2Mo3As3 at 19.6 GPa and 41.8 GPa (Fig. 2a and 2b) and plot the H(T c) in Fig. 2c. The experimental data is fitted by using Ginzburg-Landau (GL) formula, which allows us to estimate the values of the upper critical magnetic field (H C2) at zero temperature: 4.0 T at 19.6 GPa and 4.8 T at 41.8 GPa (Fig. 2c). Note that the upper critical fields obtained at 19.6 GPa and 41.8GPa are lower than their corresponding Pauli paramagnetic limits (10.3 T and 14.8T, respectively), suggesting that the nature of the pressure-induced superconducting state may differ from that of the initial superconducting state.To investigate whether the observed reemergence of superconductivity in pressurized K2Mo3As3 is associated with the pressure-induced crystal structure phase transition, we performed in-situ high pressure XRD measurements. The XRD patterns collected at different pressures are shown in Fig. 3. No structure phase transition is observed under pressure up to 51.6 GPa. And all peaks shift to higher angle due to the shrinkage of the lattice, except for the (002) peak. It is found that the (002) peak, which is realted to the parameter c, shifts toward to the lower angle starting at 8.8 GPa. Upon further compression, it becomes more pronounced. We propose that the left shift of the (002) peak may be a consequence of the pressure-induced elongation of the polycrystalline wire-like samples (the direction of the wire length is the c-axis of the K2Mo3As3 crystal lattice) due to their preferred orientation under pressure (see the right panel of Fig. 3). At higher pressure, the wire-like samples aline themselves perpendicular to the pressure direction applied.We summarise our results in Fig. 4a.The pressure-T c phase diagram clearly reveals three distinct superconducting regions: the initial superconducting state (SC-I), intermediary non-superconducting state (NSC) and the pressure-induced superconducting state (SC-II). In the SC-I region between 1 bar and 8.7 GPa, T c issuppressed with applied pressure, and not detectable above 8.7 GPa. In the SC-II region, T c increases with pressure and reaches the maximum (8.1 K) at 30 GPa. Upon further compression, T c shows slow a slight decline. This is the first observation of reemerging superconductivity in one-dimensional superconductors, to the best of our knowledge.We extract the lattice parameters and volume as a function of pressure, and summarise these results in Fig. 4b. It is found that the lattice constant a displays a decrease monotonously with pressure, while the lattice constant c shows a complicated relation with pressure applied. In the SC-I region, the parameter c shrinks upon increasing pressure, but it unusually expands in the NSC region. At the pressure of 18.2 GPa, the superconductivity reemerges and the lattice constant a and c decrease simultaneously with pressure again as what is seen in the SC-I region, implying that the pressure-induced elongation effect on the wire-like sample is satuated. The pressure dependence of the volume for K2Mo3As3 is shown in the inset of the Fig. 4b, displaying that the sample volume remains almost unchanged due to the increase of parameter c and the decrease of parameter a concurrently with elevating pressure in the NSC region. The strong correlation between the lattice parameters and the superconductivity in pressurized K2Mo3As3 suggests that the remarkable change of parameter c may paly an important role for the development of the SC-II state.To understand the underlying correlation between T c and the electronic state in K2Mo3As3 further, we performed the first-principles calculations on its electronic structure, based on our XRD results, by using the projector-augmented wave (PAW) method (see the Supplemental Material [29]). We find that the percentage of the density of states (P-DOS) at Fermi level for K2Mo3As3 is dominated by the electrons from the d xy and d x2-y2 orbitals in the pressure range investigated, with a secondary contribution from the d z2,p x and p y orbitals, and the P-DOSs of the p z, d xz, d yz and sorbitals are relatively small (see the Supplemental Material [29]). We note that, in the NSC and SC-II regions, the P-DOSs of the d xy, and d x2-y2orbitals decrease continuously with elevating pressure over the experimental range investigated, however, the change trend of the P-DOSs contributed by the d z2 and the p x as well as the p y orbitals displays differently. In the NSC region, the P-DOS of the d z2 orbital exibits a remarkable increase, while that of the p orbitals shows a slow decline (Fig. 4c). As the P-DOSs of the d z2 orbital and p orbitals reach a maximum and minimum respectively, SC-II state appears. Note that the T c value of the SC-II state increases upon compression in the pressure range of 18.2 GPa – 27 GPa, just where the P-DOS of the d z2 orbital displays a decrease again. Meanwhile, the P-DOSs of the p x and p y orbitals appear an increase in the same pressure range. Further compression from 27 GPa to 40 GPa, T c of the SC-II state stays almost constant, and the corresponding P-DOSs of the d z2 and p orbitals show a small change (Fig. 4c). These results suggest that the emergence of the SC-II state in K2Mo3As3 and its T c change with pressure are the consequence of the interplay among the different orbital electrons.In conclusion, the pressure-induced reemergence of the superconductivity is observed for the first time in the qausi-one-demensional superconductor K2Mo3As3. An intimate correlation between T c’s of the ambient-pressure and high-pressure superconducting states, lattice parameters and the density of state contributed by d z2, p x and p y orbitals have been revealed. We find that the initial superconducting state (SC-I) is suppressed by pressure at 8.7 GPa, and then an intermediary non-superconducting (NSC) state sets in and stabilizes up to 18 GPa. Subsequently, a new superconduting state (SC-II) emerges and prevails up to 47.4 GPa. Our synchrotron x-ray diffraction results indicats that the reemergence of superconductivity is not associated with anycrystal structure phase transition. In combination of theoretical calculations on the band strcture, our results suggest that the appearance of the SC-II state found in this material is a consenquence of the dramatic interplay among different orbital electrons due to the pressure-induced lattice change. We hope that the results found in this study will shed new light on understanding the correlation among superconductivity, electronic and lattice structures in unconventional quasi-one dimentional superconductors.AcknowledgementsWe thank Prof. V. A. Sidorov for useful discussions. The work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0302900, 2016YFA0300300 and 2017YFA0303103), the NSF of China (Grants No. U2032214, 12004419 and 12074414) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000). J. G. is grateful for support from the Youth Innovation Promotion Association of the CAS (2019008).*contributed equally to this work.†To whom correspondence may be addressed. Email: llsun@Reference[1].J. G. Bednorz and K. A. Müller, Possible high T c superconductivity in the Ba-La-Cu-O system, Z. Phys. B 64, 189 (1986).[2].M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang,Y. Q. Wang, and C. W. Chu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58, 908 (1987).[3]. A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, Superconductivity above 130K in the Hg–Ba–Ca–Cu–O system.Nature 363, 56 (1993).[4].H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, A new high-T c oxidesuperconductor without a rare-earth element, Jpn. J. of Appl. Phys.27, L209 (1988).[5].Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-Based LayeredSuperconductor LaO1-x F x FeAs (x=0.05-0.12) with T c=26 K, J. Am. Chem. Soc.130, 3296 (2008).[6]. F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, M. P. Wu, Y. C. Lee, Y.L. Huang, Y. Y. Chu, D. C. Yan, M. K. Wu, Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. U.S.A.105, 14262 (2008).[7].J. K. Bao, J. Y. Liu, C. W. Ma, Z. H. Meng, Z. T. Tang, Y. L. Sun, H. F. Zhai, H.Jiang, H. Bai, C. M. Feng, Z. A. Xu, and G. H. Cao, Superconductivity in Quasi-One-Dimensional K2Cr3As3 with Significant Electron Correlations, Phys. Rev. X 5, 011013 (2015).[8].Z. T. Tang, J. K. Bao, Y. Liu, Y. L. Sun, A. Ablimit, H. F. Zhai, H. Jiang, C. M.Feng, Z. A. Xu, and G. H. Cao, Unconventional superconductivity in quasi-one-dimensional Rb2Cr3As3, Phys. Rev. B 91, 020506 (R) (2015).