2016淮北市高三一模数学理科试卷(含答案)
(全优试卷)安徽省淮北市高三第二次模拟考试理科数学 Word版含答案
安徽省淮北市2016届高三第二次模拟考试理科数学一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,则=()A.[2,3)B.(2,4)C.(3,4]D.(2,4]2.复数,则等于()A. B. C. D.3.设中变量x,y满足条件,则z的最小值为()A. B. C. D.4.已知数列{ a n}的前n项和为S n ,点( n,S n)在函数f( x)=的图象上,则数列{ a n} 的通项公式为()A. B. C. D.5.过点引直线与圆相交于两点,为坐标原点,当面积取最大值时,直线的斜率为 ( )A. B. C. D.6.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有()A.24种B.28种C.32种D.16种7.下列四个结论:①命题“若是周期函数,则是三角函数”的否命题是“若是周期函数,则不是三角函数”;②命题“”的否定是“③在中,“”是“”的充要条件;④当时,幂函数在区间上单调递减.其中正确命题的个数是()A.1个B.2个C.3个D.4个8.阅读如图所示的程序框图,若输入m=2016,则输出S等于()A.10072B.10082C.10092D.201029.已知函数满足对恒成立,则函数()A.一定为奇函数B.一定为偶函数C.一定为奇函数D.一定为偶函数10.已知函数若函数只有一个零点,则实数a的取值范围是( )A. B. C. D.11.已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为()A. B. C. D.12.如图,已知点为的边上一点,,为边的一列点,满足,其中实数列中,,则的通项公式为()A. B. C. D.二、填空题(本大题共1小题,共5.0分)13.函数在区间上的最大值是.14.设常数,的二项展开式中项的系数为40,记等差数列的前n项和为,已知,,则.15.已知,抛物线的焦点为,直线经过点且与抛物线交于点,且,则线段的中点到直线的距离为.16.已知函数,存在,,则的最大值为( ).三、解答题(本大题共8小题,共96.0分)17.(本小题满分12分)在中,边分别是内角所对的边,且满足,设的最大值为.(Ⅰ)求的值;(Ⅱ)当为的中点时,求的长.18.(本小题满分 12 分)从某企业生产的某种产品中抽取 100 件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.(Ⅰ)求这些产品质量指标值落在区间内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.19.(本小题满分12分)已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC =∠ACD=90°,∠EAC=60°,AB=AC=AE.(Ⅰ)若P是BC的中点,求证:DP∥平面EAB.(Ⅱ)求平面EBD与平面ACDE所成的锐二面角θ的余弦值.20.(本小题满分12分)已知点,P是上任意一点,P在轴上的射影为,,动点的轨迹为C,直线与轨迹交于,两点,直线,分别与轴交于点,.(Ⅰ)求轨迹的方程;(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.全优试卷21.(本小题满分12分)已知函数 .(Ⅰ)时,求的单调区间和极值;(Ⅱ)时,求的单调区间( III )当时,若存在,使不等式成立,求的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲.已知在三角形ABC中, AB=AC. 以 AB 为直径的圆O 交 BC 于 D ,过D 点作 O 的切线交 AC 于 E .求证:(Ⅰ) DE垂直于AC(Ⅱ) BD2=CE ·CA23.(本小题满分10分)选修4—4:坐标系与参数方程.已知直线为参数), 曲线(为参数).(Ⅰ)设与相交于两点,求;(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线 ,设点是曲线上的一个动点,求它到直线的距离的最小值.24.(本小题满分10分)选修4—5:不等式选讲.设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意,不等式的解集为空集,求实数的取值范围.安徽省淮北市2016届高三第二次模拟考试理科数学答案1. 【分析】本题主要考查了交集的运算,首先化简两个集合,再利用补集与交集的运算法则计算出结果.【解答】解:由题意得:A={y|2≤y≤4},B={x|3≤x≤4}.则={x|2≤x<3}.故选A.2. 【分析】本题主要考查了复数的运算,首先利用复数的运算法则把z化简为最简结果,再利用求模公式计算出结果.【解答】解:.故答案为B.3. 【分析】本题主要考查了线性规划的基本运算,由直线交点计算出结果即可.【解答】解:的最小值,即求2x+y的最小值,当取K点时为最小值,平移直线y=-2x到K(1,1)时取得最小值为2x+y=2+1=3,即Z最小值=8.故选C.4. 【分析】本题主要考查了定积分的运算和数列的知识,首先由定积分的知识求出f(x)的函数关系式,再利用数列的前n项和与通项公式之间的关系求解.【解答】解:∵f( x)= =,∴当n=1时,.当n≥2时,.当n=1时不符合上式.则.故选D.5. 【分析】本题主要考查了直线与圆的位置关系,利用基本不等式求出当圆心到直线的距离为1时,三角形的面积最大,从而利用点到直线的距离求解.【解答】解:由题意可知直线l的斜率一定存在,设直线l的方程为y=k(x-2).则圆心到直线l的距离d=.S=.当且仅当,即时取等号.∴=1.解得:k=.故选C.6. 【分析】不同主要考查了组合的应用.把给出的问题分为两类:其中一位同学得到两本小说,其中一位同学得到1本小说和1本诗集,进而解答此题.【解答】解:因为没命同学至少1本书,则一定有两个同学得到两本书,这两本书可能是2本小说,也可能是1本小说和1本诗集,则不同的分法为.故选D.7. 【分析】本题主要考查了命题的真假的判定. ①用否命题的定义进行判定;②根据特称命题的否定是全称命题进行判定;③在由三角形的性质进行判定;④由幂函数的性质进行判定.【解答】解:①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f (x)不是周期函数,则f(x)不是三角函数”,故①错误;②命题“”的否定是“对于任意x∈R,x2-x-1≥0”,故②正确;③在△ABC中,“sin A>sin B”等价为a>b,等价为“A>B”,则,“sin A>sin B”是“A>B”成立的充要条件,故③正确.④当时,幂函数在区间上单调递减,是正确的.则正确命题的个数为3.故选C.8. 【分析】本题主要考查了程序框图与算法的循环结构,由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,S=1,不满足退出循环的条件,i=3;第二次执行循环体,S=4,不满足退出循环的条件,i=5;第三次执行循环体,S=9,不满足退出循环的条件,i=7;…第n次执行循环体,S=n2,不满足退出循环的条件,i=2n+1;…第1008次执行循环体,S=10082,不满足退出循环的条件,i=2017;第1009次执行循环体,S=10092,满足退出循环的条件,故输出的S值为:10092故选C.9. 【分析】本题主要考查的是三角函数的图像与性质.利用已知的等式确定出的一条对称轴.从而利用“左加右减,上加下减”的平移规律,以及偶函数的定义进行解答.【解答】解:由条件可知,即的一条对称轴.又是由向左平移个单位得到的,所以关于对称,即为偶函数.应选D.10. 【分析】本题主要考查了函数的零点的知识,分析已知的条件,把方程的零点的问题转化为两个函数的交点的问题,从而求出a的取值范围.【解答】解:∵只有一个零点,∴方程只有一个根,∴函数y=f(x)与y=x+a的图象只有一个交点,函数图象如下所示:由图象可知 .故选B.11. 【分析】本题主要考查了由三视图由体积的知识.由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,分别求出相应的体积,相减可得答案. 【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,故选C.12. 【分析】本题主要考查了向量以及数列的知识.由向量的运算法则得出,证明{a n+1}是以2为首项,3为公比的等比数列,即可得出结论.【解答】故选D.13本题主要考查了导数的应用.利用导数确定出函数的单调区间,进而求出最大值.【解答】解:∵,∴y′=1-2sinx.所以,故答案为.14【解答】故答案为10.15可得,从而求出线段AB的中点到直线的距离. 【解答】解:故答案为.16【解答】解:故答案为.17. 解:(Ⅰ)由题设及正弦定理知,,即.由余弦定理知,,在上单调递减,的最大值.(2)根据题意:利用余弦定理又因为D是AC的中点,所以AD等于,所以18. 解:(Ⅰ)设区间内的频率为,则区间,内的频率分别为和依题意得解得.所以区间内的频率为.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以服从二项分布,其中.由(Ⅰ)得,区间内的频率为,将频率视为概率得因为的所有可能取值为0,1,2,3,且,,,.所以的分布列为:所以的数学期望为.19. 证明:(1)取AB的中点F连接DP、PF、EF,则FP∥AC,.取AC的中点M,连接EM、EC,∵AE=AC且∠EAC=60°,∴△EAC是正三角形,∴EM⊥AC.∴四边形EMCD为矩形,∴.∴ED∥FP且ED=FP,四边形EFPD是平行四边形.∴DP∥EF,而EF⊂平面EAB,DP⊄平面EAB,∴DP∥平面EAB.(2)过B作AC的平行线l,过C作l的垂线交l于G,连接DG,∵ED∥AC,∴ED∥l,l是平面EBD与平面ABC所成二面角的棱.∵平面EAC⊥平面ABC,DC⊥AC,∴DC⊥平面ABC,又∵l⊂平面ABC,∴l⊥平面DGC,∴l⊥DG,∴∠DGC是所求二面角的平面角.20. 解:(Ⅰ)设, ∴,∵.∴∵P在上,∴所以轨迹的方程为.(Ⅱ)因为点的坐标为因为直线与轨迹C于两点,,设点(不妨设),则点.联立方程组消去得.所以,则.所以直线的方程为.因为直线,分别与轴交于点,,令得,即点.同理可得点.所以.设的中点为,则点的坐标为.则以为直径的圆的方程为,即.令,得,即或.故以为直径的圆经过两定点,.21. 解:(Ⅰ)时,令解得,当时,当时,所以的单调递减区间是,单调递增区间是;所以的极小值是,无极大值;( II )① 当时,,令解得:,或.令解得:,所以当时,的单调递减区间是,,单调递增区间是;② 当时,,在上单调递减;③ 当时,,令解得:,或令解得:,所以当时,的单调递减区间是,,单调递增区间是;( III )由( II )知,当时,在上单调递减.所以,因为存在,使不等式成立,所以,即整理得,因为,所以所以,所以,的取值范围是.22. 证明:(1)连接OD、AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC,DE⊥AC.(II)由(I)得D为BC中点,所以.所以.有得.23. 解:(I)的普通方程为的普通方程为联立方程组解得与的交点为, ,则.(II)的参数方程为为参数).故点的坐标是,从而点到直线的距离是,由此当时, 取得最小值,且最小值为.24. 解:(Ⅰ)当时,等价于.①当时,不等式化为,无解;②当时,不等式化为,解得;③当时,不等式化为,解得.综上所述,不等式的解集为.(Ⅱ)因为不等式的解集为空集,所以因为,当且仅当时取等号.所以.因为对任意,不等式的解集为空集,所以令,所以.当且仅当,即时等号成立所以.所以的取值范围为.。
江淮十校2016届高三第一次联考数学(理)试卷和答案(扫描版)
“江淮十校”2016届高三第一次联考·理科数学参考答案及评分标准1.C2.C3.A4. A5. A 6 B 7. D 8. B 9.B 10. B11.31n - 12.16.(1)圆x 2+y 2-4x +2y -3=0化为标准方程为(x -2)2+(y +1)2=8,圆心为P (2,-1),半径r =2 2. (4分)(2)①若割线斜率存在,设AB :y +8=k (x -4),即kx -y -4k -8=0.设AB 的中点为N ,则|PN |=|2k +1-4k -8|k 2+1=|2k +7|k 2+1,由|PN |2+22AB =r 2,得k =-4528, 此时AB 的直线方程为45x +28y +44=0. (7分)②若割线斜率不存在,AB :x =4,代入圆方程得y 2+2y -3=0, 解得y 1=1,y 2=-3,符合题意. (10分) 综上,直线AB 的方程为45x +28y +44=0或x =4. (12分)17.21()cos (cos cos sin sin )cos 2332f x x x x x x ππ==11cos(2)234x π=++. (1)T π=; (4分)(2)111()cos(2),cos(2)123443f C C C ππ=++=-∴+=-. 又72333C πππ<+<,则23C ππ+=..3C π∴=1sin 8.2, 4.2ABC S ab C ab a b ===∴==∴= (10分)由余弦定理得2222cos 12,c a b ab C c =+-=∴= (12分)18.(1)由频率分布表得a+0.3+0.35+b+c=1,即a+b+c=0.35. (2分) ∵抽取的20件产品中,等级编号为4的恰有2件,∴b==0.1. (4分)等级编号为5的恰有4件,∴c==0.2. ∴a=0.35﹣b ﹣c=0.05.故a=0.05,b=0.10,c=0.20. (6分)(2)解法一:从产品x 1,x 2,y 1,y 2,y 3,y 4中任取两件,所有可能的结果为:{x 1,x 2},{x 1,y 1},{x 1,y 2},{x 1,y 3},{x 1,y 4},{x 2,y 1},{x 2,y 2},{x 2,y 3},{x 2,y 4},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共15个. (8分) 设A 表示“从x 1、x 2,y 1,y 2,y 3,y 4,这6件产品中任取两件这两件产品的等级编号恰好相同”, 则A 包含的基本事件为:{x 1,x 2},{y 1,y 2},{y 1,y 3},{y 1,y 4},{y 2,y 3},{y 2,y 4},{y 3,y 4},共7个. (10分) 故所求概率为:p=. (12分)解法二:222426715C C p C +==。
2016年安徽省淮北市高考一模数学试卷(理科)【解析版】
2016年安徽省淮北市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x||x﹣2|≤2,x∈R},B={x|﹣1≤x≤2},则∁R(A∩B)等于()A.{x|﹣1<x<0}B.{x|2≤x<4}C.{x|x<0或x>2}D.{x|x≤0或x ≥2}2.(5分)在复平面内,复数z=的共轭复数对应的点所在的象限()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知x>0,则“a=4“是“x+≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.(5分)执行如图所示的程序框图,若输出的n=6,则输入整数p的最小值是.()A.17B.16C.18D.195.(5分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.6B.12C.24D.606.(5分)已知O为坐标原点,双曲线﹣=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(+)•=0,则双曲线的离心率e为()A.2B.3C.D.7.(5分)在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C.D.8.(5分)有以下命题:①命题“∃x∈R,x2﹣x﹣2≥0”的否定是:“∀x∈R,x2﹣x﹣2<0”;②已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79)则P(ξ≤﹣2)=0.21;③函数f(x)=﹣()x的零点在区间(,)内;其中正确的命题的个数为()A.3个B.2个C.1个D.0个9.(5分)已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(﹣∞,0)时xf′(x)<﹣f(x)成立(其中f′(x)是f(x)的导函数),若a=f (),b=f(1),c=﹣2f(log2),则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.a>c>b10.(5分)已知实数x,y满足:,则使等式(t+2)x+(t﹣1)y+2t+4=0成立的t取值范围为()A.[﹣,﹣)B.(﹣∞,﹣]∪(﹣,+∞)C.[﹣,1)D.[﹣,1)11.(5分)已知四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,则球O的表面积为()A.12πB.16πC.20πD.25π12.(5分)如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在二、填空题(本大题共4小题,每小题5分,共20分).13.(5分)设a=dx,则二项式(ax2﹣)6展开式中的常数项为.14.(5分)寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有种.15.(5分)在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则=.16.(5分)对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0的解集为.三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在等比数列{a n}中,a3=,S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=log2,且{b n}为递增数列,若∁n=,求证:C1+C2+C3+…∁n<.18.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=,f5(x)=sin(+x),f6(x)=x cos x.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.19.(12分)已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(Ⅰ)求证:BN⊥平面C1B1N;(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求的值.20.(12分)定长为3的线段AB两端点A、B分别在x轴,y轴上滑动,M在线段AB上,且.(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹C于A、B两点,问:线段OF上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明.21.(12分)对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]上是单调函数;②当f(x)的定义域为[m,n]时,值域也是[m,n],则称区间[m,n]是函数f(x)的“Z区间”.对于函数f(x)=(a>0).(Ⅰ)若a=1,求函数f(x)在(e,1﹣e)处的切线方程;(Ⅱ)若函数f(x)存在“Z区间”,求a的取值范围.选做题:(考生从以下三题中选做一题)选修4-1:几何证明选讲22.(10分)如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F 作⊙O的切线FD交AB的延长线于点D.连接CF交AB于点E.(1)求证:DE2=DB•DA;(2)若DB=2,DF=4,试求CE的长.选修4-4:坐标系与参数方程.23.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.选修4-5:不等式选讲.24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)≤2x的解集;(2)如果关于x的不等式log a2<f(x)在R上恒成立,求实数a的取值范围.2016年安徽省淮北市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={x||x﹣2|≤2,x∈R},B={x|﹣1≤x≤2},则∁R(A∩B)等于()A.{x|﹣1<x<0}B.{x|2≤x<4}C.{x|x<0或x>2}D.{x|x≤0或x ≥2}【解答】解:A=[0,2],B=[﹣1,2],所以A∩B=[0,2]=A,∁R(A∩B){x|x<0或x>2},故选:C.2.(5分)在复平面内,复数z=的共轭复数对应的点所在的象限()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数z===﹣1﹣2i.复数z=的共轭复数对应的点(﹣1,2),所在的象限是第二象限.故选:B.3.(5分)已知x>0,则“a=4“是“x+≥4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:若a=4,则根据基本不等式的性质可知x+=x+≥2=4,当且仅当x=,即x=2时取等号,即充分性成立.若a=16,x+=x+≥2=8,当且仅当x=,即x=4时取等号,此时满足x+≥4成立,但a=4不成立,即必要性不成立,故“a=4“是“x+≥4”的充分不必要条件,故选:A.4.(5分)执行如图所示的程序框图,若输出的n=6,则输入整数p的最小值是.()A.17B.16C.18D.19【解答】解:程序在运行过程中各变量的值如下表示:是否继续循环S n循环前/0 1第一圈是 1 2第二圈是 3 3第三圈是7 4第四圈是15 5第五圈是31 6第六圈否故当S值不大于16时继续循环,故p的最小整数值为16.故选:B.5.(5分)在等差数列{a n}中,若a4+a6+a8+a10+a12=120,则2a10﹣a12的值为()A.6B.12C.24D.60【解答】解:∵在等差数列{a n}中,a4+a6+a8+a10+a12=120,∴5a1+35d=120,解得a1+7d=24,∴2a10﹣a12=2(a1+9d)﹣(a1+11d)=a1+7d=24.6.(5分)已知O为坐标原点,双曲线﹣=1(a>0,b>0)的右焦点F,以OF为直径作圆交双曲线的渐近线于异于原点O的两点A、B,若(+)•=0,则双曲线的离心率e为()A.2B.3C.D.【解答】解:如图,设OF的中点为C,则+=,由题意得,•=0,∴AC⊥OF,∴AO=AF,又c=OF,OA:y=,A的横坐标等于C的横坐标,所以A(,),且AO=,AO2=,所以a=b,则双曲线的离心率e为=.故选:C.7.(5分)在区间[﹣1,1]上随机取一个数k,使直线y=k(x+3)与圆x2+y2=1相交的概率为()A.B.C.D.【解答】解:圆x2+y2=1的圆心为(0,0)圆心到直线y=k(x+3)的距离为要使直线y=k(x+3)与圆x2+y2=1相交,则<1,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使y=k(x+3)与圆x2+y2=1相交的概率为=.8.(5分)有以下命题:①命题“∃x∈R,x2﹣x﹣2≥0”的否定是:“∀x∈R,x2﹣x﹣2<0”;②已知随机变量ξ服从正态分布N(1,σ2),P(ξ≤4)=0.79)则P(ξ≤﹣2)=0.21;③函数f(x)=﹣()x的零点在区间(,)内;其中正确的命题的个数为()A.3个B.2个C.1个D.0个【解答】解:①根据特称命题的否定是全称命题知:命题“存在x∈R,使x2﹣x ﹣2≥0”的否定是:“对任意的x∈R,都有x2﹣x﹣2<0”;所以正确.②因为正态分布的对称轴为x=1,所以P(ξ≤﹣2)=P(ξ≥4)=1﹣P(ξ≤4)=1﹣0.79=0.21,所以正确.③因为f()<0,f()>0,所以根据根的存在性定理可知,正确.故选:A.9.(5分)已知函数y=f(x)定义在实数集R上的奇函数,且当x∈(﹣∞,0)时xf′(x)<﹣f(x)成立(其中f′(x)是f(x)的导函数),若a=f (),b=f(1),c=﹣2f(log2),则a,b,c的大小关系是()A.c>a>b B.c>b>a C.a>b>c D.a>c>b【解答】解:当x∈(﹣∞,0)时,xf′(x)<﹣f(x),即xf′(x)+f(x)<0,∴[xf(x)]′<0,∴令F(x)=xf(x),由函数y=f(x)是定义在R上的奇函数,则F(x)为偶函数,且在(﹣∞,0)上是减函数,在(0,+∞)上是增函数,由c=﹣2f(log2)=﹣2f(﹣2)=2f(2)=g(2),a=f()=g(),b=f(1)=g(1),由1<<2,可得b<a<c.故选:A.10.(5分)已知实数x,y满足:,则使等式(t+2)x+(t﹣1)y+2t+4=0成立的t取值范围为()A.[﹣,﹣)B.(﹣∞,﹣]∪(﹣,+∞)C.[﹣,1)D.[﹣,1)【解答】解:由题意作平面区域如下,,∵(t+2)x+(t﹣1)y+2t+4=0,∴t(x+y+2)+2x﹣y+4=0,∴t==1﹣,几何意义是点A(﹣2,0)与阴影内的点的连线的斜率,而k AB==,k AC==1,故≤<1,故<≤,故﹣≤1﹣<﹣,故选:A.11.(5分)已知四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,则球O的表面积为()A.12πB.16πC.20πD.25π【解答】解:∵四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,又AB=3,BC=2,BD=4,且∠CBD=60°,∴CD==2,∴BC2+CD2=BD2,∴AB⊥平面BCD,BC⊥CD,∴以AB、BC、CD、AB为长方体的长、宽、高构造长方体AGHF﹣BCDF,则球O的半径R===,∴球O的表面积S=4=25π.故选:D.12.(5分)如图,四边形ABCD是正方形,延长CD至E,使得DE=CD.若动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,其中,下列判断正确的是()A.满足λ+μ=2的点P必为BC的中点B.