2020年高考数学(理)热点专练07 数列与不等式(解析版)

合集下载

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

专题07 数列(习题)-2021届沪教版高考数学一轮复习(上海专用)

2021届高考数学一轮复习 专题07 数列一、填空题1.(2020·上海高三其他)设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= ________.【答案】24 【解析】设等差数列{}n a 的公差为d , 则,∴148a d +=. ∴.故答案为24.2.(2020·上海高三其他)设无穷等比数列n a 的公比为q ,首项10a >,则公比q 的取值范围是________. 【答案】 【解析】 因为21231lim()211n n a a qa a a a q q→∞•+++==>--,又10a >且01q <<, 解得2,13q ⎛⎫∈⎪⎝⎭. 3.(2017·上海闵行高三一模)已知数列的前n 项和为,则此数列的通项公式为___________. 【答案】 【解析】当1n =时,11211a S ==-=,当2n ≥时,()11121212n n n n n n a S S ---=-=---=,又1121-=,所以12n n a .故答案为:12n na .4.(2020·宝山上海交大附中高三其他)若n a 是()()*2,2,nx n N n x R +∈≥∈展开式中2x 项的系数,则 . 【答案】8 【解析】 由题意,,∴88n =-,∴23232228lim()lim(8)8n n n n a a a n →∞→∞++⋅⋅⋅+=-=.5.(2020·上海高三其他)已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 【答案】(-3,+∞) 【解析】因为数列{a n }是单调递增数列, 所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0.所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞).6.(2020·上海嘉定高三二模)设各项均为正数的等比数列的前n 项和为,则6S =______. 【答案】63. 【解析】 由,得()661126312S -⇒==-.故答案为: 637.(2020·上海普陀高三二模)设n S 是等差数列的前n 项和(n *∈N )若86286S S -=-,则2lim 2→∞=nn S n ______.【答案】12-【解析】∵数列{}n a 是等差数列,21()22n d dS n a n ∴=+-(其中d 是公差),,∵86286S S -=-, (86)22d∴-=-,2d =-. 即 21(1)n S n a n =-++,.故答案为:12-8.(2020·上海高三其他)设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有01011012n na n S -=-,则1a =___ 【答案】1- 【解析】由011101011(2)1021212n n n n n na a a S n n S nn S -=-=++=---,令1n =,得11(2)10a a ++=,解得11a =-。

2020年高考数学(文)热点专练07 数列与不等式(解析版)

2020年高考数学(文)热点专练07  数列与不等式(解析版)

2020年高考数学(文) 热点07 数列与不等式【命题趋势】 在目前高考卷的考点中,数列主要以两小或一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题与三角函数,解三角形的内容交替考查,早在2014年和2015年卷中,以数列的通项与求和为主,而近3年的第17题(即解答题的第1题的位置),完全是考查解三角形.但是数列仍然作为解答题第一题的热点.由于三角函数与数列均属于解答题第一题,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目,对于不等式一般以线性规划以及作为一个工具配合其他知识点出现.主要是以基本不等式作为切入点形式出现,题目难度中等本.专题针对高考中数列,不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式.请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结. 【知识点分析以及满分技巧】等差数列如果记住基本的通项公式以及求和公式,所有的等差数列问题都可以解决. 数列求和问题主要包含裂项求和,分组求和,绝对值求和,掌握固定的求和方式即可快速得到答案,本专题有相应的题目供参考.线性规划类题目技巧是可以直接采用边界点代入解析式求出最值即可. 对于基本不等式类的题目应注意等号成立地条件. 【考查题型】选择,填空,解答题(数列)【限时检测】(建议用时:50分钟)1.(2019·山东高考模拟(文))已知等差数列{}n a 的公差为2,若134,,a a a 成等比数列,n S 是{}n a 的前n 项和,则9S 等于( )A .8-B .6-C .10D .0【答案】D 【解析】由43,1,a a a 成等比数列,可得}6,5{41=a a ,再利用等差数列的通项公式及其前n 项和公式即可得出.【详解】∵43,1,a a a 成等比数列,∵}6,5{41=a a ,∵21(22)a +⨯=)2×3+11a a (, 化为2a 1=-16, 解得a 1=-8. ∵则S 9=-8×9+982⨯ ×2=0, 故选:D . 【名师点睛】本题考查了等比数列与等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.2.(2019·重庆南开中学高三月考(文))等比数列{}n a 满足()35441a a a =-,且4a ,61a +,7a 成等差数列,则该数列公比q 为( )A .12B .12-C .4D .2【答案】D 【解析】 【分析】根据公式2354a a a =,先求4a ,然后再列出()64721a a a +=+,可求出76a q a =. 【详解】2354a a a =Q()224444420a a a ∴=-⇒-=,解得:42a =,Q 4a ,61a +,7a 成等差数列,()64721a a a ∴+=+ ,767622a a a a ∴=⇒=, 2q ∴=.故选:D 【名师点睛】本题主要考查等比数列的性质和基本量的计算,意在考查计算能力,属于基础题型. 3.(2019·安徽高考模拟(文))《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用,是东方古代数学的名著.在这部著作中,许多数学问题都是以歌诀形式呈现的,如“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,这位公公的长儿的年龄为( ) A .23岁 B .32岁C .35岁D .38岁【答案】C 【解析】 【分析】根据题意,得到数列{}n a 是等差数列,由9207S =,求得数列的首项1a ,即可得到答案. 【详解】设这位公公的第n 个儿子的年龄为n a , 由题可知{}n a 是等差数列,设公差为d ,则3d =-,又由9207S =,即91989(3)2072S a ⨯=+⨯-=,解得135a =, 即这位公公的长儿的年龄为35岁. 故选C . 【名师点睛】本题主要考查了等差数列前n 项和公式的应用,其中解答中认真审题,熟练应用等差数列的前n 项和公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 4.(2019·江西高考模拟(文))已知数列{}n a 为各项均为正数的等比数列,n S 是它的前n 项和,若174a a =,且47522a a +=,则5S =( )A .32B .31C .30D .29【答案】B 【解析】 【分析】根据已知求出4712,4a a ==,再求出公比和首项,最后求5S . 【详解】 因为174a a =,所以2444,0,2n a a a =>∴=Q . 因为47522a a +=, 所以714a =. 所以3111,16.82q q a =∴==,, 所以55116[1()]2=31112S -=-. 故选:B 【名师点睛】本题主要考查等比数列的通项的基本量的计算,考查等比中项的应用,考查等比数列的前n 项和的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.(2019·四川高考模拟(理))设实数x,y 满足3|x |+2|y |≤6,则7x +3y −1的最小值为() A .−13 B .−15C .−17D .−19【答案】B 【解析】 【分析】画出不等式表示的可行域,利用z=7x +3y −1的几何意义求解即可【详解】当z=7x +3y −1,平移到过(-2,0)时,z 最小,为-15 故选:B 【名师点睛】本题考查线性规格,熟练作图准确计算是关键,是基础题6.(2019·山东省淄博实验中学高考模拟(文))已知数列{}n a 的前n 项和为n S ,115a =,且满足112325n na a n n +=+--,已知,n m *∈N ,n m >,则n m S S -的最小值为( )A .14-B .498-C .494-D .28-【答案】A 【解析】 【分析】 由12325n n a a n n +=+--1,得12325n n a an n +-=--1,利用等差数列的通项公式可得:a n =(2n ﹣5)(n ﹣6),当且仅当3≤n ≤5时,a n <0.即可得出结论. 【详解】由12325n n a a n n +=+--1,即12325n n a a n n +-=--1,125a=--5. ∵数列{25na n -}为等差数列,首项为﹣5,公差为1.∵25na n =--5+n ﹣1,可得:a n =(2n ﹣5)(n ﹣6), 当且仅当3≤n ≤5时,a n <0. 已知n ,m ∵N *,n >m ,则S n ﹣S m 的最小值为345a a a ++=﹣3﹣6﹣5=﹣14. 故选:A . 【名师点睛】本题考查了数列递推关系、等差数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(2019·山东高考模拟(文))已知实数x ,y 满足线性约束条件1020x x y x y ⎧⎪+⎨⎪-+⎩………,则1y x + 的取值范围是( ) A .(2-,1]- B .(1-,4] C .[2-,4) D .[0,4]【答案】B 【解析】 【分析】根据条件画出如图可行域,得到如图所示的阴影部分.设(0,1)P -,可得1y k x+=表示直线P 与可行域内的点连线的斜率,得到OB 斜率的最小、PC 斜率最大,即可得到1y x+的取值范围. 【详解】作出实数x ,y 满足线性约束条件1020x x y x y ⎧⎪+⎨⎪-+⎩………表示的平面区域得到如图所示的ABC ∆及其内部的区域,其中(1,1)A -,(1,1)B -,(1,3)C 设(,)Q x y 为区域内的动点,可得 1y k x+=表示直线P 、Q 连线的斜率,其中(0,1)P - 运动点Q ,可得当Q 与C 点重合时,4PQ k =最大值, 当直线OB 的斜率为1-; 综上所述,1y k x+=的取值范围为(1-,4]. 故选:B .【名师点睛】本题给出二元一次不等式组,求1y x+的取值范围.着重考查了直线的斜率公式、二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.8.(2019·北京高考模拟(文))若,x y 满足30230x y x y y m +-≤⎧⎪--≥⎨⎪≥⎩,,,且2z x y =+的最小值为1,则实数m 的值为( ) A .5- B .1-C .1D .5【答案】B 【解析】 【分析】首先画出满足条件的平面区域,然后根据目标函数2z x y =+取最小值找出最优解,把最优解点代入目标函数即可求出m 的值. 【详解】画出满足条件的平面区域,如图所示:,由230y mx y =⎧⎨--=⎩,解得:23A m m +(,), 由2z x y =+得:2y x z =-+,显然直线过23A m m +(,)时,z 最小, ∵461m m ++=,解得:1m =-, 故选:B .【名师点睛】本题主要考查简单的线性规划,已知目标函数最值求参数的问题,属于常考题型.9.(2019·湖南师大附中高考模拟(文))若x ,y 满足约束条件220330240x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,目标函数z ax y =+仅在点(2,0)处取得最小值,则实数a 的取值范围是 () A .1(2,)2- B .1100,32U (-,)() C .1(0,)2D .11(,)32-【答案】A 【解析】 【分析】先根据约束条件画出可行域,由z ax y =+变形得y ax z =-+再利用z 的几何意义求最值, 只需利用直线之间的斜率间的关系即可. 【详解】如图,可行域为∵ABC.当0a =时,符合题意;当0a >时,由z ax y =+变形得y ax z =-+,可知12a >--,得102a <<;当0a <时,由z ax y =+变形得y ax z =-+,可知2a <-,得一2<a<0;综上得122a <<-.故选A.【名师点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法和分类讨论的数学思想方法,是中档题.10.(2019·四川高考模拟(文))若正实数,x y 满足x y 1+=,则41x 1y++的最小值为( )A .447B .275C .143D .92【答案】D 【解析】 【分析】将1x y +=变成12x y ++=,可得41141121x y x y x y ⎛⎫+++=⋅+ ⎪++⎝⎭,展开后利用基本不等式求解即可. 【详解】0x Q >,0y >,1x y +=,12x y ∴++=,(41141141191451212122x y y x x y x y x y ⎛⎫⎛⎫++++=⋅+=+++≥+= ⎪ ⎪+++⎝⎭⎝⎭(当且仅当13x =,23y =取等号),故选D . 【名师点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).11.(2019·湖南师大附中高三月考(文))若直线220(0,0)ax by a b -+=>>被圆222410x y x y ++-+=截得弦长为4,则41a b+的最小值是( ) A .9 B .4C .12D .14【答案】A 【解析】圆22x y 2x 4y 10++-+=的标准方程为:(x+1)2+(y ﹣2)2 =4,它表示以(﹣1,2)为圆心、半径等于2的圆; 设弦心距为d ,由题意可得 22+d 2=4,求得d=0, 可得直线经过圆心,故有﹣2a ﹣2b+2=0, 即a+b=1,再由a >0,b >0,可得41a b +=(41a b + )(a+b )=5+4b a a b +9= 当且仅当4b a =a b 时取等号,∵41a b+的最小值是9. 故选:A .【名师点睛】:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.∵一正:关系式中,各项均为正数;∵二定:关系式中,含变量的各项的和或积必须有一个为定值;∵三相等:含变量的各项均相等,取得最值. 12.(2019·山东师范大学附中高三月考)已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈ 使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( )A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.【名师点睛】: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.13.(2019·湖南高三期末)已知正项等比数列{}765:2,n a a a a =+满足若存在两项m a 、n a14a =,则14m n +的最小值为 A .32B .53C .256D .不存在【答案】A 【解析】设公比为0.q >则2255552,0,20a q a q a a q q =+>∴--=,解得2;q =所以由14a =得:11221112216,216, 6.m n m n a a a m n --+-⋅==∴+=即141141413()()(5)(5.6662n m m n m n m n m n +=++=++≥+=故选A 14.(2019·江西省临川第二中学高三月考(文))已知函数()221,0{121,02x x f x x x x +<=-+≥ ,方程()()()200fx af x b b -+=≠有六个不同的实数解,则3a b +的取值范围是( )A .[]6,11 B .[]3,11C .()6,11D .()3,11【答案】D 【解析】作函数的图象,从而利用数形结合知20t at b -+=有2个不同的正实数解,且其中一个在()01,上,一个在()12,上,利用数形结合思想列出关于,a b 的不等式组,结合线性规划知识可得结果. 【详解】作函数()f x 的图象如下,∵关于x 的方程()()20f x af x b -+=有6个不同实数解,令()t f x =,∵20t at b -+=有2个不同的正实数解,其中一个在()01,上,一个在()12,上; 故0 10420b a b a b >⎧⎪-+<⎨⎪-+>⎩,其对应的平面区域如下图所示:故当3a =,2b =时,3a b +取最大值11,当1a =,0b =时,3a b +取最小值3,则3a b +的取值范围是()311, 故选D . 【名师点睛】本题主要考查了数形结合的思想应用及分段函数的应用,同时考查了线性规划,难度中档. 15.(2019·江西高考模拟(文))设函数32()(,,,0)f x ax bx cx a b c R a =++∈≠.若不等式'()()3xf x af x -≤对一切x ∈R 恒成立,则3b ca -的取值范围为( ) A .1[,)3+∞ B .9[,)4+∞C .1[,)3-+∞D .9[,)4-+∞【答案】D 【解析】 【分析】问题转化为()()()2323230a ax b ab x c ac x -+-+--≤对一切x ∈R 恒成立,根据三次函数的图象不可能恒在x 轴的下方,可得230a a -=,解得3a =或0a =(舍去).可得2230bx cx ---≤对一切x ∈R 恒成立,等价于23c b ≥,则233139b c b c c c a --=≥-,利用二次函数的性质可得结果. 【详解】因为()32f x ax bx cx =++,所以()2'32f x ax bx c =++,不等式()()'3xf x af x -≤, 即()()()2323230a ax b ab x c ac x -+-+--≤.因为()()()2323230a ax b ab x c ac x -+-+--≤对一切x ∈R 恒成立,而三次函数的图象不可能恒在x 轴的下方, 所以230a a -=,解得3a =或0a =(舍去). 所以2230bx cx ---≤对一切x ∈R 恒成立,则00b c =⎧⎨=⎩或204120b c b >⎧⎨∆=-≤⎩,所以23c b ≥, 则233139b c b c c c a --=≥- 219999244c ⎛⎫=--≥- ⎪⎝⎭. 3b c a -的取值范围为9,4⎡⎫-+∞⎪⎢⎣⎭,故选D. 【名师点睛】本题主要考查基本初等函数求导公式、转化思想的应用以及一元二次不等式恒成立问题,考查了二次函数的性质,属于难题. 一元二次不等式恒成立问题主要方法:(1)若实数集上恒成立,考虑判别式小于零即可;(2)若在给定区间上恒成立,则考虑运用“分离参数法”转化为求最值问题. 二、填空题16.(2019·湖南高考模拟(文))已知数列{}n a ,12a =,n S 为数列{}n a 的前n 项的和,且对任意2n ≥,都有221nn n na a S S =-,则{}n a 的通项公式为_____. 【答案】2,12,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【解析】 【分析】当n 2≥时,由n 2n n n n n 12a 1111a S S S S 2得-=-=-.所以n 1S ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列,求出2n S n=,再利用项和公式求得{}n a 的通项公式. 【详解】当2n ≥时,由()()1221221n n nn n n n n n nS S a a S S S S S S ---=⇒---()111211112n n n nn n S S S S S S ----==⇒-=-. 又111112S a ==,∵1n S ⎧⎫⎨⎬⎩⎭是以12为首项,12为公差的等差数列. ∵12n n S =,∵2n S n=,当2n ≥时,∵()122211n n n a S S n n n n -=-=-=---, 所以()2,12,21n n a n n n =⎧⎪=⎨-≥⎪-⎩. 故答案为:()2,12,21n n a n n n =⎧⎪=⎨-≥⎪-⎩【名师点睛】本题主要考查数列通项的求法,考查n S 与n a 的关系,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.(2018·福建高考模拟(文))已知函数11()3sin()22f x x x =+-+,则12()()20192019f f +2018()2019f +⋅⋅⋅+= _________; 【答案】2018 【解析】分析:由题意可得()()12f a f a +-=,利用倒序相加法,从而即可得到答案.详解:Q ()()111113sin 13sin 12222f a f a a a a a ⎛⎫⎛⎫+-=+-++-+--+ ⎪ ⎪⎝⎭⎝⎭ 112sin sin 222a a ⎛⎫⎛⎫=+-+-= ⎪ ⎪⎝⎭⎝⎭,设12S 20192019f f ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭ 20182019f ⎛⎫+⋅⋅⋅+ ⎪⎝⎭∵ 则20182017S 20192019f f ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭12019f ⎛⎫+⋅⋅⋅+ ⎪⎝⎭∵ ∵+∵得1201822018403620192019S f f ⎡⎤⎛⎫⎛⎫=⨯+=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 2018S ∴=.故答案为:2018.【名师点睛】:本题考查数列与函数的应用,考查推理能力以及运算求解能力.18.(2019·河南高考模拟(文))已知,x y R ∈,若11114x y x y ++++-+-≤,则x y +的取值范围是______.【答案】22x y -≤+≤ 【解析】 【分析】根据绝对值的三角不等式,可得112x x ++-≥,112y y ++-≥,再由题设条件,得到112x x ++-=,112y y ++-=,进而得出11,11x y --≤≤≤≤,最后根据线性规划的思想,即可求解. 【详解】根据绝对值的三角不等式,可得()11112x x x x ++-≥+--=,11(1)(1)2y y y y ++-≥+--=,又由11114x y x y ++++-+-≤, 故112x x ++-=,112y y ++-=, 由取等条件知11x -≤≤,11y -≤≤,画出可行域如图,设z x y =+,当直线y x z =-+分别经过点(1,1)和(1,1)--时,目标函数z x y =+取得最大值2和最小值2-,所以22x y -≤+≤.【名师点睛】本题主要考查了绝对值三角不等式的应用,以及简单的线性规划思想的应用,其中解答中熟练应用绝对值的三角不等式和题设条件,求得11,11x y --≤≤≤≤,得到所表示的平面区域是解答的关键,着重考查了推理与运算能力,属于中档试题.19.(2019·安徽马鞍山二中高考模拟(文))已知x 、y 满足约束条件210210x y x y x y +≥⎧⎪-+≥⎨⎪--≤⎩,若()220ay x z a xy -=>的最大值为173,则a=______. 【答案】2 【解析】 【分析】画出约束条件的可行域,利用目标函数的几何意义,结合函数的单调性转化求解a 即可. 【详解】x 、y 满足约束条件210210x y x y x y +⎧⎪-+⎨⎪--⎩……„的可行域如图:y x 的几何意义是可行域内的点与坐标原点连线的斜率.由可行域可知1(2A ,3)2,(1,1)B ,所以[1yx∈,3], 22ay x y x z a xy x y-==-g ,0a>,所以z 是关于yx的增函数,函数的最大值为173,可得171333a =-,解得2a =. 故答案为:2.【名师点睛】本题主要考查线性规划求最值,考查直线斜率的应用和函数的单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.(2018·山东高考模拟(文))已知数列{}n a 的前n 项和为n S ,且满足1(1)2nn n nS a =-⋅-,记1282n n b a -=⋅,若对任意的*n N ∈,总有10n b λ->成立,则实数λ的取值范围为_________. 【答案】1(,)2+∞ 【解析】令1n =,得114a =-;令3n =,可得23128a a +=;令4n =,可得23316a a +=.故214a =,即12822n nn b a -=⋅=. 由10n b λ->对任意*n N ∈恒成立,得12nλ⎛⎫> ⎪⎝⎭对任意*n N ∈恒成立,又1122n⎛⎫≤ ⎪⎝⎭.所求实数λ的取值范围为1(,)2+∞.故答案为:1(,)2+∞.三、解答题21.(2019·西南大学附属中学重大校区高考模拟(文))已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T .若113a b ==,42a b =,4212S T -=. (1)求数列{}n a 与{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和.【答案】(1) 21,3nn n a n b =+=.(2) ()331(2)2n n n -++.【解析】 【分析】(1)先由题中条件得到422312S T a a -=+=,再设等差数列{}n a 的公差为d ,结合题中数据求出公差,进而可得{}n a 的通项公式;设等比数列{}n b 的公比为q ,求出公比,即可得出{}n b 通项公式;(2)先由(1)的结果,得到(21)3n n n a b n +=++,再由分组求和法,结合等差数列与等比数列前n 项和公式,即可得出结果. 【详解】(1) 由11a b =,42a b =,则4212341223()()12S T a a a a b b a a -=+++-+=+=设等差数列{}n a 的公差为d ,则231236312a a a d d +=+=+=,所以2d =. 所以32(1)21n a n n =+-=+设等比数列{}n b 的公比为q ,由题249b a ==,即2139b b q q ===,所以3q =.所以3nn b =;(2) (21)3n n n a b n +=++,所以{}n n a b +的前n 项和为1212()()n n a a a b b b +++++++L L2(3521)(333)nn =++++++++L L (321)3(13)213n n n ++-=+-3(31)(2)2n n n -=++. 【名师点睛】本题主要考查等差数列与等比数列,熟记通项公式、前n 项和公式即可,属于常考题型. 22.(2019·山东高考模拟(文))已知{}n a 是递增的等比数列,548a =,2344,3,2a a a 成等差数列.(∵)求数列{}n a 的通项公式;(∵)设数列{}n b 满足12b a =,1n n n b b a +=+,求数列{}n b 的前n 项和n S .【答案】(∵) 132n n a -=⋅.(∵) 323(1)n n S n =⋅+-.【解析】 【分析】(∵)由条件求出等比数列的首项和公比,然后可得通项公式.(∵)由题意得1n n n b b a +-=,再利用累加法得到1323n n b -=⋅+,进而可求出n S .【详解】(∵)设等比数列{}n a 的公比为(0)q q >, ∵24a ,33a ,42a 成等差数列,∵324642a a a =+,即23111642a q a q a q =+,∵2320q q -+=,解得2q =或1q =(舍去) 又45111648a a q a ===, ∵13a =.∵132n n a -=⋅.(∵)由条件及(∵)可得12326b a ==⨯=. ∵1n n n b b a +=+, ∵1n n n b b a +-=, ∵11(2)n n n b b a n ---=≥,∵()()()112211n n n n n b b b b b b b b ---=-+-++-+L123216n n n a a a a a ---=++++++L1332612n --⋅=+-1323(2)n n -=⋅+≥.又16b =满足上式,∵1323(*)n n b n N -=⋅+∈∵11223(122)332233323(1)12nn n n n S b b b n n n --⋅=+++=+++++=+=⋅+--L L【名师点睛】对于等比数列的计算问题,解题时可转化为基本量(首项和公比)的运算来求解.利用累加法求数列的和时,注意项的下标的限制,即注意公式的使用条件.考查计算能力和变换能力,属于中档题.23.(2019·河南鹤壁高中高考模拟(文))已知正项数列{}n a 满足11a =,()2112n n n a a a n -+=⋅≥,且323,,5a a 成等差数列,数列{}n b 满足()1122...131n n n a b a b a b n +++=+-.(1)求数列{}n a 和{}n b 的通项公式; (2)若11n n n c b b +=,求数列{}n c 的前项和n T . 【答案】(1) 13-=n n a ,23n b n =+;(2) ()525n nT n =+.【解析】 【分析】(1)利用等差数列与等比数列的通项公式及性质可得n a ,再利用11,1,2n nn b n b S S n -=⎧=⎨-≥⎩可得n b .(2)利用裂项相消法即可得解. 【详解】解:(1)数列{}n a 中()2112n n n a a a n -+=≥,则{}n a 是等比数列,因为323,,5a a 成等差数列,则32235a a =+ ,即2235q q =+,解得:13,2q q ==-(舍去)所以13-=n n a ,()1122...131n n n n S a b a b a b n =+++=+- ∵当1n =时,1112315S a b ==⋅-=,所以15b =当2n ≥时,11112211...31n n n n S a b a b a b n ----=+++=⋅-∵由∵-∵得()1113133n n n n n n n n a b S S b n n ---=-==+⋅-⋅所以:()()31232n b n n n n =+-=+≥ 经检验,1n =时也符合上式,故23n b n =+. (2)由(1)得:()()111111232522325n n n c b b n n n n +⎛⎫===- ⎪++++⎝⎭所以:1111111...257792325n T n n ⎛⎫=-+-++- ⎪++⎝⎭()1112525525nn n ⎛⎫=-= ⎪++⎝⎭. 【名师点睛】本题考查了等差数列和等比数列的通项公式及性质,考查11,1,2n nn b n b S S n -=⎧=⎨-≥⎩和裂项相消法求和,属于中档题.24.(2019·浙江高考模拟)已知数列{}n a ,{}n b 的各项均不为零,若{}n b 是单调递增数列,且12n n n a b b +=⋅,2111226,,n n n a a b a b a b +++===.(∵)求1b 及数列{}n b 的通项公式;(∵)若数列{}n c 满足113c =-,1n b n n c c ++=,求数列{}2n c 的前n 项的和.n S 【答案】(∵)12,2.n b b n ==(∵)()441.9nn S n =+- 【解析】 【分析】(∵)先证{}n b 是等差数列,取1,2n =,可解得1b 和公差. (∵)先求2{}n c 的通项公式,再求前n 项和. 【详解】(∵)因为12112,2a b a b b ==,所以12b =. 因为2112122n n n n n b b b b b ++++⋅⋅+=,则212n n n b b b +++=, 所以{}n b 是等差数列. 因为26a b =,2232a b b =⋅,则()()()225222d d d +=++,所以2d =. 所以2.n b n =(∵)因为1121,23c c c =-+=,所以273c =. 当2n ≥时,12n n n c c ++=,112n n n c c --+=, 所以1112n n n c c -+--= ()2n ≥.所以2422c c -=,4642c c -=,L ,222222n n n c c ---=,累加得当2n ≥时,()1224413n n c c --=-,即21413n n c =⨯+. 273c =也适合上式,故21413n n c =⨯+ ()*n ∈N ,所以()441.9nn S n =+- 【名师点睛】本题考查等差数列和等比数列的基本问题.25.(2019·河北高考模拟(文))已知正项数列{}n a 的首项11a =,前n 项和n S 满足22)n a n =≥.(1)求数列{}n a 的通项公式; (2)记数列11{}n n a a +的前n 项和为n T ,若对任意的*n N ∈,不等式25n T a a <-恒成立,求实数a 的取值范围.【答案】(1) 21,2;41,1n n n a n +⎧≥⎪=⎨⎪=⎩(2) 实数a 的范围是3a ≤-或4a ≥. 【解析】 【分析】(1)化简数列的递推公式,12=,根据等差数列的定义,得到数列是首项为1,公差为12的等差数列,进而可求解数列的通项公式; (2)由(1)得11118()2123n n a a n n +=-++,利用裂项法,求解n T ,列出不等式,即可求 【详解】(1)当2n ≥时,2n a =,∵()12n n S S --=12=,所以数列是首项为1,公差为1212n +=,又由12n a =11212224n n n ++⎛⎫=⋅+= ⎪⎝⎭(2n ≥), 所以21,241,1n n n a n +⎧≥⎪=⎨⎪=⎩. (2)当2n ≥时,1111182123212344n n n n a a n n +⎛⎫==- ⎪++++⎝⎭⋅, ∵41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭L , 又∵25n T a a <-,∵212a a ≤-,解得3a ≤-或4a ≥.即所求实数a 的范围是3a ≤-或4a ≥. 【名师点睛】本题主要考查了数列递推公式的应用,以及裂项法求解数列的和的应用,其中解答中合理化简数列的递推公式,利用等差数列的定义得到数列是首项为1,公差为12的等差数列,求的数列的通项公式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.。

