最新自考高等数学(工本)00023试题及答案解析
最新10月全国自学考试高等数学(工本)试题及答案解析
全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。
2023年4月高等数学(00023)试卷参考答案
2023年4月高等教育自学考试全国统一命题考试高等数学(工本)试题答案(课程代码00023)一、单项选择题:本大题共10小题,每小题3分,共30分1.B2.C3.B4.A5.D6.D7.A8.D9.C10.C二、计算题:本大题共10小题,每小题6分,共60分11.解:由题意可得设平面方程为1x y za a a++= 将点(),-321,带入上述平面方程可得a =2,故平面方程为20x y z ++-=12.解:由题意可得取所求直线的方向向量为{}3,0,1n =-则所求的直线方程为x y z --+==-12330113.解:令(),,F x y z x y z =++-2222315 ,则()()()()()()()2,2,12,2,12,2,1,,2,4,64,8,622,4,3x y z nF F F x y z ====切平面方程为()()()2242310243150x y z x y z -+-+-=⇒++-=14.解:由题意可得grad u u u u i j k y zi xyz j xy k x y z∂∂∂=++=++∂∂∂222 所以有()(),,,,grad u y zi xyz j xy ki j k =++=++221111112215.解:令(),,F x y z x y z xyz =++-3333,则有2233,33x z F x yz F z xy =-=-则有x z F z x yz yz x x F z xy z xy∂--=-=-=∂--22223333 16.解:积分区域为():,D θπr ≤≤≤≤0202极坐标,则πDπd θr dr ==⎰⎰222016317解:曲线::,L x y ds =-→==222,则LI y ds π-===⎰⎰2222418解:由意义可知()(),,,xy xy P x y ye xy y Q x y xe x xy =++=++22,由格林公式可得()()()xy xy L D DQ P I ye xy y dx xe x xy dy dxdy y dxdy x y ⎛⎫∂∂=+++++=-=- ⎪∂∂⎝⎭⎰⎰⎰⎰⎰221 其中区域:,D y y x -≤≤≤≤2111关于x 轴对称,则()yDDy dxdy dxdy dy dx --=-=-=-⎰⎰⎰⎰⎰⎰211141319解:该级数nn ∞=∑013为几何级数,且其公比q =<113,故该级数收敛。
4月全国自考高等数学(工本)试题及答案解析
1全国2018年4月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.在空间直角坐标系中,方程1222222=++cz b y a x 表示的图形是( )A.椭圆抛物面B.圆柱面C.单叶双曲面D.椭球面2.设函数z =x 2y ,则=∂∂xz( ) A.212-y yxB.x xyln 2C.x x yln 22 D.()12-y yx3.设Ω是由平面01=-+-z y x 及坐标面所围成的区域,则三重积分=⎰⎰⎰Ωdxdydz ( ) A.81 B.61 C.31 D.21 4.已知微分方程)()(x Q y x P y =+'的两个特解为y 1=2x 和y 2=cos x ,则该微分方程的通解是y =( ) A.2C 1x +C 2cos x B.2Cx +cos x C.cos x +C (2x -cos x ) D.C (2x -cos x )5.设幂级数∑∞--1)3(n n nx a在x =1处收敛,则在x =4处该幂级数( )A.绝对收敛B.条件收敛2C.发散D.敛散性不定二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.设函数y x y z cos sin =,则=∂∂xz. 7.已知dy e dx e y x yx +++是某函数()y x u ,的全微分,则()=y x u , .8.设∑是上半球面()01222≥=++z z y x ,则对面积的曲面积分⎰⎰∑=dS .9.微分方程x y 2sin =''的通解为y= .10.无穷级数∑∞=0!2n nn 的和为 .三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,0)并且与直线321-=-=z y x 垂直的平面方程. 12.