满足λ+μ=1的点P有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在【解答】解:由题意,不妨设正方形的边长为1,建立如图所示的坐标系,则B(1,0),E(﹣1,1),故=(1,0),=(﹣1,1),所以=(λ﹣μ,μ),当λ=μ=1时,=(0,1),此时点P与D重合,满足λ+μ=2,但P不是BC 的中点,故A错误;当λ=1,μ=0时,=(1,0),此时点P与B重合,满足λ+μ=1,当λ=,μ=时,=(0,),此时点P为AD的中点,满足λ+μ=1,故满足λ+μ=1的点不唯一,故B错误;当P∈AB时,有0≤λ﹣μ≤1,μ=0,可得0≤λ≤1,故有0≤λ+μ≤1,当P∈BC时,有λ﹣μ=1,0≤μ≤1,所以0≤λ﹣1≤1,故1≤λ≤2,故1≤λ+μ≤3,当P∈CD时,有0≤λ﹣μ≤1,μ=1,所以0≤λ﹣1≤1,故1≤λ≤2,故2≤λ+μ≤3,当P∈AD时,有λ﹣μ=0,0≤μ≤1,所以0≤λ≤1,故0≤λ+μ≤2,综上可得0≤λ+μ≤3,故C正确,D错误.故选:C.二、填空题(本大题共4小题,每小题5分,共20分).13.(5分)设a=dx,则二项式(ax2﹣)6展开式中的常数项为15.【解答】解:a=dx=lnx=2﹣1=1,则二项式(ax2﹣)6=(x2﹣)6的展开式的通项公式为T r+1=•(﹣1)r•x12﹣3r,令12﹣3r=0,求得r=4,可得展开式中的常数项为=15,故答案为:15.14.(5分)寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有45种.【解答】解:设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符座位的坐法,设E同学坐在自己的座位上,则其他四位都不是自己的座位,则有BADC,CADB,DABC,BDAC,CDAB,DCAB,BCDA,DCBA,CDBA共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有5×9=45种,故答案为:45.15.(5分)在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则=2.【解答】解:由题意,=×c×1×sin120°∴c=4,∴a2=b2+c2﹣2bc cos A=1+16﹣2×1×4×(﹣)=21.∴a=∴==2.故答案为:2.16.(5分)对于问题:“已知关于x的不等式ax2+bx+c>0的解集为(﹣1,2),解关于x的不等式ax2﹣bx+c>0”,给出如下一种解法:解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),即关于x的不等式ax2﹣bx+c>0的解集为(﹣2,1).参考上述解法,若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0的解集为(﹣1,﹣)∪(,1).【解答】解:由ax2+bx+c>0的解集为(﹣1,2),得a(﹣x)2+b(﹣x)+c>0的解集为(﹣2,1),发现﹣x∈(﹣1,2),则x∈(﹣2,1)若关于x的不等式+<0的解集为(﹣3,﹣1)∪(1,2),则关于x的不等式+<0可看成前者不等式中的x用代入可得,则∈(﹣3,﹣1)∪(1,2),∴x∈(﹣1,﹣)∪(,1),故答案为:(﹣1,﹣)∪(,1).三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(12分)在等比数列{a n}中,a3=,S3=.(Ⅰ)求{a n}的通项公式;(Ⅱ)记b n=log2,且{b n}为递增数列,若∁n=,求证:C1+C2+C3+…∁n<.【解答】解:(Ⅰ)∵a3=,S3=,∴当q=1时,S3=3a1=,满足条件,∴q=1.当q≠1时,a1q2=,=,解得a1=6,q=﹣.综上可得:a n=或a n=6•(﹣)n﹣1;(Ⅱ)证明:由题意可得b n=log2=log2=log222n=2n,则∁n===(﹣),即有C1+C2+C3+…∁n=(1﹣+﹣+﹣+…+﹣)=(1﹣)=﹣<.故原不等式成立.18.(12分)一个盒子装有六张卡片,上面分别写着如下六个函数:f1(x)=x3,f2(x)=5|x|,f3(x)=2,f4(x)=,f5(x)=sin(+x),f6(x)=x cos x.(Ⅰ)从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数.在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(Ⅱ)现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.【解答】(本小题满分12分)解:(Ⅰ)为奇函数;为偶函数;f3(x)=2为偶函数;为奇函数;为偶函数;f6(x)=x cos x为奇函数…(3分)所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为故所求概率为.…(6分)(Ⅱ)ξ可取1,2,3,4.…(7分),;故ξ的分布列为…(10分).∴ξ的数学期望为.…(12分)19.(12分)已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(Ⅰ)求证:BN⊥平面C1B1N;(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求的值.【解答】证明:(Ⅰ)∵该几何体的正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,∴BA,BC,BB1两两垂直.…(2分)以BA,BB1,BC分别为x,y,z轴建立空间直角坐标系,则N(2,2,0),B1(0,4,0),C1(0,4,2),C(0,0,2),∵=4﹣4+0=0,=0,∴BN⊥NB1,BN⊥B1C1且NB1,∵B1C1相交于B1,∴BN⊥平面C1B1N.(4分)解:(Ⅱ)设=(x,y,z)为平面NCB1的一个法向量,则,取x=1,得=(1,1,2),∵=(2,﹣2,﹣2),∴sinθ===.(Ⅲ)∵M(1,0,0).设P(0,0,a)为BC上一点,则=(﹣1,0,a),∵MP∥平面CNB1,∴,=﹣1+2a=0,解得a=,又PM⊄平面CNB1,∴MP∥平面CNB1,∴当PB=时,MP∥平面CNB1,∴=.…(12分)20.(12分)定长为3的线段AB两端点A、B分别在x轴,y轴上滑动,M在线段AB上,且.(1)求点M的轨迹C的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹C于A、B两点,问:线段OF上是否存在一点D,使得以DA,DB为邻边的平行四边形为菱形?作出判断并证明.【解答】解:(1)设A(x1,0),B(0,y1),M(x,y)则,|AB|=3==1(2)存在满足条件的D点.设满足条件的点D(0,m),则,设l的方程为:y=kx+,(k≠0),代入椭圆方程,得(k2+4)x2+2kx﹣1=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,∴y1+y2=k(x1+x2)+2.∵以DA、DB为邻边的平行四边形为菱形,∴,=,的方向向量为(1,k),=0,∴﹣﹣2mk=0即m=∵k2>0,∴m=,∴0<m<,∴存在满足条件的点D.21.(12分)对于函数y=f(x)的定义域为D,如果存在区间[m,n]⊆D,同时满足下列条件:①f(x)在[m,n]上是单调函数;②当f(x)的定义域为[m,n]时,值域也是[m,n],则称区间[m,n]是函数f(x)的“Z区间”.对于函数f(x)=(a>0).(Ⅰ)若a=1,求函数f(x)在(e,1﹣e)处的切线方程;(Ⅱ) 若函数f (x )存在“Z 区间”,求a 的取值范围. 【解答】解:(Ⅰ)若a =1,x =e , 则f (x )=lnx ﹣x ,f ′(x )=,则切点坐标为(e ,1﹣e ), 切线斜率k =f ′(e )=﹣1,∴函数f (x )在(e ,1﹣e )处的切线方程为y ﹣(1﹣e )=(﹣1)(x ﹣e ), 即(e ﹣1)x +ey =0. (Ⅱ)∵f (x )=(a >0). ∴f ′(x )=(a >0).列表如下设函数f (x )存在“Z 区间”是[m ,n ], (1)当0<m <n 时,由f ′(x )≥0得:≥0,解得0<x ≤a ,即0<x ≤a 时函数f (x )为增函数, 当x =n 时,取得最大值, 当x =m 时,取最小值, 即,即方程alnx ﹣x =x 有两个解, 即方程a =有两个解,做出y =的图象,由图象以及函数的导数可知, 当x >1时,y =在x =e 处取得最小值2e ,在x=a时,y=,故方程a=有两个解,由a≤得:a≤e2,此时正数a的取值范围是(2e,e2].由f′(x)<0得:<0,解得x>a,即x>a时,函数f(x)为单调减函数,则当x=m时,取得最大值,当x=n时,取得最小值,即,两式相减可得,alnm﹣alnn=0,即m=n,不符合;当x≤0时,函数f(x)为减函数,则当x=m时取最大值,当x=n时,取得最小值,即,两式相减,可以得到+=1,回代到方程组的第一个式子得到1﹣﹣a=n,整理得到1﹣﹣n=a,由图象可知,方程由两个解,则a∈(,1],综上正数a的取值范围是(,1]∪(2e,e2]选做题:(考生从以下三题中选做一题)选修4-1:几何证明选讲22.(10分)如图,AB是⊙O的直径,C、F是⊙O上的两点,OC⊥AB,过点F 作⊙O的切线FD交AB的延长线于点D.连接CF交AB于点E.(1)求证:DE2=DB•DA;(2)若DB=2,DF=4,试求CE的长.【解答】(1)证明:连接OF.因为DF切⊙O于F,所以∠OFD=90°.所以∠OFC+∠CFD=90°.因为OC=OF,所以∠OCF=∠OFC.因为CO⊥AB于O,所以∠OCF+∠CEO=90°.所以∠CFD=∠CEO=∠DEF,所以DF=DE.因为DF是⊙O的切线,所以DF2=DB•DA.所以DE2=DB•DA.(2)解:∵DF2=DB•DA,DB=2,DF=4.∴DA=8,从而AB=6,则OC=3.又由(1)可知,DE=DF=4,∴BE=2,OE=1.从而在Rt△COE中,.选修4-4:坐标系与参数方程.23.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【解答】解:(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.选修4-5:不等式选讲.24.设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)求不等式f(x)≤2x的解集;(2)如果关于x的不等式log a2<f(x)在R上恒成立,求实数a的取值范围.【解答】解:设函数f(x)=|x+1|+|x﹣5|,x∈R.(1)若当x≥5时,f(x)=x+1+x﹣5=2x﹣4,当﹣1<x<5,f(x)=x+1﹣x+5=6,当x≤﹣1时,f(x)═﹣x﹣1﹣x+5=﹣2x+4,即f(x)=,则不等式f(x)≤2x等价为:当x≥5时,f(x)=2x﹣4≤2x,即﹣4≤0恒成立,此时x≥5,当﹣1<x<5时,f(x)=6≤2x,解得x≥3,此时3≤x<5,当x≤﹣1时,f(x)=﹣2x+4≤2x,即x≥1,此时x无解,综上不等式的解集为{x|x≥5或3≤x<5}.(2)如果关于x的不等式log a2<f(x)在R上恒成立,则只需log a2<f(x)min即可,∵f(x)=,∴函数f(x)的最小值为6,∴log a2<6=log a a6,若0<a<1,则log a2<6恒成立.若a>1,则a6>2,解得a>,即实数a的取值范围是0<a<1或a>.。
安徽省淮北市数学高三理数第一次教学质量监测试卷
安徽省淮北市数学高三理数第一次教学质量监测试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)集合,,则()A .B .C .D .2. (2分)复数等于()A .B .C .D .3. (2分) (2018高一下·通辽期末) 已知是等比数列,,公比,第3项至第项的和是720,则()A . 4B . 5C . 6D . 74. (2分)(2020·西安模拟) 近几年,我国农村电子商务发展迅速,使得农副产品能够有效地减少流通环节,降低流通成本,直接提高了农民的收益.某农村电商对一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是()A . 46.5,48,60B . 47,48,60C . 46.5,48,55D . 46.5,51,605. (2分)已知实数x、y满足约束条件,若使得目标函数ax+y取最大值时有唯一最优解(1,3),则实数a的取值范围是()A .B .C .D .6. (2分)(2014·浙江理) 在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A . 45B . 60C . 120D . 2107. (2分) (2018高三上·山西期末) 函数如何平移可以得到函数图象()A . 向左平移B . 向右平移C . 向左平移D . 向右平移8. (2分) (2018高一下·虎林期末) 设下图是某几何体的三视图,则该几何体的体积为()A . 9π+42B . 36π+18C .D .9. (2分)在平面直角坐标系中,若P,Q满足条件:(1)P,Q都在函数f(x)的图象上;(2)P,Q两点关于直线y=x对称,则称点对{P,Q}是函数f(x)的一对“可交换点对”.({P,Q}与{Q,P}看作同一“可交换点”.试问函数的“可交换点对有()A . 0对B . 1对C . 2对D . 3对10. (2分)(2017·宝清模拟) 已知球O是的棱长为1的正方体ABCD﹣A1B1C1D1的内切球,则平面ACD1截球O的截面面积为()A . πB .C .D .11. (2分)(2018·雅安模拟) 过双曲线的左焦点作直线交双曲线的两条渐近线于,两点,若为线段的中点,且,则双曲线的离心率为()A .B .C .D .12. (2分)将十进制数93化为二进制数为()A . 1110101B . 1010101C . 1111001D . 1011101二、填空题 (共4题;共4分)13. (1分) (2018高一上·长春期中) 设函数,则 ________.14. (1分) (2019高二下·上海月考) 已知向量,,若,且,,则 ________.15. (1分) (2016高二上·黑龙江期中) 如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽________米.16. (1分)(2017·山西模拟) 已知数列{an}中,a1=﹣l,an+1=2an+(3n﹣1)•3n+1 ,(n∈N*),则其通项an=________.三、解答题 (共7题;共70分)17. (10分) (2017高三上·泰安期中) 已知函数.(I)若α是第二象限角,且的值;(Ⅱ)求函数f(x)在[0,2π]上的单调递增区间.18. (10分)(2017·西城模拟) 某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.整理评分数据,将分数以10为组距分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:B餐厅分数频数分布表分数区间频数[0,10)2[10,20)3[20,30)5[30,40)15[40,50)40[50,60]35定义学生对餐厅评价的“满意度指数”如下:分数[0,30)[30,50)[50,60]满意度指数012(Ⅰ)在抽样的100人中,求对A餐厅评价“满意度指数”为0的人数;(Ⅱ)从该校在A,B两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对A餐厅评价的“满意度指数”比对B餐厅评价的“满意度指数”高的概率;(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.19. (10分) (2015高二上·安徽期末) 长方体ABCD﹣A1B1C1D1中,AA1=2,BC= ,E为CC1的中点.(1)求证:平面A1BE⊥平面B1CD;(2)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当时,求θ的取值范围.20. (10分) (2016高一下·烟台期中) 已知圆M:x2+(y﹣2)2=r2(r>0)与曲线C:(y﹣2)(3x﹣4y+3)=0有三个不同的交点.(1)求圆M的方程;(2)已知点Q是x轴上的动点,QA,QB分别切圆M于A,B两点.①若,求|MQ|及直线MQ的方程;②求证:直线AB恒过定点.21. (10分)(2017·武汉模拟) 已知函数f(x)=lnx+x2 .(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3aexx∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0 , F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.22. (10分) (2018高二下·河池月考) 已知曲线的极坐标方程为:,以极点为坐标原点,以极轴为轴的正半轴建立直角坐标系,曲线的参数方程为:( 为参数),点(1)求出曲线的直角坐标方程和曲线的普通方程;(2)设曲线与曲线相交于,两点,求的值.23. (10分)(2020·陕西模拟) 设函数 .(1)当时,求不等式的解集;(2)若的最大值为3,求的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、。
2016年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.23.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.974.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π7.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.811.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.14.(5 分)(2x+)5的展开式中,x3的系数是.(用数字填写答案)15.(5分)设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n 的最大值为.16.(5 分)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5 个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3 个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900 元.该企业现有甲材料150kg,乙材料90kg,则在不超过600 个工时的条件下,生产产品A、产品B 的利润之和的最大值为元.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.2016 年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5 分)设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,﹣)B.(﹣3,)C.(1,)D.(,3)【考点】1E:交集及其运算.【专题】11:计算题;4O:定义法;5J:集合.【分析】解不等式求出集合A,B,结合交集的定义,可得答案.【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5 分)设(1+i)x=1+yi,其中x,y 是实数,则|x+yi|=()A.1 B.C.D.2【考点】A8:复数的模.【专题】34:方程思想;4O:定义法;5N:数系的扩充和复数.【分析】根据复数相等求出x,y 的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|= ,故选:B.【点评】本题主要考查复数模长的计算,根据复数相等求出x,y 的值是解决本题的关键.3.(5 分)已知等差数列{a n}前9 项的和为27,a10=8,则a100=()A.100 B.99 C.98 D.97【考点】83:等差数列的性质.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】根据已知可得a5=3,进而求出公差,可得答案.【解答】解:∵等差数列{a n}前9 项的和为27,S9===9a5.∴9a5=27,a5=3,又∵a10=8,∴d=1,∴a100=a5+95d=98,故选:C.【点评】本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.4.(5 分)某公司的班车在7:00,8:00,8:30 发车,小明在7:50 至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10 分钟的概率是()A.B.C.D.【考点】CF:几何概型.【专题】5I:概率与统计.【分析】求出小明等车时间不超过10 分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y,当y 在7:50 至8:00,或8:20 至8:30 时,小明等车时间不超过10 分钟,故P==,故选:B.【点评】本题考查的知识点是几何概型,难度不大,属于基础题.5.(5 分)已知方程﹣=1 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是()A.(﹣1,3)B.(﹣1,)C.(0,3)D.(0,)【考点】KB:双曲线的标准方程.【专题】11:计算题;35:转化思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】由已知可得c=2,利用4=(m2+n)+(3m2﹣n),解得m2=1,又(m2+n)(3m2﹣n)>0,从而可求n 的取值范围.【解答】解:∵双曲线两焦点间的距离为4,∴c=2,当焦点在x 轴上时,可得:4=(m2+n)+(3m2﹣n),解得:m2=1,∵方程﹣=1 表示双曲线,∴(m2+n)(3m2﹣n)>0,可得:(n+1)(3﹣n)>0,解得:﹣1<n<3,即n 的取值范围是:(﹣1,3).当焦点在y 轴上时,可得:﹣4=(m2+n)+(3m2﹣n),解得:m2=﹣1,无解.故选:A.【点评】本题主要考查了双曲线方程的应用,考查了不等式的解法,属于基础题.6.(5 分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.7.(5 分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2 时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0 有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.8.(5 分)若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【考点】R3:不等式的基本性质.【专题】33:函数思想;35:转化思想;4R:转化法;51:函数的性质及应用;5T:不等式.【分析】根据已知中a>b>1,0<c<1,结合对数函数和幂函数的单调性,分析各个结论的真假,可得答案.【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A 错误;函数f(x)=x c﹣1 在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B 错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C 正确;故选:C.【点评】本题考查的知识点是不等式的比较大小,熟练掌握对数函数和幂函数的单调性,是解答的关键.9.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y 的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5 分)以抛物线C 的顶点为圆心的圆交C 于A、B 两点,交C 的准线于D、E 两点.已知|AB|=4,|DE|=2,则C 的焦点到准线的距离为()A.2 B.4 C.6 D.8【考点】K8:抛物线的性质;KJ:圆与圆锥曲线的综合.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【解答】解:设抛物线为y2=2px,如图:|AB|=4,|AM|=2,|DE|=2,|DN|=,|ON|=,x A==,|OD|=|OA|,=+5,解得:p=4.C 的焦点到准线的距离为:4.故选:B.【点评】本题考查抛物线的简单性质的应用,抛物线与圆的方程的应用,考查计算能力.转化思想的应用.11.(5 分)平面α过正方体ABCD﹣A1B1C1D1 的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n 所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n 所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1 是正三角形.m、n 所成角就是∠CD1B1=60°.则m、n 所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5 分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω 的最大值为()A.11 B.9 C.7 D.5【考点】H6:正弦函数的奇偶性和对称性.【专题】35:转化思想;4R:转化法;57:三角函数的图像与性质.【分析】根据已知可得ω为正奇数,且ω≤12,结合x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,求出满足条件的解析式,并结合f(x)在(,)上单调,可得ω 的最大值.【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9 时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω 的最大值为9,故选:B.【点评】本题考查的知识点是正弦型函数的图象和性质,本题转化困难,难度较大.二、填空题:本大题共4 小题,每小题5 分,共20 分.13.(5 分)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=﹣2 .r +1【考点】9O :平面向量数量积的性质及其运算.