近湖中学勾股定理综合检测题检测试题A(含答案)
《勾股定理》单元测试卷(含答案)
《勾股定理》综合测试卷(考试时间:90分钟 满分:100分)一、选择题(每题3分,共24分)1.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm).若从中取出三根,首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( ) A. 2,4,8 B. 4,8,10 C. 6,8,10 D. 8,10,122.若等腰三角形底边上的高为8,周长为32,则三角形的面积为( ) A. 56 B. 48 C. 40 D. 323.在ABC ∆中,已知17,10AB AC ==.若边BC 上的高8AD =,则边BC 的长为( ) A. 21 B. 15 C. 6或9 D. 9或214.如图,每个小正方形的边长为1,若,,A B C 是小正方形的顶点,则ABC ∠的度数为( ) A. 90º B. 60º C. 45º D. 30º5.如图,一架云梯长25 m,斜靠在一面墙上,梯子底端离墙7m.如果梯子的顶端下滑4 m ,那么梯子的底部在水平方向上滑动了( )A. 4 mB. 6mC. 8 mD. 10 m6.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 在BC 上,3BD =,1DC =,P 是AB 上的动点,则PC PD +的最小值为( )A. 4B. 5C.6D.77.如图,在长方形ABCD 中,4,6,AB BC E ==为BC 的中点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接CF ,则CF 的长为( )8.如图①,分别以直角三角形三边为边向外作等边三角形,面积分别为123,,S S S ;如图②,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为456,,S S S .其中125616,45,11,14S S S S ====,则34S S +为( )A. 86B. 64C. 54D. 48 二、填空题(每题2分,共20分)9. 如果三角形三边长分别为3,4,5,那么最长边上的中线长为 .10.已知两条线段的长分别为15 cm 和8 cm ,则当第三条线段的长取整数 cm 时,这三条线段能组成一个直角三角形.11.若一个三角形的三边长之比为5:12:13,且周长为60 cm ,则它的面积为 cm 2. 12.如图,长为12 cm 的弹性皮筋拉直放置在一轴上,固定两端A 和B ,然后把中点C 向上拉升8 cm 至点D ,则弹性皮筋被拉长了 m.13.如图,在四边形ABCD 中,:::2:2:3:1AB BC CD DA =.若90ABC ∠=︒,则DAB ∠= .14.如图,在ABC ∆中,5,3AB AC ==.若中线2AD =,则ABC ∆的面积为 .15.如图,在四边形ABCD 中,30ABC ∠=︒,将DCB ∆绕点C 顺时针旋转60º后,点D 的对应点恰好与点A 重合,得到ACE ∆,若3,4AB BC ==,则BD = . 16.在四边形ABCD 中,90ABC ∠=︒,4,2,6AB BC CD AD ====,则BCD ∠= .17.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm ,3 dm ,2 dm , A 和B 是这个台阶两个相对的端点,点A 处有一点蚂蚁,想到点B 去吃可口的食物,则蚂蚁沿着台阶面爬到点B 的最短路程是 .18.如图,一个圆柱形容器的高为1.2 m ,底面周长为1m.在容器内壁离容器底部0.3 m 的点B 处有一只蚊子,此时一只壁虎正好在容器外壁离容器上沿0. 3 m 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为 m(容器厚度忽略不计). 三、解答题(共56分)19. (6分)如图,在ABC ∆中,90C ∠=︒,,AC BC D <为边BC 上一点,且到,A B 两点 的距离相等.(1)利用尺规,作出点D 的位置(不写作法,保留作图痕迹); (2)连接AD ,若5,3AB AC ==,求CD 的长.20. ( 6分)如图,在Rt ACB ∆中,90ACB ∠=︒,D 是AB 的中点,E 是CD 的中点,过点C 作//CF AB 交AE 的延长线于点F . (1)求证: ADE FCE ∆≅∆;(2)若120DCF ∠=︒,2DE =,求BC 的长.21. (6分)如图,等腰三角形ABC 的底边20BC =cm ,D 是腰AB 上一点,且16CD =cm ,12BD =cm ,求ABC ∆的周长.22. ( 6分)如图,在直角三角形纸片ABC 中,90C ∠=︒,6,8AC BC ==,折叠ABC ∆的一角,使点B 与点A 重合,展开得折痕DE ,求BD 的长.23. ( 8分)如图,90ABC ∠=︒,6AB =cm ,24AD =cm ,34BC CD += cm ,C 是直线l 上一动点,请你探索:当点C 离点B 多远时,ACD ∆是一个以CD 为斜边的直角三角形?24. (8分)如图,在一棵树CD 离地10 m 的B 处有两只猴子,其中一只猴子爬下树走到离树20 m 处的池塘A 处,另一只爬到树顶D 后直接跃到A 处.距离以直线计算,如果两只猴子所经过的距离相等,请问:这棵树有多高?25. ( 8分)如图,将Rt ABC ∆ (其中,,AB c AC b BC a ===)绕其锐角顶点A 逆时针旋转90º得到Rt ADE ∆,连接BE ,延长,DE BC 相交于点F ,则有90BFE ∠=︒,且四边形ACFD 是一个正方形.(1)判断ABE ∆的形状,并证明你的结论;(2)用含b 的代数式表示四边形ABFE 的面积;(3)求证: 222a b c +=.26. ( 8分)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B到点C的距离是5 cm,自点A至点B的长方体表面的连线距离最短是多少?参考答案1-8 CBDCCBDC 9.5210. 17 11. 120 12. 8 13. 135° 14. 6 15. 5 16. 135° 17. 25dm 18. 1.319.(1)作线段AB 的垂直平分线,交BC 于点D ,即为所求;(2)7820.(1)BAF AFC ∠=∠ (2) 4BC =21.三角形的周长为1603cm.22. 25423. 8cm24.树高15m25.(1) 等腰直角三角形; (2) 面积为2b ; (3) 四边形面积为2211()()22c b a b a b +-+=,即222a b c += 26.最短是25cm 。
勾股定理测试题及答案
勾股定理测试题(45分钟,满分100分)一、选择题(每题4分)1、下列各组数中,能构成直角三角形的是()A:4,5,6B:6,8,11D:5,12,232、已知Rt△ABC 中,∠A,∠B,∠C 的对边分别为a,b,c,若∠B=90°,则()A、b²=a²+c²;B、c²=a²+b²;C、a²+b²=c²;D、a+b=c 3、已知一个直角三角形的两边长分别为3和4,则第三边长是()A.5B.25C.7D.5或74、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为()A:3B:4C:7D:55、将Rt△ABC 的三边都扩大为原来的2倍,得△A’B’C’,则△A’B’C’为()A、直角三角形B、锐角三角形C、钝角三角形D、无法确定6、在Rt△ABC 中,∠C=90°,∠B=45°,c=10,则a 的长为()A:5B:10C:5D:257、已知,如图长方形ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D 重合,折痕为EF,则△ABE 的面积为()A、3cm2B、6cm2C、4cm2D、12cm28、若△ABC 中,13,15AB cm AC cm ==,高AD=12,则BC 的长为()A、14B、4C、14或4D、以上都不对二、填空题(每题4分)9、如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M,则点M 是表示_________点10、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。
(填“合格”或“不合格”)ABEFDC第7题图123AB CM D(第1题图)D CBA11、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D 的面积的和为。
中考数学 勾股定理综合练习(含答案)
2020中考数学 勾股定理综合练习(含答案)一、单选题(共有10道小题)1.和数轴上的点一一对应的 是()。