专题07 高分突破-(人教版)(解析版)

专题07 高分突破-(人教版)(解析版)

专练07 高分突破1.下列各种动物中,不属于腔肠动物的是()A.涡虫 B.海蜇 C.海葵 D.水螅【答案】A【详解】A.涡虫属于扁形动物,身体呈两侧对称,背腹扁平,有口无肛门,A符合题意。

BCD.海蜇、海葵属于海洋腔肠动物,水螅生活在淡水中,属于淡水动物,三者都是常见的腔肠动物。

故选A。

2.蛔虫寄生在人的小肠里,靠吸食小肠中半消化的食糜生活,给人体带来很大危害,关于蛔虫病的预防,以下说法不正确的是()A.注意个人卫生,饭前便后要洗手B.人畜粪便可直接作为肥料使用C.不唱不清洁的水,水果和蔬菜要洗干净 D.预防蛔虫需要掌握蛔虫的感染途径【答案】B【详解】A.手上可能带有蛔虫卵,通过食物和饮水能够引起蛔虫病,因此注意个人卫生,饭前饭后要洗手,A正确。

B.人的粪便中可能含有蛔虫卵,不经处理的分别做肥料,蛔虫卵会沾染到食物上,人体会感染蛔虫病,所以不能把人的粪便直接作为肥料,B错误。

C.不清洁的生水中、水果和蔬菜上可能带有蛔虫卵,通过食物和饮水能够引起蛔虫病,所以,不能喝不清洁的水,水果和蔬菜要洗干净,C正确。

D.预防蛔虫需要掌握蛔虫的感染途径,有针对性地进行消灭蛔虫,D正确。

故选B。

3.“身体呈圆筒形,由许多彼此相似的体节组成,靠刚毛辅助运动”,具有以上特征的动物是()A.蝗虫 B.蚯蚓C.蛔虫 D.水螅【答案】B【详解】“身体呈圆筒形,由许多彼此相似的体节组成,靠刚毛辅助运动”是环节动物的特征,蝗虫属于节肢动物,蚯蚓属于环节动物,蛔虫属于线形动物,水螅属于腔肠动物,可见B正确。

故选B。

4.在观察蚯蚓时,区分蚯蚓前端和后端的标志是()A.体节 B.刚毛 C.环带 D.环节【答案】C【详解】蚯蚓生活在潮湿、疏松、富含有机物的土壤中,白天穴居土壤里,以泥土中的有机物为食。

夜间爬出地面,取食地面上的落叶。

蚯蚓的身体呈圆柱形,身体由许多基本相似的环状体节构成,因此,蚯蚓属于环节动物。

用手触摸蚯蚓的体壁,体表有黏液。

2024年高考数学专项复习数列考查的九个热点(解析版)

2024年高考数学专项复习数列考查的九个热点(解析版)

数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516B.440C.258D.2202(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65mB.85mC.100mD.120m3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块2024年高考数学专项复习数列考查的九个热点(解析版)4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m-n+a m+n的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8= ()A.12B.24C.30D.326(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.427(2023·全国高考真题)已知a n为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=.【规律方法】1.等比数列运算问题的一般求法是设出首项a1和公比q,然后由通项公式或前n项和公式转化为方程(组)求解.2.等比数列的通项公式及前n项和公式,共涉及五个量a1,a n,q,n,S n,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an}是等差数列,a1=-10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.9(2022·全国·统考高考真题)记S n为数列a n的前n项和.已知2S nn+n=2a n+1.(1)证明:a n是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n 的通项公式及其前n 项和.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln (a 1+a 2+a 3).若a 1>1,则A.a 1<a 3,a 2<a 4B.a 1>a 3,a 2<a 4C.a 1<a 3,a 2>a 4D.a 1>a 3,a 2>a 412(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y =1.1x ,第n 根弦(n ∈N ,从左数首根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线l :y =x +1交于点A n x n ,y n 和B n x n,y n,则20n =0y n y n=.(参考数据:取1.122=8.14.)13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.14(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x ,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<416(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.1217(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.19(2021·全国·统考高考真题)设a n 是首项为1的等比数列,数列b n 满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求a n 和b n 的通项公式;(2)记S n 和T n 分别为a n 和b n 的前n 项和.证明:T n <S n2.20(2023·河南郑州·统考模拟预测)已知数列a n 与b n 的前n 项和分别为A n 和B n ,且对任意n ∈N *,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.热点六数列与解析几何交汇22(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,AA ,BB ,CC ,DD 是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC 1DC 1=k 1,BB 1CB 1=k 2,AA 1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A.0.75B.0.8C.0.85D.0.923(重庆·高考真题)设A x 1,y 1 ,B 4,95 ,C x 2,y 2 是右焦点为F 的椭圆x 225+y 29=1上三个不同的点,则“|AF |,|BF |,|CF |成等差数列”是“x 1+x 2=8”的()A.充要条件B.必要而不充分条件C.充分而不必要条件D.既不充分也不必要条件24(2021·浙江·统考高考真题)已知a ,b ∈R ,ab >0,函数f x =ax 2+b (x ∈R ).若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点s ,t 的轨迹是()A.直线和圆B.直线和椭圆C.直线和双曲线D.直线和抛物线热点七数列与概率统计交汇25(2023秋·江西·高三校联考阶段练习)甲同学现参加一项答题活动,其每轮答题答对的概率均为13,且每轮答题结果相互独立.若每轮答题答对得5分,答错得0分,记第i 轮答题后甲同学的总得分为X i ,其中i =1,2,⋅⋅⋅,n .(1)求E X 99 ;(2)若乙同学也参加该答题活动,其每轮答题答对的概率均为23,并选择另一种答题方式答题:从第1轮答题开始,若本轮答对,则得20分,并继续答题;若本轮答错,则得0分,并终止答题,记乙同学的总得分为Y .证明:当i >24时,E X i >E Y .26(2023秋·湖北荆州·高三沙市中学校考阶段练习)在正三棱柱ABC -A 1B 1C 1中,点A 处有一只小蚂蚁,每次随机等可能地沿各条棱或侧面对角线向另一顶点移动,设小蚂蚁移动n 次后仍在底面ABC 的顶点处的概率为P n .(1)求P1,P2的值.(2)求P n.27(2019·全国·高考真题(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,⋯,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i-1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=-1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1-p i}(i=0,1,2,⋯,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.热点八等差数列、等比数列的判断与证明28【多选题】(2022·广东茂名·模拟预测)已知数列a n的前n项和为S,a1=1,S n+1=S n+2a n+1,数列2na n⋅a n+1的前n项和为Tn,n∈N*,则下列选项正确的为()A.数列a n+1是等比数列 B.数列a n+1是等差数列C.数列a n的通项公式为a n=2n-1 D.T n>129(2021·全国·统考高考真题)记S n为数列a n的前n项和,b n为数列S n的前n项积,已知2S n+1b n=2.(1)证明:数列b n是等差数列;(2)求a n的通项公式.热点九数列中的“新定义”问题30(2020·全国·统考高考真题)0-1周期序列在通信技术中有着重要应用.若序列a1a2⋯a n⋯满足a i∈{0,1}(i=1,2,⋯),且存在正整数m,使得a i+m=a i(i=1,2,⋯)成立,则称其为0-1周期序列,并称满足a i+m=a i(i=1,2,⋯)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2⋯a n⋯,C(k)=1 mmi=1a i a i+k(k=1,2,⋯,m-1)是描述其性质的重要指标,下列周期为5的0-1序列中,满足C(k)≤15(k=1,2,3,4)的序列是()A.11010⋯B.11011⋯C.10001⋯D.11001⋯31【多选题】(2023秋·湖南长沙·高三周南中学校考阶段练习)古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,⋯称为三角形数,第二行图形中黑色小点个数:1,4,9,16,⋯称为正方形数,记三角形数构成数列a n,正方形数构成数列b n,则下列说法正确的是()A.1b 1+1b 2+1b 3+⋯+1b n<2;B.1225既是三角形数,又是正方形数;C.10i =11b i +1-a i +1=95;D.∀m ∈N *,m ≥2总存在p ,q ∈N *,使得b m =a p +a q 成立;32(2022秋·山东·高三校联考阶段练习)若项数为n 的数列a n 满足:a i =a n +1-i i =1,2,3,⋯,n 我们称其为n 项的“对称数列”.例如:数列1,2,2,1为4项的“对称数列”;数列1,2,3,2,1为5项的“对称数列”.设数列c n 为2k +1项的“对称数列”,其中c 1,c 2⋯c k +1是公差为2的等差数列,数列c n 的最大项等于8,记数列c n 的前2k +1项和为S 2k +1,若S 2k +1=32,则k =.数列考查的九个热点热点题型速览热点一等差数列的基本计算热点二等比数列的基本计算热点三等差数列与等比数列的综合计算热点四数列与函数的交汇热点五数列与不等式交汇热点六数列与解析几何交汇热点七数列与概率统计交汇热点八等差数列、等比数列的判断与证明热点九数列中的“新定义”问题热点一等差数列的基本计算1(2023春·河南开封·高三通许县第一高级中学校考阶段练习)已知等差数列a n 为递增数列,S n 为其前n 项和,a 3+a 7=34,a 4⋅a 6=280,则S 11=()A.516 B.440C.258D.220【答案】D【分析】根据给定条件,利用等差数列性质求出a 4,a 6,再利用前n 项和公式求解作答.【详解】等差数列a n 为递增数列,则a 4<a 6,由a 3+a 7=34,得a 4+a 6=34,而a 4⋅a 6=280,解得a 4=14,a 6=20,所以S 11=11(a 1+a 11)2=11a 6=220.故选:D2(2022秋·黑龙江哈尔滨·高三哈师大附中校考期中)某种卷筒卫生纸绕在圆柱形盘上,空盘时盘芯直径为60mm ,满盘时直径为120mm ,已知卫生纸的厚度为0.1mm ,则满盘时卫生纸的总长度大约( )(π≈3.14,精确到1m )A.65m B.85mC.100mD.120m【答案】B【分析】依题意,可以把绕在盘上的卫生纸长度,近似看成300个半径成等差数列的圆周长,然后分别计算各圆的周长,再借助等差数列前n 项和公式求总和即可.【详解】因为空盘时盘芯直径为60mm ,则半径为30mm ,周长为2π×30=60πmm ,又满盘时直径为120mm ,则半径为60mm ,周长为2π×60=120πmm ,又因为卫生纸的厚度为0.1mm ,则60-300.1=300,即每一圈周长成等差数列,项数为300,于是根据等差数列的求和公式,得:S300=300×60π+120π2=27000πmm ,又27000πmm≈84780mm≈85m,即满盘时卫生纸的总长度大约为85m,故选:B.3(2020·全国高考真题(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设第n环天石心块数为a n,第一层共有n环,则a n是以9为首项,9为公差的等差数列,a n=9+n-1×9=9n,设S n为a n的前n项和,则第一层、第二层、第三层的块数分别为S n,S2n-S n,S3n-S2n,因为下层比中层多729块,所以S3n-S2n=S2n-S n+729,即3n9+27n2-2n9+18n2=2n9+18n2-n9+9n2+729即9n2=729,解得n=9,所以S3n=S27=279+9×272=3402.故选:C4(2022·全国·统考高考真题)记S n为等差数列a n的前n项和.若2S3=3S2+6,则公差d=.【答案】2【分析】转化条件为2a1+2d=2a1+d+6,即可得解.【详解】由2S3=3S2+6可得2a1+a2+a3=3a1+a2+6,化简得2a3=a1+a2+6,即2a1+2d=2a1+d+6,解得d=2.故答案为:2.【规律方法】1.等差数列中的基本量a1,a n,d,n,S n,“知三可求二”,在求解过程中主要运用方程思想.要注意使用公式时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意运用整体代换思想,使运算更加便捷.2. 在等差数列{a n}中,若出现a m-n,a m,a m+n等项时,可以利用等差数列的性质将其转化为与a m有关的条件;若求a m 项,可由a m =12(a m -n +a m +n)转化为求a m -n ,a m +n 或a m -n +a m +n 的值.3.数列的基本计算,往往以数学文化问题为背景.热点二等比数列的基本计算5(2020·全国·统考高考真题)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=()A.12B.24C.30D.32【答案】D【分析】根据已知条件求得q 的值,再由a 6+a 7+a 8=q 5a 1+a 2+a 3 可求得结果.【详解】设等比数列a n 的公比为q ,则a 1+a 2+a 3=a 11+q +q 2 =1,a 2+a 3+a 4=a 1q +a 1q 2+a 1q 3=a 1q 1+q +q 2 =q =2,因此,a 6+a 7+a 8=a 1q 5+a 1q 6+a 1q 7=a 1q 51+q +q 2 =q 5=32.故选:D .6(2023·广东揭阳·惠来县第一中学校考模拟预测)在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起由于脚痛,每天走的路程都为前一天的一半,一共走了六天,才到目的地.则此人后3天共走的里程数为()A.6B.12C.18D.42【答案】D【分析】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,利用等比数列的求和公式求出a 1的值,然后利用等比数列的求和公式可求得此人后3天共走的里程数.【详解】设第n n ∈N ∗ 天走a n 里,其中1≤n ≤6,由题意可知,数列a n 是公比为12的等比数列,所以,a 11-12 6 1-12=6332a 1=378,解得a 1=378×3263=192,所以,此人后三天所走的里程数为a 4+a 5+a 6=192×181-1231-12=42.故选:D .7(2023·全国高考真题)已知a n 为等比数列,a 2a 4a 5=a 3a 6,a 9a 10=-8,则a 7=.【答案】-2【分析】根据等比数列公式对a 2a 4a 5=a 3a 6化简得a 1q =1,联立a 9a 10=-8求出q 3=-2,最后得a 7=a 1q ⋅q 5=q 5=-2.【解析】设a n 的公比为q q ≠0 ,则a 2a 4a 5=a 3a 6=a 2q ⋅a 5q ,显然a n ≠0,则a 4=q 2,即a 1q 3=q 2,则a 1q =1,因为a 9a 10=-8,则a 1q 8⋅a 1q 9=-8,则q 15=q 5 3=-8=-2 3,则q 3=-2,则a 7=a 1q ⋅q 5=q 5=-2,故答案为:-2.【规律方法】1.等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.2.等比数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.3.根据题目特点,可选用等比数列的性质.热点三等差数列与等比数列的综合计算8(2019·北京·高考真题)设{an }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{an }的通项公式;(Ⅱ)记{an }的前n 项和为Sn ,求Sn 的最小值.【答案】(Ⅰ)a n =2n -12;(Ⅱ)-30.【分析】(Ⅰ)由题意首先求得数列的公差,然后利用等差数列通项公式可得a n 的通项公式;(Ⅱ)首先求得S n 的表达式,然后结合二次函数的性质可得其最小值.【详解】(Ⅰ)设等差数列a n 的公差为d ,因为a 2+10,a 3+8,a 4+6成等比数列,所以(a 3+8)2=(a 2+10)(a 4+6),即(2d -2)2=d (3d -4),解得d =2,所以a n =-10+2(n -1)=2n -12.(Ⅱ)由(Ⅰ)知a n =2n -12,所以S n =-10+2n -122×n =n 2-11n =n -112 2-1214;当n =5或者n =6时,S n 取到最小值-30.9(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.【答案】(1)证明见解析;(2)-78.【分析】(1)依题意可得2S n +n 2=2na n +n ,根据a n =S 1,n =1S n-Sn -1,n ≥2,作差即可得到a n -a n -1=1,从而得证;(2)法一:由(1)及等比中项的性质求出a 1,即可得到a n 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为2S nn+n =2a n +1,即2S n +n 2=2na n +n ①,当n ≥2时,2S n -1+n -1 2=2n -1 a n -1+n -1 ②,①-②得,2S n +n 2-2S n -1-n -1 2=2na n +n -2n -1 a n -1-n -1 ,即2a n +2n -1=2na n -2n -1 a n -1+1,即2n -1 a n -2n -1 a n -1=2n -1 ,所以a n -a n -1=1,n ≥2且n ∈N *,所以a n 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得a 4=a 1+3,a 7=a 1+6,a 9=a 1+8,又a 4,a 7,a 9成等比数列,所以a 72=a 4⋅a 9,即a 1+6 2=a 1+3 ⋅a 1+8 ,解得a 1=-12,所以a n=n-13,所以S n=-12n+n n-12=12n2-252n=12n-2522-6258,所以,当n=12或n=13时,S nmin=-78.[方法二]:【最优解】邻项变号法由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即a1+62=a1+3⋅a1+8,解得a1=-12,所以a n=n-13,即有a1<a2<⋯<a12<0,a13=0.则当n=12或n=13时,S nmin=-78.【整体点评】(2)法一:根据二次函数的性质求出S n的最小值,适用于可以求出S n的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.10(2023·天津·统考高考真题)已知a n是等差数列,a2+a5=16,a5-a3=4.(1)求a n的通项公式和2n-1i=2n-1a i .(2)已知b n为等比数列,对于任意k∈N*,若2k-1≤n≤2k-1,则b k<a n<b k+1,(Ⅰ)当k≥2时,求证:2k-1<b k<2k+1;(Ⅱ)求b n的通项公式及其前n项和.【答案】(1)a n=2n+1,2n-1i=2n-1a i=3⋅4n-1;(2)(Ⅰ)证明见解析;(Ⅱ)b n=2n,前n项和为2n+1-2.【分析】(1)由题意得到关于首项、公差的方程,解方程可得a1=3,d=2,据此可求得数列的通项公式,然后确定所给的求和公式里面的首项和项数,结合等差数列前n项和公式计算可得2n-1i=2n-1a i=3⋅4n-1.(2)(Ⅰ)利用题中的结论分别考查不等式两侧的情况,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,即可证得题中的不等式;(Ⅱ)结合(Ⅰ)中的结论,利用极限思想确定数列的公比,进而可得数列的通项公式,最后由等比数列前n 项和公式即可计算其前n项和.【详解】(1)由题意可得a2+a5=2a1+5d=16a5-a3=2d=4,解得a1=3d=2,则数列a n的通项公式为a n=a1+n-1d=2n+1,求和得2n-1i=2n-1a i=2n-1i=2n-12i+1=22n-1i=2n-1i+2n-1-2n-1+1=22n-1+2n-1+1+2n-1+2+⋯+2n-1+2n-1=22n-1+2n-1⋅2n-12+2n-1=3⋅4n-1.(2)(Ⅰ)由题意可知,当2k-1≤n≤2k-1时,b k<a n,取n=2k-1,则b k<a2k-1=2×2k-1+1=2k+1,即b k<2k+1,当2k-2≤n≤2k-1-1时,a n<b k,取n=2k-1-1,此时a n=a2k-1-1=22k-1-1+1=2k-1,据此可得2k-1<b k,综上可得:2k-1<b k<2k+1.(Ⅱ)由(Ⅰ)可知:2k-1<bk<2k+1,2k+1-1<b k+1<2k+1+1则数列b n的公比q满足2k+1-12k+1=2-32k+1<q=b k+1b k<2k+1+12k-1=2+32k-1,当k∈N*,k→+∞时,2-3 2k+1→2,2+32k-1→2,所以q=2,所以2k-1<b12k-1<2k+1,即2k-12k-1=2-12k-1<b1<2k+12k-1=2+12k-1,当k∈N*,k→+∞时,2-1 2k-1→2,2+12k-1→2,所以b1=2,所以数列的通项公式为b n=2n,其前n项和为:S n=2×1-2n1-2=2n+1-2.热点四数列与函数的交汇11(2018·浙江·高考真题)已知a1,a2,a3,a4成等比数列,且a1+a2+a3+a4=ln(a1+a2+a3).若a1>1,则A.a1<a3,a2<a4B.a1>a3,a2<a4C.a1<a3,a2>a4D.a1>a3,a2>a4【答案】B【分析】先证不等式x≥ln x+1,再确定公比的取值范围,进而作出判断.【详解】令f(x)=x-ln x-1,则f (x)=1-1x,令f(x)=0,得x=1,所以当x>1时,f (x)>0,当0<x<1时,f (x)<0,因此f(x)≥f(1)=0,∴x≥ln x+1,若公比q>0,则a1+a2+a3+a4>a1+a2+a3>ln(a1+a2+a3),不合题意;若公比q≤-1,则a1+a2+a3+a4=a1(1+q)(1+q2)≤0,但ln(a1+a2+a3)=ln[a1(1+q+q2)]>ln a1>0,即a1+a2+a3+a4≤0<ln(a1+a2+a3),不合题意;因此-1<q<0,q2∈(0,1),∴a1>a1q2=a3,a2<a2q2=a4<0,选B.【点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如x≥ln x+1,e x≥x+1,e x≥x2+1(x≥0).12(2023秋·湖南长沙·高三雅礼中学校考阶段练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为y=1.1x,第n根弦(n∈N,从左数首根弦在y轴上,称为第0根弦)分别与雁柱曲线和直线l:y=x+1交于点A n x n,y n和B n x n ,y n,则20n=0y n y n=.(参考数据:取1.122=8.14.)【答案】914【分析】根据题意可得y n =n +1,y n=1.1n ,进而利用错位相减法运算求解.【详解】由题意可知:y n =n +1,y n =1.1n ,则20n =0y n y n=20n =0n +1 1.1n =1×1.10+2×1.11+⋯+20×1.119+21×1.120,可得1.1×20n =0y n y n =1×1.11+2×1.12+⋯+20×1.120+21×1.121,两式相减可得:-0.1×20n =0y n y n=1.10+1.11+⋯+1.120-21×1.121=1-1.1211-1.1-21×1.121=1-1.121+0.1×21×1.121-0.1=1+1.122-0.1=1+8.14-0.1=-91.4,所以20n =0y n y n=914.故答案为:914.13(2023秋·福建厦门·高三厦门一中校考阶段练习)已知数列a n 满足a 1>0,a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗.(1)判断数列a 2n -1 是否是等比数列?若是,给出证明;否则,请说明理由;(2)若数列a n 的前10项和为361,记b n =1log 2a 2n +1 ⋅a 2n +2,数列b n 的前n 项和为T n ,求证:T n <12.【答案】(1)数列a 2n -1 成等比数列,证明见解析(2)证明见解析【分析】(1)推导出a 2n +1=2a 2n +2=2log 2a 2n -1+2=4a 2n -1,得到结论;(2)先得到a 2n -1=a 1⋅4n -1,a 2n =2(n -1)+log 2a 1,从而得到S 10=341a 1+5log 2a 1+20,令f (x )=341x +5log 2x +20,得到函数单调递增,且由特殊点函数值得到a 1=1,b n =14n2,求出T 1=14<74,当n ≥2时,利用裂项相消法求和,得到T n <12.【详解】(1)数列a 2n -1 成等比数列,证明如下:根据a n +1=log 2a n ,n =2k -1,k ∈N ∗2a n+2,n =2k ,k ∈N ∗得,a 2n +1=2a 2n +2=2log 2a 2n -1+2=22a 2n -1=4a 2n -1;∵a 1>0,∴a 2n -1>0,a2n +1a 2n -1=4,即数列a 2n -1 成等比数列.(2)由(1)得,a 2n -1=a 1⋅4n -1,a 2n =log 2a 2n -1=2(n -1)+log 2a 1,故S 10=a 140+41+42+43+44 +5log 2a 1+2×(0+1+2+3+4)=341a 1+5log 2a 1+20,由S 10=361,得341a 1+5log 2a 1+20=361.令f (x )=341x +5log 2x +20,当x >0时,f (x )=341x +5log 2x +20单调递增,且f (1)=361=f a 1 ,故a 1=1,a 2n +1=4n =22n ,a 2n +2=log 2a 1+2n =2n ,∴b n =1log 2a 2n +1 ⋅a 2n +2=14n 2,T 1=b 1=14<12,当n ≥2时,b n =14n2<14(n -1)n =141n -1-1n∴T n =b 1+b 2+⋯+b n <141+1-12+12-13+⋯+1n -1-1n=142-1n <14×2=12,综上,知T n <1214(2023·全国·高三专题练习)已知A x 1,y 2 、B x 2,y 2 是函数f x =2x 1-2x,x ≠12-1,x =12的图象上的任意两点,点M 在直线x =12上,且AM =MB .(1)求x 1+x 2的值及y 1+y 2的值;(2)已知S 1=0,当n ≥2时,S n =f 12 +f 2n +f 3n +⋅⋅⋅+f n -1n,设a n =2Sn,T n 数列a n 的前n 项和,若存在正整数c ,m ,使得不等式T m -c T m +1-c <12成立,求c 和m 的值;【答案】(1)x 1+x 2=1,y 1+y 2=-2(2)存在,c =1,m =1【分析】(1)根据点M 在直线x =12上,设M 12,y M ,利用AM =MB ,可得x 1+x 2=1,分类讨论:①x 1=12,x 2=12;②x 1≠12时,x 2≠12,利用函数解析式,可求y 1+y 2的值;(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2,∴f k n +f n -kn=-2,代入k =0,1,2,⋯,n -1,利用倒序相加法可得S n =1-n ,从而可得数列a n 的通项与前n 项和,利用T m -c T m +1-c <12化简即可求得结论.【详解】(1)根据点M 在直线x =12上,设M 12,y M ,则AM =12-x 1,y M -y 1 ,MB =x 2-12,y 2-y M ,∵AM =MB ,∴x 1+x 2=1.①当x 1=12时,x 2=12,y 1+y 2=f x 1 +f x 2 =-1-1=-2;②当x 1≠12时,x 2≠12,y 1+y 2=2x 11-2x 1+2x 21-2x 2=2x 11-2x 2 +2x 21-2x 1 1-2x 1 1-2x 2 =2(x 1+x 2)-8x 1x 21-2(x 1+x 2)+4x 1x 2=2(1-4x 1x 2)4x 1x 2-1=-2;综合①②得,y 1+y 2=-2.(2)由(1)知,当x 1+x 2=1时,y 1+y 2=-2.∴f k n +f n -k n=-2,k =0,1,2,⋯,n -1,∴n ≥2时,S n =f 1n +f 2n +f 3n +⋯+f n -1n①S n =f n -1n +f n -2n +f n -3n +⋯+f 1n ②①+②得,2S n =-2(n -1),则S n =1-n .又n =1时,S 1=0满足上式,∴S n =1-n .∴a n =2S n=21-n ,∴T n =1+12+⋯+12n -1=1×1-12 n1-12=2-22n.∵T m -c T m +1-c <12,∴2T m -c -T m +1-c 2T m +1-c<0,∴c -2T m -T m +1c -T m +1<0,∵Tm +1=2-12m ,2T m -T m +1=4-42m -2+12m =2-32m ,∴12≤2-32m <c <2-12m <2,c ,m 为正整数,∴c =1,当c =1时,2-32m<12-12m >1,∴1<2m <3,∴m =1.【点评】作为高考热点,数列与函数的交汇问题,等差数列易于同二次函数结合,研究和的最值问题,而等比数列易于同指数函数结合,利用指数函数的单调性解决问题,递推、通项问题往往与函数的单调性、周期性相结合.热点五数列与不等式交汇15(2022·浙江·统考高考真题)已知数列a n 满足a 1=1,a n +1=a n -13a 2n n ∈N ∗,则()A.2<100a 100<52 B.52<100a 100<3 C.3<100a 100<72 D.72<100a 100<4【答案】B【分析】先通过递推关系式确定a n 除去a 1,其他项都在0,1 范围内,再利用递推公式变形得到1a n +1-1a n =13-a n >13,累加可求出1a n >13(n +2),得出100a 100<3,再利用1a n +1-1a n =13-a n<13-3n +2=131+1n +1 ,累加可求出1a n -1<13n -1 +1312+13+⋯+1n ,再次放缩可得出100a 100>52.【详解】∵a 1=1,易得a 2=23∈0,1 ,依次类推可得a n ∈0,1由题意,a n +1=a n 1-13a n ,即1a n +1=3a n 3-a n=1a n +13-a n ,∴1a n +1-1a n =13-a n >13,即1a 2-1a 1>13,1a 3-1a 2>13,1a 4-1a 3>13,⋯,1a n -1a n -1>13,(n ≥2),累加可得1a n -1>13n -1 ,即1a n >13(n +2),(n ≥2),∴a n <3n +2,n ≥2 ,即a 100<134,100a 100<10034<3,又1a n +1-1a n =13-a n <13-3n +2=131+1n +1 ,(n ≥2),∴1a 2-1a 1=131+12 ,1a 3-1a 2<131+13 ,1a 4-1a 3<131+14 ,⋯,1a n -1a n -1<131+1n,(n≥3),累加可得1a n -1<13n -1 +1312+13+⋯+1n ,(n ≥3),∴1a 100-1<33+1312+13+⋯+1100 <33+1312×4+16×96 <39,即1a 100<40,∴a 100>140,即100a 100>52;综上:52<100a 100<3.故选:B .16(2023·浙江嘉兴·统考模拟预测)如图,在一个单位正方形中,首先将它等分成4个边长为12的小正方形,保留一组不相邻的2个小正方形,记这2个小正方形的面积之和为S 1;然后将剩余的2个小正方形分别继续四等分,各自保留一组不相邻的2个小正方形,记这4个小正方形的面积之和为S 2.以此类推,操作n 次,若S 1+S 2+⋅⋅⋅+S n ≥20232024,则n 的最小值是()A.9B.10C.11D.12【答案】C【分析】由题意可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n,结合等比数列前n 项和解不等式即可.【详解】由题意可知操作1次时有21=2个边长为121=12的小正方形,即S 1=21×1212=121=12,操作2次时有22=4个边长为122=14的小正方形,即S 2=22×122 2=122=14,操作3次时有23=8个边长为123=18的小正方形,即S 3=23×1232=123=18,以此类推可知操作n 次时有2n 个边长为12n 的小正方形,即S n =2n ×12n2=12n ,由等比数列前n 项和公式有S 1+S 2+⋅⋅⋅+S n =12+12 2+⋅⋅⋅+12 n =12×1-12 n1-12=1-12 n,从而问题转换成了求1-12 n ≥20232024不等式的最小正整数解,将不等式变形为12 n ≤12024,注意到12 10=11024>12024,1211=12048<12024,且函数y =12x在R 上单调递减,所以n 的最小值是11.故选:C .17(2023秋·四川绵阳·高三绵阳中学校考阶段练习)已知等差数列a n 的前n 项和为S n ,且S 4=4S 2,a 3n =3a n +2n ∈N *(1)求a n 的通项公式,(2)设b n =1a n a n +1,且b n 的前n 项和为T n ,证明,13≤T n <12.【答案】(1)a n =2n -1(2)证明见解析【分析】(1)利用等差数列的通项公式以及前n 项和公式,列方程求解首项和公差,即得答案;(2)由(1)结论可得b n =1a n a n +1的表达式,利用裂项求和可得T n 表达式,即可证明结论.【详解】(1)设a n 的公差为d ,由S 4=4S 2得,4a 1+6d =42a 1+d ,解得d =2a 1,∵a 3n =3a n +2,即a 1+3n -1 d =3a 1+n -1 d +2,∴2d =2a 1+2,结合d =2a 1,∴d =2,a 1=1,∴a n =1+2n -1 =2n -1;(2)证明:由b n =12n -1 2n +1=1212n -1-12n +1 .∴T n =b 1+b 2+⋯+b n =121-13+13-15+⋯+12n -1-12n +1,即∴T n =121-12n +1 ,又T n 随着n 的增大增大,当n =1时,T n 取最小值为T 1=13,又n →+∞时,12n +1>0,且无限趋近于0,故T n =121-12n +1 <12,故13≤T n <12.18(2022·全国·统考高考真题)记S n 为数列a n 的前n 项和,已知a 1=1,S n a n 是公差为13的等差数列.(1)求a n 的通项公式;(2)证明:1a 1+1a 2+⋯+1a n<2.【答案】(1)a n =n n +12(2)见解析【分析】(1)利用等差数列的通项公式求得S n a n =1+13n -1 =n +23,得到S n =n +2 a n 3,利用和与项的关系得到当n ≥2时,a n =S n -S n -1=n +2 a n 3-n +1 a n -13,进而得:a n a n -1=n +1n -1,利用累乘法求得a n =n n +1 2,检验对于n =1也成立,得到a n 的通项公式a n =n n +1 2;(2)由(1)的结论,利用裂项求和法得到1a 1+1a 2+⋯+1a n =21-1n +1 ,进而证得.【详解】(1)∵a 1=1,∴S 1=a 1=1,∴S1a 1=1,又∵S n a n 是公差为13的等差数列,∴S n a n =1+13n -1 =n +23,∴S n =n +2 a n 3,∴当n ≥2时,S n -1=n +1 a n -13,∴a n =S n -S n -1=n +2 a n 3-n +1 a n -13,整理得:n -1 a n =n +1 a n -1,即a na n-1=n+1n-1,∴a n=a1×a2a1×a3a2×⋯×a n-1a n-2×a na n-1=1×31×42×⋯×nn-2×n+1n-1=n n+12,显然对于n=1也成立,∴a n的通项公式a n=n n+12;(2)1a n =2n n+1=21n-1n+1,∴1 a1+1a2+⋯+1a n=21-12+12-13+⋯1n-1n+1=21-1n+1<219(2021·全国·统考高考真题)设a n是首项为1的等比数列,数列b n满足b n=na n3.已知a1,3a2,9a3成等差数列.(1)求a n和b n的通项公式;(2)记S n和T n分别为a n和b n的前n项和.证明:T n<S n 2.【答案】(1)a n=13n-1,b n=n3n;(2)证明见解析.【分析】(1)利用等差数列的性质及a1得到9q2-6q+1=0,解方程即可;(2)利用公式法、错位相减法分别求出S n,T n,再作差比较即可.【详解】(1)因为a n是首项为1的等比数列且a1,3a2,9a3成等差数列,所以6a2=a1+9a3,所以6a1q=a1+9a1q2,即9q2-6q+1=0,解得q=13,所以a n=13n-1,所以b n=na n3=n3n.(2)[方法一]:作差后利用错位相减法求和T n=13+232+⋯+n-13n-1+n3n,S n 2=12130+131+132+⋯+13n-1 ,T n-S n2=13+232+333+⋯+n3n-12130+131+132+⋯+13n-1 =0-1230+1-1231+2-1232+⋯+n-1-123n-1+n3n.设Γn=0-1230+1-1231+2-1232+⋯+n-1-123n-1, ⑧则13Γn=0-1231+1-1232+2-1233+⋯+n-1-123n. ⑨由⑧-⑨得23Γn=-12+131+132+⋯+13n-1-n-323n=-12+131-13n-11-13-n-323n.所以Γn=-14×3n-2-n-322×3n-1=-n2×3n-1.因此T n-S n2=n3n-n2×3n-1=-n2×3n<0.故T n<S n 2.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得S n=1×1-13n1-13=321-13n,T n=13+232+⋯+n-13n-1+n3n,①1 3T n=132+233+⋯+n-13n+n3n+1,②①-②得23T n=13+132+133+⋯+13n-n3n+1=131-13n1-13-n3n+1=121-13n-n3n+1,所以T n=341-13n-n2⋅3n,所以T n-S n2=341-13n-n2⋅3n-341-13n=-n2⋅3n<0,所以T n<S n 2 .[方法三]:构造裂项法由(Ⅰ)知b n=n13n,令c n=(αn+β)13 n,且b n=c n-c n+1,即n13 n=(αn+β)13 n-[α(n+1)+β]13n+1,通过等式左右两边系数比对易得α=32,β=34,所以c n=32n+34 ⋅13 n.则T n=b1+b2+⋯+b n=c1-c n+1=34-34+n2 13 n,下同方法二.[方法四]:导函数法设f(x)=x+x2+x3+⋯+x n=x1-x n1-x,由于x1-x n1-x'=x1-x n'1-x-x1-x n×1-x'1-x2=1+nx n+1-(n+1)x n(1-x)2,则f (x)=1+2x+3x2+⋯+nx n-1=1+nx n+1-(n+1)x n(1-x)2.又b n=n13n=13n13 n-1,所以T n=b1+b2+b3+⋯+b n=131+2×13+3×132+⋯+n⋅13n-1 =13⋅f 13 =13×1+n13n+1-(n+1)13 n1-132=341+n13n+1-(n+1)13n =34-34+n213 n,下同方法二.20(2023·河南郑州·统考模拟预测)已知数列a n与b n的前n项和分别为A n和B n,且对任意n∈N*,a n +1-a n =32b n +1-b n 恒成立.(1)若A n =3n 2+3n2,b 1=2,求B n ;(2)若对任意n ∈N *,都有a n =B n 及b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13恒成立,求正整数b 1的最小值.【答案】(1)n (n +1);(2)3【分析】(1)利用a n ,S n 求通项公式,再求证{b n }是首项、公差均为2的等差数列,进而求B n ;(2)由题设易得b n +1=3b n ,等比数列前n 项和公式求B n ,进而可得b n +1a n a n +1=1B n -1B n +1,裂项相消法化简已知不等式左侧,得b 1>31-23n +1-1恒成立,进而求最小值.【详解】(1)由题设,a n =A n -A n -1=32[n 2+n -(n -1)2-n +1]=3n 且n ≥2,而a 1=A 1=3,显然也满足上式,故a n =3n ,由a n +1-a n =32b n +1-b n ⇒b n +1-b n =2,又b 1=2,所以{b n }是首项、公差均为2的等差数列.综上,B n =2×(1+...+n )=n (n +1).(2)由a n =B n ,a n +1-a n =32b n +1-b n ,则B n +1-B n =b n +1=32(b n +1-b n ),所以b n +1=3b n ,而b 1≥1,故bn +1b n=3,即{b n }是公比为3的等比数列.所以B n =b 1(1-3n )1-3=b 12(3n -1),则B n +1=b12(3n +1-1),b n +1a n a n +1=B n +1-B n B n +1B n =1B n -1B n +1,而b 2a 1a 2+b 3a 2a 3+b 4a 3a 4+⋯+b n +1a n a n +1<13,所以1B 1-1B 2+1B 2-1B 3+...+1B n -1B n +1=1B 1-1B n +1=1b 1-2b 1(3n +1-1)<13,所以1b 11-23n +1-1 <13⇒b 1>31-23n +1-1对n ∈N *都成立,所以1-23n +1-1<1,故b 1≥3,则正整数b 1的最小值为3.21(2023秋·云南·高三云南师大附中校考阶段练习)已知a n 为等差数列,b n 为等比数列,b 1=2a 1=2,a 5=5a 4-a 3 ,b 5=4b 4-b 3 ,数列c n 满足c n =1a n a n +2,n 为奇数b n,n 为偶数.(1)求a n 和b n 的通项公式;(2)证明:2ni =1c i ≥133.【答案】(1)a n =n ;b n =2n (2)证明见解析【分析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,根据题意列式求d ,q ,进而可得结果;(2)利用分组求和以及裂项相消法求得T n =-14n +2+4n +13-56,进而根据数列单调性分析证明.【详解】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由a 1=1,a 5=5a 4-a 3 ,可得1+4d =5d ,解得d =1。