【专题】11:计算题;29:规律型;35:转化思想;5A :平面向量及应用. 【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m ,1),=(1,2),可得 m +2=0,解得 m=﹣2. 故答案为:﹣2.【点评】本题考查向量的数量积的应用,向量的垂直条件的应用,考查计算能力.14.(5 分)(2x +)5 的展开式中,x 3 的系数是 10 .(用数字填写答案)【考点】DA :二项式定理.【专题】11:计算题;34:方程思想;49:综合法;5P :二项式定理. 【分析】利用二项展开式的通项公式求出第 r +1 项,令 x 的指数为 3,求出 r ,即可求出展开式中 x 3 的系数. 【解答】解:(2x +)5 的展开式中,通项公式为:T = =25﹣r,令 5﹣=3,解得 r=4 ∴x 3 的系数 2=10.故答案为:10.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.15.(5 分)设等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,则 a 1a 2…a n 的最大值为 64 .1 2 n 1 【考点】87:等比数列的性质;8I :数列与函数的综合.【专题】11:计算题;29:规律型;35:转化思想;54:等差数列与等比数列. 【分析】求出数列的等比与首项,化简 a 1a 2…a n ,然后求解最值. 【解答】解:等比数列{a n }满足 a 1+a 3=10,a 2+a 4=5,可得 q (a 1+a 3)=5,解得 q=. a 1+q 2a 1=10,解得 a 1=8.则 a a …a =a n •q1+2+3+…+(n ﹣1)=8n • = = ,当 n=3 或 4 时,表达式取得最大值: =26=64.故答案为:64.【点评】本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.16.(5 分)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg ,用 3 个工时,生产一件产品 A 的利润为 2100元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 216000元.【考点】7C :简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设 A 、B 两种产品分别是 x 件和 y 件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设 A 、B 两种产品分别是 x 件和 y 件,获利为 z 元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A 时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000 元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三、解答题:本大题共5 小题,满分60 分,解答须写出文字说明、证明过程或演算步骤.17.(12 分)△ABC 的内角A,B,C 的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC 的面积为,求△ABC 的周长.【考点】HU:解三角形.【专题】15:综合题;35:转化思想;49:综合法;58:解三角形.【分析】(Ⅰ)已知等式利用正弦定理化简,整理后利用两角和与差的正弦函数公式及诱导公式化简,根据sinC 不为0 求出cosC 的值,即可确定出出C 的度数;(2)利用余弦定理列出关系式,利用三角形面积公式列出关系式,求出a+b 的值,即可求△ABC 的周长.【解答】解:(Ⅰ)∵在△ABC 中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC 的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.18.(12 分)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E 与二面角C﹣BE﹣F 都是60°.(I)证明平面ABEF⊥平面EFDC;(II)求二面角E﹣BC﹣A 的余弦值.【考点】MJ:二面角的平面角及求法.【专题】11:计算题;34:方程思想;49:综合法;5H:空间向量及应用;5Q:立体几何.【分析】(Ⅰ)证明AF⊥平面EFDC,利用平面与平面垂直的判定定理证明平面ABEF⊥平面EFDC;(Ⅱ)证明四边形EFDC 为等腰梯形,以E 为原点,建立如图所示的坐标系,求出平面BEC、平面ABC 的法向量,代入向量夹角公式可得二面角E﹣BC﹣A 的余弦值.【解答】(Ⅰ)证明:∵ABEF 为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE 为二面角D﹣AF﹣E 的平面角;由ABEF 为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF 为二面角C﹣BE﹣F 的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB✪平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC 为等腰梯形.以E 为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴=(0,2a,0),=(,﹣2a,a),=(﹣2a,0,0)设平面BEC 的法向量为=(x1,y1,z1),则,则,取=(,0,﹣1).设平面ABC 的法向量为=(x2,y2,z2),则,则,取=(0,,4).设二面角E﹣BC﹣A 的大小为θ,则cosθ===﹣,则二面角E﹣BC﹣A 的余弦值为﹣.【点评】本题考查平面与平面垂直的证明,考查用空间向量求平面间的夹角,建立空间坐标系将二面角问题转化为向量夹角问题是解答的关键.19.(12 分)某公司计划购买2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100 台这种机器在三年使用期内更换的易损零件数,得如图柱状图:以这100 台机器更换的易损零件数的频率代替1 台机器更换的易损零件数发生的概率,记X 表示2 台机器三年内共需更换的易损零件数,n 表示购买2 台机器的同时购买的易损零件数.(I)求X 的分布列;(II)若要求P(X≤n)≥0.5,确定n 的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在n=19 与n=20 之中选其一,应选用哪个?【考点】CG:离散型随机变量及其分布列.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,分别求出相应的概率,由此能求出X 的分布列.(II)由X 的分布列求出P(X≤18)=,P(X≤19)=.由此能确定满足P (X≤n)≥0.5 中n 的最小值.(III)法一:由X 的分布列得P(X≤19)=.求出买19 个所需费用期望EX1和买20 个所需费用期望EX2,由此能求出买19 个更合适.法二:解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,分别求出n=19 时,费用的期望和当n=20时,费用的期望,从而得到买19 个更合适.【解答】解:(Ⅰ)由已知得X 的可能取值为16,17,18,19,20,21,22,P (X=16)=()2=,P(X=17)=,P(X=18)=()2+2()2=,P(X=19)= =,P(X=20)= ==,P(X=21)= =,P(X=22)= ,∴X 的分布列为:(Ⅱ)由(Ⅰ)知:P(X≤18)=P(X=16)+P(X=17)+P(X=18)==.P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.∴P(X≤n)≥0.5 中,n 的最小值为19.(Ⅲ)解法一:由(Ⅰ)得P(X≤19)=P(X=16)+P(X=17)+P(X=18)+P(X=19)=+=.买19 个所需费用期望:EX1=200×+(200×19+500)×+(200×19+500×2)×+(200×19+500×3)×=4040,买20 个所需费用期望:EX2= +(200×20+500)×+(200×20+2×500)×=4080,∵EX1<EX2,∴买19 个更合适.解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购买的费用,当n=19 时,费用的期望为:19×200+500×0.2+1000×0.08+1500×0.04=4040,当n=20 时,费用的期望为:20×200+500×0.08+1000×0.04=4080,∴买19 个更合适.【点评】本题考查离散型随机变量的分布列和数学期望的求法及应用,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.20.(12 分)设圆x2+y2+2x﹣15=0 的圆心为A,直线l 过点B(1,0)且与x 轴不重合,l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E.(I)证明|EA|+|EB|为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C1,直线l 交C1 于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.【考点】J2:圆的一般方程;KL:直线与椭圆的综合.【专题】34:方程思想;48:分析法;5B:直线与圆;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB=ED,再由圆的定义和椭圆的定义,可得E 的轨迹为以A,B 为焦点的椭圆,求得a,b,c,即可得到所求轨迹方程;(Ⅱ)设直线l:x=my+1,代入椭圆方程,运用韦达定理和弦长公式,可得|MN|,由PQ⊥l,设PQ:y=﹣m(x﹣1),求得A 到PQ 的距离,再由圆的弦长公式可得|PQ|,再由四边形的面积公式,化简整理,运用不等式的性质,即可得到所求范围.【解答】解:(Ⅰ)证明:圆x2+y2+2x﹣15=0 即为(x+1)2+y2=16,可得圆心A(﹣1,0),半径r=4,由BE∥AC,可得∠C=∠EBD,由AC=AD,可得∠D=∠C,即为∠D=∠EBD,即有EB=ED,则|EA|+|EB|=|EA|+|ED|=|AD|=4,故E 的轨迹为以A,B 为焦点的椭圆,且有2a=4,即a=2,c=1,b==,则点E 的轨迹方程为+=1(y≠0);(Ⅱ)椭圆C1:+=1,设直线l:x=my+1,由PQ⊥l,设PQ:y=﹣m(x﹣1),由可得(3m2+4)y2+6my﹣9=0,设M(x1,y1),N(x2,y2),可得y1+y2=﹣,y1y2=﹣,则|MN|=•|y1﹣y2|=•= •=12•,A 到PQ 的距离为d==,|PQ|=2 =2=,则四边形MPNQ 面积为S= |PQ|•|MN|= ••12•=24•=24,当m=0 时,S 取得最小值12,又>0,可得S<24•=8 ,即有四边形MPNQ 面积的取值范围是[12,8).【点评】本题考查轨迹方程的求法,注意运用椭圆和圆的定义,考查直线和椭圆方程联立,运用韦达定理和弦长公式,以及直线和圆相交的弦长公式,考查不等式的性质,属于中档题.21.(12 分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2有两个零点.(I)求a 的取值范围;(II)设x1,x2 是f(x)的两个零点,证明:x1+x2<2.【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】32:分类讨论;35:转化思想;4C:分类法;4R:转化法;51:函数的性质及应用.【分析】(Ⅰ)由函数f(x)=(x﹣2)e x+a(x﹣1)2可得:f′(x)=(x﹣1)e x+2a (x﹣1)=(x﹣1)(e x+2a),对a 进行分类讨论,综合讨论结果,可得答案.(Ⅱ)设x1,x2 是f(x)的两个零点,则﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,分析g(x)的单调性,令m>0,则g(1+m)﹣g(1﹣m)=,设h(m)=,m>0,利用导数法可得h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,可得结论.【解答】解:(Ⅰ)∵函数f(x)=(x﹣2)e x+a(x﹣1)2,∴f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①若a=0,那么f(x)=0⇔(x﹣2)e x=0⇔x=2,函数f(x)只有唯一的零点2,不合题意;②若a>0,那么e x+2a>0 恒成立,当x<1 时,f′(x)<0,此时函数为减函数;当x>1 时,f′(x)>0,此时函数为增函数;此时当x=1 时,函数f(x)取极小值﹣e,由f(2)=a>0,可得:函数f(x)在x>1 存在一个零点;当x<1 时,e x<e,x﹣2<﹣1<0,∴f(x)=(x﹣2)e x+a(x﹣1)2>(x﹣2)e+a(x﹣1)2=a(x﹣1)2+e(x﹣1)﹣e,令a(x﹣1)2+e(x﹣1)﹣e=0 的两根为t1,t2,且t1<t2,则当x<t1,或x>t2 时,f(x)>a(x﹣1)2+e(x﹣1)﹣e>0,故函数f(x)在x<1 存在一个零点;即函数f(x)在R 是存在两个零点,满足题意;③若﹣<a<0,则ln(﹣2a)<lne=1,当x<ln(﹣2a)时,x﹣1<ln(﹣2a)﹣1<lne﹣1=0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当ln(﹣2a)<x<1 时,x﹣1<0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=ln(﹣2a)时,函数取极大值,由f(ln(﹣2a))=[ln(﹣2a)﹣2](﹣2a)+a[ln(﹣2a)﹣1]2=a{[ln(﹣2a)﹣2]2+1}<0 得:函数f(x)在R 上至多存在一个零点,不合题意;④若a=﹣,则ln(﹣2a)=1,当x<1=ln(﹣2a)时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当x>1 时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故函数f(x)在R 上单调递增,函数f(x)在R 上至多存在一个零点,不合题意;⑤若a<﹣,则ln(﹣2a)>lne=1,当x<1 时,x﹣1<0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,当1<x<ln(﹣2a)时,x﹣1>0,e x+2a<e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)<0 恒成立,故f(x)单调递减,当x>ln(﹣2a)时,x﹣1>0,e x+2a>e ln(﹣2a)+2a=0,即f′(x)=(x﹣1)(e x+2a)>0 恒成立,故f(x)单调递增,故当x=1 时,函数取极大值,由f(1)=﹣e<0 得:函数f(x)在R 上至多存在一个零点,不合题意;综上所述,a 的取值范围为(0,+∞)证明:(Ⅱ)∵x1,x2 是f(x)的两个零点,∴f(x1)=f(x2)=0,且x1≠1,且x2≠1,∴﹣a==,令g(x)=,则g(x1)=g(x2)=﹣a,∵g′(x)=,∴当x<1 时,g′(x)<0,g(x)单调递减;当x>1 时,g′(x)>0,g(x)单调递增;设m>0,则g(1+m)﹣g(1﹣m)=﹣=,设h(m)= ,m>0,则h′(m)= >0 恒成立,即h(m)在(0,+∞)上为增函数,h(m)>h(0)=0 恒成立,即g(1+m)>g(1﹣m)恒成立,令m=1﹣x1>0,则g(1+1﹣x1)>g(1﹣1+x1)⇔g(2﹣x1)>g(x1)=g(x2)⇔2﹣x1>x2,即x1+x2<2.【点评】本题考查的知识点是利用导数研究函数的极值,函数的零点,分类讨论思想,难度较大.请考生在22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10 分)如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,OA 为半径作圆.(I)证明:直线AB 与⊙O 相切;(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K 为AB 中点,连结OK.根据等腰三角形AOB 的性质知OK⊥ AB,∠A=30°,OK=OAsin30°=OA,则AB 是圆O 的切线.(Ⅱ)设圆心为T,证明OT 为AB 的中垂线,OT 为CD 的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K 为AB 中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB 与⊙O 相切;(Ⅱ)因为OA=2OD,所以O 不是A,B,C,D 四点所在圆的圆心.设T 是A,B,C,D 四点所在圆的圆心.∵OA=OB,TA=TB,∴OT 为AB 的中垂线,同理,OC=OD,TC=TD,∴OT 为CD 的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy 中,曲线C1 的参数方程为(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=α0,其中α0 满足tanα0=2,若曲线C1 与C2 的公共点都在C3 上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1 的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1 是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ 化为极坐标方程;(Ⅱ)化曲线C2、C3 的极坐标方程为直角坐标方程,由条件可知y=x 为圆C1 与C2 的公共弦所在直线方程,把C1 与C2 的方程作差,结合公共弦所在直线方程为y=2x 可得1﹣a2=0,则a 值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1 为以(0,1)为圆心,以a 为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0 满足tanα0=2,得y=2x,∵曲线C1 与C2 的公共点都在C3 上,∴y=2x 为圆C1 与C2 的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(I)在图中画出y=f(x)的图象;(II)求不等式|f(x)|>1 的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1 时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)= ,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1 时,|x﹣4|>1,解得x>5 或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1 或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5 或x<3,即有x>5 或≤x<3.综上可得,x<或1<x<3 或x>5.则|f(x)|>1 的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
高考数学一模试卷 理(含解析)-人教版高三全册数学试题
2016年某某省某某实验中学高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.54.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.47.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣210.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=111.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为.16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△ABC的面积为6,求边c的值.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.2016年某某省某某实验中学高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在题目给出的四个选项中,只有一个选项是符合题目要求.1.设全集I=R,集合A={y|y=log3x,x>3},B={x|y=},则()A.A⊆BB.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅【考点】集合的包含关系判断及应用.【分析】根据对数函数的单调性便可解出A={x|x>1},利用被开方数大于等于0,求出B,从而找出正确选项.【解答】解:A={y|y=log3x,x>3}={y|y>1},B={x|y=}={x|x≥1},∴A⊆B,故选:A.2.设i为虚数单位,则复数=()A.﹣4﹣3iB.﹣4+3iC.4+3iD.4﹣3i【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:原式==﹣4﹣3i,故选:A.3.在△ABC中,角A,B,C所对边分别为a,b,c,且c=,B=45°则S=2,则b等于()A. B. C.25D.5【考点】解三角形.【分析】由S==2,得a=1,再直接利用余弦定理求得b.【解答】解:由S===2,得a=1又由余弦定理得b2=a2+c2﹣2accosB=1+32﹣2×=25,所以b=5故选D4.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有()A.36种B.30种C.24种D.6种【考点】计数原理的应用.【分析】先不考虑学生甲,乙不能同时参加同一学科竞赛,从4人中选出两个人作为一个元素,同其他两个元素在三个位置上排列,其中有不符合条件的,即甲乙两人在同一位置,去掉即可.【解答】解:从4人中选出两个人作为一个元素有C42种方法,同其他两个元素在三个位置上排列C42A33=36,其中有不符合条件的,即学生甲,乙同时参加同一学科竞赛有A33种结果,∴不同的参赛方案共有 36﹣6=30,故选:B5.已知α、β、γ为互不重合的三个平面,命题p:若α⊥β,β⊥γ,则α∥γ;命题q:若α上不共线的三点到β的距离相等,则α∥β.对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或¬q”为假C.命题“p或q”为假D.命题“¬p且¬q”为假【考点】平面与平面之间的位置关系.【分析】根据平面平行的判断方法,我们对已知中的两个命题p,q进行判断,根据判断结合和复合命题真值表,我们对四个答案逐一进行判断,即可得到结论.【解答】解:∵当α⊥β,β⊥γ时,α与γ可能平行与可能垂直故命题p为假命题又∵若α上不共线的三点到β的距离相等时α与β可能平行也可能相交,故命题q也为假命题故命题“p且q”为假,命题“p或¬q”为真,命题“p或q”为假,命题“¬p且¬q”为真故选C6.如果实数x,y满足不等式组,目标函数z=kx﹣y的最大值为6,最小值为0,则实数k的值为()A.1B.2C.3D.4【考点】简单线性规划.【分析】首先作出其可行域,再由题意讨论目标函数在哪个点上取得最值,解出k.【解答】解:作出其平面区域如右图:A(1,2),B(1,﹣1),C(3,0),∵目标函数z=kx﹣y的最小值为0,∴目标函数z=kx﹣y的最小值可能在A或B时取得;∴①若在A上取得,则k﹣2=0,则k=2,此时,z=2x﹣y在C点有最大值,z=2×3﹣0=6,成立;②若在B上取得,则k+1=0,则k=﹣1,此时,z=﹣x﹣y,在B点取得的应是最大值,故不成立,故选B.7.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设学生一次发球成功的概率为p (p≠0),发球次数为X,若X的数学期望EX>1.75,则p的取值X围是()A.(0,)B.(,1)C.(0,)D.(,1)【考点】相互独立事件的概率乘法公式;离散型随机变量的期望与方差.【分析】根据题意,首先求出X=1、2、3时的概率,进而可得EX的表达式,由题意EX>1.75,可得p2﹣3p+3>1.75,解可得p的X围,结合p的实际意义,对求得的X围可得答案.【解答】解:根据题意,学生发球次数为1即一次发球成功的概率为p,即P(X=1)=p,发球次数为2即二次发球成功的概率P(X=2)=p(1﹣p),发球次数为3的概率P(X=3)=(1﹣p)2,则Ex=p+2p(1﹣p)+3(1﹣p)2=p2﹣3p+3,依题意有EX>1.75,则p2﹣3p+3>1.75,解可得,p>或p<,结合p的实际意义,可得0<p<,即p∈(0,)故选C.8.把边长为1的正方形ABCD沿对角线BD折起,形成的三棱锥C﹣ABD的主视图与俯视图如图所示,则左视图的面积为()A. B. C. D.【考点】简单空间图形的三视图.【分析】画出几何体的图形,根据三视图的特征,推出左视图的形状,然后求解即可.【解答】解:在三棱锥C﹣ABD中,C在平面ABD上的射影为BD的中点,左视图的面积等于,故选:D.9.如图,在由x=0,y=0,x=及y=cosx围成区域内任取一点,则该点落在x=0,y=sinx及y=cosx围成的区域内(阴影部分)的概率为()A.1﹣B.﹣1C. D.3﹣2【考点】定积分在求面积中的应用;几何概型.【分析】根据积分的几何意义求出阴影部分的面积,利用几何概型的概率公式即可得到结论.【解答】解:由x=0,y=0,x=及y=cosx围成区域内围成的区域面积S==sinx|,由x=0,y=sinx及y=cosx围成的区域面积S==(sinx+cosx)|=,∴根据根据几何概型的概率公式可得所求的概率P=,故选:B.10.若A,B,C是圆x2+y2=1上不同的三个点,O是圆心,且,存在实数λ,μ使得=,实数λ,μ的关系为()A.