设函数()y x x f z -=,3,其中f 是可微函数,求x z ∂∂,yz∂∂. 13.设方程xyx ln=确定函数()y x z z ,=,求全微分dz. 14.求函数()22,xy y x y x f +=在点(1,-1)沿与x 轴正向成30°角的方向l 的方向导数.15.求空间曲线t z t y t x ===,sin ,cos 在点⎪⎪⎭⎫⎝⎛4,22,22π处的切线方程.16.计算二重积分()dxdy e I Dy x⎰⎰+-=22,其中区域D :.0,422≥≤+y y x17.计算二次积分⎰⎰=22sin ππydx xxdy I . 18.计算对弧长的曲线积分()⎰+-L ds y x 132,其中L 是直线2-=x y 上从点(-1,-3)到点(1,-1)的直线段. 19.计算对坐标的曲线积分⎰+Lydx xdy 其中L 是抛物线2x y =上从点(-2,4)到点(2,4)的一段3弧.20.求微分方程034=+'-''y y y 满足初始条件()8)0(,40='=y y 的特解. 21.判断级数()∑∞=-+-131321n n nn 是否收敛,如果收敛,是条件收敛还是绝对收敛?22.设函数()⎩⎨⎧<≤<≤-=ππx x x x f 0,0,0的傅里叶级数展开式为()∑∞=++10sin cos 2n n n nx b nx a a ,求系数b 7.四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数()y x xy y x y x f 311381021,22-----=的极值.24.设曲线()x y y =在其上点(x ,y )处的切线斜率为x +y ,且过点(-1,e -1),求该曲线方程. 25.将函数()2312+-=x x x f 展开为(x +1)的幂级数.。
高等数学(工本)00023历年试题及参考答案
高等数学(工本)历年试题及参考答案 自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
错填、不填均无分。
6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。
成人自考00023《高等数学(工本)》考点
第一章空间解析几何与向量代数考点一:空间直角坐标系1.空间直角坐标系建立过空间定点O作三条垂直的数轴,以O为原点,具有相同单位长度,三条数轴分别为x轴、y轴、z轴,统称坐标轴。
三条坐标轴的任意两条都可确定一个平面,称为坐标面。
分别是x和y确定的Oxy平面,y和z确定的Oyz平面,x和z确定的Oxz平面。
三个相互垂直的坐标面把空间分为八个部分,每一部分称为一个卦象。
2.空间中两点间的距离公式设空间两点(),(),他们两点之间的距离为:||==。
特别地,点P(x,y,z)到原点O(0,0,0)的距离|OP|=。
考点二:向量代数1.向量的概念由数值决定大小的量,如:质量,温度,面积,密度等,称之为标量(数量)。
有大小还有方向,如:力,加速度,速度等,称之为向量。
空间中以A为起点,B为终点的线段称为有向线段,记为,简记为,将向量的长度记为||或||,称为向量的模。
如果向量的模为零,称为零向量。
定义1:如果两个向量与的长度相等且方向相同,则称这两个向量是相等的向量,记作=。
一个向量在空间中平移到任何位置而得到的向量与原向量相等,称为自由向量。
将若干个向量起点平移到同一个点后,它们的起点和终点都位于同一直线上,则称向量是共线的;起点和终点都位于同一个平面上,则称这些向量是共面的。
不论长度大小,两向量与的方向相反或相同,称与平行,记为。
2.向量的加法平行四边形法则:给定两个向量与,平移到同一个O点,设它们终点为A和B,则=,=,以,为邻边构造一个平行四边形OBCA。
以O为起点C为终点的向量=称为向量与的和,记为+=,即+=。
三角形法则:给定两个向量与,将平移,使其起点平移到的终点,此时的终点与用平行四边形法则确定的点C重合,从而=,于是与的和为+=。
零向量起点与终点重合,对于任何向量,三角形法则可得+0=。
向量加法的逆运算称为向量减法。
给定向量与,如存在使得=,则称是向量与的差,记为-=。
设=,=,有三角形法则可知=+,于是-=。
【全国自考历年真题10套】00023高等数学(工本)2012月10月至2019年10月试题
∫∫∫ 8.设积分区域 Ω : x2 + y2 + z2 ≤ 9 ,三重积分 f (x2 + y2 + z2 )dv 在球面坐标下三次积分为 Ω
__________.
9.微分方程 y′′ + y =2ex 的一个特解 y*=__________.