2020届江苏高三高考数学全真模拟试卷07(解析版)

2020届江苏高三高考数学全真模拟试卷07(解析版)

直线 AB 的方程为____________.
答案:x+y-3=0
解析:设圆心为 C,由题知 kAB·kCP=-1,又 kCP=2-1=1,∴ kAB=-1,∴ 直线 AB 的方程为 y= 1-0
-(x-1)+2,即 x+y-3=0.
11. 在△ABC 中,BC=2,A=2π,则A→B·A→C的最小值为________. 3
抛物线 y2=-4x 的焦点重合,则该双曲线的渐近线方程为________.
答案: y=± 3x 解析:由题设知a2=1,又易知双曲线焦点在 x 轴上,且 a=1,所以 b2=c2-a2=3,从而双曲线方程为
c2
x2-y2=1,所以双曲线渐近线方程为 y=± 3x. 3
7. 在平面直角坐标系 xOy 中,若点 P(m,1)到直线 4x-3y-1=0 的距离为 4,且点 P 在不等式 2x+y≥3 表示的平面区域内,则 m=________. 答案:6 解析:由题知|4m-4|=4,得 m=6 或-4,∴ P(6,1)或 P(-4,1).又 2x+y≥3,∴ m=6. 5
11

a

- 1 x4+4x3-12x2 25 3
+12×104],(10
分)
11
令 f(x)=- 1 x4+4x3-12x2,则 25 3
f′(x)=-
4
x3+4x2-24x=-4x
1 x2-x+6 25
.
25
由 f′(x)=0,解得 x=0(舍去)或 x=10 或 x=15,(12 分)
列表如下:
a
a
14. 已知等比数列{an}的首项为4,公比为-1,其前 n 项和为 Sn,若 A≤Sn- 1 ≤B 对 n∈N*恒成立,则 B

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

2023年新高考数学一轮复习7-5 数列的综合应用(知识点讲解)含详解

专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n -B .12n -C .21n -D .32n -例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( )A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法”例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32 B .33 C .34 D .35例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258B .264C .642D .636例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解. 题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( ) A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2 (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.题型六:数列与传统文化例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何?”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( ) A .10B .14C .23D .26例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金n T几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( )A .5-B .7C .13D .26例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( ) A .1盏 B .3盏 C .5盏 D .9盏【总结提升】理解题意,构造数列,应用数列模型解题.专题7.5 数列的综合应用(知识点讲解)【知识框架】【核心素养】1.数列与传统数学文化、实际问题相结合,考查等差、等比数列的基本运算,凸显数学建模的核心素养. 2.数列与新定义问题相结合,考查转化、迁移能力,凸显数学抽象的核心素养.3.数列与函数、不等式、解析几何等相结合,考查学生综合分析解决问题的能力,凸显逻辑推理的核心素养.【知识点展示】(一)数列与函数数列与函数的综合问题主要有以下两类:(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形.(二)数列与不等式1.数列型不等式的证明常用到“放缩法”,一是在求和中将通项“放缩”为“可求和数列”;二是求和后再“放缩”.放缩法常见的放缩技巧有: (1)1k 2<1k 2-1=12⎝ ⎛⎭⎪⎫1k -1-1k +1.(2)1k -1k +1<1k 2<1k -1-1k . (3)2(n +1-n )<1n<2(n -n -1).2.数列中不等式恒成立的问题数列中有关项或前n 项和的恒成立问题,往往转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(三)解答数列实际应用问题的步骤(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单递推数列模型.基本特征如下:等差数列模型:均匀增加或者减少等比数列模型:指数增长或减少,常见的是增产率问题、存款复利问题简单递推数列模型:指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a(常数)作为下年度的开销,即数列{}1 1.2n n n a a a a +满足=-(2)准确解决模型:解模就是根据数列的知识,求数列的通项、数列的和、解方程(组)或者不等式(组)等,在解模时要注意运算准确.(3)给出问题的回答:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.【常考题型剖析】题型一:数列与函数的综合例1.(2021·河南·睢县高级中学高三阶段练习(理))已知数列{}n a 的首项11a =,函数()()41cos221n n f x x a x a +=+-+有唯一零点,则通项n a =( ) A .13n - B .12n -C .21n -D .32n -【答案】C 【解析】 【分析】由奇偶性定义可判断出()f x 为偶函数,由此可确定唯一零点为0x =,从而得到递推关系式;利用递推关系式可证得数列{}1n a +为等比数列,由等比数列通项公式可推导得到n a . 【详解】()()()()()()4411cos 221cos221n n n n f x x a x a x a x a f x ++-=-+--+=+-+=,()f x ∴为偶函数,图象关于y 轴对称,()f x ∴的零点关于y 轴对称,又()f x 有唯一零点,()f x ∴的零点为0x =,即()()10210n n f a a +=-+=,121n n a a +∴=+,即()1121n n a a ++=+,又112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,12n n a ∴+=,则21n n a =-.故选:C. 【点睛】关键点点睛:本题考查函数与数列的综合应用问题;解题关键是能够根据奇偶性的性质确定函数的唯一零点为0x =,从而结合零点确定数列的递推关系式,由递推关系式证得数列{}1n a +为等比数列. 例2.(2023·全国·高三专题练习)设函数()12ln x f x x -=+,11a =,()*21N 1,23n n a f f n f f n n n n n -⎛⎫=+++⋅ ⎪⋅⋅+∈≥ ⎪⎝⎛⎫⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭⎝⎭⎭.则数列{}n a 的前n 项和n S =______. 【答案】2n n 1-+ 【解析】 【分析】由题设11()()4n f f n n-+=,讨论n 的奇偶性求{}n a 的通项公式,再求n S . 【详解】由题设,111()()4ln(1)ln 41n f f n n n n -+=+-+=-, 所以()()**14121,2,N 221421,21,N 2n n f n n k k a n n n k k ⎧⎛⎫⎛⎫⨯-+=-=∈ ⎪ ⎪⎪⎪⎝⎭⎝⎭=⎨-⎪⨯=-=+∈⎪⎩,即2(1)n a n =-且n ≥ 2, 当1n =时,11S =,当2n ≥时,21242(1)1n S n n n =+++⋅⋅⋅+-=+-,所以21n S n n =-+,n *∈N故答案为:2n n 1-+.例3.(2017·上海·高考真题)根据预测,某地第n *()n ∈N 个月共享单车的投放量和损失量分别为n a 和n b (单位:辆),其中4515,1310470,4n n n a n n ⎧+≤≤=⎨-+≥⎩,5n b n =+,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n =--+(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量? 【答案】(1)935;(2)见解析. 【解析】 【详解】试题分析:(1)计算{}n a 和{}n b 的前4项和的差即可得出答案;(2)令n n a b ≥得出42n ≤,再计算第42个月底的保有量和容纳量即可得出结论. 试题分析:(1)()()1234123496530935a a a a b b b b +++-+++=-=(2)10470542n n n -+>+⇒≤,即第42个月底,保有量达到最大()()()()12341234420503864742965878222a a a ab b b b ⎡⎤+⨯+⨯+++⋅⋅⋅+-+++⋅⋅⋅+=+-=⎢⎥⎣⎦()2424424688008736S =--+=,∴此时保有量超过了容纳量.【温馨提醒】解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到数列的求和、和的最值,利用函数性质或不等式性质求解较为常规. 题型二:数列与不等式的综合例4.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.例5.(2021·天津·高考真题)已知{}n a 是公差为2的等差数列,其前8项和为64.{}n b 是公比大于0的等比数列,1324,48b b b =-=. (I )求{}n a 和{}n b 的通项公式;(II )记2*1,n n nc b b n N =+∈,(i )证明{}22nn c c -是等比数列;(ii )证明)*nk n N =∈ 【答案】(I )21,n a n n N *=-∈,4,n n N b n *=∈;(II )(i )证明见解析;(ii )证明见解析.【解析】 【分析】(I )由等差数列的求和公式运算可得{}n a 的通项,由等比数列的通项公式运算可得{}n b 的通项公式;(II )(i )运算可得2224nn n c c =⋅-,结合等比数列的定义即可得证;(ii )放缩得21222422n n n n n a n c a c +<-⋅,进而可得112n n k k k-==,结合错位相减法即可得证. 【详解】(I )因为{}n a 是公差为2的等差数列,其前8项和为64. 所以12818782642a a a a ⨯++⋅⋅⋅+=+⨯=,所以11a =, 所以()12121,n n n n N a a *=+-=-∈;设等比数列{}n b 的公比为(),0q q >,所以()221321484q b b b q q b q ==-=--,解得4q =(负值舍去), 所以114,n n n b q n N b -*==∈;(II )(i )由题意,221441n n nn n b c b =++=,所以22224211442444n n nn nnn c c ⎛⎫⎛⎫=+-+=⋅ ⎪ ⎪⎝⎭⎝⎭-,所以220nn c c ≠-,且212222124424n n n n nn c c c c +++⋅==⋅--, 所以数列{}22nn c c -是等比数列; (ii )由题意知,()()22122222121414242222n n n n n n n n n a n n c c a +-+-==<-⋅⋅⋅,12n n-,所以112nn k k k k-==, 设10121112322222nn k n k k nT --===+++⋅⋅⋅+∑, 则123112322222n n n T =+++⋅⋅⋅+, 两式相减得21111111122121222222212nn n n nn n n n T -⎛⎫⋅- ⎪+⎝⎭=+++⋅⋅⋅+-=-=--, 所以1242n n n T -+=-,所以1112422nn k n k k n --==+⎫-<⎪⎭ 例6.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 【答案】(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【解析】 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可. 【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ⑧ 则1231111012112222Γ33333-----=++++n nn . ⑨由⑧-⑨得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--, 211213333n n nn n T --=++++,①231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(1)4323n n nnT =--⋅,所以2n n S T -=3131(1)(1)043234323n n n nn n ----=-<⋅⋅,所以2nn S T <. [方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法 设()231()1-=++++=-n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n nx x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二. 【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法. 【温馨提醒】数列与不等式的结合,除应熟练掌握数列的通项公式、求和公式,关于不等式证明、不等式恒成立问题的处理方法亦应灵活运用. 题型三:数列与实际应用问题例7.【多选题】(2022·全国·高三专题练习)参加工作5年的小郭,因工作需要向银行贷款A 万元购买一台小汽车,与银行约定:这A 万元银行贷款分10年还清,贷款的年利率为r ,每年还款数为X 万元,则( ) A .()1011ArX r =+- B .小郭第3年还款的现值为()31Xr +万元C .小郭选择的还款方式为“等额本金还款法”D .小郭选择的还款方式为“等额本息还款法” 【答案】BD 【解析】 【分析】因为小郭每年还款钱数相等,所以小郭选择为“等额本息还款法”,所以利用等比数列前n 项和公式求出X ,再设小郭第3年还款的现值为y ,根据复利规则求出y . 【详解】解:小郭与银行约定,每年还一次欠款,并且每年还款的钱数都相等,∴小郭靖选择的还款方式为“等额本息还款法”,故D 正确,C 错误, 设每年应还X 元,还款10次,则该人10年还款的现金与利息和为29[1(1)(1)(1)]X r r r +++++⋯++, 银行贷款A 元10年后的本利和为10(1)A r +.2910[1(1)(1)(1)](1)X r r r A r ∴+++++⋯++=+, ∴10101[1(1)](1)1(1)r X A r r ⨯-+⋅=+-+, 即1010(1)(1)1Ar r X r +=+-,故A 错误.设小郭第三年还款的现值为y ,则3(1)y r X ⋅+=,所以()31Xy r =+,故B 正确;例8.(2021·全国·高三专题练习)某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=-C .1n n a a +>D .当400t =时,33800a >【答案】BC 【解析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-,第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误;第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确;因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+,所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t t a a a t a a t t --+-=--=-=-+-=-, 因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确;当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误;【总结提升】1.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.2.等比数列最值有关问题的解题思路:求解此类问题的常用思路是根据题目所给条件建立关于变量n 的函数关系进行求解.有时也注意基本不等式的应用.题型四:数列的“新定义”问题例9.(2022·全国·高三专题练习)对于数列{}n a ,定义11222-=+++n n n A a a a 为数列{}n a 的“加权和”,已知某数列{}n a 的“加权和”12n n A n +=⋅,记数列{}+n a pn 的前n 项和为n T ,若5≤n T T 对任意的N n *∈恒成立,则实数p 的取值范围为( ) A .127,53⎡⎤--⎢⎥⎣⎦B .167,73⎡⎤--⎢⎥⎣⎦C .512,25⎡⎤--⎢⎥⎣⎦D .169,74⎡⎤--⎢⎥⎣⎦【答案】A 【解析】 【分析】根据n A 与n a 的关系求出n a ,再根据等差数列的求和公式求出n T ,将5≤n T T 化为216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,分类讨论n 可求出结果. 【详解】 由1112222n n n n A a a a n -+=+++=⋅,∴2n ≥时,212122(1)2n n n a a a n --+++=-⋅,∴1122(1)2-+⋅=⋅--⋅n n n n a n n ,∴22n a n =+,1n =时,14a =也成立,∴22n a n =+,∴数列{}+n a pn 的前n 项和为:12(12)n n T a a a p n =+++++++2(422)(1)(1)3222++++=+⋅=++⋅n n n n n n p n n p ,∵5≤n T T 对任意的n *∈N 恒成立,∴225(1)56353522+⨯++⋅≤=+⨯+⨯n n n n p T p , 即225335(1)5(51)022p pn n n n -+-⨯++-⨯⨯+≤, 即22225335(5)(5)022p p n n n n -+-⨯+-+-≤,即5(5)(53)0222pn p p n n -+++++≤, 即(6)(5)(8)02p n n n +-++≤, 即216(5)06+⎛⎫-+≤ ⎪+⎝⎭n n p n 对任意的n *∈N 恒成立,当14n ≤≤时,2164266+-≤=+++n p n n 对任意的n *∈N 恒成立, 因为4412226465n +≥+=++,∴125-≤p ,所以125p ≥-,当5n =时,216(5)06n n p n +⎛⎫-+= ⎪+⎝⎭恒成立,R p ∈,当6n ≥时,2164266+-≥=+++n p n n 对任意的n *∈N 恒成立, 因为447226663n +≤+=++,∴73-≥p ,所以73p ≤-,综上可得:实数p 的取值范围为127,53⎡⎤--⎢⎥⎣⎦.故选:A .例10.(2022·江西抚州·高二阶段练习(理))对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:3325⎧⎨⎩,3739,11⎧⎪⎨⎪⎩,3131541719⎧⎪⎪⎨⎪⎪⎩,…仿此,若3m 的“分裂数”中有一个是1111,则m 的值为( ) A .32B .33C .34D .35【答案】B 【解析】 【分析】根据分裂数的定义,求出从32到()31m -、从32到3m 分裂数个数,再根据所有分裂数成等差数列求出1111对应的位置,进而根据不等式求m 值. 【详解】由题意,对于332,...,m ,它们依次对应2、3、…、m 个分裂数,则从32到()31m -各分裂数个数的和为(2)(1)2m m -+,从32到3m 各分裂数个数和为(1)(2)2m m -+,又332,...,m 的分裂数{}n a ,构成首项为3,公差为2的等差数列,所以21n a n =+,令211111n +=,可得555n =,所以(2)(1)(1)(2)55522m m m m -+-+<≤,当32m =时,(1)(2)5275552m m -+=<不符合; 当33m =时,(1)(2)5605552m m -+=>,(2)(1)5275552m m -+=<符合; 当34m =时,(2)(1)5605552m m -+=>不符合; 综上,33m =. 故选:B例11.(2022·河南开封·高二期末(理))若数列{}n a 中不超过()f m 的项数恰为()*,m b n m ∈N ,则称数列{}m b 是数列{}n a 的生成数列,称相应的函数()f m 是数列{}n a 生成{}m b 的控制函数.已知2n n a =,()f m m =,记数列{}m b 的前m 项和为m S ,则63S =( ) A .258 B .264 C .642 D .636【答案】A 【解析】 【分析】分析可知对任意的N k *∈,当)12,2k k m +⎡∈⎣,满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,进而可求得63S 的值.【详解】因为562632<<,由题中定义,对任意的N k *∈,当)12,2k k m +⎡∈⎣, 满足2nn a m =≤的项数为k ,即m b k =,满足条件的m 的个数为1222k k k +-=,当1m =时,0m b =,当)122,2m ⎡∈⎣时,1m b =,此时满足条件的m 的个数为12,当)232,2m ⎡∈⎣时,2m b =,此时满足条件的m 的个数为22,当)562,2m ⎡∈⎣时,5m b =,此时满足条件的m 的个数为52, 因此,01234563021222324252258S =⨯+⨯+⨯+⨯+⨯+⨯=.故选:A.例12.(2022·全国·高三专题练习)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-. 【答案】(1)21263=+⨯S ,()12312633=+⨯+S ,133n n S +=+ (2)1122=-+n T n ,证明见解析 【解析】【分析】(1)根据定义求出{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,由此归纳出n S ,(2)由(1)化简n c ,再由裂项相消法求其前n 项和,并完成证明.(1)由题意得,116512S =++=,217611512181263S =++++=+=+⨯,()2123187136171116512185412636312633S =++++++++=++=+⨯+⨯=+⨯+,41981572013196231728112716215S =++++++++++++++++121854162=+++2312636363=+⨯+⨯+⨯()123126333=+⨯++, …()12311263333(1)n n S n -=+⨯++++≥,由等比数列的前n 项和公式可得,()113131263313n n n S -+-=+⨯=+-, 所以{}n S 的通项公式133n n S +=+.(2)由于133n n S +=+,所以()()33111111log 3log 31221n n n c S S n n n n +⎛⎫=-=--=- ⎪-⋅-++++⎝⎭, 则1111111132432122n T n n n =-+-++-=-+++, 因为n *∈N ,所以102n >+,所以111222n ->-+, 又n T 随n 的增大而减小,所以当1n =时,n T 取得最大值16-,故1126n T -<≤-. 【温馨提醒】立足于“转化”,将新定义问题转化成等差数列、等比数列问题求解.题型五:数列与解析几何例12.(2021·浙江·高考真题)已知,R,0a b ab ∈>,函数()2R ()f x ax b x =+∈.若(),(),()f s t f s f s t -+成等比数列,则平面上点(),s t 的轨迹是( )A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线【答案】C 【解析】【分析】首先利用等比数列得到等式,然后对所得的等式进行恒等变形即可确定其轨迹方程.【详解】由题意得2()()[()]f s t f s t f s -+=,即()2222()()a s t b a s t b as b ⎡⎤⎡⎤-+++=+⎣⎦⎣⎦, 对其进行整理变形:()()()22222222asat ast b as at ast b as b +-++++=+, ()()222222(2)0as at b ast as b++--+=, ()2222222240as at b at a s t ++-=, 222242220a s t a t abt -++=,所以22220as at b -++=或0=t ,其中2212s t b b a a-=为双曲线,0=t 为直线.故选:C.例13.(2017山东,理19)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2(Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2)…P n+1(x n+1, n+1)得到折线P 1 P 2…P n+1,求由该折线与直线y=0,11n x x x x +==,所围成的区域的面积.【答案】(I)(II )(II )过……向轴作垂线,垂足分别为……, 由(I)得记梯形的面积为.由题意, 所以 ……+n T 12.n n x -=(21)21.2n n n T -⨯+=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b=……+ ①又……+ ②①-②得= 所以题型六:数列与传统文化 例14.(2022·云南师大附中模拟预测(理))《九章算术》是我国秦汉时期一部杰出的数学著作,书中第三章“衰分”有如下问题:“今有大夫、不更、簪裹、上造、公士,凡五人,共出百钱.欲令高爵出少,以次渐多,问各几何”意思是:“有大夫、不更、簪裏、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增等差数列,这5个人各出多少钱?”在这个问题中,若不更出17钱,则公士出的钱数为( )A .10B .14C .23D .26【答案】D【解析】【分析】设大夫、不更、簪裹、上造、公士所出的钱数依次构成等差数列{}n a ,根据217a =,前5项和为100求解.【详解】解:设大夫、不更、簪裹、上造、公士所出的钱数依次排成一列,构成数列{}n a .由题意可知,等差数列{}n a 中217a =,前5项和为100,设公差为(0)d d >,前n 项和为n S ,则535100S a ==,解得320a =,所以323d a a , 所以公士出的钱数为532202326a a d =+=+⨯=,故选:D .例15.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯121132(22......2)(21)2n n n T n ----=⨯++++-+⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =( ) A .5-B .7C .13D .26【答案】C 【解析】【分析】 根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤; 第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤, 以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤, 所以111111223344556a a a a a ++++=⨯⨯⨯⨯, 即1111111111(1)(1)12233445566a a -+-+-+-+-⋅=-⋅=,解得65a =, 又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=. 故选:C.例16.(2017·全国·高考真题(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】B【解析】【详解】。