λ2+μ2=1B. C.λ•μ=1D.λ+μ=1【考点】直线和圆的方程的应用;向量的共线定理;数量积判断两个平面向量的垂直关系.【分析】由A,B,C是圆x2+y2=1上不同的三个点,可得,又,所以对两边平方即可得到结论.【解答】解:∵,两边平方得:∵∴λ2+μ2=1故选A11.设数列{a n}的前n项和为S n,且a1=a2=1,{nS n+(n+2)a n}为等差数列,则a n=()A. B. C. D.【考点】数列递推式.【分析】设b n=nS n+(n+2)a n,由已知得b1=4,b2=8,从而b n=nS n+(n+2)a n=4n,进而得到是以为公比,1为首项的等比数列,由此能求出.【解答】解:设b n=nS n+(n+2)a n,∵数列{a n}的前n项和为S n,且a1=a2=1,∴b1=4,b2=8,∴b n=b1+(n﹣1)×(8﹣4)=4n,即b n=nS n+(n+2)a n=4n当n≥2时,∴,即,∴是以为公比,1为首项的等比数列,∴,∴.故选:A.12.定义区间[x1,x2]长度为x2﹣x1,(x2>x1),已知函数f(x)=(a∈R,a≠0)的定义域与值域都是[m,n],则区间[m,n]取最大长度时a的值为()A. B.a>1或a<﹣3C.a>1D.3【考点】函数的值域;函数的定义域及其求法.【分析】得出,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根得出mn=,只需△=a2(a+3)(a﹣1)>0,a>1或a<﹣3,利用函数求解n﹣m==,n﹣m取最大值为.此时a=3,【解答】解:设[m,n]是已知函数定义域的子集.x≠0,[m,n]⊆(﹣∞,0)或[m,n]⊆(0,+∞),故函数f(x)=﹣在[m,n]上单调递增,则,故m,n是方程)=﹣=x的同号的相异实数根,即a2x2﹣(a2+a)x+1=0的同号的相异实数根∵mn=∴m,n同号,只需△=a2(a+3)(a﹣1)>0,∴a>1或a<﹣3,n﹣m==,n﹣m取最大值为.此时a=3,故选:D二、填空题::本大题共4小题,每小题5分,共20分.13.如图是判断“实验数”的流程图,在[30,80]内的所有整数中,“实验数”的个数是12 .【考点】程序框图.【分析】从程序框图中得到实验数的定义,找出区间中被3整除的数;找出被12整除的数;找出不能被6整除的数得到答案.【解答】解:由程序框图知实验数是满足:能被3整除不能被6整除或能被12整除的数,在[30,80]内的所有整数中,所有的能被3整除数有:30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78共有17个数,在这17个数中能被12 整除的有36,48,60,72,共4个数,在这17个数中不能被6 整除的有33,39,45,51,57,63,69,75,共计8个数,所以在[30,80]内的所有整数中“试验数”的个数是12个.故答案为:12.14.已知向量=(m,1),=(4﹣n,2),m>0,n>0,若∥,则+的最小值\frac{9}{2} .【考点】基本不等式;平面向量共线(平行)的坐标表示.【分析】由∥,可得:n+2m=4.再利用“乘1法”与基本不等式的性质即可得出.【解答】解:∵∥,∴4﹣n﹣2m=0,即n+2m=4.∵m>0,n>0,∴+=(n+2m)=≥=,当且仅当n=4m=时取等号.∴+的最小值是.故答案为:.15.双曲线C:的左右焦点分别为F1、F2,过F1的直线与双曲线左右两支分别交于A、B两点,若△ABF2是等边三角形,则双曲线C的离心率为\sqrt{7} .【考点】双曲线的简单性质.【分析】根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c=a,结合双曲线离心率公式即可算出双曲线C的离心率.【解答】解:根据双曲线的定义,可得|BF1|﹣|BF2|=2a,∵△ABF2是等边三角形,即|BF2|=|AB|∴|BF1|﹣|BF2|=2a,即|BF1|﹣|AB|=|AF1|=2a又∵|AF2|﹣|AF1|=2a,∴|AF2|=|AF1|+2a=4a,∵△AF1F2中,|AF1|=2a,|AF2|=4a,∠F1AF2=120°∴|F1F2|2=|AF1|2+|AF2|2﹣2|AF1|•|AF2|cos120°即4c2=4a2+16a2﹣2×2a×4a×(﹣)=28a2,解之得c=a,由此可得双曲线C的离心率e==故答案为:16.在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为12 .【考点】等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n 项和.【分析】设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的X围,取上限的整数部分即可得答案.【解答】解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,A,B,C所对的边分别为a,b,c,sin2+sinAsinB=.(1)求角C的大小;(2)若b=4,△A BC的面积为6,求边c的值.【考点】正弦定理;三角函数中的恒等变换应用.【分析】(1)利用降幂公式,两角和与差的余弦函数公式,三角形内角和定理,诱导公式化简已知等式,可求cosC的值,结合C的X围可求C的值.(2)利用三角形面积公式可求a的值,结合余弦定理即可求得c的值.【解答】解:(1)sin2+sinAsinB=.⇒,⇒,⇒,⇒,⇒,⇒,⇒,(2)∵,,∴,∵c2=a2+b2﹣2abcosC=10,∴.18.如图是某市2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量重度污染的概率;(2)设ξ是此人停留期间空气重度污染的天数,求ξ的分布列与数学期望.【考点】离散型随机变量的期望与方差;等可能事件的概率.【分析】(1)设A i表示事件“此人于2月i日到达该市”依题意知p(A i)=,设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,由此能求出此人到达当日空气质量重度污染的概率.(2)由题意可知,ξ的所有可能取值为0,1,2,3,分别求出P(ξ=0),P(ξ=1),P(ξ=2),P(ξ=3),由此能求出ξ的分布列和ξ的期望.【解答】解:(1)设A i表示事件“此人于2月i日到达该市”(i=1,2,…,12).依题意知,p(A i)=,且A i∩A j=Φ(i≠j).设B为事件“此人到达当日空气质量重度污染”,则B=A1∪A2∪A3∪A7∪A12,所以P(B)=(A1∪A2∪A3∪A7∪A12)=P(A1)+P(A2)+P(A3)+P(A7)+P(A12)=.即此人到达当日空气质量重度污染的概率为.(2)由题意可知,ξ的所有可能取值为0,1,2,3,P(ξ=0)=P(A4∪A8∪A9)=P(A4)+P(A8)+P(A9)=,P(ξ=2)=P(A2∪A11)=P(A2)+P(A11)=,P(ξ=3)=P(A1∪A12)=P(A1)+P(A12)=,P(ξ=1)=1﹣P(ξ=0)﹣P(ξ=2)﹣P(ξ=3)=1﹣=,∴ξ的分布列为:ξ0 1 2 3P故ξ的期望Eξ=.19.如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2,AD=1,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A﹣PB﹣C的余弦值.【考点】用空间向量求平面间的夹角;直线与平面垂直的性质;二面角的平面角及求法.【分析】(1)由余弦定理得BD=,由勾股定理,得BD⊥AD,由线线面垂直得BD⊥PD,从而BD⊥平面PAD,由此能证明PA⊥BD.(2)以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,分别求出平面APB的法向量和平面PBC的法向量,由此能求出二面角A﹣PB﹣C的余弦值.【解答】(1)证明:因为∠DAB=60°,AB=2,AD=1,由余弦定理得BD==,∴BD2+AD2=AB2,故BD⊥AD,∵PD⊥底面ABCD,BD⊂平面ABCD,∴BD⊥PD,又AD∩PD=D,∴BD⊥平面PAD,又PA⊂平面PAD,∴PA⊥BD.(2)解:以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,由已知得A(1,0,0),P(0,0,1),B(0,,0),C(﹣1,,0),=(1,0,﹣1),=(0,,﹣1),=(﹣1,,﹣1),设平面APB的法向量=(x,y,z),则,取y=,得=(3,,3),设平面PBC的法向量=(a,b,c),则,取b=,得=(0,,3),设二面角A﹣PB﹣C的平面角为θ,由图象知θ为钝角,∴cosθ=﹣|cos<>|=﹣||=﹣||=﹣.∴二面角A﹣PB﹣C的余弦值为﹣.20.如图,在平面直角坐标系xOy中,已知圆O:x2+y2=4,椭圆C:,A为椭圆右顶点.过原点O且异于坐标轴的直线与椭圆C交于B,C两点,直线AB与圆O的另一交点为P,直线PD与圆O的另一交点为Q,其中.设直线AB,AC的斜率分别为k1,k2.(1)求k1k2的值;(2)记直线PQ,BC的斜率分别为k PQ,k BC,是否存在常数λ,使得k PQ=λk BC?若存在,求λ值;若不存在,说明理由;(3)求证:直线AC必过点Q.【考点】椭圆的简单性质.【分析】(1)设B(x0,y0),则C(﹣x0,﹣y0),代入椭圆方程,运用直线的斜率公式,化简即可得到所求值;(2)联立直线AB的方程和圆方程,求得P的坐标;联立直线AB的方程和椭圆方程,求得B 的坐标,再求直线PQ,和直线BC的斜率,即可得到结论;(3)讨论直线PQ的斜率不存在和存在,联立直线PQ的方程和椭圆方程,求得Q的坐标,可得AQ的斜率,即可得证.【解答】解:(1)设B(x0,y0),则C(﹣x0,﹣y0),,所以;(2)联立得,解得,联立得,解得,所以,,所以,故存在常数,使得.(3)证明:当直线PQ与x轴垂直时,,则,所以直线AC必过点Q.当直线PQ与x轴不垂直时,直线PQ方程为:,联立,解得,所以,故直线AC必过点Q.21.已知函数f(x)=alnx+1(a>0).(1)当a=1且x>1时,证明:f(x)>3﹣;(2)若对∀x∈(1,e),f(x)>x恒成立,某某数a的取值X围;(3)当a=时,证明: f(i)>2(n+1﹣).【考点】导数在最大值、最小值问题中的应用.【分析】(1)当a=1且x>1时,构造函数m(x)=lnx+﹣2,利用函数单调性和导数之间的关系即可证明:f(x)>3﹣;(2)根据函数最值和函数导数之间的关系将不等式恒成立问题进行转化,某某数a的取值X 围;(3)根据函数的单调性的性质,利用放缩法即可证明不等式.【解答】(1)证明:要证f(x)>3﹣,即证lnx+﹣2>0,令m(x)=lnx+﹣2,则m'(x)=,∴m(x)在(1,+∞)单调递增,m(x)>m(1)=0,∴lnx+﹣2>0,即f(x)>3﹣成立.(2)解法一:由f(x)>x且x∈(1,e),可得a,令h(x)=,则h'(x)=,由(1)知lnx﹣1+>1+=,∴h'(x)>0函数,h(x)在(1,e)单调递增,当x∈(1,e)时,h(x)<h(e)=e﹣1,即a≥e﹣1.解法二:令h(x)=alnx+1﹣x,则h'(x)=,当a>e时,h'(x)>0,函数h(x)在(1,e)上是增函数,有h(x)>h(1)=0,当1<a≤e时,∵函数h(x)在(1,a)上递增,在(a,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,即a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当a≤1时,函数h(x)在(1,e)上递减,对∀x∈(1,e),f(x)>x恒成立,只需h(e)≥0,而h(e)=a+1﹣e<0,不合题意,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上得对∀x∈(1,e),f(x)>x恒成立,a≥e﹣1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣】【解法三:由f(x)>x且x∈(1,e)可得由于表示两点A(x,lnx),B(1,0)的连线斜率,由图象可知y=在(1,e)单调递减,故当x∈(1,e)时,,∴0,即a≥e﹣1.(3)当a=时,f(x)=,则f(i)=ln(n+1)!+n,要证f(i)>2(n+1﹣),即证lni>2n+4﹣4,由(1)可知ln(n+1)>2﹣,又n+2=(n+1)+1>2>,∴,∴ln(n+1)>2﹣,∴ln2+ln3+…+ln(n+1)=2n+4﹣4,故f(i)>2(n+1﹣).得证.[选修4-1:几何证明选讲]22.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.(Ⅰ)求证:PM2=PA•PC;(Ⅱ)若⊙O的半径为2,OA=OM,求MN的长.【考点】与圆有关的比例线段.【分析】(Ⅰ)做出辅助线连接ON,根据切线得到直角,根据垂直得到直角,即∠ONB+∠BNP=90°且∠OBN+∠BMO=90°,根据同角的余角相等,得到角的相等关系,得到结论.(Ⅱ)本题是一个求线段长度的问题,在解题时,应用相交弦定理,即BM•MN=CM•MA,代入所给的条件,得到要求线段的长.【解答】(Ⅰ)证明:连接ON,因为PN切⊙O于N,∴∠ONP=90°,∴∠ONB+∠BNP=90°∵OB=ON,∴∠OBN=∠ONB因为OB⊥AC于O,∴∠OBN+∠BMO=90°,故∠BNP=∠BMO=∠PMN,PM=PN∴PM2=PN2=PA•PC(Ⅱ)∵OM=2,BO=2,BM=4∵BM•MN=CM•MA=(2+2)(2﹣2)(2﹣2)=8,∴MN=2[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,直线l的参数方程为它与曲线C:(y ﹣2)2﹣x2=1交于A、B两点.(1)求|AB|的长;(2)在以O为极点,x轴的正半轴为极轴建立极坐标系,设点P的极坐标为,求点P到线段AB中点M的距离.【考点】直线的参数方程;点到直线的距离公式;柱坐标刻画点的位置.【分析】(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,求出t1+t2和t1•t2,根据|AB|=•|t1﹣t2|=5,运算求得结果.(Ⅱ)根据中点坐标的性质可得AB中点M对应的参数为=.由t的几何意义可得点P到M的距离为|PM|=•||,运算求得结果.【解答】解:(Ⅰ)把直线的参数方程对应的坐标代入曲线方程并化简得 7t2﹣12t﹣5=0,设A,B对应的参数分别为 t1和t2,则 t1+t2=,t1•t2 =﹣.所以|AB|=•|t1﹣t2|=5 =.(Ⅱ)易得点P在平面直角坐标系下的坐标为(﹣2,2),根据中点坐标的性质可得AB中点M对应的参数为=.所以由t的几何意义可得点P到M的距离为|PM|=•||=.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣a|(a∈R)(1)当a=4时,求不等式f(x)≥5的解集;(2)若f(x)≥4对x∈R恒成立,求a的取值X围.【考点】带绝对值的函数;绝对值不等式.【分析】(Ⅰ)不等式即|x﹣1|+|x﹣4|≥5,等价于,或,或,分别求出每个不等式组的解集,再取并集即得所求.(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|a﹣1|,由题意可得|a﹣1|≥4,与偶此解得 a的值.【解答】解:(Ⅰ)当a=4时,不等式f(x)≥5,即|x﹣1|+|x﹣4|≥5,等价于,,或,或.解得:x≤0或x≥5.故不等式f(x)≥5的解集为{x|x≤0,或x≥5 }.…(Ⅱ)因为f(x)=|x﹣1|+|x﹣a|≥|(x﹣1)﹣(x﹣a)|=|a﹣1|.(当x=1时等号成立)所以:f(x)min=|a﹣1|.…由题意得:|a﹣1|≥4,解得a≤﹣3,或a≥5.…。
高考一轮复习淮北市高三第一次模拟考试.docx
高中化学学习材料唐玲出品淮北市2016届高三第一次模拟考试化学试题本试卷分为第I卷(选择题)和第II卷(非选择题)。
全卷满分100分。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中的姓名、座位号与本人姓名、座位号是否一致。
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上所对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡的规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效...........................。
第I卷(选择题共50分)本卷共20小题,1~10小题,每小题2分;11~20小题,每小题3分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)以下数据可供解题时参考相对原子质量(原子量):H 1 C 12 O 16 N 14 Na 23 P 31 Ca 401.氨基磺酸(结构如图所示)是一种强酸,工业上用于酸性清洗剂、磺化剂等。
加热至60℃时与水反应生成一种盐,该盐的溶液呈强酸性。
下列有关氨基磺酸说法正确的是A. 不溶于水B.不能清洗铁锈C. 水溶液中以分子形式大量存在D. 与水反应生成的盐是NH4HSO42.设N A是阿伏伽德罗常数的值,下列说法正确的是A.1 L 1 mol·L-1 NaHCO3溶液中含有HCO3-数目为N AB.1 mol Cl2与足量的铁反应,转移的电子数为3N AC.标准状况下,22.4 L乙醇的分子数为N AD.17 g H2O2所含共价键的总数为1.5N A3.常温下,下列各组离子在指定溶液中一定能大量共存的是A.0.1 mol·L-1 NaHCO3溶液: H+、Al3+、Cl-、CH3COO-B.0.1 mol·L-1 CuCl2溶液: K+、NH4+、OH-、S2-C.0.1 mol·L-1 FeCl2溶液: Na+、NH4+、I-、SO42-D.c(H+)/c(OH-)= 1×1013的溶液: Fe3+、Na+、SO32ˉ、NO3-4.材料在生产和日常生活中有着广泛的应用。
安徽省淮北市高考数学模拟试卷(理科)
安徽省淮北市高考数学模拟试卷(理科)姓名:________ 班级:________ 成绩:________一、选择 (共12题;共24分)1. (2分) (2016高二上·上海期中) 设集合M={x|x2﹣x<0},N={x||x|<2},则()A . M∩N=∅B . M∩N=MC . M∪N=MD . M∪N=R2. (2分)复数z满足,则复数z=()A .B .C .D .3. (2分) (2016高一上·宝安期中) 下列说法正确的个数有()①函数f(x)=lg(2x﹣1)的值域为R;②若()a>() b ,则a<b;③已知f(x)= ,则f[f(0)]=1;④已知f(1)<f(2)<f(3)<…<f(2016),则f(x)在[1,2016]上是增函数.A . 0个B . 1个C . 2 个D . 3个Q4. (2分)(2018·重庆模拟) 执行如图所示的程序框图,如果输入的,则输出的值的取值范围是()A . 或B .C . 或D . 或5. (2分)已知点在椭圆上,则的最大值为()A . -2B . -1C . 2D . 76. (2分)数列满足:,且当时,,则()A .B .C . 5D . 67. (2分)函数,则此函数的所有零点之和等于()A . 4B . 8C . 6D . 108. (2分) (2017高一下·廊坊期末) 若一个正三棱柱的主视图如图所示,其顶点都在一个球面上,则该球的表面积为()A .B .C .D .9. (2分)设函数,则y=f(x)()A . 在区间内均有零点B . 在区间内均无零点C . 在区间内有零点,在区间(1,e)内无零点D . 在区间内无零点,在区间(1,e)内有零点10. (2分)过椭圆右焦点且斜率为1的直线被椭圆截得的弦MN的长为()A .B .C .D .11. (2分)如果执行右面的算法语句输出结果是2,则输入的x值是()A . 0B . 0或2C . 2D . -1或212. (2分)(2017·运城模拟) 如图,给定两个平面单位向量和,它们的夹角为120°,点C在以O为圆心的圆弧AB上,且(其中x,y∈R),则满足x+y≥ 的概率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分)设x,y满足约束条件,则目标函数z=x+y的最大值为________14. (1分)(2017·成都模拟) 在二项式(ax2+ )5的展开式中,若常数项为﹣10,则a=________.15. (1分)已知O(0,0),M(2,0),N(1,0),动点P满足: = ;若| |=1,在P的轨迹上存在A,B两点,有• =0成立,则| |的取值范围是________16. (1分)(2017·甘肃模拟) 已知函数f(x)= 若方程f(x)﹣a=0有唯一解,则实数a 的取值范围是________.三、解答题 (共7题;共50分)17. (10分)(2018·如皋模拟) 在某城市街道上一侧路边边缘某处安装路灯,路宽为米,灯杆长4米,且与灯柱成角,路灯采用可旋转灯口方向的锥形灯罩,灯罩轴线与灯的边缘光线(如图, )都成角,当灯罩轴线与灯杆垂直时,灯罩轴线正好通过的中点.(1)求灯柱的高为多少米;(2)设,且,求灯所照射路面宽度的最小值.18. (5分)(2018·南充模拟) 某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为,当时,产品为一级品;当时,产品为二级品,当时,产品为三级品,现用两种新配方(分别称为配方和配方)做实验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面的试验结果:(以下均视频率为概率)配方的频数分配表指标值分组频数10304020配方的频数分配表指标值分组频数510154030(Ⅰ)若从配方产品中有放回地随机抽取3件,记“抽出的配方产品中至少1件二级品”为事件,求事件发生的概率;(Ⅱ)若两种新产品的利润率与质量指标满足如下关系:其中,从长期来看,投资哪种配方的产品平均利润率较大?19. (10分)(2018·广东模拟) 如图,在四棱锥中,是正三角形,是等腰三角形,,.(1)求证:;(2)若,,平面平面,直线与平面所成的角为45°,求二面角的余弦值.20. (5分) (2018高二上·泸县期末) 已知椭圆:()的左焦点为,离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设为坐标原点,为直线上一点,过作的垂线交椭圆于,.当四边形是平行四边形时,求四边形的面积。
高考数学总复习 模拟试卷(一)理-人教版高三全册数学试题