A. 整数B. 有理数C. 无理数D. 实数2.如图,在矩形ABCD 中,AB=4,AD=5,AD 、AB 、BC 分别与⊙O 相切与E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,切点为N ,则DM 的长为( )A.133B.92D.3.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等 ②数据5,2,7,1,2,4的中位数是3,众数是2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt ABC △中,90C =o ∠,两直角边a 、b 分别是方程2770x x -+=的两个根,则AB正确命题有( )A .0个B .1个C .2个D .3个4.如图,在边长为1个单位长度的小正方形组成的网格中,点A 、B 都是格点,则线段AB 的长度为( ) A. 5 B.6 C.7 D.255.如图,矩形ABCD 的面积为20cm 2,对角线交于点O ;以AB 、AO 为邻边做平行四边形AOC 1B ,对角线交于点O 1;以AB 、AO 1为邻边做平行四边形AO 1C 2B ;…;以此类推,则平行四边形AO 4C 5B 的面积为( )A .54cm 2B .58cm 2C .516cm 2 D .532cm 26.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上,若AB=6,BC =9,则).FA CD E MN2A .4B.C .4.5D .57.如图,两个连接在一起的菱形的边长都是1 cm ,一只电子甲虫从点A 开始按ABCDAEFGAB…的顺序沿菱形的边循环爬行,当电子甲虫爬行2014cm 时停下,则它停的位置是( )A .点FB .点EC .点AD .点C8.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A .0B .1C .2D .39.下列图形都是由边长为1厘米的小正方形连接组成的.按照图形的变化规律,第2009个图形的周长是( )厘米. A 、4018 B 、4020 C 、8036 D 、602710.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE 。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题 5 分,共 30 分)1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理 a²+ b²= c²(其中 a、b 为直角边,c 为斜边),可得斜边 c =√(5²+ 12²) =√(25 + 144) =√169 = 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,25 ≠ 36,所以不能组成直角三角形;选项 B,5²+ 12²= 25 + 144 = 169,13²=169,所以能组成直角三角形;选项 C,5²+ 11²= 25 + 121 = 146,12²= 144,146 ≠ 144,所以不能组成直角三角形;选项 D,2²+ 3²=4 + 9 = 13,4²= 16,13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形,两直角边长分别为 3 和 4,下列说法正确的是()A 斜边长为 25B 三角形的周长为 12C 斜边长为 5D 三角形的面积为 6答案:C解析:根据勾股定理,斜边长为√(3²+ 4²) =√25 = 5,选项 A 错误,选项 C 正确;三角形的周长为 3 + 4 + 5 = 12,选项 B 错误;三角形的面积为 1/2 × 3 × 4 = 6,选项 D 正确。
4、若直角三角形的三边长分别为 2,4,x,则 x 的值可能有()A 1 个B 2 个C 3 个D 无数个答案:B解析:当 x 为斜边时,x =√(2²+ 4²) =√20 =2√5;当 4 为斜边时,x =√(4² 2²) =√12 =2√3。
勾股定理单元测试卷(含答案)
勾股定理单元测试卷一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 任意三角形2. 勾股定理中的两个直角边的平方和等于斜边的平方,斜边被称为:A. 勾B. 股C. 斜边D. 高3. 在直角三角形中,若直角边的长度分别为3和4,则斜边的长度是:A. 5B. 6C. 7D. 84. 勾股定理的发现者是谁?A. 毕达哥拉斯B. 欧几里得C. 阿基米德D. 哥白尼A. a² + b² = c²B. c² = a² + b²C. a² b² = c²D. c² a² = b²二、填空题(每题2分,共10分)6. 勾股定理的公式是:__________。
7. 在直角三角形中,若直角边的长度分别为5和12,则斜边的长度是__________。
8. 勾股定理在中国被称为__________。
9. 勾股定理的发现时间大约在公元前__________年。
10. 勾股定理的发现者毕达哥拉斯是__________国人。
三、解答题(每题5分,共20分)11. 已知直角三角形的两个直角边长度分别为8和15,求斜边的长度。
12. 在直角三角形中,若斜边的长度为17,且一个直角边的长度为8,求另一个直角边的长度。
13. 勾股定理的证明方法有很多种,请简述其中一种证明方法。
14. 请举例说明勾股定理在实际生活中的应用。
答案部分一、选择题答案1. B2. C3. A4. A5. C二、填空题答案6. a² + b² = c²7. 138. 勾三股四弦五9. 50010. 希腊三、解答题答案11. 斜边长度为17。
12. 另一个直角边的长度为15。
13. 勾股定理的证明方法有很多种,其中一种是通过面积证明。
将直角三角形分为两个小直角三角形和一个矩形,分别计算它们的面积,然后通过面积关系推导出勾股定理。
勾股定理测试题及答案
勾股定理测试题及答案一、选择题(每题2分,共10分)1. 勾股定理适用于哪种三角形?A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个直角三角形的斜边长度为13,一条直角边为5,另一条直角边的长度是多少?A. 12B. 10C. 8D. 6答案:A4. 勾股定理的公式是什么?A. a + b = cB. a * b = cC. a^2 + b^2 = c^2D. a^2 - b^2 = c^2答案:C5. 如果一个三角形的三边长分别为7、24和25,那么这个三角形是直角三角形吗?A. 是B. 不是答案:A二、填空题(每题2分,共10分)6. 直角三角形中,如果一条直角边长为x,另一条直角边长为y,斜边长为z,根据勾股定理,我们有________。
答案:x^2 + y^2 = z^27. 如果一个直角三角形的两条直角边长分别为6和8,那么斜边的长度是________。
答案:108. 在一个直角三角形中,如果斜边的长度是20,一条直角边长为15,另一条直角边的长度是________。
答案:5√3 或25√3/39. 勾股定理的发现归功于古希腊数学家________。
答案:毕达哥拉斯10. 勾股定理在数学中也被称为________定理。
答案:毕达哥拉斯定理三、解答题(每题5分,共20分)11. 一个直角三角形的斜边长度为17,一条直角边长为8,求另一条直角边的长度。
答案:根据勾股定理,另一条直角边的长度为√(17^2 - 8^2) =√(289 - 64) = √225 = 15。
12. 如果一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9^2 + 12^2) = √(81 + 144) = √225 = 15。
13. 一个直角三角形的斜边长度为25,一条直角边长为15,求另一条直角边的长度。
(完整版)勾股定理综合测考试试题
1 / 3勾股定理全章综合测试题(120分)一。