2020年高考真题——数学试卷(理科)(新课标Ⅱ)(解析版)

 2020年高考真题——数学试卷(理科)(新课标Ⅱ)(解析版)

2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.5B.5C.5D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为255d;所以,圆心到直线230x y 的距离为5.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2c ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为28c当且仅当a b C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为4的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.B.32C.1D.2【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为4的等边三角形,21393224a ,解得:3a ,2233r球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】2【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:202k a a b k ,解得:2k .故答案为:2.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,12i z z ,则12||z z =__________.【答案】【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i ,122cos cos 2sin sin z z i i ,2cos cos 2sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i故答案为:.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p :若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)3 【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:AC AB (当且仅当AC AB 时取等号),ABC周长3L AC AB BC ,ABC周长的最大值为3 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,202180i i x x (,20219000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r)ni i x y x y((=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()ii x x y y r 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y的相关系数为20()()0.943i i x x y y r (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c,b ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)10.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 603ON故:ON AP ∵//EF BC AP EP AM BM3EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQsin10QN QPN PQ 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x232sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。

2020年高考数学(理)【热点·重点·难点】专练 数列(解析版)

2020年高考数学(理)【热点·重点·难点】专练  数列(解析版)

重难点 数列【高考考试趋势】高考中考查数列难度不大,知识点考查比较简单,也是高考中务必拿分题目,对于大部分人来说,数列这一知识点是不容失分的.本重点专题是通过对高考中常见高考题型对应知识点的研究而总结出来的一些题目,通过本专题的学习补充巩固,让你对高考中数列题目更加熟练,做高考数列题目更加得心应手.【高考常见题型分类总结】通项公式的求法q pa a n n +=1-的形式,主要是利用)()(1-m a p m a n n +=+的形式进行转化对于11-++=n n p pa a n ,主要采用m p a p a n n n n =1-1--的形式进行转化运算 对于11n-n n-n a =pa -a a 一般采用转化成=p a -a n-n 111的形式进行转化运算. 对于求和问题 裂项求和形如)12)(1-2(1+=n n a n 的形式一般采用裂项)121-1-21(21+=n n a n 的形式,注意前面的21此系数,是由系数只差确定与1212+n n-. 错位相减求和问题,本专题题目中有出现.分组求和问题,分为两种,一种是绝对值分组求和问题,另外一种是两种不同数列的分组求和问题.【常见题型限时检测】(建议用时:35分钟)1.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( ) A .2 B .1 C .12 D .18【答案】C【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒=,故 2112a a q ==,选C. 考点:本题主要考查等比数列性质及基本运算. 2.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A .7B .5C .5-D .7-【答案】D【解析】【分析】 由条件可得47a a ,的值,进而由27104a a a =和2417a a a =可得解. 【详解】56474747822,4a a a a a a a a ==-+=∴=-=或474,2a a ==-. 由等比数列性质可知2274101478,1a a a a a a ==-==或2274101471,8a a a a a a ====- 1107a a ∴+=-故选D.【名师点睛】。

专题07 数列-2023年高考数学真题题源解密(新高考)(原卷版)

专题07  数列-2023年高考数学真题题源解密(新高考)(原卷版)

专题07 数列目录一览考向一等差数列}为等差数列,1.(2023•新高考Ⅰ•第7题)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn 则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件考向二等比数列2.(2023•新高考Ⅱ•第8题)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120考向三数列综合3.(2023•新高考Ⅰ•第20题)设等差数列{a n}的公差为d,且d>1.令b n=S n,T n分别为数列n{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99﹣T99=99,求d.4.(2023•新高考Ⅱ•第18题)已知{a n}为等差数列,b n=a n−6,n为奇数2a n,n为偶数,记S n,T n为{a n},{b n}的前n 项和,S4=32,T3=16.(1)求{a n}的通项公式;(2)证明:当n>5时,T n>S n.【命题意图】考查等差、等比数列的通项公式和前n 项和公式,考查等差、等比数列的性质;考查数列的求和方法,考查根据数列的递推公式求通项公式,考查数列和其他知识结合等综合知识.【考查要点】数列是高考考查热点之一,其中等差、等比数列的通项公式、求和公式,以及与等差、等比数列有关的错位相消求和及裂项相消求和,是考查的重点.作为数列综合题,常和充要条件、方程、不等式、函数等结合,涉及到恒成立,存在,最值,解不等式或者证明不等式等,对于基础能力和基础运算要求较高.【得分要点】1.解决等差、等比数列有关问题的几点注意(1)等差数列、等比数列公式和性质的灵活应用;(2)对于计算解答题注意基本量及方程思想的运用;(3)注重问题的转化,由非等差数列、非等比数列构造出新的等差数列或等比数列,以便利用相关公式和性质解题;(4)当题目中出现多个数列时,既要纵向考察单一数列的项与项之间的关系,又要横向考察各数列之间的内在联系.2.数列求和问题一般转化为等差数列或等比数列的前n 项和问题或已知公式的数列求和,不能转化的再根据数列通项公式的特点选择恰当的方法求解.,一般常见的求和方法有:(一)公式法②等比数列的前n 项和公式:③数列前项和重要公式:(2)(5)等差数列中,;n 1(21)n k k =-=∑()13521n ++++-= 2nm n m n S S S mnd +=++(6)等比数列中,.(二)分组求和法:把一个数列分成几个可以直接求和的数列.(三)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(四)错位相减法:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(1)适用条件:若{a n }是公差为d (d ≠0)的等差数列,{b n }是公比为q (q ≠1)的等比数列,求数列{a n b n }的前n 项和S n ;(2)基本步骤(3)注意事项:①在写出S n 与qS n 的表达式时,应特别注意将两式“错位对齐”,以便下一步准确写出S n-qS n ;②作差后,等式右边有第一项、中间n -1项的和式、最后一项三部分组成;③运算时,经常把b 2+b 3+…+b n 这n -1项和看成n 项和,把-a n b n +1写成+a n b n +1导致错误. (五)倒序相加法相加,就得到一个常数列的和,这一求和方法称为倒序相加法,等差数列前n 项和公式的推导便使用了此法. 用倒序相加法解题的关键,就是要能够找出首项和末项之间的关系,因为有时这种关系比较隐蔽.考向一 等差数列5.(2022•新高考Ⅱ)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为=0.5,=k 1,=k 2,=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=( )n m m n n m m n S S q S S q S +=+=+A.0.75B.0.8C.0.85D.0.9考向二数列递推公式6.(多选)(2021•新高考Ⅱ)设正整数n=a0•20+a1•21+…+a k﹣1•2k﹣1+a k•2k,其中a i∈{0,1},记ω(n)=a0+a1+…+a k,则( )A.ω(2n)=ω(n)B.ω(2n+3)=ω(n)+1C.ω(8n+5)=ω(4n+3)D.ω(2n﹣1)=n考向三数列的求和7.(2021•新高考Ⅰ)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm×12dm的长方形纸,对折1次共可以得到10dm×12dm,20dm×6dm两种规格的图形,它们的面积之和S1=240dm2,对折2次共可以得到5dm×12dm,10dm×6dm,20dm×3dm三种规格的图形,它们的面积之和S2=180dm2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n次,那么S k= dm2.考向四数列综合8.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅰ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.9.(2021•新高考Ⅰ)已知数列{a n}满足a1=1,a n+1=(1)记b n=a2n,写出b1,b2,并求数列{b n}的通项公式;(2)求{a n}的前20项和.10.(2022•新高考Ⅰ)记S n为数列{a n}的前n项和,已知a1=1,{}是公差为的等差数列.(1)求{a n}的通项公式;(2)证明:++…+<2.11.(2022•新高考Ⅱ)已知{a n}是等差数列,{b n}是公比为2的等比数列,且a2﹣b2=a3﹣b3=b4﹣a4.(1)证明:a1=b1;(2)求集合{k|b k=a m+a1,1≤m≤500}中元素的个数.重点考查等差、等比数列的概念、性质、通项公式和前n项和,考查错位相减、裂项相消等求和方法。

2020年高考数学(理)大题分解专题07选考内容(含答案)

2020年高考数学(理)大题分解专题07选考内容(含答案)

即 ( x a)( x 1) 0 ,显然恒成立;所以 a 1 满足题意;
2( x a), a x 1
当 a 1 时, f ( x)

2( x a)(1 x), x a
因为 a x 1时, f (x) 0 显然不能成立,所以 a 1 不满足题意;
综上, a 的取值范围是 [1, ) .
2. ( 2020 甘肃省天水市一中高三一轮复习第一次模拟)已知函数
【肢解 1】当 a 2 时,求不等式 f ( x) 2 的解集;
【解析】( 1)①当 x 2 时, f (x) x 2 2( x 2) x 6 2 ,解得 x 4 ,
②当 2 x 2 时, f ( x)
x 2 2( x 2)
3x 2 2 ,解得 4 x 2 , 3
③当 x 2 时, f ( x) x 2 2( x 2) x 6 2 解得 x 2 ,
( 2)设直线 l 与曲线 C 交于 A , B 两点,求 AB 的值 .
【肢解 1】求直线 l 和曲线 C 的极坐标方程 . 【肢解 2】设直线 l 与曲线 C 交于 A , B 两点,求 AB 的值 .
【肢解 1】求直线 l 和曲线 C 的极坐标方程 .
3
【解析】由 x 3y 得 y
x ,所以 l 的极坐标方程为
综上知,不等式 f ( x) 2 的解集为 (
4 , 4) U ( ,
).
3Hale Waihona Puke 【肢解 2】当 x [ 2, 2] 时不等式 f (x) x 恒成立,求 a 的取值范围 .
【解析】解法 1:当 x [ 2, 2] 时, f (x) 2 x a(x 2) ( a 1)x 2(1 a) ,
设 g( x) f (x) x ,则 x [ 2, 2] , g ( x) (a 2) x 2(1 a) 0 恒成立,

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

2023年新高考数学创新题型微专题07 数列专题(数学文化)(解析版)