2016年高考数学(理科)模拟试卷(一)(本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分,考试时间120分钟)第Ⅰ卷(选择题 满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N =( ) A .[0,1] B .(0,1) C .(0,1] D .[0,1) 2.复数(3+2i)i =( )A .-2-3iB .-2+3iC .2-3iD .2+3i 3.命题“∀x ∈R ,|x |+x 2≥0”的否定是( ) A .“∀x ∈R ,|x |+x 2<0” B .“∀x ∈R ,|x |+x 2≤0” C .“∃x 0∈R ,|x 0|+x 20<0” D .“∃x 0∈R ,|x 0|+x 20≥0”4.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是( ) A .f (x )=-x |x | B .f (x )=x +1xC .f (x )=tan xD .f (x )=ln x x5.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .76.曲线y =x 3-2x +4在点(1,3)处切线的倾斜角为( ) A.π6 B.π3 C.π4 D.π27.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f [f (0)]=4a ,则实数a =( )A.12B.45C .2D .9 8.某几何体的三视图如图M11,则它的体积为( )图M11A .72πB .48π C.30π D .24π9.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4(ω>0)的最小正周期为π,则该函数的图象是( ) A .关于直线x =π8对称 B .关于点⎝ ⎛⎭⎪⎫π4,0对称C .关于直线x =π4对称D .关于点⎝ ⎛⎭⎪⎫π8,0对称 10.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .211.在同一个平面直角坐标系中画出函数y =a x,y =sin ax 的部分图象,其中a >0,且a ≠1,则下列所给图象中可能正确的是( )A BC D12.已知定义在区间⎣⎢⎡⎦⎥⎤0,3π2上的函数y =f (x )的图象关于直线x =3π4对称,当x ≥3π4时,f (x )=cos x .若关于x 的方程f (x )=a 有解,记所有解的和为S ,则S 不可能为( )A.54πB.32πC.94π D.3π 第Ⅱ卷(非选择题 满分90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生必须做答.第22~24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率是________.14.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 15.如图M12,在平行四边形ABCD 中,AP ⊥BD ,垂足为点P ,AP =3,则AP →·AC →=________.图M1216.阅读如图M13所示的程序框图,运行相应的程序,输出S 的值为________.图M13三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =1,c =2,cos C =34.(1)求sin A 的值; (2)求△ABC 的面积.18.(本小题满分12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.19.(本小题满分12分)如图M14,在四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60°,AP =1,AD =3,求三棱锥E ACD 的体积.图M1420.(本小题满分12分)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)当a =1时,求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,问:m 在什么X 围取值时,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值?(3)求证:ln22×ln33×ln44×…×ln n n <1n(n ≥2,n ∈N *).21.(本小题满分12分)已知直线l :y =kx +2(k 为常数)过椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点B 和左焦点F ,直线l 被圆O :x 2+y 2=4截得的弦AB 的中点为M .(1)若|AB |=4 55,某某数k 的值;(2)如图M15,顶点为O ,对称轴为y 轴的抛物线E 过线段BF 的中点T ,且与椭圆C 在第一象限的交点为S ,抛物线E 在点S 处的切线m 被圆O 截得的弦PQ 的中点为N ,问:是否存在实数k ,使得O ,M ,N 三点共线?若存在,请求出k 的值;若不存在,请说明理由.图M15 图M16请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目上.如果多做,则按所做的第一个题目计分,做答量请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(本小题满分10)选修41:几何证明选讲如图M16,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上—点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .23.(本小题满分10)选修44:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.24.(本小题满分10)选修45:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值.(2)是否存在a ,b ,使得2a +3b =6?并说明理由.2016年高考数学(理科)模拟试卷(一)1.D 解析:由M ={x |x ≥0,x ∈R }=[0,+∞),N ={x |x 2<1,x ∈R }=(-1,1),得M ∩N =[0,1).2.B 解析:(3+2i)i =3i +2i·i=-2+3i.故选B.3.C 解析:对于命题的否定,要将命题中的“∀”变为“∃”,且否定结论,则命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.故选C.4.A5.A 解析:∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5.又∵a 1a 2a 3=105,∴a 1a 3=21.由⎩⎪⎨⎪⎧a 1a 3=21,a 1+a 3=10及{a n }递减可求得a 1=7,d =-2.∴a n=9-2n .由a n ≥0,得n ≤4.故选A.6.C 解析:f ′(x )=3x 2-2,f ′(1)=1,所以切线的斜率是1,倾斜角为π4.7.C 解析:∵f (0)=20+1=2,f [f (0)]=f (2)=4a ,∴22+2a =4a .∴a =2. 8.C 解析:几何体是由半球与圆锥叠加而成,它的体积为V =12×43π×33+13×π×32×52-32=30π.9.A 解析:依题意,得T =2πω=π,ω=2,故f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,所以f ⎝ ⎛⎭⎪⎫π8=sin ⎝⎛⎭⎪⎫2×π8+π4=sin π2=1≠0,f ⎝ ⎛⎭⎪⎫π4=sin ⎝⎛⎭⎪⎫2×π4+π4=sin 3π4=22≠0,因此该函数的图象关于直线x =π8对称,不关于点⎝⎛⎭⎪⎫π4,0和点⎝ ⎛⎭⎪⎫π8,0对称,也不关于直线x =π4对称.故选A.10.A 解析:如图D129,将点(5,3)代入z =y -2x ,得最小值为-7.图D12911.D 解析:正弦函数y =sin ax 的最小正周期为T =2πa.对于A ,T >2π,故a <1,而y =a x的图象是增函数,故A 错误; 对于B ,T <2π,故a >1,而函数y =a x是减函数,故B 错误; 对于C ,T =2π,故a =1,∴y =a x=1,故C 错误; 对于D ,T >2π,故a <1,∴y =a x是减函数.故选D.12.A 解析:作函数y =f (x )的草图(如图D130),对称轴为x =3π4,当直线y =a 与函数有两个交点(即方程有两个根)时,x 1+x 2=2×3π4=3π2;当直线y =a 与函数有三个交点(即方程有三个根)时,x 1+x 2+x 3=2×3π4+3π4=9π4;当直线y =a 与函数有四个交点(即方程有四个根)时,x 1+x 2+x 3+x 4=4×3π4=3π.故选A.图D13013.12 解析:从10件产品中任取4件,共有C 410种基本事件,恰好取到1件次品就是取到1件次品且取到3件正品,共有C 13C 37种,因此所求概率为C 13C 37C 410=12.14.10 解析:展开式的通项为T k +1=C k 5x5-k y k,则T 4=C 35x 2y 3=10x 2y 3,故答案为10.15.18 解析:设AC ∩BD =O ,则AC →=2(AB →+BO →),AP →·AC →=AP →·2(AB →+BO →)=2AP →·AB →+2AP →·BO →=2AP →·AB →=2AP →·(AP →+PB →)=2|AP →|2=18.16.-4 解析:由题意,得第一次循环:S =0+(-2)3=-8,n =2; 第二次循环:S =-8+(-2)2=-4,n =1,结束循环,输出S 的值为-4. 17.解:(1)∵cos C =34,∴sin C =74.∵asin A =c sin C ,∴1sin A =274,∴sin A =148. (2)∵c 2=a 2+b 2-2ab cos C ,∴2=1+b 2-32b ,∴2b 2-3b -2=0.∴b =2.∴S △ABC =12ab sin C =12×1×2×74=74.18.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知,P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215, 故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设可获利润为X 万元,则X 的可能取值为0,100,120,220. 因为P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=15, P (X =120)=P (E F )=23×25=415, P (X =220)=P (EF )=23×35=25.故所求的分布列为:数学期望为E (X )=0×215+100×15+120×415+220×25=300+480+132015=210015=140.19.(1)证明:如图D131,连接BD 交AC 于点O ,连接EO .因为底面ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)解:因为PA ⊥平面ABCD ,平面ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图D131,以A 为坐标原点,AB →,AD →,AP →的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系Axyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.图D131设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0.可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设易知,|cos 〈n 1,n 2〉|=12,即33+4m 2=12.解得m =32(m =-32,舍去). 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.故三棱锥E ACD 的体积V =13×12×3×32×12=38.20.解:f ′(x )=ax-a (x >0). (1)当a =1时,f ′(x )=1x -1=1-xx,令f ′(x )>0时,解得0<x <1,∴f (x )在(0,1)上单调递增; 令f ′(x )<0时,解得x >1,∴f (x )在(1,+∞)上单调递减. (2)∵函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°, ∴f ′(2)=a2-a =1.∴a =-2,f ′(x )=-2x+2.∴g (x )=x 3+x 2⎝ ⎛⎭⎪⎫m 2+2-2x =x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,g ′(x )=3x 2+(4+m )x -2.∵对任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤m2+f ′x 在区间(t,3)上总存在极值,且g ′(0)=-2,∴只需⎩⎪⎨⎪⎧g ′t <0,g ′3>0.由题知,对任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧g ′1<0,g ′2<0,g ′3>0.解得-373<m <-9.(3)证明:令a =-1,f (x )=-ln x +x -3,∴f (1)=-2. 由(1)知,f (x )=-ln x +x -3在(1,+∞)上单调递增, ∴当x ∈(1,+∞)时,f (x )>f (1),即-ln x +x -1>0. ∴ln x <x -1对一切x ∈(1,+∞)成立. ∵n ≥2,n ∈N *,则有0<ln n <n -1.∴0<ln n n <n -1n .∴ln22×ln33×ln44×…×ln n n <12×23×34×…×n -1n =1n (n ≥2,n ∈N *).21.解:(1)圆O 的圆心为O (0,0),半径为r =2. ∵OM ⊥AB ,|AB |=4 55,∴|OM |=r 2-⎝ ⎛⎭⎪⎫|AB |22=4 55. ∴2k 2+1=4 55.∴k 2=14.图D132又k =k FB >0,∴k =12. (2)如图D132,∵F ⎝ ⎛⎭⎪⎫-2k ,0,B (0,2),T 为BF 中点, ∴T ⎝ ⎛⎭⎪⎫-1k ,1. 设抛物线E 的方程为y =tx 2(t >0),∵抛物线E 过点T ,∴1=t ·1k2,即t =k 2. ∴抛物线E 的方程为y =k 2x 2.∴y ′=2k 2x .设S (x 0,y 0),则k m =y ′0|x x ==2k 2x 0.假设O ,M ,N 三点共线,∵OM ⊥l ,ON ⊥m ,∴l ∥m .又k l =k >0,∴k l =k m .∴k =2k 2x 0.∴x 0=12k ,y 0=k 2x 20=k 2·14k 2=14. ∵S 在椭圆C 上,∴x 20a 2+y 20b2=1. 结合b =2,c =2k ,a 2=b 2+c 2=4+4k2. 得14k 24+4k2+1164=1.∴k 2=-5963. ∴k 无实数解,矛盾.∴假设不成立.故不存在实数k ,使得O ,M ,N 三点共线.22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD .由于PD 为切线,故∠PDA =∠DBA ,又因为∠PGD =∠EGA ,所以∠DBA =∠EGA ,所以∠DBA +∠BAD =∠EGA +∠BAD ,从而∠BDA =∠PFA .又AF ⊥EP ,所以∠PFA =90°,所以∠BDA =90°,故AB 为圆的直径.图D133(2)如图D133,连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而得Rt △BDA ≌Rt △ACB ,于是∠DAB =∠CBA .又因为∠DCB =∠DAB ,所以∠DCB =∠CBA ,故DC ∥AB .因为AB ⊥EP ,所以DC ⊥EP ,∠DCE 为直角,所以ED 为圆的直径,又由(1)知AB 为圆的直径,所以ED =AB .23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧ x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|, 则|PA |=d sin30°=2 55|5sin(θ+α)-6|, 其中α为锐角,且tan α=43. 当sin(θ+α)=-1时,|PA |取得最大值,最大值为22 55.当sin(θ+α)=1时,|PA |取得最小值,最小值为2 55. 24.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,当且仅当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥4 2,当且仅当a =b =2时等号成立.所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3.由于4 3>6,从而不存在a ,b ,使2a +3b =6.。
安徽省淮北市2016届高三第二次模拟考试理科数学 含答
安徽省淮北市2016届高三第二次模拟考试理科数学一、选择题(本大题共12小题,共60.0分)1.已知全集,集合,则=()A.[2,3)B.(2,4)C.(3,4]D.(2,4]2.复数,则等于()A. B. C. D.3.设中变量x,y满足条件,则z的最小值为()A. B. C. D.4.已知数列{ a n}的前n项和为S n ,点( n,S n)在函数f( x)=的图象上,则数列{ a n} 的通项公式为()A. B. C. D.5.过点引直线与圆相交于两点,为坐标原点,当面积取最大值时,直线的斜率为 ( )A. B. C. D.6.将4本完全相同的小说,1本诗集全部分给4名同学,每名同学至少1本书,则不同分法有()A.24种B.28种C.32种D.16种7.下列四个结论:①命题“若是周期函数,则是三角函数”的否命题是“若是周期函数,则不是三角函数”;②命题“”的否定是“③在中,“”是“”的充要条件;④当时,幂函数在区间上单调递减.其中正确命题的个数是()A.1个B.2个C.3个D.4个8.阅读如图所示的程序框图,若输入m=2016,则输出S等于()A.10072B.10082C.10092D.201029.已知函数满足对恒成立,则函数()A.一定为奇函数B.一定为偶函数C.一定为奇函数D.一定为偶函数10.已知函数若函数只有一个零点,则实数a的取值范围是( )A. B. C. D.11.已知一空间几何体的三视图如图所示,其中正视图与左视图都是等腰梯形,则该几何体的体积为()A. B. C. D.12.如图,已知点为的边上一点,,为边的一列点,满足,其中实数列中,,则的通项公式为()A. B. C. D.二、填空题(本大题共1小题,共5.0分)13.函数在区间上的最大值是.14.设常数,的二项展开式中项的系数为40,记等差数列的前n项和为,已知,,则.15.已知,抛物线的焦点为,直线经过点且与抛物线交于点,且,则线段的中点到直线的距离为.16.已知函数,存在,,则的最大值为( ).三、解答题(本大题共8小题,共96.0分)17.(本小题满分12分)在中,边分别是内角所对的边,且满足,设的最大值为.(Ⅰ)求的值;(Ⅱ)当为的中点时,求的长.18.(本小题满分 12 分)从某企业生产的某种产品中抽取 100 件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间,,内的频率之比为.(Ⅰ)求这些产品质量指标值落在区间内的频率;(Ⅱ)若将频率视为概率,从该企业生产的这种产品中随机抽取3件,记这3件产品中质量指标值位于区间内的产品件数为,求的分布列与数学期望.19.(本小题满分12分)已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC =∠ACD=90°,∠EAC=60°,AB=AC=AE.(Ⅰ)若P是BC的中点,求证:DP∥平面EAB.(Ⅱ)求平面EBD与平面ACDE所成的锐二面角θ的余弦值.20.(本小题满分12分)已知点,P是上任意一点,P 在轴上的射影为,,动点的轨迹为C,直线与轨迹交于,两点,直线,分别与轴交于点,.(Ⅰ)求轨迹的方程;(Ⅱ)以为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.21.(本小题满分12分)已知函数 .(Ⅰ)时,求的单调区间和极值;(Ⅱ)时,求的单调区间( III )当时,若存在,使不等式成立,求的取值范围.22.(本小题满分10分)选修4-1:几何证明选讲.已知在三角形ABC中, AB=AC. 以 AB 为直径的圆O 交 BC 于 D ,过 D 点作 O 的切线交 AC 于 E .求证:(Ⅰ) DE垂直于AC(Ⅱ) BD2=CE ·CA23.(本小题满分10分)选修4—4:坐标系与参数方程.已知直线为参数), 曲线(为参数).(Ⅰ)设与相交于两点,求;(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线 ,设点是曲线上的一个动点,求它到直线的距离的最小值.24.(本小题满分10分)选修4—5:不等式选讲.设函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若对任意,不等式的解集为空集,求实数的取值范围.安徽省淮北市2016届高三第二次模拟考试理科数学答案1. 【分析】本题主要考查了交集的运算,首先化简两个集合,再利用补集与交集的运算法则计算出结果.【解答】解:由题意得:A={y|2≤y≤4},B={x|3≤x≤4}.则={x|2≤x<3}.故选A.2. 【分析】本题主要考查了复数的运算,首先利用复数的运算法则把z化简为最简结果,再利用求模公式计算出结果.【解答】解:.故答案为B.3. 【分析】本题主要考查了线性规划的基本运算,由直线交点计算出结果即可.【解答】解:的最小值,即求2x+y的最小值,当取K点时为最小值,平移直线y=-2x到K(1,1)时取得最小值为2x+y=2+1=3,即Z最小值=8.故选C.4. 【分析】本题主要考查了定积分的运算和数列的知识,首先由定积分的知识求出f(x)的函数关系式,再利用数列的前n项和与通项公式之间的关系求解.【解答】解:∵f( x)= =,∴当n=1时,.当n≥2时,.当n=1时不符合上式.则.故选D.5. 【分析】本题主要考查了直线与圆的位置关系,利用基本不等式求出当圆心到直线的距离为1时,三角形的面积最大,从而利用点到直线的距离求解.【解答】解:由题意可知直线l的斜率一定存在,设直线l的方程为y=k(x-2).则圆心到直线l的距离d=.S=.当且仅当,即时取等号.∴=1.解得:k=.故选C.6. 【分析】不同主要考查了组合的应用.把给出的问题分为两类:其中一位同学得到两本小说,其中一位同学得到1本小说和1本诗集,进而解答此题.【解答】解:因为没命同学至少1本书,则一定有两个同学得到两本书,这两本书可能是2本小说,也可能是1本小说和1本诗集,则不同的分法为.故选D.7. 【分析】本题主要考查了命题的真假的判定. ①用否命题的定义进行判定;②根据特称命题的否定是全称命题进行判定;③在由三角形的性质进行判定;④由幂函数的性质进行判定.【解答】解:①命题“若f(x)是周期函数,则f(x)是三角函数”的否命题是“若f(x)不是周期函数,则f(x)不是三角函数”,故①错误;②命题“”的否定是“对于任意x∈R,x2-x-1≥0”,故②正确;③在△ABC中,“sin A>sin B”等价为a>b,等价为“A>B”,则,“sin A>sin B”是“A>B”成立的充要条件,故③正确.④当时,幂函数在区间上单调递减,是正确的.则正确命题的个数为3.故选C.8. 【分析】本题主要考查了程序框图与算法的循环结构,由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体,S=1,不满足退出循环的条件,i=3;第二次执行循环体,S=4,不满足退出循环的条件,i=5;第三次执行循环体,S=9,不满足退出循环的条件,i=7;…第n次执行循环体,S=n2,不满足退出循环的条件,i=2n+1;…第1008次执行循环体,S=10082,不满足退出循环的条件,i=2017;第1009次执行循环体,S=10092,满足退出循环的条件,故输出的S值为:10092故选C.9. 【分析】本题主要考查的是三角函数的图像与性质.利用已知的等式确定出的一条对称轴.从而利用“左加右减,上加下减”的平移规律,以及偶函数的定义进行解答.【解答】解:由条件可知,即的一条对称轴.又是由向左平移个单位得到的,所以关于对称,即为偶函数.应选D.10. 【分析】本题主要考查了函数的零点的知识,分析已知的条件,把方程的零点的问题转化为两个函数的交点的问题,从而求出a的取值范围.【解答】解:∵只有一个零点,∴方程只有一个根,∴函数y=f(x)与y=x+a的图象只有一个交点,函数图象如下所示:由图象可知 .故选B.11. 【分析】本题主要考查了由三视图由体积的知识.由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,分别求出相应的体积,相减可得答案. 【解答】解:由已知中的三视图,可知该几何体是一个四棱台切去一个三棱锥所得的几何体,棱台的上下底面的棱长为2和4,故棱台的上下底面的面积为4和16,故选C.12. 【分析】本题主要考查了向量以及数列的知识.由向量的运算法则得出,证明{a n+1}是以2为首项,3为公比的等比数列,即可得出结论.【解答】故选D.13本题主要考查了导数的应用.利用导数确定出函数的单调区间,进而求出最大值. 【解答】解:∵,∴y′=1-2sinx.所以,故答案为.14【解答】故答案为10.15可得,从而求出线段AB的中点到直线的距离. 【解答】解:故答案为.16【解答】解:故答案为.17. 解:(Ⅰ)由题设及正弦定理知,,即.由余弦定理知,,在上单调递减,的最大值.(2)根据题意:利用余弦定理又因为D是AC的中点,所以AD等于,所以18. 解:(Ⅰ)设区间内的频率为,则区间,内的频率分别为和依题意得解得.所以区间内的频率为.(Ⅱ)从该企业生产的该种产品中随机抽取3件,相当于进行了3次独立重复试验,所以服从二项分布,其中.由(Ⅰ)得,区间内的频率为,将频率视为概率得因为的所有可能取值为0,1,2,3,且,,,.所以的分布列为:所以的数学期望为.19. 证明:(1)取AB的中点F连接DP、PF、EF,则FP∥AC,.取AC的中点M,连接EM、EC,∵AE=AC且∠EAC=60°,∴△EAC是正三角形,∴EM⊥AC.∴四边形EMCD为矩形,∴.∴ED∥FP且ED=FP,四边形EFPD是平行四边形.∴DP∥EF,而EF⊂平面EAB,DP⊄平面EAB,∴DP∥平面EAB.(2)过B作AC的平行线l,过C作l的垂线交l于G,连接DG,∵ED∥AC,∴ED∥l,l是平面EBD与平面ABC所成二面角的棱.∵平面EAC⊥平面ABC,DC⊥AC,∴DC⊥平面ABC,又∵l⊂平面ABC,∴l⊥平面DGC,∴l⊥DG,∴∠DGC是所求二面角的平面角.20. 解:(Ⅰ)设, ∴,∵.∴∵P在上,∴所以轨迹的方程为.(Ⅱ)因为点的坐标为因为直线与轨迹C于两点,,设点(不妨设),则点.联立方程组消去得.所以,则.所以直线的方程为.因为直线,分别与轴交于点,,令得,即点.同理可得点.所以.设的中点为,则点的坐标为.则以为直径的圆的方程为,即.令,得,即或.故以为直径的圆经过两定点,.21. 解:(Ⅰ)时,令解得,当时,当时,所以的单调递减区间是,单调递增区间是;所以的极小值是,无极大值;( II )① 当时,,令解得:,或. 令解得:,所以当时,的单调递减区间是,,单调递增区间是;② 当时,,在上单调递减;③ 当时,,令解得:,或令解得:,所以当时,的单调递减区间是,,单调递增区间是;( III )由( II )知,当时,在上单调递减. 所以,因为存在,使不等式成立,所以,即整理得,因为,所以所以,所以,的取值范围是.22. 证明:(1)连接OD、AD.∵DE是⊙O的切线,D为切点,∴OD⊥DE.∵AB是⊙O的直径,∴AD⊥BC.又AB=AC,∴BD=DC.∴OD∥AC,DE⊥AC.(II)由(I)得D为BC中点,所以.所以.有得.23. 解:(I)的普通方程为的普通方程为联立方程组解得与的交点为, , 则.(II)的参数方程为为参数).故点的坐标是,从而点到直线的距离是,由此当时, 取得最小值,且最小值为.24. 解:(Ⅰ)当时,等价于.①当时,不等式化为,无解;②当时,不等式化为,解得;③当时,不等式化为,解得.综上所述,不等式的解集为.(Ⅱ)因为不等式的解集为空集,所以因为,当且仅当时取等号.所以.因为对任意,不等式的解集为空集,所以令,所以.当且仅当,即时等号成立所以.所以的取值范围为.。
2016届高三诊断性大联考(一)数学(理)试卷(含解析)
绝密★启用前数学(理科)班级姓名注意事项:1.本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
考试时间120分钟,总共150分。
2.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
3.回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效。
4.考试结束后,将试卷和答题卡一并交回。