选择题(每小题3分,共30分)1. △ABC 中, AD ⊥BC 于D ,AB=3,BD=2,DC=1,则AC 等于( ) A. 6. B.6 C.5 D.42.(如图)在Rt △ABC 中,∠C=90°,D 为BC 上一点,∠DAC=30°, BD=2,AB=32,则AC 的长是( ) A.3 B. 23 C. 3 D.323 3.△ABC 中,∠B=30°,∠C=45°,AB=8, 则AC 等于( ) A .4 B.24 C.34 D.64 4.等腰三角形一腰上的高是a, 且这条高与底边的夹角为60°,则这个三角形的面积为( )A.22a B.23a C.2321a D.2331a 5. △ABC 在下列条件中不是直角三角形的是( )A.a ﹕b ﹕c=1﹕3﹕2B.222c a b -= C.∠C=2∠A-∠B D. ∠A ﹕∠B ﹕∠C=1﹕2﹕36.一个直角三角形斜边的平方等于两条直角边乘积的2倍,则这个三角形中有一个角是( )A.15°B.30°C. 45°D. 75°7.直角三角形两条直角边上的中线长分别是4和7,则这个直角三角形的面积是( )A .133 B. 64 C.136 D.以上都不对8.在直角三角形中,两直角边分别为a ﹑b ,斜边为c ,斜边上的高为h ,则( )A.c b a 111=+ B. 2222h b a =+ C.22111b a h +=D.bah =1 9.已知三角形三内角之比为1﹕2﹕3,它的最长边为10,则此三角形的面积为( ) A.20 B.103 C.35 D.2325 10. (如图)在△ABC 中,AC=8,BC=6,在△ABE 中,DE 为AB 边上的高, DE=12,60=∆ABE S ,则△ABC 的面积为( )A.24B.48C.64D.72二.填空题((每小题3分,共30分)11.在RT △ABC 中,∠C=90°,三内角A 、B 、C 的对边分别为a 、b 、c ,当∠A=30°时, a ﹕b ﹕c= ;当∠A=45°时, a ﹕b ﹕c= ;12.直角三角形的两直角边长为8和10,则斜边上的高为 。
初中数学-《勾股定理》测试题(有答案)
初中数学-《勾股定理》测试题一、填空1.命题:“如果a=0,那么ab=0”的逆命题是;命题内错角相等,两直线平行”的逆命题是.2.测得一块三角形花坛的三边长分別为1.5m,2m,2.5m,则这个花坛的面积为m2.3.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.4.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= cm.二、选择题5.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①② B.①③ C.①④ D.②④三、解答题6.一种机器零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图所示,这个零件符合要求吗?请说明理由.7.如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.8.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?9.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC的周长.《勾股定理》参考答案与试题解析一、填空1.命题:“如果a=0,那么ab=0”的逆命题是如果ab=0,那么a=0 ;命题内错角相等,两直线平行”的逆命题是两直线平行,内错角相等.【考点】命题与定理.【分析】将原命题的条件与结论互换即得到其逆命题.【解答】解:“如果a=0,那么ab=0”的逆命题是如果ab=0,那么a=0;内错角相等,两直线平行”的逆命题是两直线平行,内错角相等,故答案:如果ab=0,那么a=0;两直线平行,内错角相等.【点评】考查学生对逆命题的定义的理解及运用,分清原命题的题设和结论是解答本题的关键.2.测得一块三角形花坛的三边长分別为1.5m,2m,2.5m,则这个花坛的面积为 1.5 m2.【考点】勾股定理的逆定理.【分析】先根据勾股定理的逆定理判断出三角形花坛的形状,再根据三角形的面积公式即可得出结论.【解答】解:∵1.52+22=6.25=2.52,∴三角形花坛的三边正好构成直角三角形,∴这个花坛的面积=×1.5×2=1.5m2.故答案为:1.5.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.4.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= 13 cm.【考点】勾股定理的逆定理;勾股定理.【分析】根据已知及勾股定理的逆定理可得△ABD,△ADC是直角三角形,从而不难求得AC的长.【解答】解:∵D是BC的中点,BC=10cm,∴DC=BD=5cm,∵BD2+AD2=144+25=169,AB2=169,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°∴△ADC也是直角三角形,且AC是斜边∴AC2=AD2+DC2=AB2∴AC=13cm.故答案为:13.【点评】本题考查了勾股定理的应用和直角三角形的判定.二、选择题(共1小题,每小题3分,满分3分)5.下列命题:①如果a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a、b、c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是()A.①② B.①③ C.①④ D.②④【考点】勾股定理的逆定理;勾股数.【分析】本题主要依据勾股定理的逆定理,判定三角形是否为直角三角形.【解答】解:①正确,∵a2+b2=c2,∴(4a)2+(4b)2=(4c)2,②错误,应为“如果直角三角形的两直角边是3,4,那么斜边必是5”③错误,∵122+212≠252,∴不是直角三角形;④正确,∵b=c,c2+b2=2b2=a2,∴a2:b2:c2=2:1:1,故选C.【点评】此题主要考查勾股定理的逆定理,直角三角形的判定等知识点的综合运用.三、解答题6.一种机器零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边尺寸如图所示,这个零件符合要求吗?请说明理由.【考点】勾股定理的逆定理.【专题】几何图形问题.【分析】根据勾股定理的逆定理,判断出△ABD、△BDC的形状,从而判断这个零件是否符合要求.【解答】解:∵AD=12,AB=9,DC=17,BC=8,BD=15,∴AB2+AD2=BD2,BD2+BC2=DC2.∴△ABD、△BDC是直角三角形.∴∠A=90°,∠DBC=90°.故这个零件符合要求.【点评】本题考查了勾股定理的逆定理,关键是根据勾股定理的逆定理判断△ABD、△BDC的形状.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.如图,在△ABC中,AC=5,BC=12,AB=13,D是BC的中点,求AD的长和△ABD的面积.【考点】勾股定理的逆定理;勾股定理.【专题】几何图形问题.【分析】先根据勾股定理的逆定理判断出△ABC的形状,根据中点的定义得到CD的长,根据勾股定理可求出AD的长,再利用三角形的面积公式即可求解.【解答】解:∵在△ABC中,AC=5,BC=12,AB=13,132=52+122,∴AB2=AC2+CB2,∴△ABC是直角三角形,∵D是BC的中点,∴CD=BD=6,∴在Rt△ACD中,AD=,∴△ABD的面积=×BD×AC=15.【点评】本题考查的是勾股定理及勾股定理的逆定理,能根据勾股定理的逆定理判断出△ABD的形状是解答此题的关键.8.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【考点】勾股定理的应用;方向角.【专题】探究型.【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB的形状,进而可得出结论.【解答】解:由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠B OD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.9.如图所示,已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm,求△ABC的周长.【考点】勾股定理;勾股定理的逆定理.【分析】先判断CD⊥AB,在Rt△ACD中,利用勾股定理求出x,得出AC,继而可得出△ABC的周长.【解答】解:在△BCD中,BC=20cm,CD=16cm,BD=12cm,∵BD2+DC2=BC2,∴△BCD中是直角三角形,∠BDC=90°,设AD=x,则AC=x+12,在Rt△ADC中,∵AC2=AD2+DC2,∴x2+162=(x+12)2,解得:.∴△ABC的周长为:( +12)×2+20=cm.【点评】本题考查了勾股定理的知识,解答本题的关键是利用勾股定理求出AD的长度,得出腰的长度,难度一般.。
勾股定理测试卷及参考答案