[9].Z. T. Tang, J. K. Bao, Z. Wang, H. Bai, H. Jiang, Y. Liu, H. F. Zhai, C. M. Feng,Z. A. Xu, and G. H. Cao, Superconductivity in quasi-one-dimensional Cs2Cr3As3 with large interchain distance, Sci China Mater 58, 16 (2015).[10].Q. G. Mu, B. B. Ruan, B. J. Pan, T. Liu, J. Yu, K. Zhao, G. F. Chen, and Z. A. Ren,Ion-exchange synthesis and superconductivity at 8.6 K of Na2Cr3As3 with quasi-one-dimensional crystal structure, Phys. Rev. Materials 2, 034803 (2018).[11].H. Z. Zhi, T. Imai, F. L. Ning, J. K. Bao, and G. H. Cao, NMR Investigation of theQuasi-One-Dimensional Superconductor K2Cr3As3, Phys. Rev. Lett. 114, 147004 (2015).[12].Q. G. Mu, B. B. Ruan, K. Zhao, B. J. Pan, T. Liu, L. Shan, G. F. Chen, and Z. A.Ren, Superconductivity at 10.4 K in a novel quasi-one-dimensional ternary molybdenum pnictide K2Mo3As3, Science Bulletin 63, 952 (2018).[13].K. Zhao, Q. G. Mu, B. B. Ruan, M. H. Zhou, Q. S. Yang, T. Liu, B. J. Pan, S.Zhang, G. F. Chen, and Z. A. Ren, A New Quasi-One-Dimensional Ternary Molybdenum Pnictide Rb2Mo3As3 with Superconducting Transition at 10.5 K, Chin. Phys. Lett. 37, 097401 (2020).[14].K. Zhao, Q. G. Mu, B. B. Ruan, T. Liu, B. J. Pan, M. H. Zhou, S. Zhang, G. F.Chen, and Z. A. Ren, Synthesis and superconductivity of a novel quasi-one-dimensional ternary molybdenum pnictide Cs2Mo3As3, APL Mater. 8, 031103 (2020).[15].X. X. Wu, F. Yang, C. C. Le, H. Fan, and J. P. Hu, Triplet p z-wave pairing in quasi-one-dimensional A2Cr3As3superconductors (A = K, Rb, Cs), Phys. Rev. B 92, 104511 (2015).[16].H. Jiang, G. H. Cao, and C. Cao, Electronic structure of quasi-one-dimensionalsuperconductor K2Cr3As3 from first-principles calculations, Scientific Reports 5, 16054 (2015).[17].X. X. Wu, C. C. Le, J. Yuan, H. Fan, and J. P. Hu, Magnetism in quasi-one-dimensional A2Cr3As3 (A = K, Rb) superconductors, Chin. Phys. Lett. 32, 057401 (2015).[18].Y. Zhou, C. Cao, F. C. Zhang, Theory for superconductivity in alkali chromiumarsenides A2Cr3As3 (A = K, Rb, Cs), Science Bulletin 62, 208 (2017).[19].H. T. Zhong, X. Y. Feng, H. Chen, and J. H. Dai, Formation of molecular-orbitalbands in a twisted hubbard tube: implications for unconventional superconductivity in K2Cr3As3, Phys. Rev. Lett. 115, 227001 (2015).[20].J. H. Eggert, J. Z. Hu, H. K. Mao, L. Beauvais, R. L. Meng, and C. W. Chu,Compressibility of the HgBa2Ca n−1Cu n O2n+2+δ(n=1,2,3) high-temperature superconductors, Phys. Rev. B 49, 15299 (1994).[21].X. J. Chen, V. V. Struzhkin, Y. Yu, A. F. Goncharov, C. T. Lin, H. K. Mao, and R.J. Hemley, Enhancement of superconductivity by pressure-driven competition in electronic order, Nature (London) 466, 950 (2010).[22].H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono,Superconductivity at 43 K in an iron-based layered compound LaO1-x F x FeAs, Nature (London) 453, 376 (2008).[23].L. L. Sun, X. J. Chen, J. Guo, P. W. Gao, Q. Z. Huang, H. D. Wang, M. H. Fang,X. L. Chen, G. F. Chen, Q. Wu, C. Zhang, D. C. Gu, X. L. Dong, L. Wang, K.Yang, A. G. Li, X. Dai, H. K. Mao, and Z. X. Zhao, Re-emerging superconductivity at 48 kelvin in iron cha lcogenides, Nature (London) 483, 67 (2012).[24].L. Z. Deng, Y. P. Zheng, Z. Wu, S. Y. Huyan, H. C. Wu, Y. F. Nie, K. J. Cho, andC. W. Chu, Higher superconducting transition temperature by breaking theuniversal pressure relation, Proc. Natl. Acad. Sci. USA 116, 2004 (2019). [25].T. Kong, S. L. Bud’ko, and P. C. Canfield, Anisotropic H c2, thermodynamic andtransport measurements, and pressure dependence of T c in K2Cr3As3 single crystals, Phys. Rev. B 91, 020507 (R) (2015).[26].Z. Wang, W. Yi, Q. Wu, V. A. Sidorov, J. K. Bao, Z. T. Tang, J. Guo, Y. Z. Zhou,S. Zhang, H. Li, Y. G. Shi, X. X. Wu, L. Zhang, K. Yang, A. G. Li, G. H. Cao, J.P. Hu, L. L. Sun, and Z. X. Zhao, Correlation between superconductivity and bondangle of CrAs chain in noncentrosymmetric compounds A2Cr3As3 (A = K, Rb), Scientific Reports 6, 37878 (2016).[27].Y. A. Timofeev, V. V. Struzhkin, R. J. Hemley, H. K. Mao, and E. A. Gregoryanz,Improved techniques for measurement of superconductivity in diamond anvil cells by magnetic susceptibility, Rev. Sci. Instru. 73, 371 (2002).[28].H. K. Mao, J. Xu, and P. M. Bell, Calibration of the Ruby Pressure Gauge to 800kbar Under Quasi-Hydrostatic Conditions, J. Geophys. Res. 91,4673 (1986). [29].See the supplementary material for electronic structure calculations; also see Refs.[30-36][30].P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).[31].G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).[32].G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).[33].G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).[34].G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).[35].J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).[36].H. J. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).Fig. 1 (a) Resistance as a function of temperature for quausi-one-dimensional superconductor K2Mo3As3 at ambient pressure and its polycrystallined-sample’s image taken by a scanning electron microscope (inset). (b)-(d) Temperature dependence of the resistance in the pressure range of 1.2 GPa -8.7 GPa, 8.7-18.2 GPa, and 18.2-47.4 GPa, respectively. The insets of figure (b) and (d) display enlarged views of the the resistance in the low temperature regime.Fig. 2 Temperature dependence of resistance under different magnetic fields for K2Mo3As3measured at 19.6 GPa (a) and 41.8 GPa (b), respectively. (c) Plot of superconducting transition temperature T c versus critical field (H C2) for K2Mo3As3 at 19.6 GPa and 41.8 GPa, respectively. The dished lines represent the Ginzburg-Landau (GL) fits to the data of H C2.Fig. 3 X-ray diffraction patterns collected in the pressure range of 3.8 – 51.6 GPa for K2Mo3As3. The right panel schematically shows the evolution of the preferred orientation of the wire-like samples under pressures. SC-I and SC-II stand for the ambient-pressure superconducting state and the reemergence supercnducting states, respectively. NSC represents non-superconducting state.Fig 4 Superconductivity, crystal and electronic structure information for the qausi-one-dementional superconductor K2Mo3As3. (a) Pressure-Temperature phase diagram. (b) Pressure dependence of lattice parameters and volume (see inset). (c) Plots ofpercentage of the density of state (P-DOS) contrinuted by the d z2, p x and p y orbitals versus pressure.。
晶胞结构类型
晶胞结构类型岩盐晶胞结构岩盐(NaCl)是一种常见的矿物,其晶胞结构类型被称为岩盐晶胞结构。
岩盐晶胞结构是指由钠离子和氯离子组成的晶格结构。
在岩盐晶胞结构中,钠离子和氯离子以等间距排列,并且每个钠离子都被六个氯离子所包围,每个氯离子也被六个钠离子所包围。
岩盐晶胞结构属于立方晶系,具体而言,它是面心立方晶体结构。
在这种结构中,每个晶胞中包含一个钠离子和一个氯离子,它们分别位于晶胞的顶点和面心位置。
晶胞中的钠离子和氯离子之间通过离子键相互结合,并且每个钠离子与其周围的六个氯离子形成八面体几何结构,每个氯离子与其周围的六个钠离子形成八面体几何结构。
岩盐晶胞结构的稳定性可以通过计算晶格能来评估。
晶格能是指单位晶胞中所有离子之间相互作用的总能量。
在岩盐晶胞结构中,钠离子和氯离子的电荷相互作用是吸引力,因此晶格能是负值。
晶格能的大小取决于离子的电荷和离子之间的距离。
钠离子和氯离子的电荷相互作用较强,因此岩盐晶胞结构具有较高的晶格能,使得这种结构在自然界中非常稳定。
岩盐晶胞结构在实际应用中有许多重要的用途。
首先,岩盐晶胞结构是制备食用盐的基础。
食用盐是岩盐的一种纯化形式,通过提取和加工岩盐,可以得到高纯度的食用盐。
其次,岩盐晶胞结构的稳定性使其成为一种常用的储存和运输电解质的材料。
电解质是一种能够导电的物质,广泛应用于电池、电容器和其他电子设备中。
岩盐晶胞结构的稳定性和离子导电性使其成为一种理想的电解质材料。
岩盐晶胞结构还具有一些特殊的物理性质。
例如,岩盐晶胞结构具有高度的各向同性,意味着其物理性质在各个方向上基本相同。
这使得岩盐晶胞结构在光学应用中非常有用。
岩盐晶胞结构可以用作光学器件中的窗口和透镜材料,因为其具有优异的透明性和折射率。
岩盐晶胞结构是一种重要的晶胞结构类型。
它具有稳定性高、离子导电性好和物理性质各向同性等特点,因此在食用盐生产、电解质材料和光学应用等方面具有重要的应用价值。
岩盐晶胞结构的研究和应用将有助于推动材料科学和工程领域的发展。
1.3 晶体结构
Conventional unit cell A set of vectors making the unit cell with a highest symmetry
1
1
1
a1 2 a(j k i),a2 2 a(k i j),a3 2 a(i j)k
Crystal Structure
·Metals ·Semiconductor ·Ceramics
3. Hexagonal Close-Packed Structure (HCP)
a=b, α=120, c=1.633a Example: He, Be, Mg, Ti, Zn, Cd, Co, Y, Zr, Gd, Re…
n, CN, APF, lattice type?
1.4 Reciprocal Lattice and Brillouin Zone
Crystal Structure
·Basic concept
Typical Crystal Structures
Amorphous (Non-crystalline) Solid All atoms have order only within a few atomic or molecular dimensions. --- random arrangement in a bigger size
Typical Crystal Structures
·Metals ·Semiconductor ·Ceramics
Semiconductor’s structure 1. Diamond Structure
The diamond lattice (formed by the carbon atoms ) consists of two interpenetrating face-centered cubic Bravais lattices, displaced along the body diagonal of the cubic cell by one quarter the length of the diagonal.
La3ScBi5的合成与晶体结构(英文)
!"#$%&’(’ )*+ ,-"’$). /$-01$0-& 23 4)5!67(8
NL* O5#FPG< ?Q* RP+<3#S8<3 >0T A85+#UG SLJ V85<3#W5+!
X)*$*+ ,+- .$%/0$*/0- /1 )*02&*20$3 45+"67*0-8 92:6$; <;7*6*2*+ /1 =+7+$0&5 /; *5+ )*02&*20+ /1 >$**+08 456;+7+ ?&$@+"- /1 )&6+;&+8 92A5/2 -(%%%’1
!!!!!!!!! !"#$ !!""!#"!##$ " !%&’($ !!""!#%&#’("