第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合 题目要求的.1.已知集合A ={X ∣X-1>0},集合 B={X ∣∣X ∣≤2},则A ∩B= A. (-1,2) B. [-2,2] C. (1,2] D.[-2,+∞)2.复数Z 满足(1-2i)z =(1+i)2,则z 对应复平面上的点的坐标为 A.(-54 ,52 ) B.(-52 ,53 ) C.(54,-52) D.(52,53) 3.已知向量a 、b ,其中a=(-2,-6),b= ,a •b=-10 ,则a 与b 的夹角为A.1500B.-300C.-600D.12004.设a , b 表示两条不同的直线, α、β、γ表示三个不同的平面,则下列命题中正确的是A.若a 丄α,且a 丄b,则b ∥aB.若γ丄α且γ丄β,则α∥βC.若a ∥α且a ∥β, 则α∥βD.若γ∥α且γ∥β,则α∥β5.函数f(x)=asin3x+bx 3+4,其中 a ,b ∈R ,f'(x)为f(x)的导函数,则f( 2014 )+f(-2014 ) +f'( 2015 )-f'(-2015) = A. 0B. 2014C. 8D. 20156.已知右边程序框图(如图),若输入a 、b 分别为10、4,则输出的a 的值为A.0B.2C.4D.147.在△ABC 中,角A 、B 、C 所对应的边长分别为a 、b 、c ,若asinA+bsinB=2sinC,则cosC 的最小值为A. B.C.21 D. -21 8.有如下几种说法:①若pVq 为真命题,则p 、q 均为真命题; ②命题“∃x 0∈R ,2x0≤ 0”的否定是∀x ∈R,2X>0;③直线l:y=kx+l 与圆O:x 2+y 2=1相交于A 、B 两点,则“k =l”是△OAB 的面积为21的充分而不必要条件;④随机变量ξ-N(0,1),已知φ (-1.96)=0.025,则 P( ξ∣f ∣< 1.96 )=0.975. 其中正确的为A. ①④B.②③C. ②③④D.②④ 9.将函数f(x)=Sin(2x+3π)的图象向右平移2π个单位长度,得到函数y=g(x)的图象,则dx x g ⎰π)(A. 0B. πC.2D.110.任取k ∈[-1,1],直线 L:y=kx+3 与圆 C:(x-2)2+(y-3) 2=4 相交于M 、N 两点,则∣MN ∣≥的概率为A. 33B. 23 C. 32 D. 2111.已知函数f (x )g(x)= 54-f(1-x),则函数y=f(x)-g(x)的零点的个数为 A.2 B.3 C.4 D.512.多面体的三视图如图所示,则该多面体表面积为(单位cm 2) A.28+B. 30+C. 28+D. 28+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分. 13.二项式(2x+x1)6的展开式中的常数项是 .14.实数x 、y 满足条件的最小值为 .15.已知sina=53 ,α∈(0, 2π),tan β=41,则 tan(α+β))= . 16.已知AB 是圆C:(x+2)2+(y-l)2=52的一条直径,若楠圆 x 2+4y 2=4b 2(b ∈R)经过 A 、B 两点,则该椭圆的方程是 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知各项均为正数的等差数列{a n },且a 2+b 2=20,a 1+a 2=64. (I)求数列{a n }的通项公式; (Ⅱ)设b n =nX 42an,求数列的前n 项和.18.(本小题满分12分)如图,在四边形ABCD 中,△ABC 是边长为2的等边三角形, AD 丄DC ,AD=DC ,E 、F 是平面ABCD 同一侧的两点,BE 丄平面ABCD, DF 丄平面ABCD ,且DF=1. (I)若AE 丄CF ,求 BE 的值;(Ⅱ)求当BE 为何值时,二面角E-AC-F 的大小是60°. 19. (本小题满分12分)2015年10月4日,强台风“彩虹”登陆广东省湛江市,“彩虹”是1949年以来登陆中国陆地的最强台风。
安徽省淮北一中高三数学上学期第一次段考试卷(含解析)
2015-2016学年安徽省淮北一中高三(上)第一次段考数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩(∁U B)=()A.{x|x>1} B.{x|x>0} C.{x|0<x<1} D.{x|x<0}2.下列有关命题的说法错误的是()A.命题“若x2﹣1=0,则x=1”的逆否命题为:“若x≠1则x2﹣1≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R均有x2+x+1≥03.设a∈R,则“a=1”是直线“l1:ax+2y﹣1=0与直线l2:(a+1)x﹣y+4=0垂直”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件4.设a,b,c均为正数,且2a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c5.已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f (2015)=()A.﹣2 B.C.2 D.56.函数y=的部分图象大致为()A. B. C. D.7.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.8.函数f(x)=sin(2x+θ)+cos(2x+θ),(|θ|<)的图象关于点对称,则f(x)的增区间()A.B.C.D.9.一艘海轮从A处出发,以每小时40n mile的速度沿东偏南50°方向直线航行,30min 后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是()A.10n mile B.10n mile C.20n mile D.20n mile10.在△ABC中,角A,B,C所对的边a,b,c,已知,,,则C=()A.30° B.45° C.45°或135°D.60°11.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④12.已知函数,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是()A.(0,1) B.(0,2) C.(1,2) D.(0,3)二、填空题(共4小题,每小题5分,满分20分)13.当时,函数的最小值为.14.已知,则= .15.已知函数f(x)满足f(﹣x)=f(x),当a,b∈(﹣∞,0)时总有,若f(m+1)>f(2m),则实数m的取值范围是.16.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥0,m∈N*),则m的最小值为.三、解答题(共6小题,满分70分)17.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.18.已知函数f(x)=2sin(x﹣)cos(x﹣)+2cos2(x﹣)(1)求函数f(x)的最大值及取得最大值时相应的x的值;(2)函数y=f(2x)﹣a在区间上恰有两个零点x1,x2,求tan(x1+x2)的值.19.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinB=,且a,b,c成等比数列.(1)求的值;(2)若accosB=12,求a+c的值.20.在△ABC中,a、b、c分别是角A、B、C的对边,且,(1)求角B的大小;(2)若,求△ABC的面积.21.已知函数,其中a是大于0的常数(1)求函数f(x)的定义域;(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.2015-2016学年安徽省淮北一中高三(上)第一次段考数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知全集U=R,集合A={x|0<2x<1},B={x|log3x>0},则A∩(∁U B)=()A.{x|x>1} B.{x|x>0} C.{x|0<x<1} D.{x|x<0}【考点】交、并、补集的混合运算.【专题】计算题.【分析】解指数不等式可以求出集合A,解对数不等式可以求出集合B,进而求出∁U B,根据集合并集运算的定义,代入可得答案.【解答】解:∵A={x|0<2x<1}{x|x<0},B={x|log3x>0}={x|x>1},所以C U B={x|x≤1},∴A∩(C U B)={x|x<0}.故选D【点评】本题考查的知识点是集合的交并补集的混合运算,其中解指数不等式和对数不等式分别求出集合A,B,是解答本题的关键.2.下列有关命题的说法错误的是()A.命题“若x2﹣1=0,则x=1”的逆否命题为:“若x≠1则x2﹣1≠0”B.“x=1”是“x2﹣3x+2=0”的充分不必要条件C.若p∧q为假命题,则p、q均为假命题D.对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R均有x2+x+1≥0【考点】命题的真假判断与应用.【专题】简易逻辑.【分析】直接写出命题的逆否命题判断A;求解一元二次方程判断B;由复合命题的真假判断方法判断C;写出特称命题的否定判断D.【解答】解:命题“若x2﹣1=0,则x=1”的逆否命题为:“若x≠1则x2﹣1≠0”,A正确;由x2﹣3x+2=0,解得:x=1或x=2,∴“x=1”是“x2﹣3x+2=0”的充分不必要条件,B正确;当p、q一真一假时,命题p∧q为假命题,C错误;对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R均有x2+x+1≥0,正确.故选:C.【点评】本题考查命题的真假判断与应用,考查了逆否命题、命题的否定的写法、考查充分必要条件的判定方法,是基础题.3.设a∈R,则“a=1”是直线“l1:ax+2y﹣1=0与直线l2:(a+1)x﹣y+4=0垂直”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】简易逻辑.【分析】根据直线垂直的等价条件,结合充分条件和必要条件的定义进行判断.【解答】解:直线l1:ax+2y﹣1=0的斜率k1=,直线l2:(a+1)x﹣y+4=0的斜率k2=a+1,若两直线垂直则k1k2=(a+1)=﹣1,即a2+a﹣2=0,解得a=1或a=﹣2,故“a=1”是直线“l1:ax+2y﹣1=0与直线l2:(a+1)x﹣y+4=0垂直”的充分不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,根据直线垂直的等价条件是解决本题的关键.4.设a,b,c均为正数,且2a=,,,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c【考点】对数值大小的比较.【专题】数形结合.【分析】比较大小可以借助图象进行比较,观察题设中的三个数a,b,c,可以借助函数图象的交点的位置进行比较.【解答】解:分别作出四个函数y=,y=2x,y=log2x的图象,观察它们的交点情况.由图象知:∴a<b<c.故选A.【点评】本题考点是对数值大小的比较,本题比较大小时用到了对数函数和指数函数的图象,比较大小的题在方法上应灵活选择,依据具体情况选择合适的方法.5.已知f(x)是定义在R上周期为4的奇函数,当x∈(0,2]时,f(x)=2x+log2x,则f (2015)=()A.﹣2 B.C.2 D.5【考点】函数的周期性.【专题】函数的性质及应用.【分析】利用函数的周期性及奇偶性即得f(2015)=﹣f(1),代入计算即可.【解答】解:∵f(x)的周期为4,2015=4×504﹣1,∴f(2015)=f(﹣1),又f(x)是定义在R上的奇函数,所以f(2015)=﹣f(1)=﹣21﹣log21=﹣2,故选:A.【点评】本题考查函数的奇偶性及周期性,属于基础题.6.函数y=的部分图象大致为()A. B. C. D.【考点】对数函数的图象与性质.【专题】函数的性质及应用.【分析】判断奇偶性排除B,C,再利用特殊函数值判断即可得出答案.【解答】解:∵y=f(x)=,∴f(﹣x)===f(x),∴f(x)是偶函数,图象关于y轴对称,所以排除B,C.∵f(2)=>0,∴(2,f(2))在x轴上方,所以排除A,故选:D.【点评】本题考查了对数,指数函数的性质,奇函数的偶函数的图象性质,考查了学生对于函数图象的整体把握,属于中档题.7.把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.【考点】正弦函数的对称性.【专题】三角函数的图像与性质.【分析】先对函数进行图象变换,再根据正弦函数对称轴的求法,即令ωx+φ=即可得到答案.【解答】解:图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.【点评】本小题综合考查三角函数的图象变换和性质.图象变换是考生很容易搞错的问题,值得重视.一般地,y=Asin(ωx+φ)的图象有无数条对称轴,它在这些对称轴上一定取得最大值或最小值.8.函数f(x)=sin(2x+θ)+cos(2x+θ),(|θ|<)的图象关于点对称,则f(x)的增区间()A.B.C.D.【考点】两角和与差的正弦函数;正弦函数的单调性.【专题】常规题型;三角函数的图像与性质.【分析】利用两角和的正弦公式化成标准形式,根据图象关于点对称,求出θ的值,然后根据正弦函数的单调增区间求函数f(x)的单调增区间.【解答】解:f(x)=sin(2x+θ)+cos(2x+θ),=2sin(2x+θ+),∵图象关于点对称,∴2×+θ+=kπ,(k∈Z)∴θ=kπ,(k∈Z),∵|θ|<,∴,∴f(x)=2sin(2x+);由(k∈Z)解得:(k∈Z)∴函数f(x)的增区间为.故选D.【点评】本题考查了三角函数式的化简及三角函数的图象与性质,解题的关键是把三角函数式化成标准形式,在求θ值时要注意其范围.9.一艘海轮从A处出发,以每小时40n mile的速度沿东偏南50°方向直线航行,30min 后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是()A.10n mile B.10n mile C.20n mile D.20n mile【考点】解三角形的实际应用.【专题】计算题;解三角形.【分析】先根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,最后根据正弦定理可得到BC的值.【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC==10.故选:A【点评】本题考查解三角形的实际应用,考查学生的计算能力,比较基础.10.在△ABC中,角A,B,C所对的边a,b,c,已知,,,则C=()A.30° B.45° C.45°或135°D.60°【考点】正弦定理;同角三角函数间的基本关系.【专题】三角函数的求值.【分析】已知等式左边通分并利用同角三角函数间的基本关系化简,右边利用正弦定理化简,整理后求出cosA的值,进而求出sinA的值,由a与c的值,利用正弦定理求出sinC的值,即可确定出C的度数.【解答】解:∵1+=,即===,∴cosA=,即A为锐角,∴sinA==,∵a=2,c=2,∴由正弦定理=得:sinC==,∵a>c,∴A>C,∴C=45°.故选B【点评】此题考查了正弦定理,以及同角三角函数间的基本关系,熟练掌握正弦定理是解本题的关键.11.在△ABC中,若角A,B,C所对的三边a,b,c成等差数列,给出下列结论:①b2≥ac;②;③;④.其中正确的结论是()A.①② B.②③ C.③④ D.①④【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】由等差中项的性质和题意可得:2b=a+c,利用基本不等式判断①、③;利用作差法判断②;利用余弦定理和不等式判断④.【解答】解:因为a、b、c成等差数列,所以2b=a+c,对于①,2b=a+c≥2,化简得b2≥ac,①正确;对于②,===﹣≤0,则,②错误;对于③,==≥=,③错误;对于④,由余弦定理得:b2=a2+c2﹣2accosB,则,化简得,cosB=≥=,又B∈(0,π),且余弦函数在此区间为减函数,则,④正确,综上得,①④,故选:D.【点评】本题考查等差中项的性质,余弦定理,作差法比较大小,以及基本不等式的综合应用,属于难题.12.已知函数,若关于x的方程f2(x)﹣af(x)=0恰有5个不同的实数解,则a的取值范围是()A.(0,1) B.(0,2) C.(1,2) D.(0,3)【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】由已知中函数,若关于x的方程f2(x)﹣af(x)=0恰有五个不同的实数解,我们可以根据函数f(x)的图象分析出实数a的取值范围.【解答】解:函数的图象如下图所示:关于x的方程f2(x)=af(x)可转化为:f(x)=0,或f(x)=a,若关于x的方程f2(x)=af(x)恰有五个不同的实数解,则f(x)=a恰有三个不同的实数解,由图可知:0<a<1故选A【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.二、填空题(共4小题,每小题5分,满分20分)13.当时,函数的最小值为 4 .【考点】三角函数的最值.【专题】计算题.【分析】先利用二倍角公式和同角三角函数的基本关系对函数解析式化简整理,然后利用基本不等式求得函数的最小值.【解答】解: ==+≥4当且仅当4sin2x=cos2x时等号成立.故答案为;4【点评】本题主要考查了同角三角函数的基本关系的应用,二倍角化简求值,基本不等式的求最值.考查了基础知识的综合运用.14.已知,则= ﹣.【考点】两角和与差的正弦函数;同角三角函数间的基本关系.【专题】计算题;三角函数的求值.【分析】由已知利用两角差的正弦公式展开化简,然后结合辅助角公式可求sin(),最后利用诱导公式=﹣sin()即可求解【解答】解:∵,展开可得, =∴由辅助角公式可得sin()=则=﹣sin()=﹣故答案为:【点评】本题主要考查了两角差的正弦公式、辅助角公式及诱导公式在三角函数的化简求值中的应用.15.已知函数f(x)满足f(﹣x)=f(x),当a,b∈(﹣∞,0)时总有,若f(m+1)>f(2m),则实数m的取值范围是(﹣∞,﹣)∪(1,+∞).【考点】函数单调性的性质;函数奇偶性的性质.【专题】计算题.【分析】先根据条件得到函数的奇偶性,再结合条件求出函数在(0,+∞)上的单调性,利用f(x)=f(|x|)将f(m+1)>f(2m)转化成f(|m+1|)>f(|2m|)进行求解,最后根据单调性建立关系式求解即可.【解答】解:∵函数f(x)满足f(﹣x)=f(x),∴函数f(x)是偶函数又∵当a,b∈(﹣∞,0)时总有,∴函数f(x)在(﹣∞,0)上单调递增函数根据偶函数的性质可知函数f(x)在(0,+∞)上单调递减函数∵f(m+1)>f(2m),∴f(|m+1|)>f(|2m|),即|m+1|<|2m|,则(m+1)2<4m2,(3m+1)(1﹣m)<0,m>1或m<﹣,解得:m∈(﹣∞,﹣)∪(1,+∞)故答案为:(﹣∞,﹣)∪(1,+∞)【点评】本题主要考查了函数的单调性的应用,以及函数奇偶性的应用,属于基础题.16.已知函数f(x)=sinx.若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥0,m∈N*),则m的最小值为8 .【考点】正弦函数的图象.【专题】函数的性质及应用;三角函数的图像与性质.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f (x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f (x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.【点评】本题考查正弦函数的图象和性质,考查分析问题和解决问题的能力,考查数学转化思想方法,正确理解对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f (x)max﹣f(x)min=2是解答该题的关键,是难题.三、解答题(共6小题,满分70分)17.已知a∈R,命题p:“∀x∈[1,2],x2﹣a≥0”,命题q:“∃x∈R,x2+2ax+2﹣a=0”.(1)若命题p为真命题,求实数a的取值范围;(2)若命题“p∨q”为真命题,命题“p∧q”为假命题,求实数a的取值范围.【考点】复合命题的真假;命题的真假判断与应用.【专题】简易逻辑.【分析】(1)由于命题p:“∀x∈[1,2],x2﹣a≥0”,令f(x)=x2﹣a,只要x∈[1,2]时,f(x)min≥0即可;(2)由(1)可知,当命题p为真命题时,a≤1,命题q为真命题时,△=4a2﹣4(2﹣a)≥0,解得a的取值范围.由于命题“p∨q”为真命题,命题“p∧q”为假命题,可知:命题p与命题q必然一真一假,解出即可.【解答】解:(1)∵命题p:“∀x∈[1,2],x2﹣a≥0”,令f(x)=x2﹣a,根据题意,只要x∈[1,2]时,f(x)min≥0即可,也就是1﹣a≥0,解得a≤1,∴实数a的取值范围是(﹣∞,1];(2)由(1)可知,当命题p为真命题时,a≤1,命题q为真命题时,△=4a2﹣4(2﹣a)≥0,解得a≤﹣2或a≥1.∵命题“p∨q”为真命题,命题“p∧q”为假命题,∴命题p与命题q必然一真一假,当命题p为真,命题q为假时,,当命题p为假,命题q为真时,,综上:a>1或﹣2<a<1.【点评】本题考查了简易逻辑的有关知识、函数的性质、方程的解、不等式组等基础知识与基本技能方法,考查了分类讨论的思想方法,考查了推理能力和计算能力,属于中档题.18.已知函数f(x)=2sin(x﹣)cos(x﹣)+2cos2(x﹣)(1)求函数f(x)的最大值及取得最大值时相应的x的值;(2)函数y=f(2x)﹣a在区间上恰有两个零点x1,x2,求tan(x1+x2)的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】综合题;三角函数的图像与性质.【分析】(1)用三角函数的恒等变换化简f(x),求出f(x)的最大值以及此时对应的x 值;(2)根据题意,设出f(2x)的零点t1,t2,利用三角函数的图象与性质求出t1+t2的值,计算tan(x1+x2)即可.【解答】解:(1)f(x)=sin(2x﹣)+ [1+cos(2x﹣)]﹣=sin(2x﹣)+cos(2x﹣)=2sin(2x﹣),∴函数f(x)的最大值为2,此时2x﹣=+2kπ,k∈Z,即x=+kπ,k∈Z.(2)f(2x)=2sin(4x﹣),令t=4x﹣,∵x∈[0,],∴t∈[﹣,],设t1,t2是函数y=2sin t﹣a的两个相应零点(即t1=4x1﹣,t2=4x2﹣),由函数y=2sin t的图象性质知t1+t2=π,即4x1﹣+4x2﹣=π,∴x1+x2=+,tan(x1+x2)=tan(+)===2+.【点评】本题考查了三角函数的图象与性质的应用问题,也考查了逻辑推理与计算能力,是综合性题目.19.在△ABC中,角A,B,C的对边分别为a,b,c,已知sinB=,且a,b,c成等比数列.(1)求的值;(2)若accosB=12,求a+c的值.【考点】余弦定理的应用;等比数列的性质;同角三角函数基本关系的运用;正弦定理.【专题】计算题.【分析】(1)先根据题意得到b2=ac,结合正弦定理得到.,将化为弦的形式,然后通分得到=,最后.代入即可得到答案.(2)先根据accosB=12知cosB>0,再由sinB的值求出cosB的值,最后根据余弦定理可确定a,c的关系,从而确定答案.【解答】解:(1)依题意,b2=ac,由正弦定理及..(2)由accosB=12知cosB>0.由.(舍去负值)从而,.由余弦定理,得b2=(a+c)2﹣2ac﹣2accosB.代入数值,得.解得:.【点评】本题主要考查正弦定理与余弦定理的应用.正余弦定理是解三角形的基础,对于其公式一定要熟练掌握并能够熟练应用.20.在△ABC中,a、b、c分别是角A、B、C的对边,且,(1)求角B的大小;(2)若,求△ABC的面积.【考点】解三角形.【专题】计算题.【分析】(1)根据正弦定理表示出a,b及c,代入已知的等式,利用两角和的正弦函数公式及诱导公式变形后,根据sinA不为0,得到cosB的值,由B的范围,利用特殊角的三角函数值即可求出角B的度数;(2)由(1)中得到角B的度数求出sinB和cosB的值,根据余弦定理表示出b2,利用完全平方公式变形后,将b,a+c及cosB的值代入求出ac的值,然后利用三角形的面积公式表示出△ABC的面积,把ac与sinB的值代入即可求出值.【解答】解:(1)由正弦定理得:a=2RsinA,b=2RsinB,c=2RsinC,将上式代入已知,即2sinAcosB+sinCcosB+cosCsinB=0,即2sinAcosB+sin(B+C)=0,∵A+B+C=π,∴sin(B+C)=sinA,∴2sinAcosB+sinA=0,即sinA(2cosB+1)=0,∵sinA≠0,∴,∵B为三角形的内角,∴;(II)将代入余弦定理b2=a2+c2﹣2accosB得:b2=(a+c)2﹣2ac﹣2accosB,即,∴ac=3,∴.【点评】此题考查了正弦定理,余弦定理及三角函数的恒等变形.熟练掌握定理及公式是解本题的关键.利用正弦定理表示出a,b及c是第一问的突破点.21.已知函数,其中a是大于0的常数(1)求函数f(x)的定义域;(2)当a∈(1,4)时,求函数f(x)在[2,+∞)上的最小值;(3)若对任意x∈[2,+∞)恒有f(x)>0,试确定a的取值范围.【考点】函数恒成立问题;对数函数的定义域;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】综合题.【分析】(1)求函数f(x)的定义域,就是)求,可以通过对a分类讨论解决;(2)可以构造函数,当a∈(1,4)时通过导数法研究g(x)在[2,+∞)上的单调性,再利用复合函数的性质可以求得f(x)在[2,+∞)上的最小值;(3)对任意x∈[2,+∞)恒有f(x)>0,即对x∈[2,+∞)恒成立,转化为a是x的函数,即可求得a的取值范围.【解答】解:(1)由得,解得a>1时,定义域为(0,+∞)a=1时,定义域为{x|x>0且x≠1},0<a<1时,定义域为或}(2)设,当a∈(1,4),x∈[2,+∞)时,恒成立,∴在[2,+∞)上是增函数,∴在[2,+∞)上是增函数,∴在[2,+∞)上的最小值为;(3)对任意x∈[2,+∞)恒有f(x)>0,即对x∈[2,+∞)恒成立∴a>3x﹣x2,而在x∈[2,+∞)上是减函数,∴h(x)max=h(2)=2,∴a>2【点评】本题考查函数恒成立问题,(1)着重考查分类讨论思想;(2)着重考查复合函数的函数单调性质求最值,方法为导数法;(3)着重考查分离参数法,是一道好题.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(Ⅰ)求出切点(1,1),求出,然后求解斜率k,即可求解曲线f(x)在点(1,1)处的切线方程.(Ⅱ)求出函数的定义域,函数的导函数,①a>﹣1时,②a≤﹣1时,分别求解函数的单调区间即可.(Ⅲ)转化已知条件为函数在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)问的结果,通过①a≥e﹣1时,②a≤0时,③0<a<e﹣1时,分别求解函数的最小值,推出所求a的范围.【解答】解:(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),∴,∴k=f′(1)=1﹣2=﹣1,∴曲线f(x)在点(1,1)处的切线方程为:y﹣1=﹣(x﹣1),即x+y﹣2=0.(Ⅱ),定义域为(0,+∞),,①当a+1>0,即a>﹣1时,令h′(x)>0,∵x>0,∴x>1+a令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.当a≤﹣1时,h(x)在(0,+∞)上单调递增.(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)≤0,即函数在[1,e]上的最小值[h(x)]min≤0.由第(Ⅱ)问,①当a+1≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,∴,∴,∵,∴;②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,∴[h(x)]min=h(1)=1+1+a≤0,∴a≤﹣2,③当1<a+1<e,即0<a<e﹣1时,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a的范围是:或a≤﹣2.【点评】本题考查函数的导数的综合应用,曲线的切线方程函数的单调性以及函数的最值的应用,考查分析问题解决问题得到能力.。