专题07 数列专题(数学文化)一、单选题1.(2022·全国·高三专题练习)《周髀算经》有这样一个问题:从冬至日起,依次为小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为(一丈=十尺=一百寸)( ). A .一尺五寸 B .二尺五寸C .三尺五寸D .四尺五寸【答案】B【分析】十二个节气日影长构成一个等差数列{}n a ,利用等差数列通项公式、前n 项和公式列出方程组,求出首项和公差,由此能求出芒种日影长. 【详解】由题意知:∴从冬至日起,依次小寒、大寒等十二个节气日影长构成一个等差数列{}n a ,设公差为d ,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,∴147191393159898552a a a a d S a d ++=+=⎧⎪⎨⨯=+=⎪⎩,解得1135a =,10d =−, ∴芒种日影长为12111135111025a a d =+=−⨯=(寸)2=尺5寸.故选:B2.(2022秋·陕西咸阳·高二武功县普集高级中学校考阶段练习)河南洛阳龙门石窟是中国石刻艺术宝库,现为世界非物质文化遗产之一.某洞窟的浮雕共7层,它们构成一幅优美的图案.若从下往上计算,从第二层开始,每层浮雕像的个数依次是下层个数的2倍,且第三层与第二层浮雕像个数的差是16,则该洞窟的浮雕像的总个数为( ) A .1016 B .512 C .128 D .1024【答案】A【分析】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,分析可知数列{}n a 为等比数列,且公比为2,根据已知条件求出1a 的值,利用等比数列求和公式可求得结果.【详解】设从上到下第()N ,17n n n *∈≤≤层的浮雕像个数为n a ,由题意可知,数列{}n a 为等比数列,且该数列的公比为2,由已知可得3222216a a a a −=−=,可得216a =,故2182a a ==, 因此,该洞窟的浮雕像的总个数为()78128127101612−=⨯=−.故选:A.3.(2022秋·广东广州·高二华南师大附中校考阶段练习)《莱因德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的13是较小的两份之和,则最小的一份为( ) A .5 B .10 C .15 D .30【答案】B【分析】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >),则由总和为100可求得20a =,再由较大的三份之和的13是较小的两份之和,可得123d a =,从而可求出d ,进而可求出2a d −【详解】设五个人所分得的面包为2a d −,a d −,a ,a d +,2a d +,(其中0d >), 则有()()()()225100a d a d a a d a d a −+−+++++==, ∴20a =,由()232a a d a d a d a d ++++=−+−,得()33323a d a d +=−; ∴123d a =, ∴5d =.∴最少的一份为2201010a d −=−=. 故选:B4.(2022·河北邯郸·统考模拟预测)位于丛台公园内的武灵丛台已经成为邯郸这座三千年古城的地标建筑,丛台上层建有据胜亭,其顶部结构的一个侧面中,自上而下第一层有2块筒瓦,以下每一层均比上一层多2块筒瓦,如果侧面共有11层筒瓦且顶部4个侧面结构完全相同,顶部结构共有多少块筒瓦?( )A .440B .484C .528D .572【答案】C【分析】由题意知每层筒瓦数构成等差数列{}n a,由等差数列求和公式可求得每一面的筒瓦总数,由此可得四个侧面筒瓦总数.【详解】一个侧面中,第一层筒瓦数记为2,自上而下,由于下面每一层比上一层多2块筒瓦,∴每层筒瓦数构成等差数列{}n a,其中12a=,2d=.一个侧面中共有11层筒瓦,∴一个侧面筒瓦总数是()1111111221322⨯−⨯+⨯=,∴顶层四个侧面筒瓦数总和为1324528⨯=.故选:C.5.(2023·全国·高三专题练习)如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n放置在n行n列()3n≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1 图2A.91B.169C.175D.180【答案】C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果. 【详解】由题意,7阶幻方各行列和,即“幻和”为12 (49)1757+++=.故选:C6.(2022·全国·高三专题练习)斐波那契数列,又称黄金分割数列,该数列在现代物理、准晶体结构、化学等领域有着非常广泛的应用,在数学上,斐波那契数列是用如下递推方法定义的:121a a ==,()*123,.n n n a a a n n N −−=+≥∈ 已知2222123mma a a a a ++++是该数列的第100项,则m =( )A .98B .99C .100D .101【答案】B【分析】根据题意推出2121a a a =,222321a a a a a =−,L ,211m m m m m a a a a a +−=−, 利用累加法可得211mi m m i a a a +==∑,即可求出m 的值.【详解】由题意得,2121a a a =,因为12n n n a a a −−=−,得222312321()a a a a a a a a =−=−,233423432()a a a a a a a a =−=−,L ,21111()m m m m m m m m a a a a a a a a +−+−=−=−,累加,得222121m m m a a a a a ++++=,因为22212m ma a a a +++是该数列的第100项,即1m a +是该数列的第100项,所以99m =. 故选:B.7.(2022春·河南南阳·高二校联考阶段练习)南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第50层球的个数为( )A .1255B .1265C .1275D .1285【答案】C【分析】根据题中给出的图形,结合题意找到各层球的个数与层数的关系,得到(1)2n n n a +=,进而求解结论.【详解】解:设各层球的个数构成数列{}n a ,由题意可知,11a =,21212a a =+=+,323123a a =+=++,⋯,1123n n a a n n −=+=+++⋯+, 故(1)1232n n n a n +=+++⋯+=, 50505112752a ⨯∴==, 故选:C .8.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间[0,1]平均分成三段,去掉中间的一段,剩下两个闭区间1[0,]3和2[,1]3;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:1[0,]9,21[,]93,27[,]39,8[,1]9;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历n 步构造后,20212022不属于剩下的闭区间,则n 的最小值是( ).A .7B .8C .9D .10【答案】A【分析】根据三分康托集的构造过程可知:经历第n 步,每个去掉的开区间以及留下的闭区间的区间长度都是13n⎛⎫⎪⎝⎭,根据规律即可求出20212022属于1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,进而根据不等式可求解.【详解】20212022不属于剩下的闭区间,20212022属于去掉的开区间经历第1步,剩下的最后一个区间为2[,1]3,经历第2步,剩下的最后一个区间为8,19⎡⎤⎢⎥⎣⎦,……,经历第n步,剩下的最后一个区间为1113n⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦,,去掉的最后开区间为1112,133n n⎛⎫⎛⎫⎛⎫−⨯−⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭由120111121320223n n⎛⎫⎛⎫−⨯<<−⎪ ⎪⎝⎭⎝⎭化简得4044320223nn⎧>⎨<⎩,解得7n=故选:A9.(2022春·江苏南通·高二统考期末)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下头一个2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到30的全部素数过程中剔除的所有数的和为()A.333B.335C.337D.341【答案】B【分析】根据给定条件,求出230的全部整数和,再求出2到30的全部素数和即可计算作答.【详解】2到30的全部整数和123029464 2S+=⨯=,2到30的全部素数和22357111317192329129S=+++++++++=,所以剔除的所有数的和为464129335−=.故选:B10.(2022·全国·高三专题练习)谈祥柏先生是我国著名的数学科普作家,在他的《好玩的数学》一书中,有一篇文章《五分钟挑出埃及分数》,文章告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).则下列埃及分数113⨯、135⨯、157⨯、L、120212023⨯的和是()A.20222023B.20232022C.10112023D.20231011【答案】C【分析】利用裂项相消法可求得结果.【详解】当N n *∈时,()()1111212122121n n n n ⎛⎫=− ⎪−+−+⎝⎭,因此,11111111111111335572021202323355720212023⎛⎫++++=−+−+−++− ⎪⨯⨯⨯⨯⎝⎭1110111220232023⎛⎫=−=⎪⎝⎭. 故选:C.11.(2022春·四川资阳·高一统考期末)《算法统宗》是中国古代数学名著,书中有这样一个问题:九百九十六斤棉,赠分八子做盘缠,次第每人多十七,要将第八数来言,务要分明依次弟,孝和休惹外人传.意为:996斤棉花,分别赠送给8个子女做旅费,从第二个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝顺子女的美德外传.据此,前五个孩子共分得的棉花斤数为( ) A .362 B .430 C .495 D .645【答案】C【分析】设这八个孩子分得棉花的斤数构成等差数列{}n a ,由题设求得其首项与公差,即可求得结果. 【详解】解:设这八个孩子分得棉花的斤数构成等差数列{}n a , 由题意知:公差17d =, 又12381878179962a a a a a ⨯+++⋯+=+⨯=,解得165a =, 故412351545455651749522a a a a a d a ⨯⨯++=+=⨯⨯=+++. 故选:C .12.(2022秋·江苏淮安·高三校考阶段练习)天干地支纪年法源于中国,中国自古便有十天干与十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,2022年是壬寅年,请问:在100年后的2122年为( ) A .壬午年 B .辛丑年C .己亥年D .戊戌年【答案】A【分析】将天干和地支分别看作等差数列,结合1001010÷=,1001284÷=,分别求出100年后天干为壬,地支为午,得到答案.【详解】由题意得:天干可看作公差为10的等差数列,地支可看作公差为12的等差数列,由于1001010÷=,余数为0,故100年后天干为壬,由于1001284÷=,余数为4,故100年后地支为午,综上:100年后的2122年为壬午年.故选:A13.(2022秋·江苏宿迁·高三沭阳县建陵高级中学校考期中)南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所以论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”,现有高阶等差数列,其前6项分别为1,5,11,21,37,61,……则该数列的第8项为()A.99B.131C.139D.141【答案】D【分析】根据题中所给高阶等差数列定义,找出其一般规律即可求解.【详解】设该高阶等差数列的第8项为x,根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:根据规律补全:由图可得341295yx y−=⎧⎨−=⎩,则14146xy=⎧⎨=⎩.故选:D14.(2023春·广西柳州·高三统考阶段练习)《九章算术》中有一题:今有牛、马、羊、猪食人苗,苗主责之粟9斗,猪主曰:“我猪食半羊.”羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?其意是:今有牛、马、羊、猪吃了别人的禾苗,禾苗主人要求赔偿9斗粟,猪主人说:“我猪所吃的禾苗只有羊的一半.”羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比率偿还,牛、马、羊、猪的主人各应赔偿多少粟?在这个问题中,马主人比猪主人多赔偿了()斗.A .35B .95C .3D .215【答案】B【分析】转化为等比数列进行求解,设出未知数,列出方程,求出马主人比猪主人多赔偿了斗数. 【详解】由题意得:猪、羊、马、牛的主人赔偿的粟斗数成等比数列,公比为2, 设猪的主人赔偿的粟斗数为x , 则2489x x x x +++=,解得:35x =,故马主人赔偿的粟斗数为1245x =, 所以马主人比猪主人多赔偿了斗数为1239555−=. 故选:B15.(2021秋·河南商丘·高二校联考期中)《莉拉沃蒂》是古印度数学家婆什迦罗的数学名著,书中有下面的表述:某王为夺得敌人的大象,第一天行军2由旬(由旬为古印度长度单位),以后每天均比前一天多行相同的路程,七天一共行军80由旬到达地方城市.下列说法正确的是( ) A .前四天共行1877由旬 B .最后三天共行53由旬C .从第二天起,每天比前一天多行的路程为237由旬 D .第三天行了587由旬 【答案】D【分析】由题意,每天行军的路程{}n a 为等差数列,且12a =,780S =,利用基本量1,a d 表示可得227d =,依次分析,即得解 【详解】由题意,不妨设每天行军的路程为数列{}n a ,则12a =又以后每天均比前一天多行相同的路程,故{}n a 构成一个等差数列,不妨设公差为d 七天一共行军80由旬,即780S = 故71767802S a d ⨯=+=,解得227d =4143188427S a d ⨯=+=,A 错误;567741883728077a a a S S ++=−=−=,B 错误; 由于227d =,故从第二天起,每天比前一天多行的路程为227由旬,C 错误;31225822277a a d =+=+⨯=,D 正确 故选:D16.(2022·全国·高三专题练习)“垛积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、刍童垛、三角垛等.某仓库中部分货物堆放成如图所示的“茭草垛”:自上而下,第一层1件,以后每一层比上一层多1件,最后一层是n 件.已知第一层货物单价1万元,从第二层起,货物的单价是上一层单价的910.若这堆货物总价是910020010n⎛⎫− ⎪⎝⎭万元,则n 的值为( )A .9B .10C .11D .12【答案】B【分析】先依次求出各层货物总价,再利用裂项抵消法进行求解. 【详解】由题意,得第一层货物总价为1万元,第二层货物总价为9210⨯万元, 第三层货物总价为293()10⨯万元,……,第n 层货物总价为19()10n n −⨯万元.设这堆货物总价为y 万元, 则21999123()()101010n y n −=+⨯+⨯+⋅⋅⋅+⨯ 23999992()3()()1010101010n y n =+⨯+⨯+⋅⋅⋅+⨯, 两式相减,得2311999991+()()()()101010101010n n y n −=+++⋅⋅⋅+−⨯,即91()199910()1010()()910101010110nn n n y n n −=−⋅=−⨯−⋅−,则999100100()10()=100(10010)()101010n n ny n n =−⨯−⋅−+⨯,令99100(10010)()=100200()1010n ny n =−+⨯−⨯,得10n =. 故选:B.17.(2021秋·吉林松原·高二长岭县第三中学校考阶段练习)任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2,反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这就是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).如取正整数6m =,根据上述运算法则得出6→3→10→5→16→8→4→2→1,共需经过8个步骤变成1(简称为8步“雹程”).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,则当42m =时,则使1n a =需要的雹程步数为( ) A .7 B .8 C .9 D .10【答案】B1n a =使得需要多少步雹程.【详解】解:根据题意,当42m =,根据上述运算法则得出42→21→64→32→16→8→4→2→1, 所以共需经过8个步骤变成1,故使1n a =需要的雹程步数为8. 故选:B18.(2022·全国·高三专题练习)意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列{}n a 满足11a =,21a =,()*123,n n n a a a n n −−=+≥∈N .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前n项所占的格子的面积之和为n S ,每段螺旋线与其所在的正方形所围成的扇形面积为n c ,则其中不正确结论的是( )A .2111n n n n S a a a +++=+⋅ B .12321n n a a a a a +++++=−C .1352121n n a a a a a −++++=−D .()121)4(3n n n n c c a n a π−−+−≥=⋅【答案】C【分析】A 选项由前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形即可判断;B 选项由()*123,n n n a a a n n −−=+≥∈N 结合累加法即可判断;C 选项通过特殊值检验即可;D 选项表示出221111,44n n n n c a c a ππ−−==,作差即可判断. 【详解】由题意知:前()1n +项所占格子组成长为1n n a a ++,宽为1n a +的矩形,其面积为()211111n n n n n n n S a a a a a a +++++=+=+,A 正确;32143221,,,n n n a a a a a a a a a ++=+=+=+,以上各式相加得,()34223112()n n n a a a a a a a a a +++++=+++++++,化简得2212n n a a a a a +−=+++,即1221n n a a a a ++++=−,B 正确;12345613561,2,3,5,8,817a a a a a a a a a a ======∴++=≠−=,C 错误;易知221111,44n n n n c a c a ππ−−==,()()()221111214()(3)n n n n n n n n n n c c a a a a a a a a n πππ−−−−−+∴−=−=−+=≥,D 正确.故选:C.19.(2023·全国·高三专题练习)如图是美丽的“勾股树”,将一个直角三角形分别以它的每一条边向外作正方形而得到如图①的第1代“勾股树”,重复图①的作法,得到如图②的第2代“勾股树”,…,以此类推,记第n 代“勾股树”中所有正方形的个数为n a ,数列{}n a 的前n 项和为n S ,若不等式2022n S >恒成立,则n 的最小值为( )A .7B .8C .9D .10【答案】C【分析】根据第1代“勾股树”,第2代“勾股树”中,正方形的个数,以此类推,得到第n 代“勾股树”中所有正方形的个数,即n a ,从而得到n S 求解.【详解】解:第1代“勾股树”中,正方形的个数为11321+=−,第2代“勾股树”中,正方形的个数为21721+=−,…, 以此类推,第n 代“勾股树”中所有正方形的个数为121n +−,即121n n a +=−,所以()24122412n n n S n n +−=−=−−−,因为0n a >,所以数列{}n S 为递增数列, 又810122022S =<,920352022S =>, 所以n 的最小值为9. 故选:C .20.(2022·海南省直辖县级单位·“贾宪三角”,后被南宋数学家杨辉引用、n 维空间中的几何元素与之有巧妙联系、例如,1维最简几何图形线段它有2个0维的端点、1个1维的线段:2维最简几何图形三角形它有3个0维的端点,3个1维的线段,1个2维的三角形区域;……如下表所示.从1维到6维最简几何图形中,所有1维线段数的和是( )A .56B .70C .84D .28【答案】A【分析】根据题意可得1n n a a n −−=,可求得()12n a n n +=,即可求解. 【详解】设从1维到n 维最简几何图形的1维线段数构成数列{}n a , 由题意可得21312a a −=−=,32633a a −=−=,431064a a −=−=,…, 以此类推,可得1n n a a n −−=, 所以()()()121321n n n a a a a a a a a −=+−+−++−()11232n n n +=++++=,所以12345613610152156a a a a a a +++++=+++++=. 故选:A.21.(2023·全国·高三专题练习)大衍数列,来源于中国古代著作《乾坤普》中对易传“大衍之数五十”的推论.其前10项为:0、2、4、8、12、18、24、32、40、50,通项公式为221,2,2n n n a n n ⎧−⎪⎪=⎨⎪⎪⎩为奇数为偶数,若把这个数列{}n a 排成下侧形状,并记),A m n 表示第m 行中从左向右第n 个数,则()9,5A 的值为( )A .2520B .2312C .2450D .2380【答案】D【分析】确定()9,5A 在数列{}n a 中的项数,结合数列{}n a 的通项公式可求得结果.【详解】由题可知,设数阵第n 行的项数为n b ,则数列{}n b 是以1为首项,公差为2的等差数列, 数列{}n b的前8项和为87182642⨯⨯+⨯=,所以,()9,5A 是数列{}n a 的第64569+=项,因此,()26919,523802A −==.故选:D.22.(2022·全国·高三专题练习)在归国包机上,孟晚舟写下《月是故乡明,心安是归途》,其中写道“过去的1028天,左右踟躇,千头万绪难抉择;过去的1028天,日夜徘徊,纵有万语难言说;过去的1028天,山重水复,不知归途在何处.”“感谢亲爱的祖国,感谢党和政府,正是那一抹绚丽的中国红,燃起我心中的信念之火,照亮我人生的至暗时刻,引领我回家的漫长路途.”下列数列{}()N n a n *∈中,其前n 项和不可能为1028的数列是( ) (参考公式:2222(1)(21)1236n n n n ++++++=)A .1028n a n =+B .2744125n a n n =−+C .127(1)45n n a n +=−−D .1122n n a −=+【答案】A【分析】利用等差数列、等比数列的前n 项和公式以及参考公式求数列{}n a 前n 项和n S ,令1028n S =,看是否有正整数解即可判定选项A 、B 、D 的正确性;通过分类讨论分别求出2k S 和21k S −,然后可得到20k S <,令211028k S −=,看是否有正整数解即可选项C 的正确性. 【详解】设数列{}n a 的前n 项和为n S , 对于A :由等差数列的前n 项和公式,得: 1()(533)10282n n n a a S n n +==+=, 因为方程无正整数解,即选项A 错误;对于B :不妨令24n b n =,74125n c n =−+, 数列{}n b 和{}n c 的前n 项和分别为n T 和n Q , 则n n n a b c =+,n n n S T Q =+,由参考公式和等差数列的前n 项和公式,得: 22(1)(21)4(123)3n n n n T n ++=++++=,21()44625n n n c C Q n n +==−+, 所以22(1)(21)446102835n n n n n n S T Q n n ++=+=−+=,解得*10N n =∈,即选项B 正确; 对于C :①当*N )2(n k k =∈时, 222222271234(21)(2)245n k S S k k k ==−+−++−−−⨯ 14(3741)045kk =−+++−−<,故此时1028n S ≠; ②当()*21N n k k =−∈时, 22222222171234(23)(22)(21)(21)45n k S S k k k k −==−+−++−−−+−−− 27(3745)(21)(21)45k k k =−++⋅⋅⋅+−+−−− 2(1)(345)7(21)(21)245k k k k −+−=−+−−−27232(21)45k k k =−+−− 令27232(21)102845k k k −+−−=,解得23k =, 即223145n =⨯−=时,1028n S =, 即选项C 正确;对于D :由等比数列的前n 项和公式可知,1(12)112110281222n n n S n n ⨯−=+=+−=−,解得*10N n =∈,即选项D 故选:A .23.(2023·全国·高三专题练习)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50,则此数列的第21项是( ) A .200 B .210C .220D .242【答案】C【分析】由数列奇数项的前几项可归纳出奇数项上的通项公式,从而得到答案.【详解】根据题意,数列的前10项依次是0、2、4、8、12、18、24、32、40、50,其中奇数项为0、4、12、24、40,有22221357113151710,4,12,24,2222a a a a −−−−========⋯故其奇数项上的通项公式为21,2n n a −=故221211=2202a −=, 故选:C24.(2022春·云南红河·高二弥勒市一中校考阶段练习)斐波那契数列(Fibonacci Sequence )又称黄金分割数列,因数学家列昂纳多,斐波那契(Leonardo Fibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波纳契数列被以下递推的方法定义:数列{}n a 满足:12211,n n n a a a a a ++===+,现从数列的前2022项中随机抽取1项,能被3整除的概率是( ) A .5052022B .2522022C .5042022 D .14【答案】A【分析】依次写出数列各项除以3所得余数,寻找后可得结论.【详解】根据斐波那契数列的定义,数列各项除以3所得余数依次为1,1,2,0,2,2,1,0,1,1,2,…,余数数列是周期数列,周期为8,202225286=⨯+,所以数列的前2022项中能被3整除的项有25221505⨯+=,所求概率为5052022P =, 故选A .25.(2022·高二课时练习)分形几何学是一门以不规则几何形态为研究对象的几何学,它的研究对象普遍存在于自然界中,因此又被称为“大自然的几何学”.按照如图1所示的分形规律,可得如图2所示的一个树形图.若记图2中第n n a ,则6a =( )A .55B .58C .60D .62【答案】A【分析】n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,由题意可得112,n n n n n n a a b b a b ++=+=+,根据初始值,由此递推,不难得出所求.【详解】已知n a 表示第n 行中的黑圈个数,设n b 表示第n 行中的白圈个数,则由于每个白圈产生下一行的一白一黑两个圈,一个黑圈产生下一行的一个白圈2个黑圈,∴112,n n n n n n a a b b a b ++=+=+, 又∵110,1a b ==; 221,1a b ==;332113112a b =⨯+==+=,; 442328,325a b =⨯+==+=;5528521,8513a b =⨯+==+=; 62211355a =⨯+=,故选:A.26.(2022·全国·高三专题练习)如图1所示,古筝有多根弦,每根弦下有一个雁柱,雁柱用于调整音高和音质.图2是根据图1绘制的古筝弦及其雁柱的简易平面图.在图2中,每根弦都垂直于x 轴,相邻两根弦间的距离为1,雁柱所在曲线的方程为 1.1x y =,第n 根弦(N n ∈,从左数第1根弦在y 轴上,称为第0根弦)分别与雁柱曲线和直线:1l y x =+交于点n A (n x ,n y )和n B (n x ',n y '),则200n nn y y ='=∑( ) 参考数据:取221.18.14=.A .814B .900C .914D .1000【答案】C【分析】求出n n y y '、 ,用错位相减法求和即可.【详解】由条件可得()2020011920011.11 1.12 1.120 1.121 1.1n n nn n y y n =='=+=⨯+⨯++⨯+⨯∑∑①,所以2012202101.11 1.12 1.120 1.121 1.1n nn y y ='⨯=⨯+⨯++⨯+⨯∑②,-②得:2120120212101 1.10.1 1.1 1.1 1.121 1.121 1.11 1.1=−'−⨯=+++−⨯=−⨯−∑n nn y y ,2121221 1.10.121 1.11 1.118.1491.40.10.10.1−+⨯⨯++====−−−−,所以20914n nn y y ='=∑. 故选:C.27.(2022秋·陕西渭南·高二校考期中)图1是中国古代建筑中的举架结构,AA ',BB ',CC ',DD '是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图,其中1DD ,1CC ,1BB ,1AA 是举,1OD ,1DC ,1CB ,1BA 是相等的步,相邻桁的举步之比分别为110.5DD OD =,111CC k DC =,121BBk CB =,131AA k BA =,已知1k ,2k ,3k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则2k =( )A .0.75B .0.8C .0.85D .0.9【答案】B【分析】设1111OD DC CB BA ===,则可得关于2k 的方程,求出其解后可得正确的选项 【详解】设11111OD DC CB BA ====,则10.5,DD =111213,,CC k BB k AA k ===, 依题意,有21230.1,0.1k k k k −=+=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以20.530.7254k +=,故20.8k =, 故选:B28.(2022秋·陕西咸阳·高二校考阶段练习)《张邱建算经》记载了这样一个问题:“今有马行转迟,次日减半,疾七日,行七百里”,意思是“有一匹马行走的速度逐渐变慢,每天走的路程是前一天的一半,连续走了7天,共走了700里”.在上述问题中,此马第二天所走的路程大约为( ) A .170里 B .180里C .185里D .176里【答案】D【分析】根据题意,可知此马每天走的路程形成等比数列,利用等比数列的前n 项和公式求得基本量,从而得解.【详解】由题意得,设这匹马的第n 天走的路程为n a ,则有112n n a a +=,7700S =, 所以数列{}n a 是12q =的等比数列, 故71112700112a ⎡⎤⎛⎫−⎢⎥⎪⎝⎭⎢⎥⎣⎦=−,解得1350128127a ⨯=,所以21175128176.4127a a q =⨯=≈. 故选:D.29.(2022秋·广东广州·高三校联考阶段练习)如图所示的三角形叫“莱布尼兹调和三角形”,它们是由整数的倒数组成,第n 行有n 个数且两端的数均为()12n n≥,每个数是它下一行左右相邻的两数的和,如111111111,,1222363412=+=+=+⋅⋅⋅⋅⋅⋅,则第8行第4个数(从左往右数)为( )A .1280B .1168C .1140D .1105【答案】A【分析】利用“莱布尼兹调和三角形”的性质,依次运算即可. 【详解】设第n 行第m 个数为(),a n m ,则()15,15a =,()16,16a =,()17,17a =,()18,18a =,故()()()16,25,16,130a a a =−=,()()()17,26,17,142a a a =−=,()()()18,27,18,156a a a =−=,()()()17,36,27,2105a a a =−=,()()()18,37,28,2168a a a =−=,()()()18,47,38,3280a a a =−=, 故选:A.二、多选题30.(2022秋·江苏南通·高三江苏省如皋中学统考阶段练习)朱世杰是历史上伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天比前一天多派7人,官府向修筑堤坝的每人每天发放大米3升.”则下列结论正确的有( ) A .将这1864人派谴完需要16天 B .第十天派往筑堤的人数为134 C .官府前6天共发放1467升大米D .官府前6天比后6天少发放1260升大米 【答案】ACD【分析】记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,依题意可得{}n a 是以64为首项,7为公差的等差数列,{}n b 是以192为首项,21为公差的等差数列,再根据等差数列的通项公式及前n 项和公式计算可得;【详解】解:记数列{}n a 为第n 天派遣的人数,数列{}n b 为第n 天获得的大米升数,则{}n a 是以64为首项,7为公差的等差数列,即757n a n =+,{}n b 是以192为首项,21为公差的等差数列,即21171n b n =+,所以106479127a =+⨯=,B 不正确.设第k 天派遣完这1864人,则()716418642k k k −+=,解得16k =(负值舍去),A 正确; 官府前6天共发放6519262114672⨯⨯+⨯=升大米,C 正确, 官府前6天比后6天少发放211061260⨯⨯=升大米,D 正确. 故选:ACD31.(2022秋·山西太原·高二太原师范学院附属中学校考阶段练习)若正整数m .n 只有1为公约数,则称m ,n 互质,对于正整数k ,ϕ(k )是不大于k 的正整数中与k 互质的数的个数,函数ϕ(k )以其首名研究者欧拉命名,称为欧拉函数,例如:()21ϕ=,(3)2ϕ=,(6)2ϕ=,(8)4ϕ=.已知欧拉函数是积性函数,即如果m ,n 互质,那么()()()mn m n ϕϕϕ=,例如:(6)(2)(3)ϕϕϕ=,则( ) A .(5)(8)ϕϕ=B .数列(){}2n ϕ是等比数列 C .数列(){}6nϕ不是递增数列D .数列()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和小于35【答案】ABD【分析】根据欧拉函数定义及运算性质,结合数列的性质与求和公式,依次判断各选项即可得出结果. 【详解】(5)4,(8)4,(5)(8)ϕϕϕϕ==∴=,A 对;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为12n −, ∴()11222=2ϕ−−−=nnn n 为等比数列,B 对;∵与3n 互质的数为1,2,4,5,7,8,10,11,,32,3 1.−−n n共有11(31)323n n −−−⋅=⋅个,∴1(3)23,ϕ−=⋅n n又∵()6=(2)(3)ϕϕϕn n n =126−⋅n ,∴()6ϕn一定是单调增数列,C 错;()1626nn ϕ−=⋅,()16nϕ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为 111263131156516nn n S ⎡⎤⎛⎫−⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==−<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦−,D 对. 故选:ABD .32.(2022·全国·高三专题练习)我国古代著名的数学专著《九章算术》里有一段叙述:“今有良马和驽马发长安至齐,良马初日行一百九十三里,日增十三里;驽马初日行九十七里,日减半里.良马先至齐,复还迎驽马,九日后二马相逢.”其大意为今有良马和驽马从长安出发到齐国,良马第一天走193里,以后每天比前一天多走13里;驽马第一天走970.5里.良马先到齐国,再返回迎接驽马,9天后两马相遇.下列结论正确的是( ) A .长安与齐国两地相距1530里 B .3天后,两马之间的距离为328.5里 C .良马从第6天开始返回迎接驽马 D .8天后,两马之间的距离为377.5里 【答案】AB【分析】A, 设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,求出良马和驽马各自走的路程即得A 正确;B ,计算得到3天后,两马之间的距离为328.5里,即可判断B 正确; C,计算得到良马前6天共行走了1353里1530<里,故C 不正确;D ,计算得到8天后,两马之间的距离为390里,故D 不正确.【详解】解:设良马第n 天行走的路程里数为n a ,驽马第n 天行走的路程里数为n b ,则。

2024年高考数学专项突破数列大题基础练(解析版)

2024年高考数学专项突破数列大题基础练(解析版)

数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nnb a=,求{}n b 的前n 项和n T .2024年高考数学专项突破数列大题基础练(解析版)7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪⎝⎭,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为3331log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n a S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足1121,1nn S a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a+=+,设11nnb a =-.(1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n nb a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,1154,115n n a n a a n+-==+.(1)求{}n a 的通项公式;(2)若()()1,414n n n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设2211log log n n n b a a +=⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n ∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n S n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n nn nn a b a a +-+=,求数列{}nb 的前2n 项和2nT .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n na nb a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设3132312log log log n n nb b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.数列大题基础练-新高考数学复习分层训练(新高考通用)1.(2022·浙江·模拟预测)已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式;(2)若数列{}n a 为等比数列,求1a .【答案】(1)21n a =-;(2)11a =.【分析】(1)利用累加法求2n a 即可;(2)根据()121nn n a a +=+⋅-得到212a a =-,322a a =+,联立得到1q =-,然后代入求1a 即可.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+ ()()()212212121211n n --=⋅-+⋅-++⨯-+ 211=-+=-.(2)设数列{}n a 的公比为q ,因为()121nn n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.2.(2022·海南省直辖县级单位·校联考一模)等差数列{}n a 的首项11a =,且满足2512a a +=,数列{}n b 满足2n a n b =.(1)求数列{}n a 的通项公式;(2)设数列{}n b 的前n 项和是n T ,求n T .【答案】(1)21n a n =-;3.(2023·黑龙江大庆·统考一模)设{}n a 是公差不为0的等差数列,12a =,3a 是1a ,11a 的等比中项.(1)求{}n a 的通项公式;(2)设3n b a a =,求数列{}n b 的前n 项和n S .4.(2023·广东惠州·统考模拟预测)数列{}n a 中,12a =,121n n a a +=-.(1)求证:数列{}1n a -是等比数列;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .5.(2023·广东江门·统考一模)已知数列{}n a (N n +∈)满足11a =,133n n n a a n++=,且n n ab n =.(1)求数列{}n b 是通项公式;(2)求数列{}n a 的前n 项和n S .【答案】(1)13n n b -=6.(2023·江苏·统考一模)已知等比数列{}n a 的各项均为正数,且23439a a a ++=,54323a a a =+.(1)求{}n a 的通项公式;(2)数列{}n b 满足n nb a =,求{}n b 的前n 项和n T .7.(2023·重庆·统考二模)已知数列{}n a 的前n 项和为n S ,且满足()115n n na n a +-+=,且15a ≠-.(1)求证:数列5n a n +⎧⎫⎨⎬⎩⎭为常数列,并求{}n a 的通项公式;(2)若使不等式20n S >成立的最小整数为7,且1Z a ∈,求1a 和n S 的最小值.8.(2023·海南海口·校考模拟预测)已知数列{}n a 的前n 项和为n S ,14a =,2n n S n=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}n c 的前n 项和为n T ,求111T T T ++⋅⋅⋅+的值.9.(2023·山东青岛·统考一模)已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2S ,4S ,54S +成等差数列,2a ,4a ,8a 成等比数列.(1)求n S ;(2)记数列{}n b 的前n 项和为n T ,22n n n n b T S +-=,证明数列1n n b S ⎧⎫-⎨⎬⎩⎭为等比数列,并求{}n b 的通项公式.10.(2023·山东济南·一模)已知数列{}n a 满足111,(1)1n n a na n a +=-+=.(1)若数列{}n b 满足1nn a b n+=,证明:{}n b 是常数数列;(2)若数列{}n c 满足πsin 22n an n c a ⎛⎫=+ ⎪,求{}n c 的前2n 项和2n S .11.(2022·辽宁鞍山·统考一模)已知等差数列{}n a 满足首项为333log 15log 10log 42-+的值,且3718a a +=.(1)求数列{}n a 的通项公式;(2)设1n b a a =,求数列{}n b 的前n 项和n T .12.(2023·广东·统考一模)已知各项都是正数的数列{}n a ,前n 项和n S 满足()2*2n n n a S a n =-∈N .(1)求数列{}n a 的通项公式.(2)记n P 是数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和,n Q 是数列121n a -⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和.当2n ≥时,试比较n P 与n Q 的大小.【答案】(1)n a n =(2)n nP Q <13.(2022·吉林长春·东北师大附中校考模拟预测)从①12n S n n ⎛⎫=+ ⎪⎝⎭;②23S a =,412a a a =;③12a =,4a 是2a ,8a 的等比中项这三个条件中任选一个,补充到下面横线上,并解答.已知等差数列{}n a 的前n 项和为n S ,公差d 不等于零,______.(1)求数列{}n a 的通项公式;(2)若122n n n b S S +=-,数列{}n b 的前n 项和为n W ,求n W .14.(2022·广东珠海·珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .15.(2022·云南大理·统考模拟预测)已知数列{}n a 的前n 项和为n S ,且满足111,1nn a a n+==-.(1)求数列{}n a 的通项公式;(2)若数列2,,23,,n n n C n n ⎧=⎨+⎩为奇数为偶数,求数列{}n C 的前2n 项和2n T .16.(2022·湖南永州·统考一模)已知数列{}{},n n a b 满足:111a b ==,且210n n n n a b a b ++-=.(1)若数列{}n a 为等比数列,公比为121,2q a a -=,求{}n b 的通项公式;(2)若数列{}n a 为等差数列,11n n a a +-=,求{}n b 的前n 项和n T .17.(2022·广东韶关·统考一模)已知数列{}n a 的首项15a =,且满足13n n n a a +=+,设1n nb a =-.(1)求证:数列{}n b 为等比数列;(2)若1111140a a a a ++++> ,求满足条件的最小正整数n .18.(2022·河北·模拟预测)已知数列{}n a 的前n 项和为n S ,13a =,且1123n n n S S a +++=-.(1)求数列{}n a 的通项公式;(2)①3log n n n b a a =;②3321log log n n n b a a +=⋅;③3log n n n b a a =-.从上面三个条件中任选一个,求数列{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.19.(2022·广东广州·统考一模)已知公差不为0的等差数列{}n a 中,11a =,4a 是2a 和8a 的等比中项.(1)求数列{}n a 的通项公式:(2)保持数列{}n a 中各项先后顺序不变,在k a 与1(1,2,)k a k += 之间插入2k ,使它们和原数列的项构成一个新的数列{}n b ,记{}n b 的前n 项和为n T ,求20T 的值.20.(2023·湖北·荆州中学校联考二模)已知数列{}n a ,若_________________.(1)求数列{}n a 的通项公式;(2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .从下列三个条件中任选一个补充在上面的横线上,然后对题目进行求解.①2123n a a a a n ++++= ;②11a =,47a =,()*112,2n n n a a a n n -+=+∈N ≥;③11a =,点(),n A n a ,()11,n B n a ++在斜率是2的直线上.21.(2023·江苏南通·二模)已知正项数列{}n a 的前n 项和为,且11a =,2218n n S S n +-=,*N n ∈.(1)求n S ;(2)在数列{}n a 的每相邻两项1k k a a +,之间依次插入12k a a a ⋯,,,,得到数列{}1121231234n b a a a a a a a a a a ⋯⋯:,,,,,,,,,,,求{}n b 的前100项和.22.(2023·江苏南通·海安高级中学校考一模)已知数列{}n a 满足()1122n n n a a a n -+=+≥,且12342,18a a a a =++=(1)求{}n a 的通项公式;(2)设1000na nb =-,求数列{}n b 的前15项和15T (用具体数值作答).()()1061022166490300022-==--+23.(2023·安徽·模拟预测)已知{}n a 为等差数列,{}n b 是公比为2的等比数列,且223344a b a b b a -=-=-.(1)证明:11a b =;(2)求集合{}1,1500k m k b a a m =+≤≤中元素个数.24.(2023·河北衡水·河北衡水中学校考三模)已知{}n a 为等差数列,11,115n n a a n+==+.(1)求{}n a 的通项公式;(2)若()()1,414n n b T a a =++为{}n b 的前n 项和,求n T .25.(2023·广东广州·统考二模)设数列{}n a 的前n 项和为n S ,且()22*n n S a n =-∈N .(1)求{}n a 的通项公式;(2)设1log log n b a a =⋅,记{}n b 的前n 项和为n T ,证明:1n T <.26.(2023·江苏泰州·统考一模)在①124,,S S S 成等比数列,②4222a a =+,③8472S S S =+-这三个条件中任选两个,补充在下面问题中,并完成解答.已知数列{}n a 是公差不为0的等差数列,其前n 项和为n S ,且满足__________,__________.(1)求{}n a 的通项公式;(2)求12233411111n n a a a a a a a a +++++ .注:如果选择多个方案分别解答,按第一个方案计分.27.(2023·黑龙江·黑龙江实验中学校考一模)已知数列{}n a ,前n 项和为n S ,且满足112n n n a a a +-=-,2n ≥,*N n∈,1514a a +=,770S =,等比数列{}n b 中,1212b b +=,且12,6b b +,3b 成等差数列.(1)求数列{}n a 和{}n b 的通项公式;(2)记n c 为区间(]()*,N n n a b n ∈中的整数个数,求数列{}n c 的前n 项和n P .28.(2023·吉林·统考二模)已知数列{}n a 的前n 项和为n S ,13a =,数列n n ⎧⎫⎨⎬⎩⎭是以2为公差的等差数列.(1)求{}n a 的通项公式;(2)设()()112n n n n n a b a a +-+=,求数列{}n b 的前2n 项和2n T .29.(2023·山西·校联考模拟预测)已知数列{}n a 满足0n a >,22112n n n n a a a a ++=+,且13a ,23a +,3a 成等差数列.(1)求{}n a 的通项公式;(2)若12,log ,n n n a n b a n ⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b 的前2n 项和2n T .30.(2023·黑龙江哈尔滨·哈尔滨三中校考二模)已知数列{}n a 满足:15a =,134n n a a +=-,设2n n b a =-,*N n ∈.(1)求数列{}n b 的通项公式;(2)设31323log log log n n b b b T b b b =++⋅⋅⋅+,()*N n ∈,求证:34n T <.。