LG1 [8\P \PZ E7FG?8’ :\9G;\G9Z f(g&h= [P8;P 8: ;+4^+:Z‘ +7 ’O ?_ k :lG59Z :PZZ\ 5<‘ fS?_h’k a5]Z9: [8\P 959Z Z59\P 8+<: 5: :^5;Z9:= 5<‘ j0S?_- XSCF9= m1 fMg##h, E+[ZiZ9= \PZ ;+99Z:^+<‘8<3 _8:4G\P ;+4^+G<‘: P5iZ _ZZ< 959Za] ‘+;G4Z<\Z‘, ?ZiZ95a :G;P ^P5:Z: 9Z^+9\Z‘ 59Z j0#DSN<## Xj0C0G= n_e SCS<= T<e N< C?_= @8/ [8\P 5 F5.DLa?_.. :\9G;\G9Z f.’=.-h= j0(S’N< XS C*8= N‘e N<C?_= @8/ [8\P 5 S+(@’?8 :\9G;\G9Z f.Dhe j0SN< XS C jP= *8e N< C?_= @8/ [8\P 5 Y8*8?8 :\9G;\G9Z f.(h= 5<‘ n_$R<D@8$ 7Z5\G9Z: fR<D@8$h.$ k 98__+<: 9G<<8<3 5a+<3 \PZ c8:f.!h, S8c8<3 \[+ \]^Z: +7 ;5\8+<: [8\P ‘877Z9Z<\ :8bZ
无机材料专业英语
专业词汇列表晶体结构(structure of crystal)原子质量单位 Atomic mass unit (amu)原子量 Atomic weight键能 Bonding energy共价键 Covalent bond电子构型electronic configuration正电的 Electropositive氢键 Hydrogen bond同位素 Isotope摩尔 Mole泡利不相容原理 Pauli exclusion principle原子 atom分子量 molecule weight量子数 quantum number范德华键 van der waals bond点群 point group各向异性 anisotropy 体心立方结构 body-centered cubic (BCC)布拉格定律bragg’s law晶体结构 crystal structure晶体的 crystalline中子衍射 neutron diffraction晶界 grain boundary鲍林规则Pauling’s rulesCsCl型结构 Caesium Chloride structure纤锌矿型结构 Wurtzite structure 萤石型结构 Fluorite structure尖晶石型结构 Spinel-type structure岛状结构 Island structure层状结构 Layer structure滑石 talc高岭石 kaolinite 长石 feldspar各向同性的 isotropic晶格 lattice密勒指数 miller indices 多晶的 polycrystalline原子数 Atomic number波尔原子模型 Bohr atomic model库仑力 Coulombic force分子的构型 molecular configuration负电的Electronegative基态 Ground state离子键 Ionic bond金属键 Metallic bond 分子 Molecule元素周期表 Periodic table极性分子 Polar molecule价电子valence electron电子轨道 electron orbitals对称要素 symmetry elements 原子堆积因数 atomic packing factor(APF)面心立方结构 face-centered cubic (FCC)配位数 coordination number晶系 crystal system衍射diffraction电子衍射 electron diffraction六方密堆积 hexagonalclose-packed (HCP)NaCl型结构 NaCl-type structure闪锌矿型结构 Blende-type structure金红石型结构 Rutile structure钙钛矿型结构 Perovskite-type structure硅酸盐结构 Structure of silicates链状结构 Chain structure架状结构Framework structure叶蜡石 pyrophyllite石英 quartz美橄榄石 forsterite 各向异性的 anisotropy晶格参数 lattice parameters非结晶的noncrystalline多晶形 polymorphism单晶 single crystal电位 electron states电子 electrons金属键 metallic bonding极性分子 polar molecules 衍射角 diffraction angle粒度,晶粒大小 grain size显微照相photomicrograph透射电子显微镜 transmission electron microscope (TEM)四方的 tetragonal配位数 coordination number晶胞 unit cell(化合)价 valence共价键 covalent bonding离子键 Ionic bonding原子面密度 atomic planar density合金 alloy显微结构 microstructure扫描电子显微镜 scanning electron microscope (SEM)重量百分数 weight percent单斜的 monoclinic晶体结构缺陷(defect of crystal structure)缺陷 defect, imperfection线缺陷 line defect, dislocation体缺陷 volume defect位错线 dislocation line螺位错 screw dislocation晶界 grain boundaries小角度晶界 tilt boundary,位错阵列 dislocation array位错轴dislocation axis位错爬移 dislocation climb位错滑移 dislocation slip 位错裂纹 dislocation crack位错密度 dislocation density间隙原子interstitial atom间隙位置 interstitial sites弗伦克尔缺陷 Frenkeldisorder主晶相 the host lattice缔合中心 Associated Centers.电子空穴 Electron Holes克罗各-明克符号 Kroger Vink notation固溶体 solid solution化合物 compound置换固溶体 substitutional solid solution不混溶固溶体immiscible solid solution有序固溶体 ordered solid solution固溶强化solid solution strengthening点缺陷 point defect面缺陷 interface defect位错排列 dislocation arrangement刃位错 edge dislocation混合位错 mixed dislocation大角度晶界 high-angle grain boundaries孪晶界 twin boundaries位错气团 dislocation atmosphere位错胞 dislocation cell位错聚结 dislocation coalescence位错核心能量dislocation core energy位错阻尼 dislocation damping原子错位substitution of a wrong atom晶格空位 vacant lattice sites杂质impurities肖脱基缺陷 Schottky disorder错位原子 misplaced atoms自由电子 Free Electrons伯格斯矢量 Burgers中性原子 neutral atom固溶度 solid solubility间隙固溶体 interstitial solid solution金属间化合物intermetallics转熔型固溶体 peritectic solid solution无序固溶体disordered solid solution取代型固溶体 Substitutional solid solutions 过饱和固溶体 supersaturated solid solution非化学计量化合物Nonstoichiometric compound表面结构与性质(structure and property of surface)表面 surface同相界面 homophase boundary晶界 grain boundary小角度晶界 low angle grain boundary共格孪晶界 coherent twin boundary错配度 mismatch重构 reconstuction表面能 surface energy扭转晶界 twist grain boundary共格界面 coherent boundary非共格界面 noncoherent boundary应变能 strain energy惯习面 habit plane 界面 interface异相界面 heterophase boundary表面能 surface energy大角度晶界 high angle grain boundary晶界迁移 grain boundary migration驰豫relaxation表面吸附 surface adsorption倾转晶界 titlt grain boundary倒易密度 reciprocal density半共格界面 semi-coherent boundary界面能 interfacial free energy晶体学取向关系 crystallographic orientation非晶态结构与性质(structure and property of uncrystalline)熔体结构 structure of melt玻璃态 vitreous state粘度 viscosity介稳态过渡相 metastable phase淬火 quenching玻璃分相 phase separation in glasses 过冷液体 supercooling melt软化温度 softening temperature表面张力 Surface tension组织 constitution退火的 softened体积收缩 volume shrinkage扩散(diffusion)活化能 activation energy浓度梯度 concentration gradient菲克第二定律Fick’s second law稳态扩散 steady state diffusion扩散系数 diffusion coefficient填隙机制 interstitalcy mechanism短路扩散 short-circuit diffusion下坡扩散 Downhill diffusion扩散通量 diffusion flux菲克第一定律Fick’s first law相关因子 correlation factor非稳态扩散 nonsteady-state diffusion 跳动几率 jump frequency晶界扩散 grain boundary diffusion上坡扩散 uphill diffusion互扩散系数 Mutual diffusion渗碳剂 carburizing浓度分布曲线 concentration profile驱动力 driving force自扩散 self-diffusion空位扩散 vacancy diffusion扩散方程 diffusion equation扩散特性 diffusion property达肯方程 Dark equation本征热缺陷 Intrinsic thermal defect离子电导率 Ion-conductivity浓度梯度 concentration gradient扩散流量 diffusion flux间隙扩散 interstitial diffusion表面扩散 surface diffusion扩散偶 diffusion couple扩散机理 diffusion mechanism无规行走 Random walk柯肯达尔效应 Kirkendall equation本征扩散系数 Intrinsic diffusion coefficient 空位机制 Vacancy concentration腐蚀与氧化(corroding and oxidation)氧化反应 Oxidation reaction还原反应 Reduction reaction价电子 Valence electron腐蚀介质 Corroding solution电动势 Electric potential推动力 The driving force腐蚀系统 Corroding system腐蚀速度 Corrosion penetration rate 电流密度 Current density电化学反应 Electrochemical reaction 极化作用 Polarization过电位 The over voltage浓差极化 Concentration polarization 电化学极化 Activation polarization 极化曲线 Polarization curve缓蚀剂 Inhibitor原电池 galvanic cell电偶腐蚀 galvanic corrosion电位序 galvanic series应力腐蚀 Stress corrosion冲蚀 Erosion-corrosion腐蚀短裂 Corrosion cracking防腐剂 Corrosion remover腐蚀电极 Corrosion target隙间腐蚀 Crevice corrosion均匀腐蚀 Uniform attack晶间腐蚀 Intergranular corrosion焊缝破坏 Weld decay选择性析出 Selective leaching氢脆损坏 Hydrogen embitterment阴极保护 Catholic protection穿晶断裂 Intergranular fracture固相反应和烧结(solid state reaction and sintering) 固相反应 solid state reaction烧成 fire再结晶 Recrystallization成核 nucleation子晶,雏晶 matted crystal异质核化 heterogeneous nucleation铁碳合金 iron-carbon alloy铁素体 ferrite共晶反应 eutectic reaction烧结 sintering合金 alloy二次再结晶 Secondary recrystallization结晶 crystallization耔晶取向 seed orientation均匀化热处理 homogenization heat treatment渗碳体 cementite奥氏体 austenite固溶处理 solution heat treatment相变 (phase transformation)过冷 supercooling晶核 nucleus形核功 nucleation energy均匀形核 homogeneous nucleation形核率 nucleation rate热力学函数 thermodynamics function临界晶核 critical nucleus枝晶偏析 dendritic segregation平衡分配系数 equilibrium distribution coefficient 成分过冷 constitutional supercooling共晶组织 eutectic structure伪共晶 pseudoeutectic表面等轴晶区 chill zone中心等轴晶区 equiaxed crystal zone急冷技术 splatcooling单晶提拉法 Czochralski method位错形核 dislocation nucleation斯宾那多分解 spinodal decomposition马氏体相变 martensite phase transformation成核机理 nucleation mechanism过冷度 degree of supercooling形核 nucleation晶体长大 crystal growth非均匀形核 heterogeneous nucleation长大速率 growth rate临界晶核半径 critical nucleus radius局部平衡 localized equilibrium有效分配系数 effective distribution coefficient 引领(领先)相 leading phase层状共晶体 lamellar eutectic离异共晶 divorsed eutectic柱状晶区 columnar zone定向凝固 unidirectional solidification区域提纯 zone refining晶界形核 boundary nucleation晶核长大 nuclei growth有序无序转变 disordered-order transition马氏体 martensite成核势垒 nucleation barrier相平衡与相图(Phase equilibrium and Phase diagrams)相图 phase diagrams组分 component相律 Phase rule浓度三角形 Concentration triangle成分 composition相平衡 phase equilibrium热力学 thermodynamics吉布斯相律 Gibbs phase rule吉布斯自由能 Gibbs free energy吉布斯熵 Gibbs entropy热力学函数 thermodynamics function过冷 supercooling杠杆定律 lever rule相界线 phase boundary line共轭线 conjugate lines相界反应 phase boundary reaction相组成 phase composition金相相组织 phase constentuent相衬显微镜 phase contrast microscope相分布 phase distribution相平衡图 phase equilibrium diagram相分离 phase segregation相 phase组元 compoonent投影图 Projection drawing冷却曲线 Cooling curve自由度 freedom化学势 chemical potential相律 phase rule自由能 free energy吉布斯混合能 Gibbs energy of mixing吉布斯函数 Gibbs function热分析thermal analysis过冷度 degree of supercooling相界 phase boundary相界交联 phase boundary crosslinking相界有限交联phase boundary crosslinking相变 phase change共格相 phase-coherent相衬 phase contrast相衬显微术 phase contrast microscopy相平衡常数 phase equilibrium constant相变滞后 phase transition lag相序 phase order相稳定性 phase stability相稳定区 phase stabile range相变压力 phase transition pressure同素异晶转变 allotropic transformation显微结构 microstructures不混溶性 immiscibility相态 phase state相变温度 phase transition temperature 多晶转变 polymorphic transformation相平衡条件 phase equilibrium conditions低共熔体 eutectoid。