勾股定理测试卷一、选择题(每小题6分,共30分)1、下列各组数中,能构成直角三角形的是( )A :4,5,6B :7,15,17C :6,8,11D :7,24,25 2、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( ) A :3 B :4 C :5 D :7 3、等边三角形的边长为2,则该三角形的面积为( ) A、、、34、若等腰三角形的腰长为10,底边长为12,则底边上的高为( ) A 、6 B 、7 C 、8 D 、95.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形 A 、B 、 C 、D 的边长分别是3、5、2、3,则正方形E 的面积是( ) A. 13 B. 26 C. 47D. 94二、填空题(每小题10分,共40分)6.直角三角形两角边长分别为5和12,则斜边上的高为__________.7. 直角三角形两角边长分别为3cm 和4cm, 则这个直角三角形周长为________. 8.在△ABC 中,已知AB=15,AC=13,BC 边上的高AD=12,则BC=__________. 9.长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示), 则梯子的顶端沿墙面升高了 m . 三、解答题(共50分)10. (15分)如图所示的一块地,AD =4m ,CD =3m ,∠ADC =900,AB =13m ,BC =12m ,求这块地的面积。
第9题图11. (15分)如图所示,AC⊥AD,AC=4,AB=5,BC=x-5,CD=x-3,AD=11-x,求证:△ABC≌△CDA12.(20分)探索n×n的正方形钉子板上(n是钉子板每边上的钉子数),连接任意两个钉子所得到的不同长度值的线段种数:当n=2时,钉子板上所连不同线段的长度值只有1所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;当n=3时,钉子板上所连不同线段的长度值只有12n=2时增加了3种,即S=2+3=5。
勾股定理单元测试题(含答案)
勾股定理单元测试题(含答案)第一段:勾股定理是初中数学中的重要概念,也是许多数学问题的基础。
以下是一些勾股定理的选择题和填空题。
1.选择题:1)哪组数可以构成直角三角形?A。
4.5.6B。
1.1.2C。
6.8.11D。
5.12.232)在Rt△ABC中,∠C=90°,a=12,b=16,则c的长度是多少?A。
26B。
18C。
20D。
213)在平面直角坐标系中,已知点P的坐标是(3,4),则OP 的长度是多少?A。
3B。
4C。
5D。
74)在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a 的长度是多少?A。
5B。
10C。
5√2D。
525)等边三角形的边长为2,则该三角形的面积是多少?A。
√3B。
3C。
2√3D。
3√36)若等腰三角形的腰长为10,底边长为12,则底边上的高为多少?A。
6B。
7C。
8D。
97)在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积是多少?A。
3cmB。
4cmC。
6cmD。
12cm8)在△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长度是多少?A。
14B。
4C。
14或4D。
以上都不对2.填空题:1)若一个三角形的三边满足c-a=b,则这个三角形是()。
2)木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面()。
3)直角三角形两直角边长分别为3和4,则它斜边上的高为()。
4)如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A。
B。
C。
D的面积的和为()。
5)如右图将矩形ABCD沿直线AE折叠,极点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=()。
第二段:勾股定理是初中数学中的重要概念之一,它是许多数学问题的基础。
本文提供了一些勾股定理的选择题和填空题。
完整版)勾股定理测试题(含答案)
完整版)勾股定理测试题(含答案)18.2勾股定理的逆定理达标训练一、基础巩固1.下列条件满足不是直角三角形的三角形是()A。
三内角之比为1∶2∶3B。
三边长的平方之比为1∶2∶3C。
三边长之比为3∶4∶5D。
三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10cm,∠D=120°,则该零件另一腰AB的长是________ cm(结果不取近似值)。
图18-2-43.如图18-2-5,以直角三角形ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,则AB的长为_________。
图18-2-54.如图18-2-6,已知正方形ABCD的边长为4,E为AB 中点,F为AD上的一点,且AF=√10,则BE的长为_________。
图18-2-65.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12,BC=13,这个零件符合要求吗?试判断△XXX的形状。
图18-2-76.已知△ABC的三边分别为k2-1,2k,k2+1(k>1),求证:△ABC是直角三角形。
二、综合应用7.已知a、b、c是直角三角形ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.已知:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD。
求证:△ABC是直角三角形。
图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A(3,1),B(2,4),△OAB是直角三角形吗?借助于网格,证明你的结论。
图18-2-910.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△XXX的形状。
解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,(C)∴△ABC是直角三角形。
中考数学总复习《勾股定理》专项测试题-附参考答案
中考数学总复习《勾股定理》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如图,在△ABC中,AB⊥AC,AB=5cm,BC=13cm,BD是AC边上的中线,则△BCD的面积是( )A.15cm2B.30cm2C.60cm2D.65cm22.满足下列条件的△ABC,不是直角三角形的是( )A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A−∠B D.b2=c2−a23.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的底部在水平方向上向右滑动了8米,那么梯子的顶端下滑( )米.A.4米B.6米C.8米D.10米4.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.如图,在△ABC中∠C=90∘,AC=2点D在BC上∠ADC=2∠B,AD=√5,则BC 的长为( )A.√3−1B.√3+1C.√5−1D.√5+1 6. △ABC中∠A,∠B,∠C的对边分别是a,b,c,下列命题为真命题的( )A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b:c=3:4:√7,则△ABC是直角三角形7.如图,已知∠MON=45∘,点A,B在边ON上,OA=3点C是边OM上一个动点,若△ABC周长的最小值是6,则AB的长是( )A.12B.34C.56D.18.如图,字母B所代表的正方形的面积是( )A.12B.144C.13D.194二、填空题(共5题,共15分)9.已知Rt△ABC的面积为√3,斜边长为√7,两直角边长分别为a,b.则代数式a3b+ab3的值为.10.如图,在等腰Rt△ABC中,∠C=90∘,D为AC边上任意一点,作BD的垂直平分线交AB于点E,交BC于点F.连接DE,DF,当BC=1时,△ADE与△CDF的周长之和为.11.如图,在Rt△ABC中∠C=90∘,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB= 15,则DE=.12.平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上,当CE= AB时,点E的坐标为.13.已知∠AOB=30∘,点C为射线OB上一点,点D为OC的中点,且OC=6.当点P在射线OA上运动时,则PC与PD和的最小值为.三、解答题(共3题,共45分)14.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B′离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.15.