∑ 10.已知无穷级数
∞
un
n =1
=1 +
2 3
h→0
h
D. lim f (x0 + h, y0 ) − f (x0 , y0 )
h→0
h
∫ 3.设积分曲线 L : x2 + y2 = 1 ,则对弧长的曲线积分 (x + y)ds = L
A.0 C. π 4.微分方程 xy′ + y=
x2 + y2 是
B.1 D.2 π
A.可分离变量的微分方程
B.齐次微分方程
24.求由平面 z= 0, x + y= 1 及曲 z = xy 面所围立体的体积. 25.将函数 f (x) = sin 2x 展开为 x 的幂级数.
00023# 高等数学(工本)试题 第3页(共3页)
绝密 ★ 考试结束前
全国 2013 年 10 月高等教育自学考试
高等数学(工本)试题
课程代码:00023
00023# 高等数学(工本)试题 第1页(共3页)
C.一阶线性齐次微分方程
D.一阶线性非齐次微分方程
5.已知函数 f (x) 是周期为 2π 的周期函数,它在 [-π,π) 上的表达式为
f
(x)
=
0, −π ≤ x 1, 0 ≤ x <
< π
0
00023高等数学(工本) 全国13年10月自考 试题
全国2013年10月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共30小题,每小题1分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.在空间直角坐标系中,点(-1,4,2)关于axy 坐标面对称点为 A.(-1,4,-2) B.(1,-4,-2) C.(1,4,2)D.(-1,-4,-2)2.点(0,0)是函数z =1-xy 的 A.极小值点 B.极大值点 C.驻点D.间断点 3.设积分曲线L :x +y =2(0≤x ≤2),则对弧长的曲线积分(1)d Lx y s +-=⎰A.-B.C.4.下列方程是可分离变量微分方程的是 A.2y x y '=+B.2ed e d x yx y x y -+=C.22()d ()d 0x y x x y y +++= D.235y y x '+=5.下列收敛的无穷级数是A.11sin n n n ∞=∑B. 221n n n ∞=+∑ C. 11n n∞=∑D. 023nn n ∞=∑二、填空题(本大题共5小题,每小题2分,共10分)6. 已知向量α={3,-5,1},β={-2,c,-6},并且αβ =0,则常数c=_________.7.已知函数z则zy∂∂=_________. 8.设积分区域Ω:x 2+y 2≤1,0≤z,则三重积分22()f xy dv Ω+⎰⎰⎰在柱面坐标下的三次积分为 _________.9.微分方程e xy '=的通解为_________. 10.已知无穷级数11111234nn u ∞==++++∑…,则通项u n =________. 三、计算题(本大题共12小题,每小题5分,共60分) 11.求过点P (3,-1,2)并且通过x 轴的平面方程. 12.设f 是可微的二无函数,并且z =f (3x +4y ,xy 2),求全微分d z . 13.求曲线x =3cos t ,y =3sin t ,z =4t 在t=2π所对应的点处的切线方程. 14.设函数f (x ,y ,z )=(x -y )2+(y -z )2+(z -x )2,求grad f (x ,y ,z ). 15.计算二重积分d d D xy x y ⎰⎰,其中积分区域D :22xy +≤4,x≥0,y≥0.16.计算三得积分()d x y z v Ω++⎰⎰⎰,其中积分区域Ω: 222x y z ++≤9,z≥0. 17.验证积分e cos d e sin d y yLx x x y +⎰与路径无关,并计算I =(,1)4(,0)2e cos d e sin d y y x x x y ππ+⎰.18.求向量场A =222e ee xy yz x z++i j k 的散度div A .19.求微分方程2221xy y x '+=+的通解. 20.求微分方程6160y y y '''--=的通解.21.判断无穷级数115n n n ∞=+∑的敛散性. 22.已知f (x )是周期为2π的周期函数,它在[),ππ-上的表达式为1, 0,()0, 0 .x f x x ππ-≤<⎧=⎨≤<⎩求f (x )傅里叶级数01(cos sin )2n n n a a nx b nx ∞=++∑中系数a 5. 四、综合题(本大题共3小题,每小题5分,共15分) 23.求函数f (x ,y )=(x 2-1)(2y -y 2)的极值.24.求由平面x =1,y =0,y =x ,z =0及抛物面z =x 2+y 2所围立体的体积. 25.将函数21()23f x x x =+-展开为(x +1)的幂级数.。