碳纳米管一维狄拉克材料-概述说明以及解释
碳纳米管一维狄拉克材料-概述说明以及解释1.引言1.1 概述概述碳纳米管(Carbon Nanotubes,简称CNTs)是一种具有特殊结构和优异性能的纳米材料,被广泛认为是材料科学领域的研究热点之一。
碳纳米管由碳原子以一定的方式排列而成,形成了空心的管状结构。
其独特的一维结构使其具有许多特殊的物理性质和潜在的应用价值。
在过去几十年中,碳纳米管引起了广泛的关注和研究。
由于其高强度、高导电性和高导热性等优异性能,碳纳米管在材料科学、纳米科技、电子学等领域具有广泛的应用前景。
同时,碳纳米管还具有独特的光学性质和化学反应活性,使其在光电子学和催化剂等领域显示出巨大的潜力。
本文将重点介绍碳纳米管作为一维狄拉克材料的相关内容。
所谓狄拉克材料指的是具有狄拉克费米子(Dirac Fermions)特性的材料。
狄拉克费米子是一种具有质量零点能态的粒子,其行为类似于相对论中的狄拉克粒子。
碳纳米管的特殊结构和电子结构使其具备了类似狄拉克费米子的行为,因此被认为是一维狄拉克材料的代表。
文章的内容将包括碳纳米管的基本概念、制备方法和物理性质等方面。
同时,还将探讨碳纳米管作为一维狄拉克材料的意义,以及在科学研究和应用领域的前景。
此外,本文还将涉及碳纳米管研究所面临的挑战以及未来的发展方向。
通过对碳纳米管一维狄拉克材料的深入研究,我们可以更好地理解其独特的电子行为和物理性质,并且为其在纳米电子学、能源存储、生物传感等领域的应用提供基础。
同时,对于研究者而言,也能够促进对一维狄拉克材料的认识和理解,为材料科学的发展做出贡献。
尽管碳纳米管研究面临一些挑战和困难,但相信在不久的将来,通过持续的努力和研究,碳纳米管作为一维狄拉克材料的应用前景将会得到进一步的拓展和发展。
1.2 文章结构文章结构部分的内容:本文按照以下结构进行撰写和组织。
第一部分为引言,旨在介绍碳纳米管一维狄拉克材料的研究背景、意义和目的。
引言分为三个小节,分别是概述、文章结构和目的。
一维镍配位聚合物的水热合成和晶体结构
一维镍配位聚合物的水热合成和晶体结构下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一维镍配位聚合物的水热合成和晶体结构1. 引言在配位化学领域,金属配合物的水热合成方法是合成多种结构复杂性和功能多样性材料的重要途径。
(完整版)无机非金属材料专业英语单词
无机非金属材料专业英语单词abrasive [ ə'breisiv ]n. 磨料a. 磨蚀的,磨损的agate [ 'æɡət ]n. 玛瑙alite [ 'eilait ]n. 硅酸三钙石(C3A)alkali resistance [ 'ælkəlai ri'zistəns]耐碱性,抗碱能力alumina [ ə'lju:minə ]n. 氧化铝amorphous phase [ ə'mɔ:fəs feiz]无定形相,非晶相ampoule [ 'æmpju:l ]n. 小玻璃瓶,筒,安瓿anhydrite [ æn'haidrait ]n. 硬(无水)石膏,CaSO4 anion [ 'ænaiən ]n. 阴离子anisotropic [ æn,aisəu'trɔpik ] a. 各向异性的,非均质的anneal [ ə'ni:l ]n. & v. 退火anomaly [ ə'nɔməli ]n. 反常现象,不规则anorthite [ æ'nɔ:θait ]n. 钙长石CaO·Al2O3·2SiO2 apatite [ 'æpətait ]n. 磷灰石apparent porosity [ ə'pærənt pɔ:'rɔsiti]显气孔率asbestos [ æz'bestɔs ]n. 石棉asphalt [ 'æsfælt ]n. 沥青basicity [ bə'sisəti ]n. 碱度,碱性batch bin [ bætʃ bin]配合料料仓batch feeder [ bætʃ 'fi:də]投料机,加料器bauxite [ 'bɔ:ksait ]n. 矾土,铝矾土belite [ 'bi:lait ]n. 二钙硅酸盐(水泥)binder [ 'baində ]n. 粘胶剂,粘结剂biocompatibility [ 'baiəukəm,pætə'biləti ]n. 生物相容性biological [ ,baiəu'lɔdʒik,-kəl ] a. 生物学的,用生物(如病菌等)对付敌人的bisque firing [ bisk 'faiəriŋ]素烧(初次焙烧)body [ 'bɔdi ]n. 坯体body-centered lattice[ 'bɔdi 'sentəd 'lætis]体心格子borate [ 'bɔ:reit ]n. 硼酸盐borax [ 'bɔ:ræks ]n. 硼砂Na2B4O7·10H2Ocalcine [ 'kælsain ]v. & n. 烧结,烧成calcite [ 'kælsait ]n. 方解石calcium [ 'kælsiəm ]n. 钙capillary [ kə'piləri, 'kæpi- ] a. 细作用(的)n. 毛细管catalyst [ 'kætəlist ]n. 催化剂cation [ 'kætaiən ]n. 阳离子cellular [ 'seljulə ] a. 细胞的,由细胞组成的,多孔的cellulose [ 'seljuləus ]n. & a. 纤维素,含纤维素的ceramic [ si'ræmik ] a. 陶瓷、陶器checker [ 'tʃekə ]n. 格子砖checker chamber [ 'tʃekə 'tʃeimbə]蓄热室chemical durability [ 'kemikəl ,djuərə'biləti]化学稳定性chemical vapour deposition (CVD) [ 'kemikəl 'veipə ,depə'ziʃən]化学气相沉积cleavage [ 'kli:vidʒ ]n. 解理clinker[ 'kliŋkə ]n. 熟料、熔块coagulation[ kəuæɡju'leiʃən ]n. 凝结、凝固作用,聚集、角凝coating [ 'kəutiŋ ]n. 涂层,涂料,涂盖层collagen [ 'kɔlə,dʒen ]n. 骨胶原combustion flue [ kəm'bʌstʃən flu:]烟道complex [ 'kɔmpleks ]n. & a. 复合物,络合物;复杂的configuration [ kən,fiɡju'reiʃən ]n. 构形;(电子)排布constituent [ kən'stitjuənt ]n. 成分,组分contamination [ kən,tæmi'neiʃən ]n. 污染,杂质convection [ kən'vekʃən ]n. 对流,传递coordination numbers [ kəu,ɔ:di'neiʃən 'nʌmbəs]配位数coordination polyhedron [ kəu,ɔ:di'neiʃən ,pɔli'hi:drən]配位多面体cord [ kɔ:d ]n. 条纹,条痕(玻璃缺陷)cordierite [ 'kɔ:diərait ]n. 堇青石2MgO·2Al2O3·5SiO2 corrosion-resistant [ kə'rəuʒən ri'zistənt] a. 抗腐蚀的corundum [ kə'rʌndəm ]n. 刚玉α-Al2O3covalent [kəuˈveilənt] a. 共价的crazing[ 'kreiziŋ ]n. 细裂,龟裂,碎纹裂creep [ kri:p ]n. 蠕变cristobalite [ kris'təu,bəlait ]n. 方石英critical value [ 'kritikəl 'vælju:]临界值cross-fired glass melting furnace [ krɔ:s 'faiəd ɡlɑ:s'meltiŋ 'fə:nis]横火焰池窑crown [ kraun ]n. 炉顶,窑拱crown flint glass [ kraun flint ɡlɑ:s]冕火石玻璃crucible [ 'kru:sibl ]n. 坩埚crystallinity [kristəˈlinəti]n. 结晶度,结晶性crystallization [ ,kristəlai'zeiʃən ]n. 结晶(作用),晶化cubic [ 'kju:bik ] a. 立方晶系的cubic body-centered [ 'kju:bik 'bɔdi 'sentəd]体心立方(晶格)cubic face-centered[ 'kju:bik feis 'sentəd]面心立方(晶格)cullet [ 'kʌlit ]n. 碎玻璃,废玻璃(料)curing [ 'kjuəriŋ ]n. 固化,熟化,养护damper [ 'dæmpə ]n. 挡板,烟道闸板deflocculant [ di'flɔkjulənt ]n. 反絮凝剂,解凝剂deformation [ ,di:fɔ:'meiʃən ]n. 变形degrade [ 'di'ɡreid ]v. 降(裂,分)解,降低,衰变dendrite [ 'dendrait ]n. 树枝石,树枝状结晶densification [ ,densifi'keiʃən ]n. 密实化desiccator [ 'desikeitə ]n. 干燥器(皿)deteriorate [ di'tiəriəreit ]v. 1、(使)变坏,(使)恶化;2、损坏,消耗devitrify [ di:'vitrifai ]vt. 析晶devitrite [di:ˈvitrait]n. 失透石dielectric constant [ ,daii'lektrik 'kɔnstənt]介电常数differential thermal analysis (DTA) [ ,difə'renʃəl 'θə:məl ə'næləsis]差热分析diffraction [ di'frækʃən ]n. 衍射diffusion [ di'fju:ʒən ]n. 扩散dilatation [ ,dailə'teiʃən, dilə- ]n. 膨胀,扩展dilatometer [ ,dilə'tɔmitə ]n. 膨胀仪diode [ 'daiəud ]n. 二极管dipole moment [ 'daipəul 'məumənt]偶极矩dislocation [ ,disləu'keiʃən ]n. 位错,位移dispersion [ dis'pə:ʃən ]n. 色散,分散displacement [ dis'pleismənt ]n. 位移,易位,取代distortion [ dis'tɔ:ʃən ]n. 扭曲,变形dolomite [ 'dɔləmait ]n. 白云石MgCO3·CaCO3 domain [ dəu'mein ]n. 畴,域,范围,铁电体的均一极化区donor level [ 'dəunə 'levəl]施主能级dopant [ 'dəupənt ]n. 掺杂剂dotted line [ 'dɔtid lain]虚线drawability [ ,drɔ:ə'biləti ]n. 可纺性(玻璃纤维),可拉伸性ductile [ 'dʌktail, -til ] a. 可延展的,易变形的earthenware [ 'ə:θənwεə ]n. 陶(瓦)器eddy [ 'edi ]n. 涡流,漩涡,螺旋efflorescence [ ,eflɔ:'resəns ]n. 粉化、风化elastic modulus [ i'læstik 'mɔdjuləs]弹性模量electronegativity [ i'lektrəu,neɡə'tivəti ]n. 电负性electrophoretic [ i,lektrəfə'retik ] a. 电泳的electrostatic [ i,lektrə'stætik ] a. 静电的,静电学的embossing [ im'bɔsiŋ ]n. 浮雕,压花,压纹emulsifier [ i'mʌlsifaiə ]n. 乳化剂enamel [ i'næməl ]n. 搪瓷endothermic [ ,endəu'θə:mik,-məl ] a. 吸热的end-port furnace [ end pɔ:t 'fə:nis] (或horseshoe-fired furnace) 马蹄焰窑enstatite [ 'enstətait ]n. 顽火辉石enzyme [ 'enzaim ]n. 酶epitaxy [ 'epitæksi ]n. 外延,(晶体)取向生长epoxy [ ep'ɔksi ] a. 环氧的n. 环氧树脂erode [ i'rəud ]v. 腐蚀,受侵蚀ethylene[ 'eθili:n ]n. 乙烯eucryptite [ju:ˈkripˌtait]n. 锂霞石eutectic [ ju:'tektik ] a. 低共熔的,共晶的exothermic [ ,eksəu'θə:mik,-'θə:məl ] a. 放热的extrude [ ek'stru:d ]v. 挤压extrusion [ ek'stru:ʒən ]n. 挤出,挤压feldspar [ 'feldspɑ: ]n. 长石ferrite [ 'ferait ]n. 铁氧体ferroelectric [ ,ferəui'liktrik ] a. & n. 铁电体(性,的)filament [ 'filəmənt ]n. 细丝,灯丝filter press [ filtə pres]压滤机fineness [ 'fainnis ]n. 细度、精度、纯度fireclay [ 'faiəklei ]n. 耐火(粘)土,(耐)火泥firing [ 'faiəriŋ ]n. 烧成flaw [ flɔ: ]n. 裂纹,裂痕,瑕疵flexural strength [ˈflekʃərəl streŋθ]抗弯强度flexible [ 'fleksibl ] a. 挠性的,易柔曲的,韧性的float glass [ fləut ɡlɑ:s]浮法(平板)玻璃fluorescence [ fluə'resns ]n. 荧光,荧光性fluoride [ 'flu(:)əraid ]n. 氟化物fluorspar [ 'fluəspɑ: ]n. 萤石,氟石CaF2 fracture toughness [ 'fræktʃəˈtʌfnis]n. 断裂韧性frit [ frit ]n. 熔块、釉料garnet [ 'ɡɑ:nit ]n. 石榴石,石榴红色gel [ dʒel ]n. 凝胶germanium [ dʒə:'meiniəm ]n. 锗(Ge)glass fiber reinforced plastics[ɡlɑ:s'faibə,ri:in'fɔ:sd 'plæstiks ]玻璃纤维增强塑料(GFRP)glaze [ ɡleiz ]v. 上釉glost [ ɡlɔst ]n. 釉grain boundary [ ɡrein 'baundəri]n. 颗粒界面,晶界granulate [ 'ɡrænjuleit ]v. 粒化,成粒graphite [ 'ɡræfait ]n. 石墨green body [ ɡri:n 'bɔdi]n. 生坯,未烧坯grinding [ 'ɡraindiŋ ]n. 研磨,磨碎grit [ ɡrit ]n. 磨料gypsum [ 'dʒipsəm ]n. 石膏halide [ 'hælaid ] a. 卤化物(的),卤族的heterogeneous [ ,hetərəu'dʒi:njəs ] a. 异种的,非均质的hexagonal [ hek'sæɡənəl ] a. 六方的,六方晶系的host [ həust ]n. 基质,晶核homogeneity [ ,hɔməudʒe'ni:əti, ,həu- ]n. 均匀性,均一(性)homogeneous [ ,hɔmə'dʒi:niəs, ,həu- ] a. 均匀的,均一的humidity [ hju:'midəti ]n. 湿气,湿度hydrolysis [ hai'drɔlisis ]n. 水解(作用),加水分解immiscibility [ i,misə'biləti ]n. 不混溶性impediment [ im'pedimənt ]n. 妨碍,阻碍,障碍物impermeable [ im'pə:miəbl ] a. 不可渗透的,不透水的impurity [ im'pjuərəti ]n. 杂质,不纯物inclusion [ in'klu:ʒən ]n. 夹杂(物),掺杂index of refraction [ 'indeks ɔv ri'frækʃən]折射率inertness[iˈnə:tnis]n. 惰性infra-red spectrum [ 'inflə red 'spektrəm]红外光谱ingot[ 'iŋɡət ]n. 块料interferometer [ ,intəfə'rɔmitə ]n. 干涉仪interphase [ 'intəfeiz ]n. 界面,中间相a. 相间的interstitial [ ,intə'stiʃəl ] a. 间隙的intrinsic(al) [ in'trinsik,-kəl ] a. 内在的,固有的,本质的intrude [ in'tru:d ]v. 渗入isomorphic [ ,aisəu'mɔ:fik ] a. 同晶型的isostatic pressing [ ,aisəu'stætik 'presiŋ]n. 等静压成型isotherm [ 'aisəuθə:m ]n. 等温isotropic [ ,aisəu'trɔpik ] a. 各向同性的,均质的jiggering [ 'dʒiɡəriŋ ]n. 旋坯kaolinite [ 'keiəlinait ]n. 高岭土kiln [ kiln, kil ]n. 窑,炉lime [ laim ]n. 石灰,氧化钙limestone [ 'laimstəun ]n. 石灰石lithium [ 'liθiəm ]n. 锂lubrication [ ,lu:bri'keiʃən ]n. 润滑作用luster [ 'lʌstə ]n. 光泽v. 发光,使有光泽,给……上釉magnesium [ mæɡ'ni:ziəm, -ʃi- ]n. 镁magnesite [ 'mæɡnəsait ]n. 菱镁矿manganese[ 'mæŋɡə,ni:s]n. 锰(Mn)marls [ mɑ:l s ]n. 石灰泥matrix [ 'meitriks ]n. 基体,基质metallurgical [ ,melə'lə:dʒik,-kəl ] a. 冶金学的,冶金术的metastable [ ,metə'steibl ] a. 亚稳的,介稳的methane[ 'mi:θein ]n. 甲烷mica [ 'maikə ]n. 云母microcrack [ 'maikrəukræk ]n. 微裂纹microprobe [ 'maikrəuprəub ]n. 显微探针microstructure [ 'maikrəu,strʌktʃə ]n. 显微结构migrate [ mai'ɡreit, 'maiɡ- ]vi. 迁移mineralogy [ ,minə'rælədʒi ]n. 矿物学mineralizer [ 'minərəlaizə ]n. 矿化剂miscible [ 'misəbl ] a. 可混(合)的,可混(溶)的mixer [ 'miksə ]n. 混合机,混料机modification [ ,mɔdifi'keiʃən ]n. 更改,修改,变体modifier [ 'mɔdifaiə ]n. 调整体modulus [ 'mɔdjuləs, -dʒu- ]n. 