如图,在ΔABC中,∠B=90°点P从点A开始沿AB边向点B以lcm/s的速度移动,Q 从点B开始沿BC边向C点以2cm/s的速度移动,且P、Q分别从A、B同时出发,当点Q 运动到点C为止.问:经过几秒钟,PQ的长度等于√29cm?16.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(√2≈1.414,精确到1米)参考答案1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】D8. 【答案】B9. 【答案】14√310. 【答案】2+√211. 【答案】9212. 【答案】(4,0)或(6,0)13. 【答案】3√314.【答案】解:设AB=AB′=xm,由题意可得出:B′E=1.4﹣0.6=0.8(m)则AE=AB﹣0.8在Rt△AEB中,∵AE2+BE2=AB2∴(x﹣0.8)2+2.42=x2解得:x=4答:秋千AB的长为4m.15.【答案】解:设运动的时间是t(s),则PB=6−t在RtΔPBQ中即:(6−t)2+(2t)2=(√29)25t2−12t+7=0(t−1)(5t−7)=0.解得t1=1t2=75答:1秒或7秒后,PQ的长度等于√29cm516.【答案】解:∵CD⊥AC∴∠ACD=90°∵∠ABD=135°∴∠DBC=45°∴∠D=45°∴CB=CD在Rt△DCB中:CD2+BC2=BD22CD2=8002CD=400√2≈566(米)答:直线L上距离D点566米的C处开挖。
勾股定理单元测试卷及参考答案
勾股定理章节测试(A卷)(满分120分,考试时间120分钟)一、选择题(每题3分,共30分)1.下列四组数:(1)0.3,0.4,0.5;(2)8,15,17;(3)25,7,24;(4)13,14,15.其中属于勾股数的有()A.1组B.2组C.3组D.4组2.一个直角三角形,两直角边长分别为5和12,下列说法正确的是()A.斜边长为13B.三角形的周长为20C.斜边长为30D.三角形的面积为603.如图,长为8cm的橡皮筋放置在水平桌面上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm第3题图第6题图4.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为1:2:3B.三边长的平方比为1:2:3C.三边长之比为3:4:5D.三内角之比为3:4:55.如图,在单位正方形组成的网格图中有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD,EF,GHB.AB,EF,GHC.AB,CD,GHD.AB,CD,EF6.若直角三角形的两直角边长为a,b,斜边c上的高为h,则下列各式一定成立的是()A.2ab h=B.222a b h+=C .111a b h+=D .222111a b h +=7.如图,A ,B 是直线l 同侧的两点,作点A 关于直线l 的对称点A′,连接A′B .若点A ,B 到直线l 的距离分别为2和3,则线段AB 与A′B 之间的数量关系为()A .2213A B AB '-=B .2224A B AB '-=C .2225A B AB '+=D .2226A B AB '+=8.如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,点D 在BC 上,且AD =BD ,AD ,CE 相交于点F .若∠B =20°,则∠DFE 等于()A .70°B .60°C .50°D .40°9.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2,4,3,则原直角三角形纸片的斜边长是()A.10B .C .10或D .10或10.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCDE ,设正方形的中心为O ,连接AO ,如果AB =4,AO =AC 的长为()A.6B.7C.8D.9二、填空题(每题3分,共18分)11.已知△ABC的周长是26,M是AB的中点,MC=MA=5,则△ABC的面积是__________.12.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B'处,点A的对应点为A',且B'C=3,则CN=______,AM=______.第12题图第13题图13.如图,AD,CE为锐角△ABC的两条高,若AB=15,BC=14,CE=11.2,则BD的长为_______.14.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=4cm,BD=1cm,连接AD,则线段AD的长为_________.第14题图第15题图15.如图,四边形A B C D是正方形,直线l1,l2,l3分别过A,B,C三点,且l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形ABCD的面积为________.16.如图,在△ACB中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD于N,CM⊥AE交AE的延长线于点M,连接DE.则下列结论:①∠MAC=∠DBA;②BN-CM=MN;③∠ADB=∠CDE;④BD=AE+ED.其中正确的有______________(填写序号),并证明.三.解答题17.(5分)如图,在四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积.18.(5分)如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的C处有一筐水果,一只猴子从D处爬到树顶A处,利用拉在A处的滑绳AC滑到C 处,另一只猴子从D处滑到地面B处,再由B跑到C,已知两只猴子所经路程都是15m,求树高AB.19.(6分)如图,△ABC和△CDE都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.若AD=5,BD=12,求DE的长.20.(6分)如图,在直角三角形纸片ABC中,AB=15cm,AC=9cm,BC=12cm,现将直角边AC沿过点A的直线折叠,使它落在AB边上.若折痕交BC于点D,点C落在点E处,你能求出BD的长吗?请写出求解过程.21.(8分)如图,在三角形ABC中,AC=BC,点O为AB的中点,AC⊥BC,∠MON=45°,求证:CN+MN=AM.22.(8分)如图,铁路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km.现要在铁路AB上建设一个土特产品收购站E,使得C,D 两村到E站的距离相等,则E站应建在距A多少千米处?23.如图,△ABC中,AB=AC,∠ACB=90°,D、E在线段AB上,且∠DCE=45°,求证DE2=AD2+BE224.(12分)已知:如图,在△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于点E.求证:CE 12 BD.扩展结论:1.∠AED=45°;2.BE=(1+2)EC25.(12分)如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)∠EAF=°(直接写出结果不写解答过程);(2)若BE=EC=3,求DF的长.(3)如图(2),在△PQR中,∠QPR=45°,高PH=5,QH=2,则HR的长度是参考答案12345678910B A A D B D B BC C11.3912.4213.914.5cm15.4116.①②③④17.36cm218.15m19.1320.7.5cm21.提示:连接OC,在AM上取点H,使AH=CN,证明△OMN≌△OMH可证.22.10km23.方法一:旋转将△ACD绕点C逆时针旋转90°至△ABG,连接EG,易知∠ACD=∠BCG,∠ACD+∠BCE=45°,得∠BCG+∠BCE=45°即∠GCE=45°,同时CG=DE,CE=CE,故△CDE≌△CGE,EG=DE,而∠CBG=∠A=45°得∠GBE=90°,故EG2=BE2+BG2,即有DE2=AD2+BE2方法二:对称法取点A关于CD的对称点F,连接EF、CF,易知△ACD≌△FCD,CF=CA,DF=AD,∠CFD=∠A=45°而AC=BC,得BC=CF,同时∠ACD=∠FCD,∠ACD+∠BCE=45°,∠CDF+∠FCE=45°得∠ECB=∠ECF,又CE=CE,故△BCE≌△FCE,EF=BE,∠CFE=∠B=45°,得∠DFE=90°,DE2=DF2+EF2,故DE2=AD2+BE21524.(1)45°(2)DF=2(3)7。