安徽省淮北市高三数学第一次模拟考试试题 理
淮北市2015届高三第一次模拟考试数学试题 (理科)考生注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的座位号、姓名。
考生要认真核对答题卡上粘贴的条形码的“考场座位号、姓名”与考生本人考场座位号、姓名是否一致。
2. 本试卷满分150分,考试时间120分钟。
3.考生务必在答题卷上答题,考试结束后交回答题卷。
第I 卷 (选择题 共50分)一.选择题(本大题共10小题,每小题只有一个正确答案,每小题5分)1.已知,,x y R i ∈为虚数单位,且(2)1x i y i --=+,则(1)x yi ++的值为( )。
A .4B . 4-C . 44i +D .2i2.已知n X m log =,则1>mn 是1>X 的( )。
A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知棱长为1的正方体的俯视图是边长为1正方形,则其主视图的面积不可能是( ) A. 2 B.212- C. 1 D. 433 4. 等差数列{}n a 有两项m a 和()k a m k ≠,满足11,m k a a k m==,则该数列前mk 项之和为 ( ) A.12mk - B 2mk C 12mk + D 12mk+ 5.下列命题正确的是( ) A.函数)32sin(π+=x y 在区间)6,3(ππ-内单调递增B.函数x x y 44sin cos -=的最小正周期为π2C.函数)3cos(π+=x y 的图像是关于点)0,6(π成中心对称的图形D.函数)3tan(π+=x y 的图像是关于直线6π=x 成轴对称的图形6.已知实数x ,y 满足200,0x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩设y x m +=,若m 的最大值为6,则m 的最小值为( )A .—3B .—2C .—1D .07. 某项实验,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,问实验顺序的编排方法共有( ) A .34种B .48种C .96种D .144种8. 若函数)(x f 的导函数是34)(2+-='x x x f ,则函数)()(xa f x g = (0<a<1)的单调递减区间是( )A 、 []0,3log a ,[)+∞,1B 、(]),0[,3log ,+∞∞-a C 、[]a a ,3 D 、[]1,3log a9. 若对任意[]5,0∈x ,不等式x n xx m 514241+≤+≤+恒成立,则一定有( ) A . 31,21-≥≤n m B .31,21-≥-≤n m C .31,21≥-≤n m D .31,21->-<n m10.已知ABC ∆的外接圆的圆心为O ,满足:CB n CA m CO +=,234=+n m ,且34=CA ,6=CB ,则=•CB CA ( )A. 36B. 24C. 243D. 312 二、填空题(每小题5分,共25分)11. 执行如图所示的程序框图,若输入A 的值为2,则输出的P 值 为12. 在52512⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 的系数为13.已知),0(,,,,+∞∈≠∈+y x n m R n m ,则有yx n m y n x m ++≥+222)(,且当y n x m =时等号成立,利用此结论,可求函数xx x f -+=1334)(,)1,0(∈x 的最小值为14. 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,M 、N 分别为AD 、CC 1的中点,O 为上底面A 1B 1C 1D 1的中心,则三棱锥O-MNB 的体积是 。
安徽省淮北市第一中学高三数学最后一卷试题 理(含解析
安徽省淮北市第一中学2016届高三数学最后一卷试题 理(含解析)第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 若复数z 满足()112i z i =-+g ,则z 的共轭复数的虚部是( ) A .12i - B .12i C .12- D .12【答案】C考点:复数的运算,复数的概念.2. 命题“00,10x R x ∃∈+<或2000x x ->”的否定形式是( ) A .00,10x R x ∃∈+≥或2000x x -≤ B .,10x R x ∀∈+≥或20x x -≤ C .00,10x R x ∃∈+≥且2000x x -≤ D .,10x R x ∀∈+≥且20x x -≤【答案】D 【解析】试题分析:命题“00,10x R x ∃∈+<或2000x x ->”的否定形式“,10x R x ∀∈+≥且20x x -≤”.故选D .考点:命题的否定. 3. 已知()1sin cos ,0,2αααπ+=∈,则1tan 1tan αα-=+( ) A .7- B 7 C 3 D .3-【答案】A 【解析】试题分析:21(sin cos )4αα+=,3sin cos 8αα=-,所以cos 0,sin 0αα<>,27(cos sin )12sin cos 4αααα-=-=,7cos sin αα-=-,所以71tan cos sin 2711tan cos sin 2αααααα---===-++.故选A . 考点:同角间的三角函数关系. 4. 设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( )A .12a <≤B .4a ≥C .2a ≤D .03a <≤ 【答案】A考点:函数的单调性.5. 已知随机变量()2,4X N :,随机变量31Y X =+,则( )A .()6,12Y N :B .()6,37Y N :C .()7,36Y N :D .()7,12Y N : 【答案】C 【解析】试题分析:27X Y =⇒=,22()4()9436σX σY =⇒=⨯=,因此(7,36)Y N :.故选C . 考点:正态分布.6. 若P 在双曲线2211620x y -=上,1F 为左焦点,1=9PF ,则2PF =( ) A .1 B .1或17 C .41 D .17 【答案】D 【解析】试题分析:4a =,6c =,若P 在双曲线右支上,则110最小值PF a c =+=9>,因此P 在双曲线的左支上,所以2128PF PF a -==,217PF =.故选D . 考点:双曲线的定义.7. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么近似公式2275V L h ≈,相当于将圆锥体积公式中的π近似取为( ) A .227 B .258 C .15750 D .355113【答案】B考点:圆锥的体积.8. 淮北一中有5名优秀毕业生到市内一所初中的3个班去作学习经验交流,则每个班至少去一名同学的不同分派方法种数为( )A .150B .180C .200D .280 【答案】A 【解析】试题分析:22333533531502C C A C A +=. 考点:排列组合的综合应用. 【名师点睛】解决分组分配问题的策略1.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A nn (n 为均分的组数),避免重复计数.2.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.3.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.9. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .18 B .12 C .14D .1 【答案】D考点:程序框图,周期数列.10. 现定义cos sin i e i θθθ=+,其中i 为虚数单位,e 为自然对数的底数,R θ∈,且实数指数幂的运算性质对i e θ都适用,若0523244555cos cos sin cos sin a C C C θθθθθ=-+,1432355555cos sin cos sin sin b C C C θθθθθ=-+,那么复数a bi +等于( )A .cos5sin5i θθ+B .cos5sin5i θθ-C .sin5cos5i θθ+D .sin5cos5i θθ- 【答案】A 【解析】试题分析:05232441432355555555cos cos sin cos sin (cos sin cos sin sin )a bi C θC θθC θC θθC θθC θi +=-++-+ 051423223233444555555555cos cos sin cos sin cos sin cos sin sin C θC θi θC θi θC θi θC θi C i θ=+⋅+⋅+⋅+⋅+5(cos sin )cos5sin 5θi θθi θ=+=+.故选A .考点:复数的运算,二项式定理.11. 如图,网格上纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A .43B .43C .83D .23 【答案】C考点:三视图,体积.【名师点睛】象这种画在方格纸中的三视图,常常可以看作是由基本几何体(如正方体、长方体)切割出的几何体的三视图,因此由这样的三视图作直观图时,可以画出正方体(或长方体),在此基础上切割并想象三视图得到所需几何体的直观图. 12. 已知实数a b c <<,设方程1110x a x b x c++=---的两个实根分别为()1212,x x x x <,则下列关系 中恒成立的是( )A .12x a b x c <<<<B .12a x b x c <<<<C .12a x x b c <<<<D .12a x b c x <<<< 【答案】B 【解析】试题分析:方程1110x a x b x c++=---可化为()()()()()()0x a x b x a x c x b x c --+--+--=,记()()()()()()()f x x a x b x a x c x b x c =--+--+--,这是二次函数,又()()()0f a a b a c =-->,同理()0f b <,()0f c >,由二次函数的图象知必有12a x b x c <<<<.故选B .考点:二次函数的图象与性质.【名师点睛】二次函数与一元二次方程,一元二次不等式常称为“三个二次”问题,在研究它们三者之一的问题时,常考虑三者之间的相互联系,借助这种联系而解题,解题时二次函数的图象起到重要的桥梁作用.第Ⅱ卷(共90分)二、填空题(本大题包括4小题,每小题5分,共20分,将答案填在答题纸上)13. 若变量,y x 满足约束条件4y x x y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k =_______________.【答案】-2考点:简单的线性规划问题.14. 如图,为测量出高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角060MAN ∠=,C 点的仰角045CAB ∠=以及075MAC ∠=;从C 点测得060MCA ∠=.已知山高100BC m =,则山高MN =__________m .【答案】150考点:解三角形的应用.15. 数列 {}n a 中,()11126,212n n n a a a a n n n--=-=++≥,则此数列的通项公式n a =___________.【答案】()()1121n n ++- 【解析】试题分析:由11221n n n a a a n n ---=++得1211n n a a n n -=++,所以112(1)1n n a an n-+=++,又1142a +=,所以{1}1n a n ++是等比数列,所以1114221n n n a n -++=⨯=+,即1(1)(21)n n a n +=+-.考点:数列的递推公式,等比数列的通项公式.【名师点睛】已知数列的递推公式1(1,0)n n a pa q p q -=+≠≠,我们可以把它配成一个等比数列:设1()n n a x p a x -+=+,由此可求得1q x p =-,只要101qa p +≠-,则新数列{}1n qa p +-是等比数列,从而易求得通项公式. 16. P 为椭圆22198x y +=上的任意一点,AB 为圆()22:11C x y -+=的任一条直径,则PA PB u u u v u u u vg 的取值范围是____________. 【答案】[]3,15考点:向量的数量积,椭圆的性质.【名师点睛】求向量数量积的取值范围,要把数量积用一个变量表示出来,本题中,表面上点,,P A B 都在变化,仔细观察,发现AB 是圆的直径,其中点为圆心(1,0)C 是不变的,而且由向量的加法运算,有PA PC CA =+u u u r u u u r u u u r ,PB PC CB =+u u u r u u u r u u u r ,,CA CB u u u r u u u r是模为1的相反向量,因此由数量积的运算法则得PA PB ⋅uu r uu r 21PC =-uu u r ,此时变化的只有一个点P ,根据椭圆性质可很快得结论.这题提醒我们在一个变量很多的问题中,一定隐藏着不变量,解题时要善于寻找到这个不变量,减少变量的个数.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)如图,在平面直角坐标系中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且,42ππα⎡⎫∈⎪⎢⎣⎭,将角α的终边绕原点逆时针方向旋转3π,交单位圆于点B ,过B 作BC y ⊥轴于点C ;(1)若点A 的纵坐标为32,求点B 的横坐标; (2)求AOC ∆的面积S 的最大值; 【答案】(1)12-;(2)13+(2)因为1,sin ,32OA OC AOC ππαα⎛⎫==+∠=- ⎪⎝⎭,.............................6分所以11sin sin sin 2232S OA OC AOC ππαα⎛⎫⎛⎫=∠=+- ⎪ ⎪⎝⎭⎝⎭g 2113sin cos 22113sin cos 22αααααα⎛⎫=+ ⎪ ⎪⎝⎭⎛⎫=+ ⎪ ⎪⎝⎭1131cos 2sin 22422αα⎛⎫+=+ ⎪⎪⎝⎭1133sin 2cos 2422813sin 243ααπα⎛⎫=++ ⎪ ⎪⎝⎭⎛⎫=++ ⎪⎝⎭......................................................10分 又,42ππα⎡⎫∈⎪⎢⎣⎭,所以542,363πππα⎡⎫+∈⎪⎢⎣⎭,所以当5236ππα+=, 则4πα=时,sin 23πα⎛⎫+⎪⎝⎭取得最大值12,所以S 的最大值为13+......................12分 考点:三角函数的定义,两角和与差的正弦公式,二倍角公式,正弦函数的性质. 18. (本小题满分12分)如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,//AD BC ,侧面11ABB A 为菱形,1DAB DAA ∠=∠.(1)求证:1A B AD ⊥;(2)若01AD=AB=2BC,A 60AB ∠=,点D 在平面11ABB A 上的射影恰为线段1A B 的中点,求平面11DCC D 与平面11ABB A 所成锐二面角的余弦值. 【答案】(1)证明见解析;(239331试题解析:(1)因为侧面1ABB A 为菱形,所以1AB AA =u u u v u u u v,又1DAB DAA ∠=∠,所以()()1111111A cos cos cos cos 0A B AD A AB AD A A AD AB AD A A AD DAA AB AD DABAB AD DAA AB AD DAA π=+=+=-∠+∠=-∠+∠=u u u v u u u v u u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u vg g g g g g u u u v u u u v u u u v u u u vg g ,从而1A B AD ⊥........................................5分考点:用向量法证明线线垂直、求二面角.【名师点睛】(1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直以及求空间角、距离的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.(3)证明直线与直线垂直,只需要证明两条直线的方向向量垂直,而直线与平面垂直,平面与平面垂直可转化为直线与直线垂直证明.(4)求二面角,只要先求得两平面的法向量,两法向量的夹角与二面角相等或互补.(5)求直线与平面所成角,利用直线与平面的法向量的夹角与线面角互余可得.证明线线垂直,也可直接利用空间向量基本定理,证明两直线的方向向量的数量积为0.19. (本小题满分12分)由于全力备战高考,造成高三学生视力普遍下降,现从我市所有高三学生中随机抽取16名学生,经医生用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)指出这组数据的众数和中位数;(2)若视力测试结果不低于5.0则称为“好视力”,求医生从这16人中随机选取3人,至多有1人是“好视力”的概率;(3)以这16人的样本数据来估计全市的总体数据,若从我市考生中(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望.【答案】(1)众数:4.6和4.7;中位数;4.75;(2)121140;(3)分布列见解析,期望为0.75.考点:茎叶图,众数,中位数,古典概型,随机变量分布列与数学期望. 20. 已知抛物线C 的标准方程为()220y px p =>,M 为抛物线C 上一动点,()(),0,0A a a ≠为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N .当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,MON ∆的面积为18. (1)求抛物线C 的标准方程; (2)记11t AM AN=+,若t 值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.【答案】(1)212y x =;(2)稳定点为(3,0)A . 【解析】试题分析:(1)由已知MN为通径,因此2MN p =,由18OMN S ∆=可求得6p =;(2)定点问题处理,设()()1122,,,M x y N x y ,设直线MN 的方程为x my a =+,代入抛物线方程,由韦达定理得1212,y y y y +, 计算22121111t AM AN m y m y =+=+++122121y y y y m +=⋅+,按0a >和0a <分类后讨论可得a 取特定值时t 与m 无关,即A 为稳定点.②0a >时,∵12120y y a =-<,∴12,y y 异号. 又22121111t AM AN m y m y =+=++, ∴()()()()2221212122222222221212114111144481311111441a y y y y y y m a t m m m a a m y y y y ⎛⎫- ⎪-+-+====+ ⎪++++ ⎪⎝⎭gg g ,∴仅当1103a -=,即3a =时,t 与m 无关,稳定点为(3,0)A ............................12分 【备注:此题第2问若证明焦点满足给4分!】 考点:抛物线的标准方程,直线与抛物线的位置关系.【名师点睛】在解析几何中,求直线上两点间距离,可利用直线的斜率简化距离公式:1122(,),(,)P x y Q x y 是直线y kx m =+上的两点,则212122111PQ k x x y y k=+-=+-,而2121212()4x x x x x x -=+-,只要利用韦达定理就可得.21. 已知函数()()2ln 2a f x x x x a R =-∈. (1)若2a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若函数()()g x f x x =-有两个极值点12,x x ,求证:12112ln ln ae x x +>. 【答案】(1)y x =-,(2)证明见解析.(2)()()1ln g x f x x ax ''=-=-,函数()()g x f x x =-有两个相异的极值点12,x x ,即()ln 0g x x ax '=-=有两个不同的实数根.①当0a ≤时,()g x '单调递增,()0g x '=不可能有两个不同的实根;..................... 6分②当0a >时,设()()1ln ,axh x x ax h x x-'=-=, 考点:导数的几何意义,导数的综合应用.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上的两点,P 为圆O 外一点,连结,PA PB 分别交圆O 于点,C D ,且AB AD =,连结BC 并延长至E ,使PEB PAB ∠=∠.(1)求证:PE PD =;(2)若1AB EP ==,且0120BAD ∠=,求AP . 【答案】(1)证明见解析;(2)262AP =.(2)因为,ACB PBA BAC PAB ∠=∠∠=∠,所以ABC APB ∆∆:,则()2AB AP AC AP AP PC ==-g ,所以()22AP AB AP PC PD PB PD PD BD -===+g g ,又因为,1PD AB AB ==,所以2223AP AB AB BD -==g所以223AP =+26AP +=. 考点:全等三角形的判定,切割线定理,相似三角形的判断与性质. 23. (本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线l 的极坐标方程是2sin 333πρθ⎛⎫+= ⎪⎝⎭射线:3OM πθ=与圆C 的交点为O P 、,与直线l 的交点为Q ,求线段PQ 的长. 【答案】(1)2cos ρθ=;(2)2PQ =.考点:参数方程与普通方程的互化,直角坐标方程与极坐标方程的互化,极坐标的应用. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()()21,2,,f x x a g x x m a m R =--=-+∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-3. (1)求整数m 的值;(2)若函数()y f x =的图象恒在函数()12y g x =的上方,求实数a 的取值范围. 【答案】(1)6m =;(2)(),4-∞.(2)因为()y f x =的图象恒在函数()12y g x =的上方,故()()102f xg x ->, 所以213a x x <-++对任意x R ∈恒成立.................................5分设()213h x x x =-++,则()313531311x x h x x x x x --≤-⎧⎪=--<≤⎨⎪+>⎩..............................7分则()h x 在(),1-∞是减函数,在()1,+∞上是增函数,所以当1x =时,()h x 取得最小值4, 故4a <时,函数()y f x =的图象恒在函数()12y g x =的上方, 即实数a 的取值范围是(),4-∞......................................10分 考点:解绝对值不等式,绝对值的性质,不等式恒成立.。
2016届安徽省淮北市第一中学高三最后一卷数学(理)试题资料