模数,模量moldable [ˈməuldəbl] a. 可塑的,可模制的monoclinic [ ,mɔnəu'klinik ] a. 单斜的monolithic [ ,mɔnəu'liθik ]n. 单片(块)a. 整体的,单块的mortar [ 'mɔ:tə ]n. 砂(灰、泥)浆mullite [ 'mʌlait ]n. 莫来石multicomponent[ˌmʌltikəmˈpəunənt] a. 多成分的,多元的multiplicity [ ,mʌlti'plisəti ]n. 多样(性),多重性,大量mutrual orientation [ 'mju:tʃuəl ,ɔ:rien'teiʃən]相互取向needle-like [ 'ni:dl laik]针状neutralisation [ ,nju:trəlai'zeiʃən ]n. 中和(作用,法)nitridation [ ,naitri'deiʃən ]n. 氮化notch [ nɔtʃ ]n. 凹口,槽口observable [ əb'zə:vəbl ] a. 可观察到的,可以察觉的octahedral [ ,ɔktə'hedrəl, -'hi:- ] a. 八面体的octahedron [ ,ɔktə'hedrən, -'hi:- ]n. 八面体olivine [ ,ɔli'vi:n, 'ɔlivi:n ]n. 橄榄石opacity [ əu'pæsiti ]n. 乳浊,不透光性,浑浊度,不透明度opaque [ əu'peik ] a. 不透明的,模糊的optical flint [ 'ɔptikəl flint]火石光学玻璃optical crown [ 'ɔptikəl kraun]冕牌光学玻璃optics [ 'ɔptiks ]n. 光学optimum [ 'ɔptiməm ]n. 最佳条件orbital hybridation [ 'ɔ:bitəl haibriˈdeiʃən]轨道杂化organosilane [ 'ɔ:ɡənəu'silein]n. 有机硅烷orient [ 'ɔ:riənt, 'əu-, 'ɔ:rient ]n. 东方vt. 定……的方位orthorhombic [ ,ɔ:θə'rɔmbik ] a. 正交(晶)的,斜方(晶)的orthosilicate [ˌɔ:θəˈsiləkeit]n. 正(原)硅酸盐oscillate [ 'ɔsileit ]v. 振荡,振动overlap [ ,əuvə'læp, 'əuvəlæp ]vt. 与……重叠,与……部分一致overview [ 'əuvəvju: ]n. 综述,概述,概观oxalate [ 'ɔksəleit ]n. 草酸盐pelletization [ ,pelitai'zeiʃən ]n. 造球,球粒化作用particle size distribution [ 'pɑ:tikl saiz ,distri'bju:ʃən]粒径分布particulate [ pə'tikjulit ]n. & a. 粒子,细粒(的)peel [ pi:l ]v. 剥,削,剥落pellet [ 'pelit ]n. 片,粒化(料),丸permeation[ˌpə:miˈeiʃən]n. 渗入,透过permissible [ pə'misibl ] a. 容许的,许可的perpendicular [ ,pə:pən'dikjulə ] a. 垂直的petrochemical [ ,petrəu'kemikəl ] a. & n. 化工的,化工产品phase transition [ feiz træn'siʒən]相变phosphate [ 'fɔsfeit ]n. 磷酸盐photonic [ fəu-'tɔnik ] a. 光子的,光电子的piezoceramic [ pi:'eizəu si'ræmik ]n. 压电陶瓷pigment [ 'piɡmənt ]n. 颜(色)料pitch [ pitʃ ]n. 沥青placement [ 'pleismənt ]n. 放置,布局plasma [ 'plæzmə ]n. 等离子体,等离子区platinum [ 'plætinəm ]n. 铂plotter [ 'plɔtə ]n. 绘图器,测绘仪;制图员plunger [ 'plʌndʒə ]n. 活塞,园柱,插棒polarization [ ,pəulərai'zeiʃən, -ri'z- ]n. 极化,偏振polycrystalline [ ,pɔli'kristəlain, -lin ] a. 多晶的polyhedron [ ,pɔli'hi:drən, -he- ]n. 多面体polymorphic [ ,pɔli'mɔ:fik ] a. 多形的,多态的,多晶的porosity [ pɔ:'rɔsiti, pəu- ]n. 气孔率,多孔性postulate [ 'pɔstjuleit, -tʃə- ]n. 假定,假设potash [ 'pɔtæʃ ]n. 碳酸钾pottery [ 'pɔtəri ]n. 陶器厂,陶器(制造术)precursor [ pri:'kə:sə, pri- ]n. 前驱物premise [ pri'maiz, 'premis ]n. 前提vt. 预述(条件),提出……为前提prism [ 'prizm ]n. 棱镜prismatic [ priz'mætik ] a. 斜方晶系的probe [ prəub ]v. & n. 探针,探测器,(以探针等)探察,查明progressively [ prəu'ɡresiv li ]ad. 日益增多地,逐渐projection [ prəu'dʒekʃən ]n. 喷射prolong [ prə'lɔŋ, 'lɔ:ŋ ]vt. 拉长,延长prospective [ prəu'spektiv ] a. 预期的,有希望的prototype [ 'prəutətaip ]n. 原型,样品pseudomorph [ 'psju:dəumɔ:f ]n. 假象,假晶quarry [ 'kwɔri ]n. 采石场quartzite [ 'kwɔ:tsait ]n. 石英岩,硅岩quench [ kwentʃ ]vt. 1、把……淬火;2、熄灭ram [ ræm ]v. 猛击,填塞,撞reagent [ ri:'eidʒənt ]n. 试剂rearrangement [ 'ri:ə'reindʒmənt ]n. 重排reciprocal [ ri'siprəkəl ]n. 倒数reciprocate [ ri'siprəkeit ]v. 往复运动,上下移动,来回recycle [ ,ri:'saikl ]v. & n. 再循环,反复利用refining[riˈfainiŋ]n. (玻璃液)澄清reflectivity [ ,ri:flek'tiviti ]n. 反射性,反射系数refraction [ ri'frækʃən ]n. 折射refractive index [ ri'fræktiv 'indeks]n. 折射率refractoriness[ ri'fræktərinis]n. 耐火度refractory [ ri'fræktəri ]n. & a. 耐火材料,耐熔的,难熔的rigorous [ 'riɡərəs ] a. 严厉的,严酷的replica [ 'replikə ]n. 复制品,拷贝resonator [ 'rezəneitə ]n. 谐振器,共振器retract [ ri'trækt ]vt. 缩进,收缩retrieve [ ri'tri:v ]vt. 1、取回,恢复;2、补偿,弥补retrogression [ ,retrəu'ɡreʃən ]n. 逆反应rheology [ ri:'ɔlədʒi, ri- ]n. 流变性rhombohedral [ˌrɔmbəuˈhi:drəl] a. 菱形的,菱面体的ruby [ 'ru:bi ]n. 红宝石rupture [ 'rʌptʃə ]n. 断裂rutile [ 'ru:tail, -ti:l ]n. 金红石sagger [ 'sæɡə ]n. 闸体sanitaryware[ˈsænitəriwɛə]n. 卫生洁具schematically[ski:ˈmætikəli]ad. 用示意图,示意地,大略地scrap [ skræp ]n. 碎片,废料screw dislocation [ skru: ,disləu'keiʃən]螺旋位错cullet [ 'kʌlit ]n. 碎玻璃seam [ si:m ]n. 缝,接缝segregation [ ,seɡri'ɡeiʃən ]n. 分层sensor [ 'sensə, -sɔ: ]n. 传感器setting time[ 'setiŋ taim]硬化时间setup [ 'setʌp ]n. 1、组织,构造;2、装置,装配,创立shear [ ʃiə ]n. 剪切shrinkage [ 'ʃriŋkidʒ ]n. 收缩(性,量,率)shutdown [ 'ʃʌtdaun ]n. 关闭,熄灭sieve [ siv ]vt. & n. 筛分silicate [ 'silikit, -keit ]n. 硅酸盐silo [ 'sailəu ]n. 料仓,简仓sintering [ 'sintəriŋ ]n. 烧结skid [ skid ]n. 1、滑动,打滑;2、滑橇,划板slab [ slæb ]n. 板皮,石板岩,厚平板,厚片slag [ slæɡ ]n. (炉)渣slip casting [ slip 'kɑ:stiŋ]n. 注浆成型,泥浆浇注slurry [ 'slə:ri, 'slʌ- ]n. 稀泥浆,水泥浆soda ash [ 'səudə æʃ]苏打灰Na2CO3sodium [ 'səudiəm ]n. 纳(Na)solder [ 'sɔldə ]n. & vt. 焊料,焊接spall [ 'spɔ:l ]v. 研碎,散裂spark plug [ spɑ:k plʌɡ]n. 火花塞spatial orientations [ 'speiʃəl ,ɔ:rien'teiʃəns]空间取向spherically [ 'sferikəli]ad. 球地,球形地spindle [ 'spindl ]n. 1、轴,心轴;2、锭子,纺锤spine [ spain ]n. 脊柱spinel [ spi'nel, 'spinəl ]n. 尖晶石spodumene [ 'spɔdjumi:n ]n. 锂辉石Li2O·Al2O3·4SiO2 spray-drying[ sprei 'draiiŋ]n. 喷雾干燥sputter deposition [ 'spʌtə ,depə'ziʃən]溅射沉积stochastic [ stɔ'kæstik, stəu- ] a. 随机的,机遇的,推测的stoichiometric [ ,stɔikiə'metrik ] a. 化学计量的stoneware [ 'stəunwεə ]n. 石制品,粗陶瓷(器)stress-strain curve [ stres strein kə:v]应力-应变曲线subjective [ səb'dʒektiv ] a. 主观的submicrometer [ sʌb 'maikrəu mi:tə ]n. 亚微米suffice [ sə'fais ]v. 足够,使满足superconductor [ ,sju:pəkən'dʌktə ]n. 超导体superfine [ ,sju:pə'fain ] a. 特级的supersaturation [ 'sju:pə,sætʃə'reiʃən ]n. 过饱和(现象)surfactant [ sə:'fæktənt ]n. 表面活化剂suspension [ sə'spenʃən ]n. 悬浮液symmetry [ 'simitri ]n. 对称,匀称symposium [ sim'pəuziəm ]n. 1、专题讨论会;2、专题论文集talc [ tælk ]n. & vt. 滑石,用滑石处理tantalum [ 'tæntələm ]n. 钽tar [ tɑ: ]n. 焦油temporal [ 'tempərəl ] a. 1、暂时的,转瞬间的;2、时间的tensile strength [ 'tensail streŋθ]抗张强度ternary [ 'tə:nəri ] a. & n. 三元(的),三重(的)tetragonal [ te'træɡənəl ] a. 四方晶系的tetrahedron [ ,tetrə'hi:drət, -'he- ]n. 四面体tetravalent [ ,tetrə'veilənt, te'trævə- ] a. 四价的texture [ 'tekstʃə ]n. 织构,质地,结构thermalcouple [ 'θə:məl 'kʌpl]n. 热电偶thermal expansion coefficient[ 'θə:məl ik'spænʃən ,kəui'fiʃənt ]热膨胀系数thermal shock resistance[ 'θə:məl ʃɔk ri'zistəns ]抗热震(性)thermoplastic[ ,θə:məu'plæstik ] a. 热塑性的throwing[ 'θrəuiŋ ]n. 手工拉坯titania [ tai'teiniə, ti- ]n. 二氧化钛titanate [ 'taitəneit ]n. 钛酸盐tolerance [ 'tɔlərəns ]n. 公差,容许限度toughness[ tʌfnis ] n. 韧性toxicity [ tɔk'sisəti ]n. 毒性translucent [ trænz'lju:sənt, træns-, trɑ:n- ]n. 半透明的tridymite [ 'tridimait ]n. 磷石英trigonal [ 'triɡənəl, trai'ɡəunəl ] a. 三方的valency [ 'veilənsi ]n. 化合价,价,原子价varistor [ və'ristə ]n. 压敏电阻,可变电阻versatile [ 'və:sətail ] a. 1、通用的,万能的;2、活动的,万向的vertebra [ 'və:tibrə ]n. 椎骨,脊椎(pl. vertebrae)vinylalcohol [ 'vainil 'ælkəhɔl]n. 乙烯醇vitreous [ 'vitriəs ] a. 玻璃质的,玻璃态的vitrification [ ,vitrifi'keiʃən ]n. 玻璃化vitrify [ 'vitrifai ]v. 玻璃化,(使)成玻璃volatilization [ vɔ,lætilai'zeiʃən ]n. 挥发wetting[ 'wetiŋ ]n. (变、润、浸)湿whisker [ 'hwiskə ]n. 晶须whiteware [ 'hwaitwεə ]n. 白色(卫生)陶瓷wollastonite [ 'wuləstənait ]n. 硅灰石workability [ ,wə:kə'biləti ]n. 成型性zeolite [ 'zi:əlait ]n. 沸石zinc[ ziŋk ]n. 锌zirconia [ 'zə:kɔniə]n. 氧化锆zircon [ 'zə:kɔn ]n. 锆石,锆英石。
a15晶体结构和体心立方结构
a15晶体结构和体心立方结构英文回答:The a15 crystal structure and the body-centered cubic (BCC) structure are two important crystal structures that are commonly found in metals and alloys. Both structures have a cubic lattice, but the arrangement of atoms within the lattice is different.In the a15 crystal structure, the atoms are arranged in a regular pattern of three-dimensional cubes. Each cube is centered on an atom, and the atoms at the corners of the cube are shared with the neighboring cubes. This structure is often found in intermetallic compounds, such as Nb3Sn and V3Si.In the BCC structure, the atoms are arranged in a regular pattern of three-dimensional cubes, but the atoms at the corners of the cube are not shared with the neighboring cubes. Instead, each atom is surrounded byeight other atoms, which form a cube-shaped cluster around the central atom. This structure is often found in pure metals, such as iron, chromium, and molybdenum.The a15 crystal structure and the BCC structure have different properties due to their different atomic arrangements. The a15 structure is typically more brittle than the BCC structure, and it is also more resistant to deformation. The BCC structure is typically more ductile than the a15 structure, and it is also more容易变形的.The a15 crystal structure and the BCC structure are both important crystal structures that are commonly found in metals and alloys. Understanding the properties of these structures is important for designing and developing new materials with specific properties.中文回答:a15晶体结构和体心立方(BCC)结构是金属和合金中常见的重要晶体结构。
准晶体 简介
分形学图形
准晶体性质
电性能:
与金属的导电性质相比,准晶体一般电阻较大。 当温度不太高时,准晶的电阻随温度的增加而减少。 准晶的导电性能随样品质量的改善反而降低。
热性能:
导热系数K很小,且与温度密切有关。 实验观察到准晶的热性能有明显的各向异性。
磁性能:
霍尔系数为负,但绝对值比金属大两个数量级, 并随温度的增加可能改变方向。
准晶材料的应用
由于准晶材料有较高的硬度、低摩擦系数、低表面能、 低传热性、不粘性、耐蚀耐热和耐磨等特点。准晶材料的 主要作为表面改性材料,以及作为增强相弥散分布于结构 材料中。 在实际生活中,因为准晶材料具有耐蚀耐磨等特点, 可用于不粘锅表面更抗腐。 航空航天工业中,科学家们正研究用准晶体材料来替 代这些传统材料隔热。 太阳热能工业中,准晶体因具有特殊的光学性能(高 的红外传导率)和足够的热稳定性(抗氧化及扩散稳定性) 还被用作太阳能工业薄膜材料。 准晶体材料还可以作为结构材料增强相的应用、储氢 材料、半导体材料以及热致发电材料等。
谢谢!