勾股定理测习题(含答案)
精心整理勾股定理练习题一、基础达标:1.下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2.Rt △ABC 的三条边长分别是a 、b 、c A .c b a =+ B.c b a >+ C.c b a <+ 3.如果Rt △的两直角边长分别为k 2-1,2k (A 、2k B 、k+1 C 、k 2-1 4.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2A.直角三角形B.C.等腰直角三角形D.5 )A 6.△ABC 的周长为( )A .42B 7.,则这个三角形周长为() (A (C 8,则OP 的长为()A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为()A .17B.3C.17或3D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是()A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13.一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16.在Rt△ABC中,斜边AB=4,则AB2+BC2+AC2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm1,最长边长为cm2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC∆中,︒=∠90C,15=BA,12=AC,以直角边BC为直径作半圆,则这个半圆的面积是.19.一长方形的一边长为cm3,面积为212cm,那么它的一条对角线长是.二、综合发展:1.如图,一个高4m、宽3m2、有一个直角三角形纸片,两直角边AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD3.一个三角形三条边的长分别为cm15,cm20,4.如图,要修建一个育苗棚,棚高h=3m,棚宽试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高的一棵小15.70km/h.如图,,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了50m,这辆小汽车超速了吗?答案:一、基础达标1.解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2.解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x,则斜边为(x+1)利用勾股定理可得方程,可以求出x.然后再求它的周长.答案:C.4.解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外BE部,有两种情况,分别求解.答案:C.5.解析:勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7.解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8.解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10.解析:长方形面积长×宽,即12长×3,长=答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+答案:5m .12解析:因为222252015=+xcm ,由直角三角形面积关系,可得1115202522⨯⨯=⨯⋅13理求出.1413m ,也就是两树树梢之间的距离是13m 答案:15BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s >70km/h .。
苏科版八年级数学上册第二章 勾股定理 近湖中学单元综合过关检测题A卷(含答案)
2010年近湖中学勾股定理综合检测题A(总分:120分,时间:90分钟)一、认真选一选,你一定很棒!(每题3分,共30分)1、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤3,4,5.其中能构成直角三角形的有( )组 212121A.2 B.3 C.4 D.52、已知△ABC 中,∠A =∠B =∠C ,则它的三条边之比为( ) 1213A.1∶1 B.1 2C.1D.1∶4∶1 23233、已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.52 B.3 3334、如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( )A.12米B.13米C.14米D.15米5、放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )A.600米B.800米C.1000米D.不能确定6、如图1所示,要在离地面5 米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )A.L 1B.L 2C.L 3D.L 47、如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A.S 1=S 2B.S 1<S 2C.S 1>S 2D.无法确定8、在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是()A.5,4,3B.13,12,5C.10,8,6D.26,24,109、如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A.1 C. D.210、直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( )A.182B.183C.184D.185二、仔细填一填,你一定很准!(每题3分,共24分)11、根据下图中的数据,确定A =_______,B =_______,x =_______.12、直角三角形两直角边长分别为5和12,则它斜边上的高为_______.13、直角三角形的三边长为连续偶数,则这三个数分别为__________.14、如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.15、如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________.16、在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.17、如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,6AC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,5BC =则这个风车的外围周长是.18、甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后, 两船相距___海里. 三、细心做一做,你一定会成功!(共66分)19、古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.20、从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?21、如图7,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?22、(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)23、清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:=m =k ;第三步:分别用3、4、5乘以k ,得三边长”.6S m (1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.24、学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法. 参考答案一、1、B ;2、B ;3、D ;4、A ;5、C .点拨:画出图形,东南方向与西南方向成直角;6、B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x ,所以2x =5.7736;2537、A ;8、D .点拨:设斜边为13x ,则一直角边长为5x 12x ,22(13)(5)x x -所以 13x +5x +12x =60,x =2,即三角形分别为10、24、26;9、D .