2020年高考数学(理)重难点专练07 选考系列(解析版)

2020年高考数学(理)重难点专练07  选考系列(解析版)

2020年高考数学(理)重难点07 选考系列(参数方程与不等式)【高考考试趋势】选考系列主要包含参数方程极坐标,以及不等式是高考中二选一的一道解答题,属于相对比较简单的题目,共10分,是高考大题中分值最小的一道题目.对于参数方程与极坐标,一般均是简单一点的解析几何.对于不等式部分,主要还是以绝对值不等式为主.本专题中主要介绍几种高考中常见的选做题类型,以及在后面【点睛】处有此类题型的解决方法.通过本专题的讲解与练习之后,在高考中,此类题型就能够迎刃而解.拿到满分.【知识点分析以及满分技巧】对于参数方程与极坐标系方程属于简单一点的解析几何.需要搞清楚极坐标系与直角坐标系之间的等量转化,相对于要学会将极坐标系转化成直角坐标去运算,同理将直角坐标系转化成极坐标系去运算.对于绝对值不等式的求解,一般采用三段法,将绝对值不等式分成三段,从而进行分段讨论运算,应注意计算技巧,计算是本类题目的易错点.【常见题型限时检测】(建议用时:35分钟) 一、解答题1.(2020·广东高三月考(理))在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线M 的极坐标方程为2cos ρθ=,若极坐标系内异于O 的三点()1,A ρϕ,2,6B πρϕ⎛⎫+ ⎪⎝⎭,()3123,,06,C πρϕρρρ⎛⎫-> ⎪⎝⎭都在曲线M 上. (1123ρρ=+;(2)若过B ,C两点直线的参数方程为2212x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),求四边形OBAC 的面积.【答案】(1)详见解析;(2 【解析】 【分析】(1)将()12,,,,6B πρϕρϕ⎛⎫+⎪⎝⎭ 3123,(,,0)6C πρϕρρρ⎛⎫-> ⎪⎝⎭代入极坐标方程ρ2cos θ=,求出123ρρρ、、,利用两角和与差的余弦公式化简可得结论;(2)求得()1,2,02B C ⎛ ⎝⎭,则231,2,6πρρϕ===;又得1ρ=.四边形面积为121311sin sin 2626OBAC S ππρρρρ=+,化简可得结果. 【详解】(1)由122cos ,2cos ,6πρϕρϕ⎛⎫==+⎪⎝⎭ 32cos 6πρϕ⎛⎫=- ⎪⎝⎭,则232cos 2cos 66ππρρϕϕ⎛⎫⎛⎫+=++- ⎪ ⎪⎝⎭⎝⎭ 1ϕ==; (2)由曲线M 的普通方程为:2220x y x +-=,联立直线BC 的参数方程得:20t =解得120,t t ==()1,2,02B C ⎛ ⎝⎭则231,2,6πρρϕ===;又得1ρ=即四边形面积为121311sin sin 26264OBAC S ππρρρρ=+=为所求. 【点睛】本题主要考查极坐标方程以及参数方程的应用,考查了极径与极角的几何意义的应用,意在考查综合应用所学知识,解答问题的能力,属于中档题.2.(2020·湖南浏阳一中高三月考(理))己知直线l 的参数方程为132x ty t =+⎧⎨=+⎩(t 为参数),曲线C 的极坐标方程为2sin 16cos 0ρθθ-=,直线l 与曲线C 交于A 、B 两点,点()13P ,.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)求11PA PB+的值. 【答案】(1)21y x =+ ,216y x = ;(2. 【解析】 【分析】(1)直线的参数方程消去t 可求得普通方程.由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,求得曲线C 普通方程.(2)直线的参数方程改写为135x y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数),由t 的几何意义求值. 【详解】()1直线l 的参数方程为1(t 32x ty t=+⎧⎨=+⎩为参数),消去参数,可得直线l 的普通方程y 2x 1=+,曲线C 的极坐标方程为2ρsin θ16cos θ0-=,即22ρsin θ16ρcos θ=,曲线C 的直角坐标方程为2y 16x =,()2直线的参数方程改写为13x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数), 代入2y 16x =,24t t 7055--=,12t t +=,1235t t 4=-,1212t t 11PA PB t t -+==. 【点睛】由直角坐标与极坐标互换公式222cos sin x y x y ρθρθρ=⎧⎪=⎨⎪+=⎩,利用这个公式可以实现直角坐标与极坐标的相互转化.3.(2020·四川高三期末(理))在平面角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为4cos ρθ=,将曲线C 向左平移2个单位长度得到曲线D . (1)求曲线D 的参数方程;(2)已知P 为曲线D 上的动点,,A B两点的极坐标分别为)6π,求AP BP ⋅u u u r u u u r的最大值.【答案】(1)曲线D 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数);(2)13-【解析】试题分析:(1)题设给出的是曲线C 的极坐标方程,把它变形为24cos ρρθ=后利用222,cos x y x ρρθ==+把后者化为()2224x y -+=,向左平移2个单位长度后得到曲线D ,其方程为224x y +=,其参数方程为2cos 2sin x y αα=⎧⎨=⎩ (α为参数).(2),A B 两点的直角坐标为()(3,0,,利用(1)算出的曲线D的参数方程计算·1312cos AP BP αα=--u u u v u u u v ,利用辅助角公式可以求其最大值.解析:(1)2224cos ,4cos ,4x y x ρθρρθ=∴=∴+=Q ,则曲线C 的直角坐标方程为()2224x y -+=,易知曲线C 为圆心是()2,0,半径为2的圆,从而得到曲线D 的直角 坐标方程为224x y += ,故曲线D 的参数方程为 ()2cos 2sin x y ααα=⎧⎨=⎩为参数. (2),A B 两点的直角坐标分别为()(3,03,,依题意可设()2cos ,2sin P αα ,则 ()(2cos 3,2sin ,2cos 3,2sin AP BP αααα=-=-u u u v u u u v ,()(22cos 32sin 2sin 412cos 9AP BP a a ααα∴⋅=-+=--+u u u v u u u v()13αφ=-+,故AP BP ⋅u u u r u u u r的最大值为13-4.(2020·江苏高三月考(理))在平面直角坐标系xOy 中,圆1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆2C 的极坐标方程为)4πρθ=+.(Ⅰ)求圆1C 的普通方程和圆2C 的直角坐标方程; (Ⅰ)判断圆1C 与圆2C 的位置关系.【答案】(Ⅰ)()2224x y +-=;()()22112x y -++=(Ⅰ)见解析 【分析】(Ⅰ)消去参数,即可得到曲线1C 的普通方程,根据极坐标与直角坐标的互化公式,即可化简得到曲线2C 的直角坐标方程;(Ⅰ)由圆心距d =()()2221212r r d r r +>>-可得两圆相交. 【详解】(Ⅰ)圆1C 的参数方程为222x cos y sin αα=⎧⎨=+⎩,(α为参数),可得222x cos y sin αα=⎧⎨-=⎩,平方相加转换为直角坐标方程为:()2224x y +-=.由圆2C 的极坐标方程4πρθ⎛⎫=+⎪⎝⎭可得2=2cos 2sin ρρθρθ-转换为直角坐标方程为:2222x y x y +=-, 即:()()22112x y -++=(Ⅰ)由(Ⅰ)知圆1C 的的半径1=2r ,圆心坐标为()0,2.圆2C 的的半径2r 圆心坐标为()1,1-则圆心距d ==()()2221212610r r d r r +=+>=>-所以,圆1C 与圆2C 相交.【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及圆与圆的位置关系的应用,其中解答中熟记参数方程与普通方程,以及极坐标方程与直角坐标方程的互化公式,合理运算是解答的关键,着重考查了推理与计算能力,属于基础题. 5.(2020·河北承德第一中学高三月考(理))在平面直角坐标系xOy 中,曲线C 的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点M 的极坐标为34π⎛⎫⎪⎝⎭,直线l 的极坐标方程为sin 04ρθπ⎛⎫-+= ⎪⎝⎭.(1)求直线l 的直角坐标方程与曲线C 的普通方程;(2)若N 是曲线C 上的动点,P 为线段MN 的中点,求点P 到直线l 的距离的最大值.【答案】(1)40x y --=,2213x y +=;(2)2. 【分析】(1)直接利用极坐标方程、参数方程和普通方程互化的公式求直线l 的直角坐标方程与曲线C 的普通方程;(2)设N α,sinα),αⅠ[0,2π).先求出点P 到直线l的距离d =再求最大值. 【详解】(1)因为直线l 的极坐标方程为πsin 04ρθ⎛⎫-+= ⎪⎝⎭, 即ρsinθ-ρcosθ+4=0.由x =ρcosθ,y =ρsinθ,可得直线l 的直角坐标方程为x -y -4=0. 将曲线C的参数方程x y sin αα⎧=⎪⎨=⎪⎩消去参数a ,得曲线C 的普通方程为2213x y +=.(2)设Nα,sinα),αⅠ[0,2π). 点M的极坐标(3π4),化为直角坐标为(-2,2).则1cos 1,sin 122P αα⎛⎫-+ ⎪ ⎪⎝⎭.所以点P 到直线l的距离d ==≤, 所以当5π6α=时,点M 到直线l. 【点睛】本题主要考查参数方程、极坐标方程和普通方程的互化,考查三角函数的图像和性质,考查点到直线的距离的最值的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.(2019·山东高考模拟(文))已知0, 0, 0a >b >c >,函数()f x =|a x|+|x+b|+c -. (1)当2a b c ===时,求不等式()8f x <的解集;(2)若函数()f x 的最小值为1,证明:22213a b c ++≥. 【答案】(1){|33}x x -<<(2)见证明 【解析】 【分析】(1)根据题意,当a =b =c =2时,f (x )=|x ﹣2|+|x +2|+2,据此可得f (x )<8Ⅰ2228x x ≤-⎧⎨-⎩<或2268x -⎧⎨⎩<<<或2228x x ≥⎧⎨+⎩<,解可得不等式的解集;(2)根据题意,由绝对值不等式的性质可得f (x )的最小值为1,得a +b +c =1,进而可得(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc=1,结合基本不等式的性质分析可得结论. 【详解】(1)当2a b c ===时,()222f x x x =-+++,所以()28228x f x x ≤-⎧<⇔⎨-<⎩或2268x -<<⎧⎨<⎩或2228x x ≥⎧⎨+<⎩. 所以不等式的解集为{|33}x x -<<. (2)因为0a >,0b >,0c >,所以()f x a x x b c a x x b c =-+++≥-+++ a b c a b c =++=++,当且仅当()() 0a x xb -+≥等号成立; 因为()f x 的最小值为1,所以1a bc ++=,所以()22222221a b c a b c ab ac bc ++=+++++=,因为222ab a b ≤+,222bc b c ≤+,222ac a c ≤+,当且仅当a=b=c 等号成立 所以()22222212223a b c ab ac bc a b c =+++++≤++,所以22213a b c ++≥. 【点睛】本题考查绝对值不等式的性质以及不等式的证明,涉及基本不等式的性质,属于基础题.7.(2019·湖南长郡中学高三月考(理))已知定义在R 上的函数()*2f x x m x m N =--∈,,且()4f x <恒成立.(1)求实数m 的值;(2)若()()()()0,10,13f f αβαβ∈∈+=,,,求证:4118αβ+≥.【答案】(1)1m =;(2)见解析. 【分析】(1)由题得24x m x --<恒成立,即|2m|<4即得m 的值.(2)由题得12αβ+=,再利用基本不等式求()41412αβαβαβ⎛⎫+=++ ⎪⎝⎭的最小值,即不等式得证.【详解】(1)Ⅰ222x m x x m x m --≤--=,要使24x m x --<恒成立,则2m <,解得22m -<<.又Ⅰ*m N ∈,Ⅰ1m =.(2)Ⅰ()()0,10,1αβ∈∈,,.Ⅰ()()22223f f αβαβ+=-+-=,即12αβ+=,Ⅰ()414142251518βααβαβαβαβ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当4βααβ=,即13α=,16β=时取等号,故4118αβ+≥. 【点睛】本题主要考查不等式的恒成立问题,考查不等式的证明,考查基本不等式求最值,意在考查学生对这些知识的掌握水平和分析推理能力.8.(2018·全国衡水中学高考模拟(理))选修4-5:不等式选讲 已知函数()f x =11x x x -+++. (1)求关于x 的不等式()6f x <的解集; (2) 0,0x R x ∀∈∃>,使得200()(0)af x x a x ≥+>成立,求实数a 的取值范围. 【答案】(1) (2,2)-(2)【分析】(1)根据分类讨论的方法将绝对值不等式转化为不等式组求解.(2)由题意将问题转化为()20min0min a f x x x ⎛⎫≥+ ⎪⎝⎭.由(1)可得()min 2f x =,然后根据基本不等式可得200min a x x ⎛⎫+= ⎪⎝⎭2≥,解不等式可得所求. 【详解】(1)由题意得()1f x x =-+ 31210120131x x x x x x x x x x -≤-⎧⎪-+-<<⎪++=⎨+≤<⎪⎪≥⎩,,,,,,,,不等式()6f x <可化为136x x ≤-⎧⎨-<⎩,,或1026x x -<<⎧⎨-+<⎩,,或0126x x ≤<⎧⎨+<⎩,, 或136x x ≥⎧⎨<⎩,, 解得22x -<<.所以不等式()6f x <的解集为()22-,. (2) 00x R x ∀∈∃>,,使得()200(0)af x x a x ≥+>成立,等价于()20min 0min a f x x x ⎛⎫≥+ ⎪⎝⎭.由(1)知()min 2f x =,当00x >时,220000022a a a x x x x x +=++≥= 当且仅当2002ax x =,即当0x =所以2≥,解得a ≤又0a >,所以09a <≤. 故实数a的取值范围为0⎛ ⎝⎦.【点睛】解绝对值不等式的常用方法(1)平方法:两边平方去掉绝对值符号.(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. (4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.第 11 页共 11 页。

浙江2020版高考数学第七章数列与数学归纳法专题突破四高考中的数列问题讲义(含解析)

浙江2020版高考数学第七章数列与数学归纳法专题突破四高考中的数列问题讲义(含解析)