1987年法日科学家成功地在实验室中制造出了大到足以被x射线观察到的准晶体结构证实了2009年科学家在俄罗斯的矿物中发现了准晶体瑞典一家公司在一种耐用性最强的钢中发现了准晶体这种钢目前被用于剃须刀片和眼科手术用的手术针中
准晶体
1984年底,D.Shechtman等人宣布,他们在急 冷凝固的Al-Mn合金中发现了具有五重旋转对称但 并无平移周期性的合金相,这种长程有序但无平移 对称性的结构被称为准晶体。 1985年初,郭可信等人在Ti-V-Ni合金中发现了 二十面体准晶体。 当时人们普遍认为 ,自然界中不可能存在具有 谢赫特曼发现的那种原子排列方式的晶体。 1987年,法、日科学家成功地在实验室中制造 出了大到足以被X射线观察到的准晶体结构,证实了 谢赫特曼的发现。 2009年,科学家在俄罗斯的矿物中发现了准晶体, 瑞典一家公司在一种耐用性最强的钢中发现了准晶体, 这种钢目前被用于剃须刀片和眼科手术用的手术针中。
准晶的结构对称性及其物理性质
准晶的结构对称性及其物理性质
准晶(quasicrystal)是一种拥有无限对称性(即不属于五边形、六边形等常见的空间群)的晶体。
准晶的结构对称性使它在某些方面与晶体相似,如表面形貌和晶体纹理等,但又在某些方面与晶体不同,如拥有无限对称性和禁带等特性。
准晶的物理性质受其结构对称性的影响。
例如,准晶的禁带(即能带)比晶体更宽,因此准晶的导电性比晶体差;准晶的晶体纹理可以用于制备高性能表面,因此准晶在涂料、抗磨材料等领域有广泛应用。
三氯化铬固体的晶体类型
三氯化铬固体的晶体类型三氯化铬是一种重要的无机化合物,其晶体类型为正交晶系。
正交晶系是晶体学中的一种晶体类型,具有较为特殊的晶体结构和性质。
正交晶系的晶体结构具有三个互相垂直的晶轴,分别称为a轴、b 轴和c轴。
在正交晶系中,晶体结构的三个晶轴长度可以不相等,角度均为90度。
这种晶体结构的特点使得正交晶系的晶体形状呈现出矩形或长方体的形状。
三氯化铬晶体的结构由一个铬原子和六个氯原子组成。
铬原子位于晶体的中心位置,而氯原子则分别位于铬原子的周围。
铬原子与氯原子通过共价键结合在一起,形成了晶体的结构。
三氯化铬晶体的晶格参数可以通过X射线衍射实验测定得到。
晶格参数包括晶胞长度和晶胞间的夹角。
根据实验结果,三氯化铬的晶胞长度a为5.41埃,b为5.41埃,c为6.89埃,α为β为γ为90度。
这些参数可以用来描述三氯化铬晶体的晶体结构和晶体形态。
三氯化铬晶体具有一些特殊的物理和化学性质。
首先,三氯化铬是一种深绿色的固体,具有较高的熔点和沸点。
其独特的晶体结构使得三氯化铬具有一定的热稳定性和化学稳定性。
此外,三氯化铬在水中可溶解,并能与一些有机物发生反应,具有催化作用。
三氯化铬晶体的应用广泛。
首先,三氯化铬是一种重要的化学试剂,可用于有机合成和催化反应。
其催化作用可用于合成有机化合物和开发新型催化剂。
此外,三氯化铬还可用于制备其他铬化合物,如三氧化二铬和四氯化铬等。
三氯化铬是一种重要的无机化合物,其晶体类型为正交晶系。
正交晶系具有特殊的晶体结构和性质,能够广泛应用于化学合成和催化反应等领域。
对于研究和应用三氯化铬晶体的相关领域,对其晶体结构和性质的深入了解具有重要的意义。
材料科学基础英文词汇
材料科学基础专业词汇:第一章晶体结构原子质量单位Atomic mass unit (amu) 原子数Atomic number原子量Atomic weight 波尔原子模型Bohr atomic model键能Bonding energy 库仑力Coulombic force共价键Covalent bond 分子的构型molecular configuration 电子构型electronic configuration 负电的Electronegative正电的Electropositive 基态Ground state氢键Hydrogen bond 离子键Ionic bond同位素Isotope 金属键Metallic bond摩尔泡利不相容原理MolePauli exclusion principle 元素周期表Periodic table原子atom 分子molecule分子量molecule weight 极性分子Polar molecule量子数quantum number 价电子valence electron范德华键van der waals bond 电子轨道electron orbitals点群point group 对称要素symmetry elements 各向异性anisotropy 原子堆积因数Atomic packing factor体心立方结构body-centered cubic (BCC) 面心立方结构(APF)face-centered cubic (FCC)布拉格定律bragg' s law 配位数coordination number晶体结构crystal structure 晶系crystal system晶体的crystalline 衍射diffraction中子衍射neutron diffraction 电子衍射electron diffraction晶界grain boundary 六方密堆积hexagonal close-packed(HCP)鲍林规则Pauling' s rules NaCl 型结构NaCl -type structure CsCl 型结构Caesium Chloride structure 闪锌矿型结构Blende-type structure纤锌矿型结构Wurtzite structure 金红石型结构Rutile structure萤石型结构Fluorite structure 钙钛矿型结构Perovskite-type structure 尖晶石型结构Spinel-type structure 硅酸盐结构Structure of silicates岛状结构Island structure 链状结构Chain structure层状结构Layer structure 架状结构Framework structure滑石talc 叶蜡石pyrophyllite高岭石kaolinite 石英quartz长石feldspar 美橄榄石forsterite各向同性的isotropic 各向异性的anisotropy晶格lattice 晶格参数lattice parameters密勒指数miller indices 非结晶的noncrystalline多晶的polycrystalline 多晶形polymorphism单晶single crystal 晶胞unit cell电位electron states (化合)价valence电子electrons 共价键covalent bonding金属键metallic bonding 离子键Ionic bonding极性分子polar molecules 原子面密度atomic planar density衍射角diffraction angle 合金alloy粒度,晶粒大小grain size 显微结构microstructure显微照相photomicrograph 扫描电子显微镜scanning electronmicroscope (SEM)透射电子显微镜transmission electron 重量百分数weight percentmicroscope (TEM)tetragonal coordination number 单斜的monoclinic四方的配位数材料科学基础专业词汇:第二章晶体结构缺陷缺陷defect, imperfection 点缺陷point defect线缺陷line defect, dislocation 面缺陷interface defect体缺陷volume defect 位错排列dislocation arrangement 位错线dislocation line 刃位错edge dislocation螺位错screw dislocation 混合位错mixed dislocation晶界grain boundaries 大角度晶界high-angle grainboundaries小角度晶界tilt boundary, 孪晶界twin boundaries位错阵列dislocation array 位错气团dislocation atmosphere 位错轴dislocation axis 位错胞dislocation cell位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip 位错核心能量dislocation core energy 位错裂纹dislocation crack 位错阻尼dislocation damping位错密度dislocation density 原子错位substitution of a wrongatom间隙原子interstitial atom 晶格空位vacant lattice sites间隙位置interstitial sites 杂质impurities弗伦克尔缺陷Frenkel disorder 肖脱基缺陷Schottky disorder主晶相the host lattice 错位原子misplaced atoms缔合中心Associated Centers. 自由电子Free Electrons电子空穴Electron Holes 伯格斯矢量Burgers克罗各-明克符号Kroger Vink notation 中性原子neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体compound材料科学基础专业词汇 :第三章熔体结构熔体结构 structure of melt 过冷液体 supercooling melt 玻璃态 vitreous state 软化温度 softening temperature 粘度viscosity表面张力 Surface tension 介稳态过渡相 metastable phase 组织 constitution 淬火quenching退火的 softened 玻璃分相phase separation in glasses体积收缩volume shrinkage材料科学基础专业词汇 :第四章固体的表面与界面表面 surface界面 interface同相界面 homophase boundary 异相界面 heterophase boundary 晶界 grain boundary表面能 surface energy小角度晶界 low angle grain boundary 大角度晶界 high angle grain boundary 共格孪晶界 coherent twin boundary 晶界迁移 grain boundary migration 错配度 mismatch 驰豫 relaxation 重构 reconstuction 表面吸附 surface adsorption 表面能 surface energy倾转晶界 titlt grain boundary 扭转晶界 twist grain boundary 倒易密度 reciprocal density 共格界面 coherent boundary 半共格界面 semi-coherent boundary 非共格界面 noncoherent boundary 界面能interfacial free energy 应变能strain energy晶体学取向关系crystallographic orientation固溶体 化合物 置换固溶体 不混溶固溶体 有序固溶体 solid solution compound substitutional solid solution immiscible solid solution ordered solid solution 固溶强化 solid solution strengthening 固溶度 间隙固溶体 金属间化合物 转熔型固溶体 无序固溶体 取代型固溶体solid solubility interstitial solid solution intermetallics peritectic solid solution disordered solid solution Substitutional solid solutions过饱和固溶体 supersaturated solid solution非化学计量 化合Non stoichiometric惯习面habit plane材料科学基础专业词汇:第五章相图相图phase diagrams 相phase组分component 组元compoonent相律Phase rule 投影图Projection drawing浓度三角形Concentration triangle 冷却曲线Cooling curve成分composition 自由度freedom相平衡phase equilibrium 化学势chemical potential热力学thermodynamics 相律phase rule吉布斯相律Gibbs phase rule 自由能free energy吉布斯自由能Gibbs free energy 吉布斯混合能Gibbs energy of mixing吉布斯熵Gibbs entropy 吉布斯函数Gibbs function热力学函数thermodynamics function 热分析thermal analysis过冷supercooling 过冷度degree of supercooling杠杆定律lever rule 相界phase boundaryboundary 相界线phase boundary line 相界交联phasecrosslinkingboundary 共轭线conjugate lines 相界有限交联phasecrosslinking相界反应phase boundary reaction 相变phase change相组成phase composition 共格相phase-coherent金相相组织phase constentuent 相衬phase contrastcontrast 相衬显微镜phase contrast microscope 相衬显微术phasemicroscopy相分布phase distribution 相平衡常数phase equilibriumconstant相平衡图phase equilibrium diagram 相变滞后phase transition lag相分离phase segregation 相序phase order相稳定性phase stability 相态phase statetransition 相稳定区phase stabile range 相变温度phasetemperature相变压力phase transition pressure 同质多晶转变polymorphic材料科学基础专业词汇 :第六章扩散活化能 activation energy扩散通量diffusion flux 浓度梯度 concentration gradientFick ' s first law 菲克第一定律 菲克第二定律 Fick ' s second law相关因子 correlation factor稳态扩散steady state diffusion非稳态扩散nonsteady-state diffusion扩散系数 diffusion coefficient 跳动几率 jump frequency 填隙机制 interstitalcy mechanism 晶界扩散 grain boundary diffusion 短路扩散 short-circuit diffusion上坡扩散 uphill diffusion下坡扩散Downhill diffusion互扩散系数Mutual diffusion渗碳剂 carburizing浓度梯度 concentration gradient 浓度分布曲线 concentration profile扩散流量 diffusion flux 驱动力driving force间隙扩散interstitial diffusion自扩散self-diffusion表面扩散surface diffusion空位扩散 vacancy diffusion 扩散偶 diffusion couple 扩散方程diffusion equation 扩散机理 diffusion mechanism 扩散特性diffusion property 无规行走Random walk同素异晶转变 allotropic transformation 显微结构 microstructures 不混溶性immiscibility相平衡条件 低共熔体transformationphase equilibrium conditions eutectoid材料科学基础专业词汇 :第七章相变过冷 supercooling 过冷度 degree of supercooling 晶核 nucleus形核 nucleation 形核功 nucleation energy 晶体长大 crystal growth均匀形核homogeneous nucleation非均匀形 核 heterogeneous nucleation 形核率 nucleation rate长大速率growth rate热力学函 数 thermodynamics function临界晶核 critical nucleus 临界晶核 半径 critical nucleus radius 枝晶偏析 dendritic segregation 局部平衡 localized equilibrium平衡分配 系数 equilibriumdistributioncoefficient 有效分配 系数 effective distribution coefficient 成分过冷 constitutional supercooling引领(领 先)相 leading phase 共晶组织 eutectic structure 层状共晶体 lamellar eutectic 伪共晶 pseudoeutectic 离异共晶 divorsed eutectic表面等轴 晶区 chill zone柱状晶区columnar zone中心等轴 晶区 equiaxed crystal zone 定向凝固 unidirectional solidification 急冷技术 splatcooling 区域提纯 zone refining 单晶提拉 法 Czochralski method 晶界形核boundary nucleation 位错形核 dislocation nucleation 晶核长大 nuclei growth本征热缺陷 Intrinsic thermal defect 本征扩散系数 Intrinsic coefficientdiffusion离子电导率Ion-conductivity空位机制Vacancy concentration达肯方程 Dark equation柯肯达尔效应 Kirkendall equation斯宾那多分解spinodal decomposition有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite固相反应solid state reaction烧成fire再结晶Recrystallization成核nucleation子晶,雏晶matted crystal异质核化heterogeneous nucleation铁碳合金iron-carbon alloy铁素体ferrite共晶反应eutectic reaction 烧结sintering合金alloy二次再结晶Secondary recrystallization 结晶crystallization耔晶取向seed orientation均匀化热处理homogenization heattreatment渗碳体cementite奥氏体austenite固溶处理solution heat treatment材料科学基础专业词汇:第八、九章固相反应和烧结。
高二化学人教版选修3物质结构与性质第三章《 晶体结构与性质》测试题
一、单选题
1..熔点最高的晶体是()
A.干冰B.食盐C.金刚石D.碳化硅
2.下列各组物质,晶体类型相同且加热时破坏化学键类型相同的是
A.NaOH NaClB.I2Br2
C.NH4Cl HClD.CO2SiO2
3.下列物质中不含共价键的是
A.晶体硅B.氯化氢
C.水D.铜
4.下列说法正确的是()
(2)写出反应④的离子方程式_____________2反应生成Cu(SCN)2,1 mol (SCN)2分子中含有的δ键数目为类卤素(SCN)2对应的酸有两种,理论推测硫氰酸(H-S-C N)的沸点低于异硫氰酸(H-N=C=S)的沸点,其原因是__________________;写出一种与SCN-互为等电子体的分子_________________(用化学式表示)。
C.石墨热稳定性更好
(4)已知常温下,H2CO3:Ki1=4.3x10﹣7、Ki2=5.6x10﹣11.结合H+的能力Na2CO3溶液______(填”>”、”<”或“=”)NaHCO3溶液,设计简单实验证明:______.
(5)在1L 0.3mol/L的NaOH溶液中,通入4.48LCO2(标准状况),反应后所得溶液中离子的浓度之间有一些等量关系,例如:.c(Na+)+c(H+)=c(HCO3﹣)+2c(CO32﹣)+c(OH﹣),另外对此溶液中存在的离子按浓度由大到小排序为______.