点拨:AE =2;22DE AD +221CD AC ++2211BC AB +++211++10、A .二、11、15、144、40;12、;13、6、8、10;14、24;15、16;16、17;17、76136018、30.三、19、设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.20、15m.21、如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.22、(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有22513a b a b +=⎧⎨+=⎩由此得ab =6,(a -b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:23、(1)当S =150时,k 5,m 25==所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k , 而三角形为直角三角形且3k 、4k 为直角边.其面积S =(3k )·(4k )=6k 2,12所以k 2=,k ,即将面积除以6,然后开方,即可得到倍数.6S 6S 24、(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).。
中考数学总复习《勾股定理》专项测试卷-附带参考答案
中考数学总复习《勾股定理》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.以下列各组线段为边作三角形,不能构成直角三角形的是( )A.1,2,√5B.3,4,5C.3,6,9D.2√3,7,√612.如图,Rt△ABC中AB=9,BC=6,∠B=90∘将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为( )A.4B.3C.2D.53.如图,将一根长为8cm(AB=8cm)的橡皮筋水平放置在桌面上,固定两端A和B然后把中点C竖直地向上拉升3cm至D点,则拉长后橡皮筋的长度为( )A.8cm B.10cm C.12cm D.15cm4.将一个有45∘角的三角板的直角顶点放在一张宽为3cm的纸带边沿上.另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30∘角,如图,则三角板的最大边的长为( )A.3cm B.6cm C.3√2cm D.6√2cm 5.已知直角三角形两边的长为3和4,则此三角形的周长为( )A.12或7+√7B.7+√7C.12D.以上都不对6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对7.直角三角形的两边长m,n满足m2+√2n−8−6m=−9,则第三边长是( )A.5B.5或√7C.4或√7D.48.根据下列所给条件,能判定一个三角形是直角三角形的有( )①三条边的边长之比是1:2:3②三个内角的度数之比是1:1:2③三条边的边长分别是13,14,15④三条边的边长分别是√2,√3,√5A.1个B.2个C.3个D.4个二、填空题(共5题,共15分)9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=cm.10.如图AB=5,AC=3边BC上的中线AD=2,则△ABC的面积为.11.如图,在△ABC中,已知AB=2,AD⊥BC垂足为D,BD=2CD若E是AD的中点,则EC=.12.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若直角三角形的一个锐角为30∘,将各三角形较短的直角边分别向外延长一倍,得到图②所示的“数学风车”,设AB=a,则图中阴影部分面积为.(用含a的代数式表示)13.平面直角坐标系中A(0,4),B(−3,0)点C在x轴正半轴上,且△ABC为等腰三角形,则点C的坐标为.三、解答题(共3题,共45分)14.如图,D为等腰Rt△ABC外一点AB=AC,DA=DB连接DC,若∠ADB=45∘.求证:CD=√3AD.15.如图,在△ABC中∠ACB=90∘,AC=BC点M,N在AB边上,连接CM,CN若∠MCN=45∘,AM=BN求证:MN=√2AM.16.如图,在△ABC中AB=20,AC=12,∠ACB=90∘,D是BC上一点,把△ABC沿直线AD折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.参考答案1. 【答案】C2. 【答案】A3. 【答案】B4. 【答案】D5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】310. 【答案】611. 【答案】112. 【答案】(2+√3)a2,0)或(2,0)或(3,0)13. 【答案】(7614. 【答案】过点A作AE⊥AD,取AE=AD,连接EB,ED.证△ACD≌△ABE∴CD=BE∵AE=AD=BD,AE⊥AD∴∠EDA=∠AED=∠ADB=45∘∴∠EDB=45∘+45∘=90∘.∴DE2+BD2=BE2=CD2∵DE2=AE2+AD2=2AD2∴CD2=2AD2+BD2=3AD2∴CD=√3AD.15. 【答案】过点C作CD⊥CM,取CD=CM连接DN,DB.证△CAM≌△CBD,△CMN≌△CDN∴MN=DN,BD=AM=BN∠CBD=∠A=∠CBN=45∘∴△BDN是等腰直角三角形∴DN2=BD2+BN2∴MN2=2AM2∴MN=√2AM.16. 【答案】设CD=x∵AB=20,AC=12和∠ACB=90∘∴BC=16.∵把△ABC折叠,使AB落在直线AC上∴BD=BʹD=16−x,BʹC=AB−AC=20−12=8,∠DCBʹ=90∘∴在Rt△DCBʹ中CD2+BʹC2=DBʹ2∴x2+82=(16−x)2解得x=6×12×6=36.∴重叠部分(阴影部分)的面积为12。
勾股定理测试题
勾股定理测试题(涵盖大量得中考题与易错题,本试卷附答案)姓名: 班级: 学号 、一、精心选一选(每小题4分,共40分)1。
在三边分别为下列长度得三角形中,不就是直角三角形得就是( ) A.5,12,13 B.4,5,7 C 、2,3, D 。
1,,2.有五根小木棒,其长度分别为7,15,20,24,25,现将她们摆成两个直角三角形,其中正确得摆放就是( )715242520715202425157252024257202415(A)(B)(C)(D)3、一个三角形得三边长分别就是5、13、12,则它得面积等于( ) A 、30 B.60 C。
65 D 、1564、三角形得三条中位线长分别为6、8、10,则该三角形为( ) A 。
锐角三角形 B 、直角三角形 C 。
钝角三角形 D.不能确定5、如果三角形三边长分别为6、8、10,那么最大边上得高就是( ) A 。
2.4 B.4.5 C 。
4.8 D、66。
在△ABC 中,∠ACB=90°,AC=12,BC=5,AM=AC,B N=B C,则MN 得长为( ) A 。
2 B 。
2.6 C.3 D 、47得中点为M,M 点得最短距离为( )A. B 。
D.2+8。
若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别就是∠A 、∠B 、∠C得对边,则下列等式中,成立得就是( ) A。
B 。
C 。
D 、9.在△ABC 中,∠C=90°,如果AB =10,BC ∶AC=3∶4,则BC=( )A 。
6B 。
8C 。
10D 、以上都不对10。
将一根长24厘米得筷子,置于底面直径为6厘米,高为10厘米得圆柱形水杯中,则B C 第6题 BACD AB M 第7题第14题图 第16题(第15题图) 筷子露在杯子外面得长度至少为( C )厘米A 、14 B.16 C、24﹣ D、24+ 二、细心填一填(每空3分,满分18分)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010近湖中学勾股定理综合检测题检测试题A
(总分:120分,时间:90分钟)
一、认真选一选,你一定很棒!(每题3分,共30分)
1,分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤3
21,421,52
1
.其中能构成直角三角形的有( )组 A.2
B.3
C.4
D.5
2,已知△ABC 中,∠A =
12∠B =1
3
∠C ,则它的三条边之比为( ) A.1∶12 B.13 2 C.123 D.1∶4∶1
3,已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是( ) A.