高考专题突破四 高考中的数列问题题型一 等差数列、等比数列的基本问题例1(2018·浙江杭州地区四校联考)已知数列{a n }满足a 1=1, 1a 2n+4=1a n +1,记S n =a 21+a 22+…+a 2n ,若S 2n +1-S n ≤t30对任意的n ∈N *恒成立.(1)求数列{a 2n }的通项公式; (2)求正整数t 的最小值. 解 (1)由题意得1a 2n +1-1a 2n=4,则⎩⎨⎧⎭⎬⎫1a 2n 是以1为首项,4为公差的等差数列, 则1a 2n=1+(n -1)×4=4n -3,则a 2n =14n -3. (2)不妨设b n =S 2n +1-S n =a 2n +1+a 2n +2+…+a 22n +1,考虑到b n -b n +1=a 2n +1+a 2n +2+…+a 22n +1-(a 2n +2+a 2n +3+…+a 22n +2+a 22n +3) =a 2n +1-a 22n +2-a 22n +3 =14n +1-18n +5-18n +9=18n +2-18n +5+18n +2-18n +9>0, 因此数列{b n }单调递减,则b n 的最大值为b 1=S 3-S 1=a 22+a 23=15+19=1445≤t 30,∴t ≥283,则t min =10.思维升华等差数列、等比数列综合问题的解题策略(1)分析已知条件和求解目标,为最终解决问题设置中间问题,例如求和需要先求出通项、求通项需要先求出首项和公差(公比)等,确定解题的顺序.(2)注意细节:在等差数列与等比数列综合问题中,如果等比数列的公比不能确定,则要看其是否有等于1的可能,在数列的通项问题中第一项和后面的项能否用同一个公式表示等,这些细节对解题的影响也是巨大的.跟踪训练1 (2018·浙江名校联盟联考)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的公比是q (q ≠1),且满足:a 1=2,b 1=1,S 2=3b 2,a 2=b 3. (1)求a n 与b n ;(2)设c n =2b n -λ·23na ,若数列{c n }是递减数列,求实数λ的取值范围.解 (1)设数列{a n }的公差为d ,依题意可得⎩⎪⎨⎪⎧2+2+d =3q ,2+d =q 2,解得⎩⎪⎨⎪⎧d =-1,q =1(舍去)或⎩⎪⎨⎪⎧d =2,q =2.故a n =2+2(n -1)=2n ,b n =2n -1.(2)由(1)可知c n =2n-λ·3n, 若{c n }是递减数列,则c n +1<c n , 即2n +1-λ·3n +1<2n -λ·3n,即λ>12×⎝ ⎛⎭⎪⎫23n 在n ∈N *时成立,只需λ>⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫23n max . 因为y =12×⎝ ⎛⎭⎪⎫23n 在n ∈N *时单调递减,所以⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫23n max =12×23=13. 故λ>13,即实数λ的取值范围是⎝ ⎛⎭⎪⎫13,+∞.题型二 数列的通项与求和例2(2018·台州质检)已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列.(1)求数列{a n }的通项公式;(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)·⎝ ⎛⎭⎪⎫12n,求数列{b n }的前n 项和T n .解 (1)因为数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公差为2的等差数列,所以S n n=1+2(n -1)=2n -1. 所以S n =2n 2-n . 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(2n 2-n )-[2(n -1)2-(n -1)]=4n -3, 当n =1时,a 1=1也符合上式.所以数列{a n }的通项公式为a n =4n -3(n ∈N *).(2)当n =1时,a 1b 1=12,所以b 1=2a 1=2;当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)⎝ ⎛⎭⎪⎫12n,所以a 1b 1+a 2b 2+…+a n -1b n -1=5-(4n +1)⎝ ⎛⎭⎪⎫12n -1. 两式相减,得a n b n =(4n -3)⎝ ⎛⎭⎪⎫12n.因为a n =4n -3,所以b n =4n -3(4n -3)⎝ ⎛⎭⎪⎫12n=2n(当n =1时,也符合此式).又b n +1b n =2n +12n =2,则数列{b n }是首项为2,公比为2的等比数列. 所以T n =2(1-2n)1-2=2n +1-2.思维升华(1)可以利用数列的递推关系探求数列的通项,利用递推关系构造数列或证明数列的有关结论.(2)根据数列的特点选择合适的求和方法,常用的求和方法有错位相减法、分组转化法、裂项相消法等.跟踪训练2(2018·浙江教育绿色评价联盟适应性考试)已知数列{a n }中,a 1=3,a 2=5,其前n 项和S n 满足S n +S n -2=2S n -1+2n -1(n ≥3).令b n =1a n ·a n +1.(1)求数列{a n }的通项公式; (2)若f (x )=2x -1,求证:T n =b 1f (1)+b 2f (2)+…+b n f (n )<16(n ≥1).(1)解 由题意知S n -S n -1=S n -1-S n -2+2n -1(n ≥3),即a n -a n -1=2n -1(n ≥3),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+a 2 =2n -1+2n -2+…+22+5 =2n -1+2n -2+…+22+2+1+2=2n+1(n ≥3),检验知n =1,2时,结论也成立,故a n =2n+1.(2)证明 由于b n f (n )=1(2n +1)(2n +1+1)·2n -1=12·(2n +1+1)-(2n+1)(2n +1)(2n +1+1) =12⎝ ⎛⎭⎪⎫12n +1-12n +1+1. 故T n =b 1f (1)+b 2f (2)+…+b n f (n ) =12⎣⎢⎡⎝ ⎛⎭⎪⎫12+1-122+1+⎝ ⎛⎭⎪⎫122+1-123+1+…⎦⎥⎤+⎝⎛⎭⎪⎫12n +1-12n +1+1 =12⎝ ⎛⎭⎪⎫12+1-12n +1+1<12×12+1=16. 所以T n <16.题型三 数列与不等式的交汇例3 已知数列{a n }满足a 1=1,a n +1=a n1+a 2n ,n ∈N *,记S n ,T n 分别是数列{a n },{a 2n }的前n 项和,证明:当n ∈N *时, (1)a n +1<a n ; (2)T n =1a2n +1-2n -1;(3)2n -1<S n <2n . 证明 (1)由a 1=1及a n +1=a n1+a 2n, 知a n >0,故a n +1-a n =a n1+a 2n -a n =-a 3n1+a 2n <0,∴a n +1<a n ,n ∈N *. (2)由1a n +1=1a n+a n ,得1a 2n +1=1a 2n +a 2n +2, 从而1a 2n +1=1a 2n -1+a 2n -1+a 2n +2×2=…=1a 21+a 21+a 22+…+a 2n +2n ,又a 1=1,∴1a 2n +1=1+a 21+a 22+…+a 2n +2n , ∴T n =1a 2n +1-2n -1,n ∈N *.(3)由(2)知,a n +1=1T n +2n +1,由T n ≥a 21=1,得a n +1≤12n +2,∴当n ≥2时,a n ≤12n =22n <2n +n -1=2(n -n -1),∴S n <a 1+2[(2-1)+(3-2)+…+(n -n -1)] =1+2(n -1)<2n ,n ≥2, 又a 1=1,∴S n <2n ,n ∈N *, 由a n =1a n +1-1a n,得S n =a 1+a 2+…+a n=⎝ ⎛⎭⎪⎫1a 2-1a 1+⎝ ⎛⎭⎪⎫1a 3-1a 2+…+⎝ ⎛⎭⎪⎫1a n +1-1a n =1a n +1-1a 1≥2n +2-1>2n -1,综上,2n -1<S n <2n .思维升华(1)以数列为背景的不等式证明的基本策略是对数列递推式进行放缩; (2)解题过程中要注意观察数列递推公式的特点,联想常用的求和形式灵活进行转化. 跟踪训练3对任意正整数n ,设a n 是方程x 2+xn=1的正根. 求证:(1)a n +1>a n ;(2)12a 2+13a 3+…+1na n <1+12+13+…+1n . 证明 由a 2n +a n n=1且a n >0,得0<a n <1. (1)a 2n +a n n=1,a 2n +1+a n +1n +1=1, 两式相减得 0=a 2n +1-a 2n +a n +1n +1-a n n <a 2n +1-a 2n +a n +1n -a n n=(a n +1-a n )⎝ ⎛⎭⎪⎫a n +1+a n +1n .因为a n +1+a n +1n>0,故a n +1-a n >0,即a n +1>a n .(2)因为a n ⎝ ⎛⎭⎪⎫a n +1n =1,所以1a n =a n +1n,由0<a n <1,得1a n <1+1n,从而当i ≥2时,1i ⎝ ⎛⎭⎪⎫1a i -1<1i ⎝⎛⎭⎪⎫1+1i-1=1i 2<1i -1-1i, ∑ni =11i ⎝ ⎛⎭⎪⎫1a i -1=1a 1-1+∑ni =21i ⎝ ⎛⎭⎪⎫1a i -1 <1a 1-1+∑ni =2⎝ ⎛⎭⎪⎫1i -1-1i =1a 1-1n <1a 1.所以12a 2+13a 3+...+1na n <1+12+13+ (1).1.(2018·绍兴市上虞区调研)已知数列{a n }满足a 1=511,4a n =a n -1-3(n ≥2). (1)求证:{a n +1}是等比数列;(2)令b n =|log 2(a n +1)|,求{b n }的前n 项和S n . (1)证明 由题意知a n =14a n -1-34,则a n +1=14(a n -1+1),∵a 1+1=512≠0,∴数列{a n +1}是以512为首项,14为公比的等比数列.(2)解 由(1)知,a n +1=512·⎝ ⎛⎭⎪⎫14n -1=211-2n ,则log 2(a n +1)=11-2n . ∴b n =|11-2n |,令c n =11-2n ,当n ≤5时,c n >0; 当n ≥6时,c n <0,设{c n }的前n 项和为T n ,则T n =10n -n 2, 当n ≤5时,S n =T n =10n -n 2; 当n ≥6时,S n =2T 5-T n =n 2-10n +50.综上,S n =⎩⎪⎨⎪⎧10n -n 2,n ≤5,n 2-10n +50,n ≥6.2.(2018·绍兴市嵊州市适应性考试)已知S n 是数列{a n }的前n 项和,a 1=2,且4S n =a n ·a n+1,数列{b n }中,b 1=14,且b n +1=nb n (n +1)-b n,n ∈N *.(1)求数列{a n }的通项公式; (2)设12332n n n b a c +=(n ∈N *),求{c n }的前n 项和T n .解 (1)当n =1时,可得a 2=4,当n ≥2时,4S n =a n ·a n +1,4S n -1=a n ·a n -1, 两式相减,得4a n =a n (a n +1-a n -1), ∵a n ≠0,∴a n +1-a n -1=4,∴{a n }的奇数项和偶数项分别成以4为公差的等差数列, 当n =2k -1,k ∈N *时,a n =2n ; 当n =2k ,k ∈N *时,a n =2n . ∴a n =2n (n ∈N *). (2)∵1b n +1=n +1nb n -1n, 1(n +1)b n +1=1nb n -1n (n +1),当n ≥2时,1nb n -1(n -1)b n -1=-⎝ ⎛⎭⎪⎫1n -1-1n , 1(n -1)b n -1-1(n -2)b n -2=-⎝ ⎛⎭⎪⎫1n -2-1n -1, 12b 2-1b 1=-⎝ ⎛⎭⎪⎫1-12,将上式累加得1nb n=3n +1n,∴b n =13n +1(n ≥2),n =1时也适合,∴b n =13n +1(n ∈N *),∴c n =n 2n , T n =12+222+323+…+n -12n -1+n 2n ,12T n =122+223+…+n -12n +n 2n +1, 再由错位相减得T n =2-n +22n.3.(2018·浙江名校新高考研究联盟联考)设数列{a n }的前n 项和为S n ,且⎩⎨⎧⎭⎬⎫S n n 是一个首项与公差均为1的等差数列. (1)求数列{a n }的通项公式;(2)对任意的k ∈N *,将数列{a n }中落入区间(2k,22k)内的项的个数记为b k , ①求数列{b k }的通项公式;②记c k =222k -1-b k ,数列{c k }的前k 项和为T k ,求使等式T k -m T k +1-m =1c m +1成立的所有正整数k ,m 的值.解 (1)由题意得S n n=1+(n -1)×1=n ,∴S n =n 2, 则a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),当n =1时,a 1=1,适合上式,因此a n =2n -1(n ∈N *). (2)①∵2k<a n <22k,∴2k <2n -1<22k ,则2k +1<2n <22k +1,即2k -1+12<n <22k -1+12, ∴2k -1+1≤n ≤22k -1,则b k =22k -1-(2k -1+1)+1=22k -1-2k -1,k ∈N *.②由题意得c k =222k -1-22k -1+2k -1=42k , ∴T k =4⎝ ⎛⎭⎪⎫121+122+…+12k =4⎝ ⎛⎭⎪⎫1-12k , 则T k +1=4⎝ ⎛⎭⎪⎫1-12k +1,T k -m T k +1-m =4⎝ ⎛⎭⎪⎫1-12k -m 4⎝ ⎛⎭⎪⎫1-12k +1-m=4-m -22k -22k 4-m -22k =1-22k4-m -22k ,1c m +1=142m +1=1-44+2m , 由T k -m T k +1-m =1c m +1,得22k 4-m -22k=44+2m , 则4+2m=(4-m )2k +1-4,即有0<8+2m=(4-m )2k +1,因此m <4,对于m ∈N *,则当m =1时,正整数k 不存在,m =2时,正整数k 不存在,m =3时,k =3, 因此存在符合条件的k ,m ,且m =3,k =3.4.(2018·浙江名校协作体联考)已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上.(1)求数列{a n }的通项公式; (2)若f (n )=1n +a 1+1n +a 2+1n +a 3+…+1n +a n(n ∈N *,且n ≥2),求f (n )的最小值; (3)设b n =1a n,S n 表示数列{b n }的前n 项和.试问:是否存在关于n 的整式g (n ),使得S 1+S 2+…+S n -1=(S n -1)g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,请说明理由.解 (1)因为a n -a n +1+1=0,所以a n +1-a n =1,因此数列{a n }是首项为1,公差为1的等差数列,则a n =1+(n -1)×1=n . (2)因为f (n )=1n +1+1n +2+1n +3+…+1n +n , f (n +1)=1n +2+1n +3+1n +4+…+1n +n +1n +1+n +1n +1+n +1, 所以f (n +1)-f (n )=12n +1+12n +2-1n +1=12n +1-12n +2=1(2n +1)(2n +2)>0.因此f (n )单调递增,则f (n )的最小值为f (2)=12+1+12+2=712. (3)方法一 由(1)知,b n =1n ,当n ≥2时,因为S 1=1,S 2=1+12,S 3=1+12+13,…,S n -1=1+12+13+…+1n -1, 所以S 1+S 2+…+S n -1=n -1+12(n -2)+13(n -3)+…+1n -1[n -(n -1)]=n -1+12n -1+13n -1+…+1n -1n -1=n -(n -1)+n ⎝ ⎛⎭⎪⎫12+13+…+1n -1=1+n ⎝ ⎛⎭⎪⎫12+13+…+1n -1=n ⎝ ⎛⎭⎪⎫12+13+…+1n -1+1n 而(S n -1)g (n )=⎝ ⎛⎭⎪⎫12+13+…+1n ×g (n ),因此g (n )=n .故存在关于n 的整式g (n )=n ,使得对于一切不小于2的自然数恒成立. 方法二 由b n =1n ,可得S n =1+12+…+1n,S n -S n -1=1n(n ≥2),即n (S n -S n -1)=1(n ≥2),故nS n -(n -1)S n -1=S n -1+1,(n -1)S n -1-(n -2)S n -2=S n -2+1,…,2S 2-S 1=S 1+1,以上式子相加得nS n -S 1=S 1+S 2+…+S n -1+(n -1), 则有S 1+S 2+…+S n -1=nS n -n =n (S n -1)(n ≥2), 因此g (n )=n ,故存在关于n 的整式g (n )=n ,使得对于一切不小于2的自然数恒成立.5.(2019·诸暨质检)已知数列{a n }的各项都大于1,且a 1=2,a 2n +1-a n +1-a 2n +1=0(n ∈N *). (1)求证:n +74≤a n <a n +1<n +2;(2)求证:12a 21-3+12a 22-3+12a 23-3+…+12a 2n -3<1.证明 (1)由a 2n +1-a 2n =a n +1-1>0,得a n +1>a n , ∵a n +1-a n =a n +1-1a n +1+a n<1,∴a n +1=(a n +1-a n )+…+(a 2-a 1)+a 1<n +2.a n +1-a n =a n +1-1a n +1+a n >a n +1-12a n +1=12-12a n +1>14,∴a n =(a n -a n -1)+…+(a 2-a 1)+a 1>n -14+2=n +74(n ≥2),又a 1=2=1+74,∴a n ≥n +74.∴原不等式得证.(2)∵a 2n +1-a 2n =a n +1-1≥n +84-1=n +44, ∴a 2n +1>n 2+9n 8+a 21=n 2+9n +328, 即a 2n ≥n 2+7n +248, 2a 2n -3≥n 2+7n +124=(n +3)(n +4)4, 12a 21-3+12a 22-3+…+12a 2n -3 ≤4⎝ ⎛⎭⎪⎫14-15+15-16+…+1n +3-1n +4 =4⎝ ⎛⎭⎪⎫14-1n +4=1-4n +4<1. ∴原不等式得证.6.(2018·浙江名校协作体考试)已知无穷数列{a n }的首项a 1=12,1a n +1=12⎝⎛⎭⎪⎫a n +1a n ,n ∈N *. (1)证明:0<a n <1;(2)记b n =(a n -a n +1)2a n a n +1,T n 为数列{b n }的前n 项和,证明:对任意正整数n ,T n <310. 证明 (1)①当n =1时,0<a 1=12<1,显然成立; ②假设当n =k (k ∈N *)时不等式成立,即0<a k <1,那么当n =k +1时,1a k +1=12⎝ ⎛⎭⎪⎫a k +1a k >12·2a k ·1a k =1, ∴0<a k +1<1.即当n =k +1时不等式也成立.综合①②可知,0<a n <1对任意n ∈N *成立.(2)∵0<a n <1,∴a n +1a n =2a 2n +1>1, 即a n +1>a n ,∴数列{a n }为递增数列.又1a n -1a n +1=1a n -12⎝ ⎛⎭⎪⎫a n +1a n =12⎝ ⎛⎭⎪⎫1a n -a n , 易知⎩⎨⎧⎭⎬⎫1a n -a n 为递减数列,∴⎩⎨⎧⎭⎬⎫1a n -1a n +1为递减数列, 又1a 2=12⎝⎛⎭⎪⎫a 1+1a 1=54, ∴当n ≥2时,1a n -1a n +1≤12⎝ ⎛⎭⎪⎫1a 2-a 2=12⎝ ⎛⎭⎪⎫54-45=940, ∴当n ≥2时,b n =(a n -a n +1)2a n a n +1=(a n +1-a n )⎝ ⎛⎭⎪⎫1a n -1a n +1≤940(a n +1-a n ). 当n =1时,T n =T 1=b 1=940<310,成立; 当n ≥2时,T n =b 1+b 2+…+b n ≤940+940[(a 3-a 2)+(a 4-a 3)+…+(a n +1-a n )] =940+940(a n +1-a 2)≤940+940(1-a 2) =940+940⎝ ⎛⎭⎪⎫1-45=27100<310. 综上,对任意正整数n ,T n <310.。

2020年高考新题型专题07 数列(1)(解析版)

2020年高考新题型专题07 数列(1)(解析版)

专题07 数列(1)多项选择题1.(2019秋•泉州期末)记S n为等差数列{a n}的前n项和.若a1+3a5=S7,则以下结论一定正确的是()A.a4=0B.S n的最大值为S3C.S1=S6D.|a3|<|a5|【分析】利用等差数列的通项公式求和公式及其性质即看到此得出.【解答】解:设等差数列{a n}的公差为d,则a1+3(a1+4d)=7a1+21d,解得a1=﹣3d,所以a n=a1+(n﹣1)d=(n﹣4)d,所以a4=0,故A正确;因为S6﹣S1=5a4=0,所以S1=S6,故C正确;由于d的正负不清楚,故S3可能为最大值或最小值,故B不正确;因为a3+a5=2a4=0,所以a3=﹣a5,即|a3|=|a5|,故D错误.故选:AC.2.(2019秋•济宁期末)设等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,<0,下列结论正确的是()a2019a2020>1,a2019−1a2020−1A.S2019<S2020B.S2019S2021﹣1<0C.T2019是数列{T n}中的最大值D.数列{T n}无最大值【分析】本题由题意根据题干可得a2019>1,a2020<1,从而有a1>1,0<q<1,则等比数列{a n}为正项的递减数列.再结合等比数列的性质逐一核对四个命题得答案即可得到正确选项.【解答】解:等比数列{a n}的公比为q,其前n项和为S n,前n项积为T n,并满足条件a1>1,<0,∴a2019>1,0<a2020<1,∴0<q<1.a2019a2020>1,a2019−1a2020−1根据a1>1,0<q<1,可知等比数列{a n}为正项的递减数列.即a1>a2>...>a2019>1>a2020> 0∵S2020﹣S2019=a2020>0,∴S2019<S2020,故选项A正确;∵S 2019=a 1+a 2+…+a 2019>1,∴S 2019•S 2021=S 2019•(S 2019+a 2020+a 2021)=S 20192+S 2019•(a 2020+a 2021) >S 20192>1.即S 2019•S 2021﹣1>0.故选项B 错误;根据a 1>a 2>…>a 2019>1>a 2020>…>0.可知T 2019是数列{T n }中的最大项,故选项C 正确、选项D 错误. 故选:AC .3.(2019秋•菏泽期末)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 6=8 B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2020D .a 12+a 22+⋯+a 20192a 2019=a 2020【分析】根据数列的特点,求出其递推关系式;再对每一个选项逐个检验即可 【解答】解:A .由a 1=a 2,a 3=a 4﹣a 2,a 5=a 6﹣a 4,可得a 6=8成立; B .由a 1=a 2,a 3=a 4﹣a 2,a 5=a 6﹣a 4,可得a 6=8,a 7=13; ∴s 7=1+1+2+3+5+8+13=33成立;C .由a 1=a 2,a 3=a 4﹣a 2,a 5=a 6﹣a 4,……,a 2019=a 2020﹣a 2018,可得:a 1+a 3+a 5+…+a 2019=a 2020. 故a 1+a 3+a 5+…+a 2019是斐波那契数列中的第2020项.即答案C 成立;D .斐波那契数列总有a n +2=a n +1+a n ,则a 12=a 2a 1,a 22=a 2(a 3−a 1)=a 2a 3−a 2a 1,a 32=a 3(a 4−a 2)=a 3a 4−a 2a 3,……, a 20182=a 2018(a 2019−a 2017)=a 2018a 2019−a 2017a 2018, a 20192=a 2019a 2020−a 2019a 2018;∴a 12+a 22+a 32+⋯+a 20192=a 2019a 2020;即答案D 成立故选:ABCD .4.(2019秋•济宁期末)若S n 为数列{a n }的前n 项和,且S n =2a n +1,(n ∈N *),则下列说法正确的是( ) A .a 5=﹣16B .S 5=﹣63C.数列{a n}是等比数列D.数列{S n+1}是等比数列【分析】先利用已知条件得到数列{a n}是首项为﹣1,公比为2的等比数列,即可判断各个选项的正误.【解答】解:∵S n=2a n+1,(n∈N*),∴①当n=1时,a1=S1=2a1+1,∴a1=﹣1,=2,②当n≥2时,a n=S n﹣S n﹣1=2a n+1﹣2a n﹣1﹣1,∴2a n﹣1=a n,∴a na n−1∴数列{a n}是首项为﹣1,公比为2的等比数列,故选项C正确,=1−2n∴a n=−2n−1,S n=−(1−2n)1−2=−31,故选项A正确,选项B错误,∴a5=−24=−16,S5=−(1−25)1−2又∵S n+1=2−2n,∴数列{S n+1}不是等比数列,故选项D错误,故选:AC.5.(2019秋•淄博期末)在递增的等比数列{a n}中,S n是数列{a n}的前n项和,若a1a4=32,a2+a3=12,则下列说法正确的是()A.q=1B.数列{S n+2}是等比数列C.S8=510D.数列{lga n}是公差为2的等差数列【分析】本题先根据题干条件判断并计算得到q和a1的值,则即可得到等比数列{a n}的通项公式和前n 项和公式,则对选项进行逐个判断即可得到正确选项.【解答】解:由题意,根据等比中项的性质,可得a2a3=a1a4=32>0,a2+a3=12>0,故a2>0,a3>0.根据根与系数的关系,可知a2,a3是一元二次方程x2﹣12x+32=0的两个根.解得a2=4,a3=8,或a2=8,a3=4.故必有公比q>0,>0.∴a1=a2q∵等比数列{a n}是递增数列,∴q>1.∴a2=4,a3=8满足题意.∴q=2,a1=a2q=2.故选项A不正确.a n=a1•q n﹣1=2n.∵S n=2(1−2n)1−2=2n+1﹣2.∴S n+2=2n+1=4•2n﹣1.∴数列{S n+2}是以4为首项,2为公比的等比数列.故选项B正确.S8=28+1﹣2=512﹣2=510.故选项C正确.∵lga n=lg2n=n.∴数列{lga n}是公差为1的等差数列.故选项D不正确.故选:BC.6.(2019秋•聊城期末)已知数列{a n}满足a1=1,a n+1=a n2+3a n(n∈N∗),则下列结论正确的有()A.{1a n+3}为等比数列B.{a n}的通项公式为a n=12n+1−3C.{a n}为递增数列D.{1a n}的前n项和T n=2n+2−3n−4【分析】首先利用定义求出数列的通项公式,进一步求出数列的和.【解答】解:数列{a n}满足a1=1,a n+1=a n2+3a n(n∈N∗),整理得:2a n+1+3a n a n+1=a n,转换为1a n+1+3=2(1a n+3),故:1a n+1+31 a n +3=2(常数),所以{1a n+3}是以1a1+3=4为首项,2为公比的等比数列.故:1a n +3=4⋅2n−1=2n+1,整理得a n=12n+1−3.则:{a n}为递减数列.进一步整理得:1a n=2n+1−3,所以{1a n }的前n项和:T n=4(2n−1)2−1−3n=2n+2−3n−4,故选:ABD.7.(2019秋•泰安期末)设等差数列{a n}的公差为d,前n项和为S n,若a3=12,S12>0,S13<0,则下列结论正确的是()A .数列{a n }是递增数列B .S 5=60C .−247<d <−3D .S 1,S 2,…,S 12中最大的是S 6【分析】利用等差数列的通项公式求和公式及其性质即可判断出结论. 【解答】解:依题意,有S 12=12a 1+12×112•d >0,S 13=13a 1+13×122•d <0,化为:2a 1+11d >0,a 1+6d <0,即a 6+a 7>0,a 7<0, ∴a 6>0.由a 3=12,得a 1=12﹣2d ,联立解得−247<d <﹣3.等差数列{a n }是单调递减的.S 1,S 2,…,S 12中最大的是S 6. S 5=5(a 1+a 5)2=5a 3=60.综上可得:BCD 正确. 故选:BCD .8.(2019秋•葫芦岛期末)已知数列{a n }中,a 1=1,a n +1−1n =(1+1n )a n ,n ∈N *.若对于任意的t ∈[1,2],不等式a n n<−2t 2−(a +1)t +a 2−a +2恒成立,则实数a 可能为( )A .﹣4B .﹣2C .0D .2【分析】由已知数列递推式可得an+1n+1−a n n=1n(n+1)=1n −1n+1,进一步得到ann <2,则原不等式可转化为2t 2+(a +1)t ﹣a 2+a ≤0在t ∈[1,2]上恒成立,构造函数f (t )=2t 2+(a +1)t ﹣a 2+a ,t ∈[1,2],可得{f(1)≤0f(2)≤0,求解不等式组得答案.【解答】解:由a n +1−1n =(1+1n )a n ,得a n +1−1n =n+1na n ,∴a n+1n+1−a n n=1n(n+1)=1n −1n+1,∴an n =(an n −a n−1n−1)+(an−1n−1−a n−2n−2)+⋯+⋯+(a 2﹣a 1)+a 1,=(1n−1−1n )+(1n−2−1n−1)+…+(1−12)+1=2−1n <2,∵不等式a n n<−2t 2−(a +1)t +a 2−a +2恒成立,∴2≤﹣2t 2﹣(a +1)t +a 2﹣a +2,∴2t 2+(a +1)t ﹣a 2+a ≤0,在t ∈[1,2]上恒成立, 设f (t )=2t 2+(a +1)t ﹣a 2+a ,t ∈[1,2],∴{f(1)=2+a +1−a 2+a ≤0f(2)=8+2(a +1)−a 2+a ≤0,解得a ≤﹣2或a ≥5, ∴实数a 可能为﹣4,﹣2. 故选:AB .9.(2019秋•潍坊期末)设数列{a n }是等差数列,S n 是其前n 项和,a 1>0且S 6=S 9,则( ) A .d >0B .a 8=0C .S 7或S 8为S n 的最大值D .S 5>S 6【分析】由a 1>0且S 6=S 9,利用求和公式可得:a 8=0,d <0.即可判断出结论. 【解答】解:a 1>0且S 6=S 9,∴6a 1+6×52d =9a 1+9×82d ,化为:a 1+7d =0,可得a 8=0,d <0.S 7或S 8为S n 的最大值,S 5<S 6. 故选:BC .10.(2019秋•润州区校级期末)对于数列{a n },若存在正整数k (k ≥2),使得a k <a k ﹣1,a k <a k +1,则称a k是数列{a n }的“谷值”,k 是数列{a n }的“谷值点”,在数列{a n }中,若a n =|n +9n −8|,下列数不能作为数列{a n }的“谷值点”的是( ) A .3B .2C .7D .5【分析】根据数列的通项公式,求得a 1到a 8,利用定义即可判断. 【解答】解:由a n =|n +9n −8|,则a 1=2,a 2=32,a 3=2,a 4=74,a 5=65,a 6=12,a 7=27,a 8=98, 所以n =2,7是数列{a n }的“谷值点” 当n =3,5不是数列{a n }的“谷值点”, 故选:AD .11.(2019秋•淮安期末)已知数列{a n }是等比数列,那么下列数列一定是等比数列的是( ) A .{1a n}B .{log 2a n }C .{a n •a n +1}D .{a n +a n +1+a n +2}【分析】本题先根据题意设等比数列{a n }的公比为q (q ≠0),则a n =a 1•q n ﹣1.然后对AB 选项先求出通项然后进行观察即可判断,对CD两个选项可根据等比数列的定义法进行判断.【解答】解:由题意,可设等比数列{a n}的公比为q(q≠0),则a n=a1•q n﹣1.对于A:1a n =1a1q n−1=1a1•(1q)n﹣1.∴数列{1a n }是一个以1a1为首项,1q为公比的等比数列;对于B:log2a n=log2(a1•q n﹣1)=log2a1+(n﹣1)log2q.∴数列{log2a n}是一个以log2a1为首项,log2q为公差的等差数列;对于C:∵a n+1⋅a n+2a n⋅a n+1=a n+2a n=a1⋅q n+1a1⋅q n−1=q2,∴数列{a n•a n+1}是一个以q2为公比的等比数列;对于D:∵a n+1+a n+2+a n+3a n+a n+1+a n+2=q(a n+a n+1+a n+2)a n+a n+1+a n+2=q,∴数列{a n+a n+1+a n+2}是一个以q为公比的等比数列.故选:ACD.12.(2019秋•南通期末)设等差数列{a n}的前n项和为S n,公差为d.已知a3=12,S12>0,a7<0,则()A.a6>0B.−247<d<−3C.S n<0时,n的最小值为13D.数列{S na n}中最小项为第7项【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得−247<d<﹣3.a1>0.利用S13=13a7<0.可得S n<0时,n的最小值为13.数列{S na n}中,n≤6时,S na n >0.7≤n≤12时,S na n<0.n≥13时,S na n>0.进而判断出D是否正确.【解答】解:∵S12>0,a7<0,∴12(a6+a7)2>0,a1+6d<0.∴a6+a7>0,a6>0.∴2a1+11d>0,a1+5d>0,又∵a3=a1+2d=12,∴−247<d<﹣3.a1>0.S13=13(a1+a13)2=13a7<0.∴S n<0时,n的最小值为13.数列{S na n }中,n≤6时,S na n>0,7≤n≤12时,S na n<0,n≥13时,S na n>0.对于:7≤n≤12时,S na n<0.S n>0,但是随着n的增大而减小;a n<0,但是随着n的增大而减小,可得:S na n<0,但是随着n的增大而增大.∴n=7时,S na n取得最小值.综上可得:ABCD都正确.故选:ABCD.13.(2019秋•苏州期末)已知数列{a n}的前n项和为S n,且S n=2(a n﹣a)(其中a为常数),则下列说法正确的是()A.数列{a n}一定是等比数列B.数列{a n}可能是等差数列C.数列{S n}可能是等比数列D.数列{S n}可能是等差数列【分析】结合已知可得a n=2a n﹣1,n>1,然后结合a是否为0可进行判定是否满足等差或等比.【解答】解:S n=2(a n﹣a),当n>1时可得,S n﹣1=2(a n﹣1﹣a),两式相减可得,a n=2a n﹣1,n>1,又n=1时,S1=2(a1﹣a)可得,a1=2a,若a=0时,数列{a n}不是等比数列,而是等差数列,其各项都为0,和也为等差数列当a≠0时,数列{a n}是等比数列,不是等差数列,而非常数性等比数列的前n项和不是等比,故选:BD.14.(2019秋•徐州期末)等差数列{a n}的前n项和为S n,若a1>0,公差d≠0,则下列命题正确的是()A.若S5=S9,则必有S14=0B.若S5=S9,则必有S7是S n中最大的项C.若S6>S7,则必有S7>S8D.若S6>S7,则必有S5>S6【分析】根据题意,结合等差数列的性质依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A ,若S 5=S 9,必有S 9﹣S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)=0,则a 7+a 8=0,S 14=14×(a 1+a 14)2=14×(a 7+a 8)2=0,A 正确;对于B ,若S 5=S 9,必有S 9﹣S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)=0,又由a 1>0,则必有S 7是S n 中最大的项,B 正确;对于C ,若S 6>S 7,则a 7=S 7﹣S 6<0,又由a 1>0,必有d <0,则a 8=S 8﹣S 7<0,必有S 7>S 8,C 正确; 对于D ,若S 6>S 7,则a 7=S 7﹣S 6<0,而a 6的符号无法确定,故S 5>S 6不一定正确,D 错误; 故选:ABC .15.(2019秋•连云港期末)已知等比数列{a n }中,满足a 1=1,公比q =﹣2,则( ) A .数列{2a n +a n +1}是等比数列 B .数列{a n +1﹣a n }是等比数列C .数列{a n a n +1}是等比数列D .数列{log 2|a n |}是递减数列【分析】由题意利用查等比数列的定义、通项公式、性质,判断各个选项是否正确,从而得出结论. 【解答】解:∵等比数列{a n }中,满足a 1=1,公比q =﹣2, ∴a n =1×(﹣2)n ﹣1=(﹣2)n ﹣1.由此可得 2a n +a n +1=2•(﹣2)n ﹣1+(﹣2)n =0,故A 错误;a n +1﹣a n =(﹣2)n ﹣(﹣2)n ﹣1=﹣3•(﹣2)n ﹣1,故数列{a n +1﹣a n }是等比数列,故B 正确; a n a n +1=(﹣2)n ﹣1 (﹣2)n =(﹣2)2n ﹣1,故数列{a n a n +1}是等比数列,故C 正确; log 2|a n |=log 22n ﹣1=n ﹣1,故数列{log 2|a n |}是递增数,故D 错误, 故选:BC .16.(2019秋•潍坊期末)已知等比数列{a n }的公比q =−23,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确.【解答】解:数列{a n }是公比q 为−23的等比数列,{b n }是首项为12,公差设为d 的等差数列, 则a 9=a 1(−23)8,a 10=a 1(−23)9,∴a 9•a 10=a 12(−23)17<0,故A 正确;∵a 1正负不确定,故B 错误;∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(−23)8>12+8d ,a 1(−23)9>12+9d ,可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD .17.(2020•山东学业考试)已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设c n =a b n ,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .11【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和可得数列{c n }的前n 项和T n ,验证得答案.【解答】解:由题意,a n =1+2(n ﹣1)=2n ﹣1,b n =2n−1, c n =a b n =2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列, 其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1)=(21+22+…+2n )﹣n =2(1−2n )1−2−n =2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB .18.(2019秋•滕州市校级月考)设等比数列{a n }的公比为q ,其前n 项的和为s n ,前n 项的积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019−1a 2020−1<0,下列结论错误的是( )A .S 2019>S 2020B .a 2019.a 2021﹣1>0C .T 2020是数列{T n }中的最大值D .数列{T n }无最小值【分析】推导出a 2019>1,0<a 2020<1,0<q <1,由此能求出结果.【解答】解:∵等比数列{a n }的公比为q ,其前n 项的和为s n ,前n 项的积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019−1a 2020−1<0, ∴a 2019>1,0<a 2020<1,∴0<q <1,在A 中,∵a 2020>0,∴S 2019<S 2020,故A 错误;在B 中,a 2019>1,a 2021﹣1<0,∴a 2019.a 2021﹣1<0,故B 错误;∴T 2019是数列{T n }中的最大项,故C 错误;在D 中,数列{T n }无最小值,故D 正确.故选:ABC .19.(2019秋•常熟市校级月考)等差数列{a n }中,若S 6<S 7且S 7>S 8,则下面结论正确的是( )A .a 1>0B .S 9<S 6C .a 7最大D .(S n )max =S 7【分析】根据题意,分析可得a 7=S 7﹣S 6>0,a 8=S 8﹣S 7<0,且d =a 8﹣a 7<0,精粹结合等差数列的性质分析选项,即可得答案.【解答】解:根据题意,等差数列{a n }中,若S 6<S 7且S 7>S 8,则a 7=S 7﹣S 6>0,a 8=S 8﹣S 7<0,则有d =a 8﹣a 7<0,对于A ,必有a 1=a 8﹣7d >0,A 正确;对于B ,S 9﹣S 6=a 7+a 8+a 9=3a 8<0,必有S 9<S 6,B 正确;对于C ,等差数列{a n }中,d <0,数列{a n }为递减数列,故a 1最大,C 错误; 对于D ,数列{a n }为递减等差数列,a 7>0,a 8<0,故必有(S n )max =S 7,D 正确; 故选:ABD .20.(2019秋•海淀区校级期中)已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( )A .0<a 1<1B .1<b 1<√2C .S 2n <T 2nD .S 2n ≥T 2n【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,在求出其前2n 项和的表达式即可判断大小;【解答】解:∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n +a n +1=2n ,∴{a 1+a 2=2a 2+a 3=4;∴{a 1+a 2>2a 1a 2+a 3>2a 2=4−4a 1∴0<a 1<1;故A 正确. ∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n }为递增数列; ∴b 1<b 2<b 3;∵b n •b n +1=2n∴{b 1b 2=2b 2b 3=4; ∴{b 2>b 1b 3>b 2;∴1<b 1<√2,故B 正确. ∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n ) =b 1⋅(1−2n )2+b 2(1−2n )2=(b 1+b 2)(2n −1)≥2√b 1b 2(2n −1)=2√2(2n −1); ∴对于任意的n ∈N *,S 2n <T 2n ;故C 正确,D 错误. 故选:ABC .。