理科数学试题第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.)1.若复数z 满足()112i z i =-+,则z 的共轭复数的虚部是( ) A .12i - B .12i C .12- D .122.命题“00,10x R x ∃∈+<或2000x x ->”的否定形式是( ) A .00,10x R x ∃∈+≥或2000x x -≤ B .,10x R x ∀∈+≥或20x x -≤ C .00,10x R x ∃∈+≥且2000x x -≤ D .,10x R x ∀∈+≥且20x x -≤3.已知()1sin cos ,0,2αααπ+=∈,则1tan 1tan αα-=+( )A .BCD . 4.设函数()219ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( )A .12a <≤B .4a ≥C .2a ≤D .03a <≤ 5.已知随机变量()2,4X N ,随机变量31Y X =+,则( )A .()6,12YN B .()6,37YN C .()7,36YN D .()7,12YN6.若P 在双曲线2211620x y -=上,1F 为左焦点,1=9PF ,则2PF =( )A .1B .1或17C .41D .177.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么近似公式2275V L h ≈,相当于将圆锥体积公式中的π近似取为( ) A .227 B .258 C .15750 D .3551138.淮北一中有名优秀毕业生到市内一所初中的3个班去作学习经验交流,则每个班至少去一名同学的不同分派方法种数为( ) A .150 B .180 C .200 D .2809. 某程序框图如图所示,则该程序运行后输出的S 的值为( )A .18 B .12 C .14D .1 10.现定义cos sin i e i θθθ=+,其中为虚数单位,e 为自然对数的底数,R θ∈,且实数指数幂的运算性质对i e θ都适用,若0523244555cos cos sin cos sin a C C C θθθθθ=-+,1432355555cos sin cos sin sin b C C C θθθθθ=-+,那么复数a bi +等于( )A .cos5sin 5i θθ+B .cos5sin 5i θθ-C .sin 5cos5i θθ+D .sin 5cos5i θθ-11.如图,网格上纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为( )A. B .43 C .83D.12.已知实数a b c <<,设方程1110x a x b x c++=---的两个实根分别为()1212,x x x x <,则下列关系中恒成立的是( )A .12x a b x c <<<<B .12a x b x c <<<<C .12a x x b c <<<<D .12a x b c x <<<<第Ⅱ卷(共90分)二、填空题(本大题包括4小题,每小题5分,共20分,将答案填在答题纸上)13.若变量,y x 满足约束条件4y xx y y k ≤⎧⎪+≤⎨⎪≥⎩,且2z x y =+的最小值为-6,则k =_______________.14.如图,为测量出高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角060MAN ∠=,C 点的仰角045CAB ∠=以及075MAC ∠=;从C 点测得060MCA ∠=.已知山高100BC m =,则山高MN =__________m .15.数列 {}n a 中,()11126,212n n n a a a a n n n--=-=++≥,则此数列的通项公式n a =___________.16. P 为椭圆22198x y +=上的任意一点,AB 为圆()22:11C x y -+=的任一条直径则PA PB 的取值范围是____________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)如图,在平面直角坐标系中,角α的顶点在原点,始边与x 轴的非负半轴重合,终边交单位圆于点A ,且,42ππα⎡⎫∈⎪⎢⎣⎭,将角α的终边绕原点逆时针方向旋转3π,交单位圆于点B ,过B 作BC y ⊥轴于点C ;(1)若点A ,求点B 的横坐标; (2)求AOC ∆的面积S 的最大值; 18.(本小题满分12分)如图所示,在四棱柱1111ABCD A B C D -中,底面ABCD 是梯形,//AD BC ,侧面11ABB A 为菱形,1DAB DAA ∠=∠.(1)求证:1A B AD ⊥;(2)若01AD=AB=2BC,A 60AB ∠=,点D 在平面11ABB A 上的射影恰为线段1A B 的中点,求平面11DCC D 与平面11ABB A 所成锐二面角的余弦值. 19.(本小题满分12分)由于全力备战高考,造成高三学生视力普遍下降,现从我市所有高三学生中随机抽取16名学生,经医生用视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:(1)指出这组数据的众数和中位数;(2)若视力测试结果不低于5.0则称为“好视力”,求医生从这16人中随机选 取3人,至多有1人是“好视力”的概率;(3)以这16人的样本数据来估计全市的总体数据,若从我市考生中(人数很多)任选3人,记ξ表示抽到“好视力”学生的人数,求ξ的分布列及数学期望. 20.已知抛物线C 的标准方程为()220y px p =>,M 为抛物线C 上一动点,()(),0,0A a a ≠为其对称轴上一点,直线MA 与抛物线C 的另一个交点为N .当A 为抛物线C 的焦点且直线MA 与其对称轴垂直时,MON ∆的面积为18. (1)求抛物线C 的标准方程;(2)记11t AM AN=+,若值与M 点位置无关,则称此时的点A 为“稳定点”,试求出所有“稳定点”,若没有,请说明理由. 21.已知函数()()2ln 2a f x x x x a R =-∈. (1)若2a =,求曲线()y f x =在点()()1,1f 处的切线方程; (2)若函数()()g x f x x =-有两个极值点12,x x ,求证:12112ln ln ae x x +>. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,A B 是圆O 上的两点,P 为圆O 外一点,连结,PA PB 分别交圆O 于点,C D ,且AB AD =,连结BC 并延长至E ,使PEB PAB ∠=∠.(1)求证:PE PD =;(2)若1AB EP ==,且0120BAD ∠=,求AP . 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程1cos sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程; (2)直线的极坐标方程是2sin 3πρθ⎛⎫+= ⎪⎝⎭,射线:3OM πθ=与圆C 的交点为O P 、,与直线的交点为Q ,求线段PQ 的长.24. (本小题满分10分)选修4-5:不等式选讲已知函数()()21,2,,f x x a g x x m a m R =--=-+∈,若关于x 的不等式()1g x ≥-的整数解有且仅有一个值为-3. (1)求整数m 的值;(2)若函数()y f x =的图象恒在函数()12y g x =的上方,求实数a 的取值范围.参考答案一、选择题二、填空题13. -2 14. 150 15. ()()1121n n ++- 16.[]3,15 三、解答题 17.(1)由定义得:()cos ,sin ,cos ,sin 33A B ππαααα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,..........................2分依题意可知,sin α=,因为,42ππα⎡⎫∈⎪⎢⎣⎭,所以3πα=.............................3分所以11sin sin sin 2232S OAOC AOC ππαα⎛⎫⎛⎫=∠=+- ⎪ ⎪⎝⎭⎝⎭211sin cos 2211sin cos 22αααααα⎛⎫=+ ⎪ ⎪⎝⎭⎛⎫=+ ⎪ ⎪⎝⎭11sin 224α⎛=+ ⎝ 11sin 22421sin 243ααπα⎛⎫=++ ⎪ ⎪⎝⎭⎛⎫=++ ⎪⎝⎭ ......................................................10分 又,42ππα⎡⎫∈⎪⎢⎣⎭,所以542,363πππα⎡⎫+∈⎪⎢⎣⎭,所以当5236ππα+=,则4πα=时,sin 23πα⎛⎫+⎪⎝⎭取得最大值12,所以S 的最大值为.....................12分 18.解:(1)因为侧面1ABB A 为菱形,所以1AB AA =,又1DAB DAA ∠=∠,所以()()1111111A cos cos cos cos 0A B AD A AB AD A A AD AB AD A A AD DAA AB AD DAB AB AD DAA AB AD DAA π=+=+=-∠+∠=-∠+∠=,从而1A B AD ⊥........................................5分(2)设线段1A B 的中点为O ,连接1DO AB 、,由题意知DO ⊥平面11ABB A ,因为侧面11ABB A 为菱形,所以11AB A B ⊥,故可分别以射线OB 、射线1OB 、射线OD 为x 轴、y轴、z 轴的正方向建立空间直角坐标系O xyz -.设22AD AB BC a ===,由0160A AB ∠=可知OB a =,所以a,从而()()()()10,,0,,0,0,,0,0,0,A B a B D a .所以()11,0CC BB a ==-.由12BC AD =可得1,2C a a ⎛⎫⎪ ⎪⎝⎭,所以1,2DC a a ⎛⎫=- ⎪⎪⎝⎭............................................9分 设平面1DCC D 一个法向量为()000,,m x y z =,由10,0m CC m DC ==,得000000,102ax ax az ⎧-=⎪⎨+-=⎪⎩取01y =,则00x z ==,所以(3,1,3m =..........11分 又平面11ABB A 的法向量为()0,0,OD a =,所以()33cos ,31OD m a OD m OD m===.故平面11DCC D 与平面11ABB A 所成锐二面角............................12分 19.解:(1)众数:4.6和4.7;中位数;4.75...................................2分 (2)设i A 表示所取3人中有1个人是“好视力”,至多有1人是“好视力”记为事件A ,则()()()3121241201331010121140C C C P A P A P A C C =+=+=...........................5分 (3)一个人是“好视力”的概率为14,ξ的可能取值为0、1、2、3.()()()()3314222433270,46413271,44641392,4464113464P P C P C P ξξξξ⎛⎫=== ⎪⎝⎭⎛⎫==⨯⨯= ⎪⎝⎭⎛⎫⎛⎫==⨯⨯= ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎪⎝⎭ξ的分布列为......................................................... 11分()27279101230.7564646464E ξ=⨯+⨯+⨯+⨯=...............................12分 20.解:(1)由题意,2112182222MONp p S OA MN p ∆====,∴6p =, 抛物线C 的标准方程为212y x =........................................ 4分 (2)设()()1122,,,M x y N x y , 设直线MN 的方程为x my a =+,联立212x my a y x=+⎧⎨=⎩得212120y my a --=, ∴2144480m a ∆=+>,121212,12y y m y y a +==-,.............................6分由对称性,不妨设0m >,①0a <时,∵12120y y a =->,∴12,y y 同号, 又11t AM AN =+= ∴()()221222222221211144111111441y y m t m m a a m y y +⎛⎫===- ⎪+++⎝⎭, 不论a 取何值,均与m 有关,即0a <,A 不是“稳定点”;............................9分②0a >时,∵12120y y a =-<,∴12,y y 异号.又11t AM AN =+= ∴()()()()2221212122222222221212114111144481311111441a y y y y y y m a t m m m a a m y y y y ⎛⎫- ⎪-+-+====+ ⎪++++ ⎪⎝⎭,∴仅当1103a -=,即3a =时,与m 无关..............................12分【备注:此题第2问若证明焦点满足给4分!】21.解:(1)当2a =时,()()()()2ln ,ln 12,11,11f x x x x f x x x f f ''=-=+-=-=-,所以曲线()y f x =在点()()1,1f 处的切线方程为y x =-......................................4分 (2)()()1ln g x f x x ax ''=-=-,函数()()g x f x x =-有两个相异的极值点12,x x ,即()ln 0g x x ax '=-=有两个不同的实数根.①当0a ≤时,()g x '单调递增,()0g x '=不可能有两个不同的实根;..................... 6分②当0a >时,设()()1ln ,ax h x x ax h x x -'=-=, 当10x a <<时,()0h x '>,()h x 单调递增; 当1x a >时,()0h x '<,()h x 单调递减; ∴1ln 10h a a ⎛⎫=--> ⎪⎝⎭,∴10a e <<, 不妨设210x x >>,∵()()120g x g x ''==,∴()22112121ln 0,ln 0,ln ln x ax x ax x x a x x -=-=-=-先证12112ln ln x x +>,即证21212112ln ln 2x x x x x x x x -+<-,即证2222121112121ln 22x x x x x x x x x x ⎛⎫-<=- ⎪⎝⎭, 令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭,设()11ln 2t t t t ϕ⎛⎫=-- ⎪⎝⎭,则()()2222121022t t t t t t ϕ----'==<,函数()t ϕ在()1,+∞单调递减,∴()()10t ϕϕ<=,∴12112ln ln x x +>,又10a e <<,∴1ae <, ∴12112ln ln ae x x +>..............................................12分22.解:(1)连结DC ,因为,PCE ACB ADB PCD ABD ∠=∠=∠∠=∠,又因为AB AD =, 所以ABD ADB ∠=∠,所以PCE PCD ∠=∠,由已知,PEB PAB PDC PAB ∠=∠∠=∠, 所以PEC PDC ∠=∠,且PC PC =,所以PEC PDC ∆≅∆,所以PE PD =.(2)因为,ACB PBA BAC PAB ∠=∠∠=∠,所以ABC APB ∆∆,则()2AB AP AC AP AP PC ==-,所以()22AP AB AP PC PD PB PD PD BD -===+, 又因为,1PD AB AB ==,所以2223AP AB AB BD -==,所以22AP =+,所以AP = 23.解:(1)圆C 的普通方程为()2211x y -+=,又cos ,sin x y ρθρθ==,所以圆C 的极坐标方程为2cos ρθ=;(2)设()11,ρθ为点P 的极坐标,则有1112cos 3ρθπθ=⎧⎪⎨=⎪⎩,解得1113ρπθ=⎧⎪⎨=⎪⎩,设()22,ρθ为点Q的极坐标,2222sin 33πρθπθ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,解得2233ρπθ=⎧⎪⎨=⎪⎩,由于12θθ=,所以122PQ ρρ=-=,所以线段PQ 的长为2.24.解:(1)由()1g x ≥-,即21,21x m x m -+≥-+≤, 所以1122m m x ---+≤≤.......................................2分 ∵不等式的整数解为-3,则11322m m ---+≤-≤,解得57m ≤≤. 又不等式仅有一个整数解-3,∴6m =...................................4分(2)因为()y f x =的图象恒在函数()12y g x =的上方,故()()102f xg x ->, 所以213a x x <-++对任意x R ∈恒成立.................................5分 设()213h x x x =-++,则()313531311x x h x x x x x --≤-⎧⎪=--<≤⎨⎪+>⎩..............................7分则()h x 在(),1-∞是减函数,在()1,+∞上是增函数,所以当1x =时,()h x 取得最小值4, 故4a <时,函数()y f x =的图象恒在函数()12y g x =的上方, 即实数a 的取值范围是(),4-∞......................................10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮北市2016届高三第一次模拟考试数学试题(理)2016.1.16本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的座位号、姓名。
考生要认真核对答题卡上粘贴的条形码的“考场座位号、姓名”与考生本人考场座位号、姓名是否一致。
2.第1卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选出其他答案标号。
第II 卷用0.5毫米的黑色签字笔在答题卡上书写作答,在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷和答题卡一并收回。
一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,{}12B x x =-≤≤,则等于 ( )A. {}10x x -<<B. {}24x x ≤<C. {}02x x x <>或D. {}02x x x ≤≥或 2.在复平面内,复数2iz i-=的共轭复数z 对应的点所在的象限( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设0x >,则“4m =”是“4≥+xmx ”恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件4、执行如图所示的程序框图,若输出的n=6,则输入整数p 的最小值是. ( ) A . 17 B . 16 C .18 D . 195.在等差数列{}n a 中,若1201210864=++++a a a a a ,则12102a a -的值为( ) A. 6 B. 12 C. 24 D. 606、已知O 为坐标原点,双曲线22221x y a b -=(0,0)a b >>的右焦点F ,以OF 为直径作圆交双曲线的渐近线于异于原点的两点A 、B ,若()0AO AF OF +⋅=,则双曲线的离心率e 为( )A. 3B.2C.7.在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( )A. 12B. 13 C.4D.38.有以下命题:①命题“2,20x R x x ∃∈--≥”的否定是:“2,20x R x x ∀∈--<”; ②已知随机变量ξ服从正态分布2(2,)N σ,(4)0.79,P ξ≤=则(2)0.21P ξ≤-=; ③函数131()()2xf x x =-的零点在区间11(,)32内;其中正确的命题的个数为( ) A.3个 B.2个 C.1个 D.0个9.已知函数()y f x =是定义在实数集R 上的偶函数,且当(,0)x ∈-∞时()()xf x f x '<--成立(其中()()f x f x '是的导函数),若a =,(1)b f =,212(log )4c f =-,则,,a b c 的大小关系是 ( )A .c a b >>B .c b a >>C .a b c >>D .a c b >>10.已知实数,x y 满足:04010x y x y x -≤⎧⎪+-<⎨⎪-≥⎩,则使等式(2)(1)240t x t y t ++-++=成立的t 取值范围为( )A . 51--42⎡⎫⎪⎢⎣⎭,B . 51---+42⎛⎤⎛⎫∞⋃∞ ⎪⎥⎝⎦⎝⎭,, C.5-14⎡⎫⎪⎢⎣⎭, D 1-12⎡⎫⎪⎢⎣⎭,11.已知四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,又3,2,4AB BC BD ===,且60CBD ∠=,则球O 的表面积为( )(A )12π (B ) 16π (C ) 20π (D )25π12、如图,四边形ABCD 是正方形,延长CD 至E ,使得DE=CD.若动点P 从点A出发,沿正方形的边按逆时针方向运动一周回到A 点,其中AP AB AE λμ=+,下列判断正确..的是( )A.满足2λμ+=的点P 必为BC 的中点B.满足1λμ+=的点P 有且只有一个C.λμ+的最大值为3D.λμ+的最小值不存在二、填空题(本大题共4小题,每小题5分,共20分).13、设21e ea dx x=⎰,则二项式261()-ax x 展开式中的常数项为 。
14、寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E 五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有 种。
15、在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,其中A =120°,b =1,且△ABC 的面积为 3,则CB c b sin sin ++=16、对于问题:“已知关于x 的不等式02>++c bx ax 的解集为)2,1(-,解关于x 的不等式02>+-c bx ax ”,给出如下一种解法:解:由02>++c bx ax 的解集为)2,1(-,得0)()(2>+-+-c x b x a 的解集为)1,2(-, 即关于x 的不等式02>+-c bx ax 的解集为)1,2(-.参考上述解法,若关于x 的不等式0<++++cx bx a x k 的解集为),(),(211-3- ,则关于x 的不等式0111<++++cx bx ax kx 的解集为____________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)在等比数列{}n a 中,3339,S 22a ==. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2216log n n b a +=,且{}n b 为递增数列,若11n n n c b b +=⋅,求证:12314n c c c c ++++< .18.(本小题满分12分)一个盒子装有六张卡片,上面分别写着如下六个函数:31()f x x =,2()5xf x =,3()2f x =,421()21x xf x -=+,5()sin()2f x x π=+,6()cos f x x x =. (I )从中任意拿取2张卡片,若其中有一张卡片上写着的函数为奇函数。
在此条件下,求两张卡片上写着的函数相加得到的新函数为奇函数的概率;(II )现从盒子中逐一抽取卡片,且每次取出后均不放回,若取到一张写有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.19.(本小题满分12分)已知某几何体直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(I )求证:BN 11C B N ⊥平面;(II )11sin C N CNB θθ设为直线与平面所成的角,求的值;(III )设M 为AB 中点,在BC 边上找一点P ,使MP //平面1CNB 并求BPPC的值 20.(本小题满分12分)定长为3的线段AB 两端点A 、B 分别在x 轴,y 轴上滑动,M 在线段AB 上,且2.AM MB =(I )求点M 的轨迹C 的方程;(II)设过F 且不垂直于坐标轴的动直线l 交轨迹C 于A 、B 两点,问:线段OF 上是否存在一点D ,使得以DA ,DB 为邻边的平行四边形为菱形?作出判断并证明。
21.(本小题满分12分)对于函数()y f x =的定义域为D ,如果存在区间[,]m n D ⊆,同时满足下列条件:✍ ()f x 在[,]m n 上是单调函数;✍ 当()f x 的定义域为[,]m n 时,值域也是[,]m n ,则称区间[,]m n 是函数()f x 的“Z 区间”。
对于函数ln ,0()(0),0a x x x f x a a x ->⎧⎪=>≤ . (I ) 若1a =,求函数()f x 在(,1)e e -处的切线方程; (II) 若函数()f x 存在“Z 区间”,求a 的取值范主视图 侧视图 俯视图N(二)选做题:(考生从以下三题中选做一题) 22.(本小题满分10分)选修4-1:几何证明选讲如图,AB 是⊙O 的直径,C 、F 是⊙O 上的两点,OC ⊥AB ,过点F 作⊙O 的切线FD 交AB 的延长线于点D .连接CF 交AB 于点E .(1)求证:DE 2=DB•DA ; (2)若DB=2,DF=4,试求CE 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程.曲线C 的极坐标方程为θθρ2sin cos 4=, 直线l 的参数方程为⎩⎨⎧+==ααsin 1cos t y t x (t 为参数,0≤α<π).(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长. 24.(本小题满分10分)选修4—5:不等式选讲.设函数()|1||5|f x x x =++-,∈x R . (Ⅰ)求不等式()2f x x ≤的解集;(Ⅱ)如果关于x 的不等式log 2()a f x <在R 上恒成立,求实数a 的取值范围.BACDEOF淮北市2016届高三一模答案13、15 14、45 15、 16、11(1,)(,1)32--三、解答题17.(1)1q =时,32n a =; ………………2分 1q ≠时,116()2n n a -=⋅- ………………4分(2)由题意知:116()2n n a -=⋅- ………………6分∴2116()4n n a +=⋅∴2n b n = ………………8分 ∴111111()2(2n 2)4(n 1)41n c n n n n ===-⋅+⋅++ ………………10分∴123111(1)414n c c c c n ++++=-<+ ………………12分 18.解:(1)错误!未找到引用源。
为奇函数;错误!未找到引用源。
为偶函数;错误!未找到引用源。
为偶函数;错误!未找到引用源。
为奇函数;错误!未找到引用源。
为偶函数; 错误!未找到引用源。
为奇函数所有的基本事件包括两类:一类为两张卡片上写的函数均为奇函数;另一类为两张卡片上写的函数为一个是奇函数,一个为偶函数;故基本事件总数为错误!未找到引用源。
满足条件的基本事件为两张卡片上写的函数均为奇函数,故满足条件的基本事件个数为错误!未找到引用源。
故所求概率为错误!未找到引用源。
…………6分(2)错误!未找到引用源。
可取1,2,3,4. …………………………………………………7分错误!未找到引用源。