A.③和④中原子的配位数分别为6、12
B.金属Zn采用②堆积方式
C.①中空间利用率的表达式为: ×100%
D.对于采用②堆积方式的金属,实验测得Wg该金属的体积为Vcm3,则阿伏加德罗常数NA的表达式为
一维晶格常数
一维晶格常数
一维晶格常数是指一维晶体中相邻原子之间的距离。
在一维晶体中,原子只能沿着一条线排列,因此晶格常数只有一个维度,通常用字母a表示。
晶格常数的大小决定了晶体的结构和性质。
晶格常数的计算通常通过X射线衍射或电子衍射实验得出,也可以通过晶体结构的空间群和晶胞参数计算得到。
在一维晶体中,晶格常数可以用原子之间的键长来计算,即晶格常数a等于相邻原子之间的距离。
晶格常数在材料科学中具有重要的作用,它决定了晶体的晶格结构和物理性质。
例如,在半导体材料中,晶格常数的大小影响着材料的电学性质和光学性质。
因此,对于材料的研究和制备,晶格常数的测量和控制非常重要。
as的晶格常数 -回复
as的晶格常数-回复as的晶格常数是指as晶格中相邻两个原子之间的距离。
晶格常数是晶体结构的一项重要参数,它与物质的性质密切相关。
本文将从as的晶体结构、晶格常数的定义和计算方法等方面逐步介绍as的晶格常数。
首先,我们来了解as的晶体结构。
as是锑的化学符号,它属于p-块元素,原子序数为33。
as晶体采用简单立方结构,每个as原子都位于晶格点上。
简单立方结构的晶体中,每个原子的周围有六个相邻原子,分别位于上下左右前后六个方向。
接下来,我们来介绍晶格常数的定义。
晶体结构中的晶格是由重复单位构成的无限大集合,形成周期性排列。
晶格常数是指晶格中相邻两个原子或离子之间的距离,通常用字符a表示。
晶格常数是晶体结构的特征之一,它的大小和晶体中原子的排列方式有关。
为了计算as的晶格常数,我们先要通过实验或理论方法确定晶体的晶体结构。
对于as的晶体结构,实验表明其为简单立方结构。
然后,我们可以利用晶体学的理论知识,通过晶胞中原子的排列方式来计算晶格常数。
对于简单立方结构,晶格常数可以直接由晶胞的边长确定,即a=d,其中d为相邻两个原子之间的距离。
为了确定as的晶格常数,我们需要测量或估算晶胞的边长。
一种常用的测量方法是X射线衍射。
通过将X射线照射到as晶体上,然后观察衍射图样,可以得到晶体中晶胞的特征参数,例如晶胞的边长和晶格常数。
此外,还可以使用电子显微镜等方法来观察晶体,并通过测量晶胞的尺寸来确定晶格常数。
除了测量方法,还可以使用理论计算方法来估算晶格常数。
常用的理论计算方法包括密度泛函理论和分子动力学模拟等。
密度泛函理论是一种基于量子力学的计算方法,通过计算电子密度来估算晶体的结构参数,包括晶格常数。
分子动力学模拟则是通过模拟原子之间的相互作用力和运动来估算晶格常数。
总结起来,as的晶格常数是as晶体中相邻两个原子之间的距离,它是晶体结构的一个重要参数。
通过实验或理论方法,可以确定as晶体的晶体结构,并进一步计算得到晶格常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
July 2015 | Vol.58 No.7543© Science China Press and Springer-Verlag Berlin Heidelberg 2015Synthesis, crystal structure and physical properties of quasi-one-dimensional ACr 3As 3 (A = Rb, Cs)Zhang-Tu Tang 1,2, Jin-Ke Bao 1,2, Yi Liu 1,2, Hua Bai 1,2, Hao Jiang 1,2, Hui-Fei Zhai 1,2, Chun-Mu Feng 1, Zhu-An Xu 1,2,3 and Guang-Han Cao 1,2,3*Recently, new Cr-based superconductors, A 2Cr 3As 3 (A = K, Rb, Cs), have gained intense interest because of their one-dimen-sional crystal structures and electron correlations. Here we report the crystal structure and physical properties of two re-lated materials ACr 3As 3 (A = Rb, Cs) which are synthesized via a soft-chemical A + deintercalation in A 2Cr 3As 3. The new com-pounds remain one-dimensional (Cr 3As 3)∞ linear chains, and the interchain distance can be tuned by the incorporation of the alkali-metal cations with different sizes. The physical prop-erty measurements indicate a local-moment behavior at high temperatures, and the moments freeze into a cluster spin-glass state below 5–6 K. No superconductivity was observed in both materials. We also found that, with increasing the interchain distance, the Cr effective moments increase monotonically, accompanied with the enhancement of semi-conductivity. Our results shed light on the understanding of occurrence of super-conductivity in A 2Cr 3As 3.INTRODUCTIONThe recent discovery of superconductivity in quasi-one dimensional compounds A 2Cr 3As 3 (A = K, Rb, Cs) [1–3] has aroused immediate research interest primarily because of the significant electron correlations as well as the quasi- one-dimensional crystal structure. A 2Cr 3As 3 crystallizes in a hexagonal lattice, comprising of [(Cr 3As 3)2−]∞ dou-ble-walled subnano-tubes that are separated by columns of the A + counterions. Both experimental investigations [1–9] and theoretical calculations/analyses [10–14] indicate nov-el properties in the new superconductors.The A 2Cr 3As 3 superconductors are very sensitive to air, probably due to the existence of “crowded” A1 atoms in the crystal structure [1]. By topotactically removing one K in K 2Cr 3As 3, we recently succeeded in obtaining an air-stable compound KCr 3As 3 [15]. This new material crystallizes in a different space group of P63/m (No. 176), yet containing the similar (Cr 3As 3)∞ linear chains. Thus it is regarded as a1 Department of Physics, Zhejiang University, Hangzhou 310027, China2Collaborative Innovation Centre of Advanced Microstructures, Nanjing 210093, China 3State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China *Corresponding author (email: ghcao@)“cousin” of K 2Cr 3As 3. The physical property measurements indicate that KCr 3As 3 does not show superconductivity, but exhibits a cluster spin-glass state instead.Here we report the synthesis and characterizations of two new members in the ACr 3As 3 series with A = Rb and Cs. Our measurements show that all the “133” compounds, including previously synthesized KCr 3As 3, have similar physical properties with a cluster spin-glass ground state, just like that the “233” family all superconduct at low tem-peratures. Nevertheless, variations in some physical prop-erties, such as the resistivity value and magnitude of the local moments, are also evident, which suggests the im-portance of dimensionality (or interchain coupling). Our results provide helpful references for the understanding of the superconductivity in A 2Cr 3As 3.EXPERIMENTALPolycrystalline samples of ACr 3As 3 were synthesized by re-acting A 2Cr 3As 3 polycrystals with absolute ethanol, similar to the previous report [15]. First, the A 2Cr 3As 3 polycrys-talline pellets were prepared by multi-step solid-state reac-tion s in evacuated containers [2,3]. The resultant products are single phase, as checked by powder X-ray diffraction (XRD). The as-prepared pellets were immersed into abso-lute ethanol at room temperature, and bubbles of hydrogen gas were found to release from the liquid. After the two days reaction, the pellets were washed by ethanol, and then evacuated in vacuum to remove the remaining ethanol. In order to get the pure “133” phase, the process was repeated several times. We note that the obtained CsCr 3As 3 sample is much loose and friable, as compared with RbCr 3As 3. By weighing a regularly-shaped sample, the density of Rb-Cr 3As 3 (CsCr 3As 3) was measured to be 82(3)% [73(3)%] of the theoretical one based on the XRD results.Powder XRD experiments were carried out at room Published online 6 July 2015 | doi: 10.1007/s40843-015-0063-0Sci China Mater 2015, 58: 543–549544July 2015 | Vol.58 No.7© Science China Press and Springer-Verlag Berlin Heidelberg 2015temperature on a PANalytical X-ray diffractometer (Empy-rean Series 2) with a monochromatic CuKα1 radiation. The electrical resistivity was measured using standard four-ter-minal method. The polycrystalline samples were cut into a thin rectangular bar, and silver paste was used to attach gold wires onto the samples’ surface. The magnetizations were measured on a Quantum Design Magnetic Property Measurement System (MPMS-5). The specific-heat capac-ity was measured by a relaxation technique on a Quantum Design Physical Properties Measurement System (PPMS-9) using a thin square-sharp sample. The heat-capacity ad-denda from the sample holder and grease were deducted.RESULTS AND DISCUSSIONBased on the previous studies [1–3,15], the two-step chem-ical reactions associated with the synthesis can be writtenas follows,(1) 2A + 3Cr + 3As → A 2Cr 3As 3 (~700°C in vacuum);(2) A 2Cr 3As 3 + C 2H 5OH → ACr 3As 3 + AOC 2H 5 + 1/2H 2 .The second reaction keeps the identical (Cr 3As 3)∞ lin-ear chains (see below). Therefore, the reaction is actually a deintercalation process, which is in general a topotactic transformation without breaking the main framework of the crystal structure. Thus it is expected to produce single crystals using the similar route in the future.Fig. 1 shows the room-temperature XRD patterns for the ACr 3As 3 powder samples. Both can be well indexed by a hexagonal lattice with unit-cell parameters close to those of KCr 3As 3 [15], and no obvious impurity phase can beidentified. Using the same structure (space group P63/m) as the starting point, we successfully made the Rietveld structural refinements [16], with a reliable factor of R wp = 4.9%, a goodness of fit χ2 = 2.3 for RbCr 3As 3 and R wp = 4.4%, χ2 = 2.3 for CsCr 3As 3, respectively. The resulting crystallo-graphic data are listed in Table 1.The crystal structure of the ACr 3As 3 system is shown in Figs 1c and d. The quasi-one-dimensional (Cr 3As 3)∞ double-walled subnano-tubes are kept, although half of the Rb + or Cs + was deintercalated. The linear chains com-prise face-sharing Cr 6 octahedra, which are surrounded by As 3− ions. There is only one equivalent site for the A + cat-Table 1 Experimental crystallographic parameters refined by a Rietveld analysis of the X-ray diffraction data collected at room temperature for ACr 3As 3. The atomic coordinates are (x , y , 0.25)Space group RbCr 3As 3CsCr 3As 3P63/m (#176)P63 /m (#176)a ( Å)9.334 (2)9.632 (1)c ( Å)4.1775 (7)4.1814 (6)CoordinatesAs (6h)x 0.3342(4)0.3182(3)y 0.0542(3)0.0425(2)Cr (6h)x 0.1522(5)0.1521(3)y0.1816(4)0.1711(2) A (2c)x = 1/3y = 2/3Cr−Cr Bond distances (Å)Inter-plane Cr−Cr 2.616(3) 2.611(1)In-plane Cr−Cr2.729(5)2.710(3)CrI n t e n s i t y (103 C o u n t s )aCr As Rb/Csdc[001] ProjectionI n t e n s i t y (103 C o u n t s )2T (°)cabCr 3As 3 chainFigure 1 Room-temperature powder X-ray diffraction patterns and their Rietveld refinement profiles for RbCr 3As 3 (a) and CsCr 3As 3 (b). Panels (c) and (d) display the crystal structure from two different perspectives, highlighting the one-dimensional (Cr 3As 3)∞ double-walled subnano-tubes.July 2015 | Vol.58 No.7545© Science China Press and Springer-Verlag Berlin Heidelberg 2015ion. Each A + cation is coordinated to nine As 3− anions in a tricapped triangular prisms. Notably, compared with the A 2Cr 3As 3 superconductors, the (Cr 3As 3)∞ chains rotate for a small angle along the c axis, which leads to a change in space group and point group. Such rotations could lead to significant changes in band structures, as shown by a very recent calculation for KCr 3As 3 [17].Fig. 2 shows the change in crystal structure as functions of the ionic radii [18] of the alkali-metal cations. The a axis increases remarkably and almost linearly, while the c axis hardly changes. This reflects that the (Cr 3As 3)∞ chains basi-cally remains unchanged, and the interchain distance (the same as the a value) can be modified by the alkali-metal elements. Indeed, the Cr–Cr bond distances have only a slight change, as shown in Fig. 2b.Fig. 3 shows the temperature dependence of electrical resistivity, ρ(T ), for the ACr 3As 3 polycrystalline samples. Similar to that in KCr 3As 3 [15], the resistivity of ACr 3As 3 has a weak temperature dependence above 100 K. Below 100 K, the resistivity shows a semiconducting-like behav-ior. However, the ρ(T ) data do not obey a thermally-acti-vated relation, ρ(T ) = ρ0exp[−E a /(k B T )], where E a denotes the excitation energy. Neither do they follow the vari-able-range hopping formula originally proposed by Mott [19]. The room-temperature resistivity of RbCr 3As 3 is ~2 mΩ cm, comparable to that of KCr 3As 3 (~1 mΩ cm). CsCr 3As 3 shows a much higher room-temperature resistiv-ity (~60 mΩ cm), which seems to be related to the sample’s looseness. Nevertheless, the resistivity ratio, ρ4 K /ρ300 K , also has the largest value in CsCr 3As 3. The remarkable differ-ence in ρ(T ) does not seem to be ascribed to a grain bound-ary effect.It is expected that the intrinsic electrical transport is highly anisotropic, given the quasi-one-dimensional crys-tal structure. Namely, the conductivity along the chain direction would be larger, and the conductivity perpen-dicular to the c axis would be relatively small. Assuming metallic conductions along the chains (because of non-zero density of states at the Fermi level evidenced by the related band-structure calculations [17] and specific-heat mea-surements below), the measured high resistivity as well as the semiconducting-like temperature dependence could represent the interchain transport property. Another pos-sibility of the pronounced semiconductivity may be asso-ciated with an enhanced Anderson localization due to the weakened interchain coupling. Note that the d ρ/d T data show a di p at T ρ ~50 K, which is slightly lower than that of KCr 3As 3 [15]. This anomaly is probably related to the formation of Cr-spin clusters [15].Fig. 4a shows the temperature dependence of DC mag-netic susceptibility (χ = M /H ) under an external field of 1 kOe for the bulk sample of RbCr 3As 3. The high-tem-perature χ(T ) curve exhibits a Curie-Weiss paramagnetic behavior. We thus fit the data (100−280 K) by an extended Curie-Weiss formula, χ = χ0+C /(T−θp ), where χ0 is a tem-perature-independent term, C represents the Curie con-stant, and θp is the paramagnetic Curie-Weiss temperature. The fitted C value gives an effective magnetic moment of 1.22 μB /Cr, twice as large as that of KCr 3As 3(0.68μB /Cr )2.582.612.642.672.702.73L a t t i c e p a r a m e t e r s (Å)A +ionic radii (Å)C r –C r d i s t a n c e s (Å)A +ionic radii (Å)Figure 2 Influence of the size of the alkali-metal element on the crystal structure of ACr 3As 3 (A = K, Rb, Cs).5101520253006009001200U (m : c m )U (m : c m )T (K)Figure 3 Temperature dependence of electrical resistivity of the ACr 3As 3(A = Rb, Cs) polycrystalline samples. The insets plot the derivative of resistivity, showing an anomaly at ~50 K.546July 2015 | Vol.58 No.7© Science China Press and Springer-Verlag Berlin Heidelberg 2015[15]. Besides, the fitted θp value is −78.8 K, implying domi-nantly antiferromagnetic interactions between the Cr local moments.The data of 1/(χ−χ0) obviously deviates from linearity below T χ ~ 60 K, below which a broad transition appears, corresponding to the broad anomaly in d ρ/d T shown in Fig. 3a. The Curie-Weiss fit for low-temperature (8−50 K) data yields a reduced effective moment of 0.67 μB /Cr, which suggests formation of spin clusters. If the spin clusters are composed of six nearby Cr atoms (a Cr 6 octahedron), the effective moments become 1.64 μB /Cr 6, equivalent to a lo-calized S = 1/2 spin. Additionally, the paramagnetic Cu-rie-Weiss temperature changes into 1.5 K, indicating a weak ferromagnetic interaction between the spin clusters.At lower temperatures, the spin clusters freeze, as indi-cated in Figs 4b–d. The χ(T ) data at low magnetic fields show an obvious bifurcation at T f = 6 K between the ze-ro-field cooling (ZFC) and field cooling (FC) data. Withincreasing field, the divergence tends to diminish, and T f shifts to lower temperatures. The isothermal magnetiza-tion, M (H ), shows non-linear relation at low temperatures. An obvious magnetic hysteresis can be seen below T f , in accordance with the spin freezing. Meanwhile, the magne-tization does not saturate even under a magnetic field of 5 T, where the magnetization is less than 0.05 μB /Cr. This suggests absence of long-range ferromagnetic ordering.We also measured the DC magnetic susceptibility and isothermal magnetization for CsCr 3As 3, as shown in Fig. 5. Very similar behavior was observed, which points to the spin cluster freezing below 5 K. The high-temperature susceptibility (not shown here) indicates a larger effective moment of 1.6 μB /Cr, which is consistent with the weakest interchain coupling in CsCr 3As 3.Fig. 6 shows the temperature dependence of specific heat data of RbCr 3As 3 and CsCr 3As 3, plotted in C /T vs . T 2. No specific-heat jump associated with a superconducting-6-4-20246-40-202040í0.10í0.050.000.050.10íí01205010015020025036912a T (K)F (10í3 e m u /m o l -C r )1/(F íF 0)(103 m o l -C r /e m u )246810691215bF (10í3 e m u /m o l -C r )T (K)c M (10í3P B /C r )P 0H (T)dM (10í3P B /C r )P 0H (T)Figure 4 (a) Temperature dependence of magnetic susceptibility for RbCr 3As 3. The dashed lines represent the Curie-Weiss fit. (b) Low-temperature magnetic susceptibility with zero-field-cooled (ZFC) and field-cooled (FC) procedures under different external fields. (c) Isothermal magnetizations at different temperatures. (d) An enlarged plot of field dependence of magnetization at 2 K.July 2015 | Vol.58 No.7547© Science China Press and Springer-Verlag Berlin Heidelberg 2015transition can be seen, consistent with the above electri-cal and magnetic measurements. The prominent feature is the broad round-shape C /T vs . T 2 relation, instead of an essentially linear region in their superconducting “cousins” A 2Cr 3As 3 [2,3]. As argued in our previous report [15], this anomaly probably results from the cluster spin-glass state as described above.If we make a linear fit for the data below 4 K, a ze-ro-temperature specific-heat coefficient can be extrapolat-ed, which is 89 and 185 mJ K −2 mol-fu −1 for RbCr 3As 3 and CsCr 3As 3, respectively. Given the existence of cluster spin glass, the extrapolated specific-heat coefficient does not represent the Sommerfeld coefficient, since the magnetic contribution C m of a spin glass is basically linear with tem-perature for T < T f [20]. Nevertheless, the “real” Sommer-feld coefficient would not go to zero, otherwise the mag-netic entropy becomes unphysically large. This means that there is still appreciably high density of states at the Fermi level of RbCr 3As 3 or CsCr 3As 3, irrespective of their appar-ent semi-conductivity.Fig. 7 summarizes some physical-property parameters as functions of the lattice constants a that measures the in-terchain distance. From A = K, Rb to Cs, the magnitude of effective magnetic moments for Cr increases significantly, nevertheless, the paramagnetic Neel temperature which re-flects antiferromagnetic interactions hardly changes. TheííííbM (10í3P B /C r )P 0H (T)aF (10í3 e m u /m o l -C r )T (K)cM (10í3P B /C r )P 0H (T)Figure 5 (a) Low-temperature magnetic susceptibility under different external fields for CsCr 3As 3. (b) Isothermal magnetizations at different tempera-tures. (c) An enlarged plot of field dependence of magnetization, showing the magnetic hysteresis.1002003000.00.20.40.60.81.0C /T (J K 2 m o l 1)T 2 (K 2)T 2(K 2)C /T (J K 2 m o l 1)T 2 (K 2)Figure 6 Low-temperature specific-heat data for RbCr 3As 3 and CsCr 3As 3, plotted with C /T vs . T 2.e f f (P P B /C r ) T p (K )Lattice parameter a (Å)U 4 K / U 300 K (C /T )2 K (m J m o l 2 K 1)Lattice parameter a (Å)20406080T f (K ) T U an d T F (K )Figure 7 Extracted physical parameters as functions of the unit-cell con-stants a for ACr 3As 3 (A = K, Rb, Cs).548July 2015 | Vol.58 No.7© Science China Press and Springer-Verlag Berlin Heidelberg 2015characteristic temperatures T f , T ρ and T χ are also insensi-tive to the interchain distance. Meanwhile, the semi-con-ductivity, here characterized by the resistivity ratio of ρ4 K /ρ300 K , increases with the interchain distance. Notably, the C /T value at 2 K shows the similar tendency. Given the same “doping level” in ACr 3As 3 (the apparent Cr valence is +2.67), such changes should be mainly ascribed to the interchain coupling. In general, the reduced interchain coupling enhances spin fluctuations, Anderson localiza-tions, and electron correlations (the related bandwidth is narrowed). Therefore, the results can be qualitatively inter-preted in terms of an enhanced one dimensionality. The latest first-principles calculations for KCr 3As 3 [17] indicate an “interlayer antiferromagnetic (IAF)” ground state where the Cr spins in the planar Cr triangles align ferromagneti-cally to form a larger “block spin”. It was found that there is a strong quasi-one-dimensional van Hove singularity near the Fermi energy. The pronounced C /T value at 2 K might be related to the van Hove singularity.CONCLUDING REMARKSIn summary, two new quasi-one-dimensional Cr-based compounds, RbCr 3As 3 and CsCr 3As 3, were successfully synthesized. The crystal structure remains the characteris-tic (Cr 3As 3)∞ linear chains. Meanwhile, the interchain dis-tance increases appreciably owing to the large size of Rb + and Cs + cations. Like their sister compound KCr 3As 3, both materials do not superconduct, but show a cluster spin-glass state below 5–6 K. Importantly, the Cr localized mo-ment increases with the expansion of interchain distance. This further confirms the existence of Cr local-moment components in the “133” system, which implies the rele-vance of spins to the novel superconductivity in “233” ma-terials.Received 1 June 2015; accepted 23 June 2015published online 6 July 20151 Bao JK, Liu JY, Tang TZ, et al . Superconductivity in quasi-one- dimensional K 2Cr 3As 3 with significant electron correlations. Phys Rev X, 2015, 5: 0110132 Tang ZT, Bao JK, Liu Y, et al . Unconventional superconductivity in quasi-one-dimensional Rb 2Cr 3As 3. Phys Rev B, 2015, 91: 020506(R)3 Tang ZT, Bao JK, Wang Z, et al . Superconductivity in quasi-one- dimensional Cs 2Cr 3As 3 with large interchain distance. Sci China Mater, 2015, 58: 16–204 Kong T, Bud’ko SL, Canfield PC. Anisotropic H c2, thermodynam-ic and transport measurements, and pressure dependence of T c in K 2Cr 3As 3 single crystals. Phys Rev B, 2015, 91: 020507(R)5 Zhi HZ, Imai T, Ning FL, et al . NMR investigation of the quasi-one-dimensional superconductor K 2Cr 3As 3. Phys Rev Lett, 2015, 114: 1470046Pang GM, Smidman M, Jiang WB, et al . Evidence for nodal super-conductivity in quasi-one-dimensional K 2Cr 3As 3. Phys Rev B, 2015, 91: 220502(R)7Wang Z, Sidorov V , Wu Q, et al . Reversible tuning of superconduc-tivity in pressurized qausi-one-dimensional A 2Cr 3As 3 (A=K and Rb). Preprint at /abs/arXiv:1502.04304, 20158Balakirev FF, Kong T, Jaime M, et al . Anisotropy reversal of the up-per critical field at low temperatures and spin-locked superconduc-tivity in K 2Cr 3As 3. Phys Rev B, 2015, 91: 220505(R)9Wang XF, Roncaioli C, Eckberg C, et al . Tunable electronic anisot-ropy in single-crystal A 2Cr 3As 3 (A=K, Rb) quasi-one-dimensional superconductors. Preprint at /abs/arXiv:1505.07051, 201510Jang H, Cao GH, Cao C. Electronic structure of quasi-one-dimen-sional superconductor K 2Cr 3As 3 from first principles calculations. Preprint at /abs/arXiv:1412.1309, 201411Wu XX, Le CC, Yuan J, et al . Magnetism in quasi-one-dimension-al A 2Cr 3As 3 (A=K, Rb) superconductors. Chin Phys Lett, 2015, 32: 05740112Zhou Y, Cao C, Zhang FC. Theory for superconductivity in alkali chromium arsenides A 2Cr 3As 3 (A=K, Rb, Cs). Preprint at /abs/arXiv:1502.03928, 201513Wu XX, Yang F, Le CC, et al . Triplet p z -wave pairing in quasi one di-mensional A 2Cr 3As 3 superconductors. Preprint at /abs/arXiv:1503.06707, 201514Zhong HT, Feng XY, Chen H, Dai JH. Formation of molecular- orbital bands in a twisted Hubbard tube: implications for uncon-ventional superconductivity in K 2Cr 3As 3. Preprint at /abs/arXiv:1503.08965, 201515 Bao JK, Li L, Tang ZT, et al . Cluster spin-glass ground state in quasi- one-dimensional KCr 3As 3. Phys Rev B, 2015, 91: 180404(R)16 Izumi F, Momma K. Three-dimensional visualization in powder diffraction. Solid State Phenomena, 2007, 130: 15–2017Cao C, Jiang H, Feng XY, Dai JH. Reduced dimensionality and mag-netic frustration in KCr 3As 3. Preprint at /abs/arXiv: 1505.06801, 201518Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst, 1976, A32: 751–76719 Mott NF. Conduction in non-crystalline materials. Philos Mag, 1969, 19: 835–85220Binder K and Y oung AP . Spin glasses: experimental facts, theoreti-cal concepts, and open questions. Rev Mod Phys, 1986, 58: 801–976Acknowledgements This work was supported by the National Natural Science Foundation of China (11190023 and 11474252), the National Basic Research Program (2011CBA00103), and the Fundamental Research Funds for the Central Universities of China.Author contributions Cao GH and Bao JK coordinated the work. Tang ZT and Cao GH wrote the paper in discussion with other co-authors. Tang ZT performed most of the experiments, including the growth, characteri-zations, and physical property measurements with assistance by Bao JK, Liu Y, Bai H, Jiang H, Zhai HF and Feng CM.Conflict of interest The authors declare that they have no conflict of interest.July 2015 | Vol.58 No.7549© Science China Press and Springer-Verlag Berlin Heidelberg 2015中文摘要 最近, 新铬基超导体A 2Cr 3As 3(A=K,Rb,Cs)因其准一维结构以及电子关联效应而引起同行的强烈兴趣. 本文报道了两种相关材料(RbCr 3As 3和CsCr 3As 3)的晶体结构与物理性质. 该新材料是从A 2Cr 3As 3中通过软化学反应而获得. 它们保持一维(Cr 3As 3)∞线状长链, 其链间距可以通过引入不同尺寸的碱金属阳离子进行调节. 物理性质测量表明, 样品在高温区具有局域磁矩行为, 而在5~6K 以下形成团簇自旋玻璃态. 未观察到任何超导电性. 我们还发现, 样品的有效磁矩随链间距的增加而单调增加, 同时伴随半导体导电特征的增强. 上述实验结果可能为理解A 2Cr 3As 3系统中的超导电性提供有价值的线索.Zhang-Tu Tang is currently a PhD candidate at the Department of Physics, Zhejiang University. He received his BSc degree (majored in physics) from Hangzhou Normal University in 2012. His PhD research focuses on explorations and physical property measurements of novel superconductors.Guang-Han Cao is currently a professor at the Department of Physics, Zhejiang University. He received his PhD de-gree from University of Science and Technology of China in 1995, and then became a postdoctoral fellow in Zhejiang University where he has stayed until present. He visited the National Institute for Materials Sciences, Japan, from 1999 to 2001, and he also worked as a visiting professor at the Institute of Solid State Physics of the University of Tokyo in 2011. His research interests include exploratory synthesis, structural characterizations and physical-property measure-ments of novel superconductors and other related materials.。