00023高等数学(工本)201101
2011年1月高等教育自学考试全国统一命题考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题。
每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.同向的单位向量是则与向量及点已知点B A ),4,1,5()3,1,7(-( )A.⎭⎬⎫⎩⎨⎧-31,32,32B. ⎭⎬⎫⎩⎨⎧--31,32,32 C. ⎭⎬⎫⎩⎨⎧--31,32,32 D. ⎭⎬⎫⎩⎨⎧-31,32,32 2.设积分区域Ω:2222R z y x ≤++,则三重积分⎰⎰⎰Ω),,(dxdydz z y x f ,在球坐标系中的三次积分为( ) A.⎰⎰⎰ππϕϕθϕθϕθ200)cos ,sin sin ,sin cos (Rdr r r r f d dB. ⎰⎰⎰ππϕϕθ20002sin ),,(Rdr r z y x f d dC. ⎰⎰⎰ππϕϕϕθϕθϕθ20002sin )cos ,sin sin ,sin cos (Rdr r r r r f d d D.⎰⎰⎰ππϕϕϕθϕθϕθ202sin )cos ,sin sin ,sin cos (Rdr r r r r f d d3.设F (x ,y )具有连续的偏导数,且xF (x ,y )dx+yF (x,y )dy 是某函数u (x ,y )的全微分,则( ) A.x Fy y F x∂∂=∂∂ B. x Fx y F y∂∂=∂∂ C. yF x F ∂∂=∂∂ D. xF x y F y∂∂-=∂∂ 4.微分方程x xe y y y =+'-''65的一个特解应设为y*=( ) A.axe x B.x (ax +b )e x C.(ax +b )e xD.x 2(ax +b )e x5.下列无穷级数中,发散的无穷级数为( )A.()∑∞=+111n n nB.∑∞=⎪⎭⎫ ⎝⎛+13101n nC. ∑∞=⎪⎭⎫ ⎝⎛+121101n n nD. ∑∞=+1132n n n二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年10月高等教育自学考试全国统一命题考试
高等数学(工本) 试卷
(课程代码 00023)
本试卷共3页,满分l00分,考试时间l50分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。
答在试卷上无效。
试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4. 合理安排答题空间,超出答题区域无效。
第一部分选择题
一、单项选择题(本大题共5小题,每小题3分,共15分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.已知向量a={-1,3,2),b={-3,0,1),则a×b=
A. {3,5,9}
B. {-3,5,9) C.(3,-5,9) D. {-3,-5,-9)
2.已知函数,则全微分dz=
4. 微分方程是
A.可分离变量的微分方程 B.齐次微分方程
C.一阶线性齐次微分方程 D. 一阶线性非齐次微分方程
5. 无穷级数的敛散性为
A.条件收敛 B. 绝对收敛 C.发散 D. 敛散性无法确定
第二部分非选择题
二、填空题 (本大题共5小题,每小题2分,共10分)
请在答题卡上作答。
6.已知点,则向量的模= _______.
7·已知函数=_______.
8.设积分区域,且二重积分,则常数a= _______.9.微分方程的特解y*=_______.
10. 已知无穷级数=_______.
三、计算题 (本大题共l2小题,每小题5分,共60分)
请在答题卡上作答。
11.求过点A(2,10,4),并且与直线平行的直线方
12.求曲线的点处的法平面方程·13.已知方程x2+y2-z2+2z=5确定函数z=z(x,y),求.
14.求函数的梯度
15.计算二重积分,其中D是由y2=x和y=x2所围成的区域.
16. 计算三重积分,其中积分区域.
17. 计算对弧长的曲线积分,其中C是从点A(3,0)到点B(3,1)的
直线段·
18.计算对坐标的曲线积分,其中N抛物线y=x2上从点A(一1,1)到
19. 求微分方程的通解.
20. 求微分方程的通解.
21. 判断无穷级数的敛散性.
22. 已知f(x)是周期为的周期函数,它在上的表达式为,求,
f(x)傅里叶级数中系数b4.
四、综合题(本大题共3小题,每小题5分,共15分)
请在答题卡上作答。
23.求函数的极值.
24.证明对坐标的曲线积分曲在整个xoy面内与路径无关.
25·将函数展开为2的幂级
数.。