52 B.3 3 33
4,如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是( ) A.12米 B.13米 C.14米 D.15米
5,放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为( )
A.600米
B.800米
C.1000米
D.不能确定
6,如图1所示,要在离地面5•米处引拉线固定电线杆,使拉线和地面成60°角,若要考虑既要符合设计要求,又要节省材料,则在库存的L 1=5.2米,L 2=6.2米,L 3=7.8米,L 4=10米四种备用拉线材料中,拉线AC 最好选用( )
A.
C.L 3
D.L 4
7,(2006年山西吕梁课改)如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )
A.S 1=S 2
B.S 1<S 2
C.S 1>S 2
D.无法确定
8,在△ABC 中,∠C =90°,周长为60,斜边与一直角边比是13∶5,则这个三角形三边长分别是( ) A.5,4,3 B.13,12,5 C.10,8,6 D.26,24,10
9,如图3所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( ) A.1 D.2
10,直角三角形有一条直角边长为13,另外两条边长都是自然数,则周长为( )
A
B
C
图2
图1
B
C
A
E
D 图3
A.182
B.183
C.184
D.185 二、仔细填一填,你一定很准!(每题3分,共24分)
11,根据下图中的数据,确定A =_______,B =_______,x =_______.
12,直角三角形两直角边长分别为5和12,则它斜边上的高为_______. 13,直角三角形的三边长为连续偶数,则这三个数分别为__________.
14,如图5,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米. 15,如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 16,在△ABC 中,AB =8cm ,BC =15cm ,要使∠B =90°,则AC 的长必为______cm.
17,[2008年河北省]如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是 .
18,甲、乙两只轮船同时从港口出发,甲以16海里/时的速度向北偏东75°的方向航行,乙以12海里/时的速度向南偏东15°的方向航行,若他们出发1.5小时后,•两船相距___海里.
三、细心做一做,你一定会成功!(共66分)
19,古埃及人用下面方法画直角:把一根长绳打上等距离的13个结,然后用桩钉成如图所示的一个三角形,其中一个角便是直角,请说明这种做法的根据.
20,从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?
A
B
C
图 5
图
4
图6
21,如图7,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?
22,(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)
23,清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S ,则第一步:
6
S
=m m =k ;第三步:分别用3、4、5乘以k ,得三边长”. (1)当面积S 等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长; (2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
24,学校科技小组研制了一套信号发射、接收系统.在对系统进行测试中,如图10,小明从路口A 处出发,沿东南方向笔直公路行进,并发射信号,小华同时从A 处出发,沿西南方向笔直公路行进,并接收信号.若小明步行速度为39米/分,小华步行速度为52米/分,恰好在出发后30分时信号开始不清晰.
(1)你能求出他们研制的信号收发系统的信号传送半径吗?(以信号清晰为界限)
(2)通过计算,你能找到题中数据与勾股数3、4、5的联系吗?试从中寻找求解决问题的简便算法.
A B 小河
北
牧童
小屋 图7 图8
图9 北
A
图10
参考答案:
一、1,B ;2,B ;3,D ;4,A ;5,C .点拨:画出图形,东南方向与西南方向成直角;6,B .点拨:在Rt △ACD 中,AC =2AD ,设AD =x ,由AD 2+CD 2=AC 2,即x 2+52=(2x )2,x 25
3
,所以2x =5.7736;7,A ;8,D .点拨:设斜边为13x ,则一直角边长为5x ,22
(13)(5)x x -12x ,所以 13x +5x +12x
=60,x =2,即三角形分别为10、24、26;9,D .点拨:AE =
22DE AD +
=
=
211++=2;10,A .
二、11,15、144、40;12,
13
60
;13,6、8、10;14,24;15,16;16,17;17,:76 ;18,30.
三、19,设相邻两个结点的距离为m ,则此三角形三边的长分别为3m 、4m 、5m ,有(3m )2+(4m )2=(5m )2,所以以3m 、4m 、5m 为边长的三角形是直角三角形.
20,15m.
21,如图,作出A 点关于MN 的对称点A ′,连接A ′B 交MN 于点P ,则A ′B 就是最短路线.在Rt △A ′DB 中,由勾股定理求得A ′B =17km.
22,(1)设直角三角形的两条边分别为a 、b (a >b ),则依题意有2
2
513
a b a b +=⎧⎨
+=⎩由此得ab =6,(a -
b )2=(a+b)2-4ab =1,所以a -b =1,故小正方形的面积为1.(2)如图:
23,(1)当S =150时,k
==5,所以三边长分别为:3×5=15,4×5=20,5×5=25;(2)证明:三边为3、4、5的整数倍,设为k 倍,则三边为3k ,4k ,5k ,•而三角形为直角三角形且3k 、4k 为直角边.其面积S =
12(3k )·(4k )=6k 2,所以k 2=6S ,k
,即将面积除以6,然A B
D
P
N
M
后开方,即可得到倍数.
24,(1)利用勾股定理求出半径为1950米;(2)小明所走的路程为39×30=3×13×30,小华所走的路程为52×30=4×13×30,根据前面的探索,可知勾股数3、4、5的倍数仍能构成一组勾股数,故所求半径为5×13×30=1950(米).。