2020年高考数学(理)之高频考点解密13 不等式(解析版)

2020年高考数学(理)之高频考点解密13 不等式(解析版)

解密13 不等式考点1 不等式的性质与一元二次不等式题组一 不等式的性质调研1 (重庆南开中学2019-2020学年高三上学期第四次教学质量检测数学试题)已知a ,b 均为实数,则下列说法一定成立....的是 A .若a b >,c d >,则ab cd > B .若11a b>,则a b < C .若a b >,则22a b >D .若||a b <,则0a b +>【答案】D【解析】对于①,不妨令1a =-,2b =-,4c =,1d =,尽管满足a b >,c d >,但显然不满足ab cd >,故A 错误;对于②,不妨令1a =,1b =-,显然满足11a b>,但不满足a b <,故B 错误; 对于③,不妨令1a =-,2b =-,显然满足a b >,但不满足22a b >,故C 错误; 对于④,若||a b <,则||0b a ->,即b a >±,0a b ∴+>,故D 正确. 故选:D.【名师点睛】本题考查不等式的性质与不等关系,在限定条件下,比较几个式子的大小时,用特殊值代入法,能快把答案进行排除是解此类问题的常用方法.求解时,利用特殊值代入法排除A ,B ,C ,利用不等式的基本性质||0b a ->,可得b a >±,从而得到0a b +>,从而得出结论. 调研2 已知非零实数a b ,满足a a b b >,则下列不等式一定成立的是 A .33a b > B .22a b >C .11a b<D .1122log log a b <【答案】A【解析】利用排除法:1,2a b =-=-时,22a b >与1122log log a b <都不成立,可排除选项B ,D ;1,2a b ==-时,11a b<不成立,可排除选项C. 故选A.【名师点睛】特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.☆技巧点拨☆不等式的一些常用性质: (1)有关倒数的性质①a >b ,ab >0⇒1a <1b .②a <0<b ⇒1a <1b .③a >b >0,0<c <d ⇒a c >bd .④0<a <x <b 或a <x <b <0⇒1b <1x <1a .(2)有关分数的性质若a >b >0,m >0,则①b a <b +m a +m ,b a >b -m a -m (b -m >0);②a b >a +m b +m ,a b <a -mb -m(b -m >0).题组二 一元二次不等式调研 3 已知函数()2(,)f x x ax b a b =++∈R 的值域为[0,+∞),若关于x 的不等式()f x c <的解集为(),6m m +,则实数c 的值为.【答案】9【解析】因为()f x 的值域为[0,+∞),所以Δ=0,即24a b =,所以2204a x ax c ++-<的解集为(),6m m +,易得m ,m +6是方程2204ax ax c ++-=的两根,由根与系数的关系,得()22664m a a m m c+=-⎧⎪⎨+=-⎪⎩,解得c =9. 调研4 若不等式(a 2+4a-5)x 2-4(a-1)x+3>0恒成立,则a 的取值范围是 . 【答案】[1,19)【解析】①当a 2+4a-5=0时,有a =-5或a =1.若a =-5,不等式可化为24x+3>0,不满足题意;若a =1,不等式可化为3>0,满足题意.②当a 2+4a-5≠0时,不等式恒成立,需满足()22245016(1)12450a a a a a ⎧+->⎪⎨--+-<⎪⎩,解得1<a <19. 综上,可得a 的取值范围是1≤a <19.☆技巧点拨☆1.一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.2.解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.3.解含参数不等式要正确分类讨论.考点2 线性规划题组一 线性目标函数的最值及范围问题调研1 若变量,x y 满足约束条件1051x y x y x -+≤⎧⎪+≤⎨⎪≥⎩,则2z x y =--的最小值是A .8-B .7-C .6-D .4-【答案】B【解析】画出不等式组1051x y x y x -+≤⎧⎪+≤⎨⎪≥⎩表示的可行域(如图阴影部分所示).由2z x y =--得2y x z =--.平移直线2y x z =--,结合图形可得,当直线2y x z =--经过可行域内的点A 时,直线在y 轴上的截距最大,此时z 取得最小值. 由1050x y x y -+=⎧⎨+-=⎩解得23x y =⎧⎨=⎩,故点()2,3A .∴min 2237z =-⨯-=-. 故选B .【名师点睛】画出可行域,将2z x y =--变形为2y x z =--,然后平移直线2y x z =--找到最优解后可求得z 的最小值.求目标函数()0z ax by ab ≠=+的最值时,将函数z ax by =+转化为直线的斜截式的形式:a z y x b b =-+,通过求直线的截距z b 的最值间接求出z 的最值,解题时要分清z 与截距zb间是正比还是反比的关系.调研 2 已知不等式组240300x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域为Ω (其中,x y 是变量).若目标函数6(0)z ax y a =+>的最小值为−6,则实数a 的值为A .32B .6C .3D .12【答案】C【解析】作出不等式组对应的平面区域,如图中阴影部分所示,由()60z ax y a =+>得66ax z y =-+,则直线斜率06a -<,平移直线66ax z y =-+,由图象可知,当直线66ax zy =-+经过点A 时,直线的截距最小,此时z 最小,为−6,由2400x y y -+=⎧⎨=⎩,得20x y =-⎧⎨=⎩,即()2,0A -,此时206a -+=-,解得3a =,故选C .☆技巧点拨☆求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.题组二 非线性目标函数的最值及范围问题调研3 设x ,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则z =yx 的最大值是A .52B .34 C .43D .25【答案】C【解析】作出已知不等式组所表示的平面区域,如图中阴影部分所示(三角形ABC 及其内部),可得A (2,1),B (3,4),C (5,2).yx可看作区域内的点(x ,y )与原点O 连线的斜率,则25=k OC ≤z ≤k OB =43.可得z 的最大值为43.故选C .调研4 设变量x y 、满足约束条件222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则22z x y =+的最大值是__________.【答案】8【解析】作出约束条件222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩所对应的可行域(如图ABC △),而22z x y =+表示可行域内的点到原点距离的平方,数形结合可得最大距离为OC或OA =22z x y =+的最大值为8,故答案为8.☆技巧点拨☆常见的非线性目标函数的几何意义(1) 表示点(x ,y )与原点(0,0)的距离;(2) (x ,y )与点(a ,b )的距离;(3)yx 表示点(x ,y )与原点(0,0)连线的斜率; (4) y b x a--表示点(x ,y )与点(a ,b )连线的斜率.题组三 线性规划的实际应用调研5 某公司生产甲、乙两种桶装产品,已知生产甲产品1桶需耗A 原料2千克,B 原料3千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克,每桶甲产品的利润是300元,每桶乙产品的利润是400元,公司在要求每天消耗A ,B 原料都不超过12千克的条件下,生产产品甲、产品乙的利润之和的最大值为 A .1800元 B .2100元 C .2400元D .2700元【答案】C【解析】设分别生产甲、乙两种产品为x 桶,y 桶,利润为z 元,则根据题意可得2212312,0,,x y x y x y x y +≤⎧⎪+≤⎨⎪≥∈⎩N,目标函数为300400z x y =+,作出不等式组表示的平面区域,如图所示,作直线:3004000l x y +=,然后把直线向可行域平移,可得0,6x y ==时,z 最大,最大值为2400z =. 故选C.调研6 某研究所计划利用“神舟十一号”飞船进行新产品搭载实验,计划搭载新产品A ,B ,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品的有关数据如下表:则使总预计收益达到最大时,A ,B 两种产品的搭载件数分别为 A .9,4 B .8,5 C.9,5 D .8,4【答案】A【解析】设“神舟十一号”飞船搭载新产品A ,B 的件数分别为x ,y ,最大收益为z 万元,则目标函数为z =80x+60y .根据题意可知,约束条件为203030010511000,x y x y x y x y +≤⎧⎪+≤⎪⎪≥⎨⎪≥⎪∈⎪⎩N ,即233022200,x y x y x y x y +≤⎧⎪+≤⎪⎪≥⎨⎪≥⎪∈⎪⎩N. 不等式组所表示的可行域为如下图中阴影部分(包含边界)内的整数点,作出目标函数对应的直线l ,显然直线l 过点M 时,z 取得最大值.由2330222x y x y +=⎧⎨+=⎩,解得94x y =⎧⎨=⎩,故M (9,4).所以目标函数的最大值为z max =80×9+60×4=960,此时搭载产品A 有9件,产品B 有4件. 故选A .☆技巧点拨☆对于线性规划的实际问题,由于题干太长,数据太多,为便于理清数据间的关系,不妨用列表法.利用线性规划解决实际问题,建立约束条件往往是关键的一步,设出未知数后,应特别注意文字语言与符号语言的转换,以免因审题不细或表达不当而出现错误.题组四 线性规划与其他知识的交汇调研7 若不等式组1010210x y y x y -+≥⎧⎪⎪+≥⎨⎪+-≤⎪⎩表示的区域为Ω,不等式221124x y ⎛⎫-+≤ ⎪⎝⎭表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中的芝麻数约为 A .114 B .10 C .150D .50【答案】A【解析】作出不等式组所表示的平面区域如下图中△ABC 及其内部,不等式221124x y ⎛⎫-+≤ ⎪⎝⎭表示的区域如下图中的圆及其内部:由图可得,A 点坐标为31(,),22B --点坐标为31(,),22C -坐标为(0,1),D 点坐标为11(,)22.区域Ω即ABC △的面积为33119[()](1)22224S Ω=--⨯+⨯=,区域Γ的面积为圆2211()24x y -+=的面积,即2ππ4S r ==,其中区域Γ和区域Ω不相交的部分面积即空白面积21111π2(π1)222216S r -=-⨯⨯⨯=白,所以区域Γ和区域Ω相交的部分面积ππ23π241616S -+=-=交,所以落入区域Γ的概率为3π236S P S Ω+==交.所以均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为360114P ⨯=. 故本题正确答案为A.【易错点睛】本题考查的是一个与面积相关的几何概型,以线性规划为背景,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;计算出可行域的面积33119[()](1)22224S Ω=--⨯+⨯=,二,画目标函数所对应的区域,为一个圆,计算出面积,即2211()24x y -+=,注意圆有一部分没在可行域内,得到公共部分的面积ππ23π241616S -+=-=交,由几何概型的面积公式可得3π236S P S Ω+==交. 调研8 已知点O 是坐标原点,点A (-1,-2),若点M (x ,y )是平面区域212x y x y +≥⎧⎪≤⎨⎪≤⎩上的一个动点,OA →·(OA→-MA →)+1m ≤0恒成立,则实数m 的取值范围是 .【答案】1(,0)[,)3-∞+∞U【解析】因为OA →=(-1,-2),OM →=(x ,y ),所以OA →·(OA →-MA →)=OA →·OM →=-x -2y . 所以不等式OA →·(OA →-MA →)+1m ≤0恒成立等价于-x -2y +1m ≤0,即1m ≤x +2y 恒成立.设z =x +2y ,作出不等式组表示的可行域如图中阴影部分所示,当目标函数z =x +2y 表示的直线经过点D (1,1)时取得最小值,最小值为1+2×1=3;当目标函数z =x +2y 表示的直线经过点B (1,2)时取得最大值,最大值为1+2×2=5.所以x +2y ∈[3,5],于是要使1m ≤x +2y 恒成立,只需1m ≤3,解得m ≥13或m <0,故实数m 的取值范围是1(,0)[,)3-∞+∞U .☆技巧点拨☆线性规划是代数与几何的桥梁,是数形结合思想的集中体现.传统的线性规划问题主要研究的是在线性或非线性约束条件下求解目标函数的最值,就知识本身而言并不是难点.但是,近年来这类问题的命题设置在能力立意的命题思想指导下出现了新的动向,即将它与函数、方程、数列、平面向量、解析几何等知识交汇在一起考查.考点3 基本不等式题组一 利用基本不等式求最值调研1 已知正数x ,y 满足x +2y =1,则1x+1y 的最小值为A .3+2√2B .4+√2C .4√2D .2+3√2【答案】A【解析】∵正数x ,y 满足x +2y =1,∴1x +1y =(1x +1y )(x +2y)=3+2y x +x y≥3+2√2,当且仅当2yx =xy 时等号成立.故选A.调研2 设x ,y ∈R ,a >1,b >1,若a x =b y =3,a +b =,则11x y+的最大值为________. 【答案】1【解析】因为a >1,b >1,a x =b y =3,a +b =x =log a 3,y =log b 3,所以11x y +=1331log log a b +=log 3a +log 3b =log 3ab ≤log 32a b +⎛⎫ ⎪⎝⎭2=log 3⎝⎭2=1,当且仅当a =b 时,等号成立.故答案为:1.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.☆技巧点拨☆基本不等式的常用变形(1)a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立. (2)a 2+b 2≥2ab ,ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ),当且仅当a =b 时,等号成立.(3)b a +ab≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立. (4)a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a≤-2(a <0),当且仅当a =-1时,等号成立.题组二 基本不等式的综合应用调研3 在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a +b =2,c =√3,则角C 的最大值为 A .60° B .90° C .120° D .150°【答案】C【解析】由题意得ab ≤(a+b 2)2=1,当且仅当a =b 时等号成立.∴由余弦定理得,cos C =a 2+b 2−c 22ab =(a+b)2−2ab−c 22ab=1−2ab2ab =12ab −1≥−12,∴角C 的最大值为120°.调研4 已知1x >,1y >,且2log x ,14,2log y 成等比数列,则xy 有A B .最小值2CD .最大值2【答案】A【解析】∵x >1,y >1,∴22log 0,log 0x y >>,又∵2log x ,14,2log y 成等比数列,∴221log log 16x y =⨯,由基本不等式可得221log log 2x y +≥=,当且仅当22log log x y =时取等号,故21log 2xy ≥,即xy ≥,故xy . 本题选择A 选项.【名师点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.1.(广东省台山市华侨中学2020届高三级10月模考数学试题)设集合{|A x y ==,集合{}2|20B x x x =->,则() A B R I ð等于A .()0,2B .[)1,2C .()0,1D .()2,+∞【答案】C【解析】集合{|{|10}{|1}A x y x x x x ===-≥=≥,集合{}()20{|20}{02}|2|B x x x x x x x x ->==-<=<<,则{|1}A x x =<R ð,()() {|01}0,1A B x x ∴=<<=R I ð.故选C .【名师点睛】本题考查了集合的化简与运算问题,是基础题目.求解时,化简集合A 和B ,根据补集与交集的定义写出()A B R I ð即可. 2.(浙江省宁波市镇海中学2019-2020学年高三上学期期中数学试题)若,,a b c ∈R 且a b >,则下列不等式中一定成立的是A .ac bc >B .2()0a b c ->C .11a b<D .22a b -<-【答案】D【解析】对于A ,若0c ≤,则不等式不成立; 对于B ,若0c =,则不等式不成立; 对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确. 故选:D.【名师点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.求解时,根据不等式的性质即可判断.3.(山东省聊城市2019-2020学年高三上学期期中数学试题)设0.7310.5,log 0.33p q ==,则有 A .p q pq p q ->>+ B .p q p q pq ->+> C .pq p q p q >->+ D .p q p q pq +>->【答案】B【解析】由0.70.5p =,10.70.50.50.50.52<<==1,22p ⎛⎫∴∈ ⎪ ⎪⎝⎭;由31log 0.33q =,333111111log log 0.3log 233333-=<<=-,11(,)23q ∴∈--, 0p q p q ∴->+>,0pq <,p q p q pq ∴->+>.故选:B.【名师点睛】利用指数函数和对数函数的单调性,判断指数式与对数式范围.求解时,先确定p 、q 的取值范围,再比较p q -,p q +,pq 大小关系.4.(天津市新华中学2019届高三下学期第八次统练(一模)数学试题)已知命题11:4p a >,命题:q x ∀∈R ,210ax ax ++>,则p 成立是q 成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式114a >可得04a <<, 对于命题q ,当0a =时,命题明显成立;当0a ≠时,有:240a a a >⎧⎨∆=-<⎩,解得:04a <<,即命题q 为真时04a ≤<, 故p 成立是q 成立的充分不必要条件.故选:A.【名师点睛】本题主要考查不等式的解法,充分条件和必要条件的判定,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.求解时,分别由命题p ,q 求得a 的取值范围,然后考查充分性和必要性是否成立即可.5.(福建省三明市第一中学2019-2020学年高三上学期第二次月考数学试题)若实数x y ,满足约束条件0010x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩,则2z x y =+的最小值为 A .0 B .12- C .1D .32【答案】B【解析】由约束条件0010x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩作出可行域如下:因为目标函数2z x y =+可化为2y x z =-+,因此z 表示直线2y x z =-+在y 轴上的截距, 由图像可得:当直线2y x z =-+过点A 时,直线2y x z =-+在y 轴截距最小,由010x y x y +=⎧⎨-+=⎩得1212x y ⎧=-⎪⎪⎨⎪=⎪⎩,即A 11,22⎛⎫- ⎪⎝⎭.所以min 1112222⎛⎫=⨯-+=- ⎪⎝⎭z ,故选:B. 【名师点睛】本题主要考查简单的线性规划问题,只需由约束条件作出可行域,根据目标函数的几何意义,结合图像求解即可,属于常考题型.求解时,先由约束条件作出可行域,化目标函数为2y x z =-+,则目标函数表示直线2y x z =-+在y 轴截距,结合图像,即可得出结果.6.(江西省南昌市南昌县莲塘第一中学2019-2020学年高三上学期12月月考数学试题)已知x ,y 满足条件0020x y y x x y k ≥≥⎧⎪≤⎨⎪++≤⎩,(k 为常数),若目标函数3z x y =+的最大值为9,则k = A .16- B .6- C .274-D .274【答案】B【解析】画出x ,y 满足的0,0(20x y y xk x y k ⎧⎪⎨⎪++⎩厖„„为常数)可行域如下图:由于目标函数3z x y =+的最大值为9,可得直线0y =与直线93x y =+的交点为(3,0)B , 使目标函数3z x y =+取得最大值,将3x =,0y =代入20x y k ++=得:6k =-.故选:B .【名师点睛】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x ,y 后,即可求出参数的值.求解时,由目标函数3z x y =+的最大值为9,我们可以画出满足条件0,0(20x y y xk x y k ⎧⎪⎨⎪++⎩厖„„为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k 的方程组,消参后即可得到k 的取值.7.(山东省滨州市三校联考2019-2020学年高三上学期期中考试数学试题)已知0a >,0b >,若不等式41ma b a b+≥+恒成立,则m 的最大值为 A .10 B .12 C .16D .9【答案】D【解析】由已知0a >,0b >,若不等式41m a b a b+≥+恒成立, 所以41()m a b a b ⎛⎫≤++⎪⎝⎭恒成立, 转化成求41()y a b a b ⎛⎫=++⎪⎝⎭的最小值,414()559b a y a b a b a b ⎛⎫=++=++≥+= ⎪⎝⎭,所以9m ≤.故选:D .【名师点睛】本题考查了基本不等式求最值,属于简单题.求解时,由已知0a >,0b >,不等式41ma b a b+≥+恒成立,转化成新函数的最小值问题. 8.(湖南省永州市道县、东安、江华、蓝山、宁远2019-2020学年高三12月联考数学试题)设x ,y 满足约束条件04312x y x x y ⎧⎪⎨⎪+⎩……„,则2241x y x +++的取值范围是A .[]4,12B .[]4,11C .[]2,6D .[]1,5【答案】A【解析】作出可行域,如图OAB △内部(含边界),22412211x y y x x +++=+⨯++,11y x ++表示定点(1,1)--P 与可行域内点(,)M x y 连线的斜率,(0,4)B ,14510PB k --==--,由图中知1[1,5]1y x +∈+,∴122[4,12]1y x ++⨯∈+. 故选:A .【名师点睛】本题考查二元一次不等式组表示的平面区域,考查简单的非线性规划问题,解题关键是作出可行域,正确理解代数式11y x ++的几何意义.求解时,作出可行域,22412211x y y x x +++=+⨯++,利用11y x ++的几何意义求解. 9.(辽宁省大连市中山区第二十四中学2019-2020学年高三上学期11月月考数学试题)某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告费用不超过9万元,甲、乙电视台的广告费标准分别是500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司做的广告能给公司带来的收益分别为0.4万元/分钟和0.2万元/分钟,那么该公司合理分配在甲、乙两个电视台的广告时间,能使公司获得最大的收益是( )万元 A .72 B .80 C .84D .90【答案】B【解析】设公司在甲、乙两个电视台的广告时间分别为,x y 分钟,总收益为z 元,则由题意可得可行域为:300500200900000,0x y x y x y +⎧⎪+⎨⎪⎩„„厖,目标函数为40002000z x y =+,可行解域化简得300529000,0x y x y x y +⎧⎪+⎨⎪⎩„„厖,在平面直角坐标系内,画出可行解域,如下图所示:作直线:400020000l x y +=,即20x y +=,平行移动直线l ,当直线l 过M 点时,目标函数取得最大值,联立30052900x y x y +=⎧⎨+=⎩,解得100,200x y ==,所以M 点坐标为(100,200),因此目标函数最大值为max 40001002000200800000z =⨯+⨯=,故本题选B.【名师点睛】本题考查了应用线性规划知识解决实际问题的能力,正确列出约束条件,画出可行解域是解题的关键.求解时,设公司在甲、乙两个电视台的广告时间分别为,x y 分钟,总收益为z 元,根据题意得到约束条件,目标函数,平行目标函数图象找到在纵轴上截距最大时所经过的点,把点的坐标代入目标函数中即可.10.(浙江省宁波市镇海中学2019-2020学年高三上学期期中数学试题)设a ,b 为正实数,且121322a b a b +++=,则12a b+的最大值和最小值之和为 A .2 B .92C .132D .9【答案】C 【解析】由121322a b a b +++=,则2122113a b a b ⎡⎤⎛⎫+++= ⎪⎢⎥⎝⎭⎣⎦,所以1221212213a b a b a b a b ⎡⎤⎛⎫⎛⎫+=++++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 2222121413a b b a a b ⎡⎤⎛⎫=+++++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦22212212591313a b a b ⎡⎤⎡⎤⎛⎫⎛⎫≥++=++⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 当且仅当22a b b a=时,即32a b ==或23时,等号成立,即221212913a b a b⎡⎤⎛⎫++≤+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,解得12922a b ≤+≤, 所以12a b +的最大值为92;最小值为2. 所以最大值和最小值之和为132. 故选:C.【名师点睛】本题主要考查利用基本不等式求最值,运用基本不等式求最值需验证等号成立的条件,属于中档题.根据题意可得2122113a b a b ⎡⎤⎛⎫+++= ⎪⎢⎥⎝⎭⎣⎦,再由“1”与12a b +相乘利用基本不等式转化为221212913a b a b⎡⎤⎛⎫++≤+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,解不等式即可求解. 11.(河南省八市重点高中联盟2019-2020学年高三12月联考(领军考试)数学试题)已知实数,x y 满2025020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则222z x y y =++的最大值为__________. 【答案】24【解析】作出不等式组表示的平面区域如图中阴影部分所示, 其中(1,2),(3,1),(4,2)A B C ,22222(1)1x y y x y ++=++-,22(1)x y ++表示可行域内的任意一点与(0,1)-之间距离的平方,所以22max 4[2(1)]124z =+---=.故答案为24.【名师点睛】平面区域的最值问题是线性规划问题中一类重要题型,在解题时关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,分析222z x y y =++表示的几何意义,结合图象即可给出222z x y y =++的最大值. 12.(重庆南开中学2019-2020学年高三上学期第四次教学质量检测数学试题)已知实数,1a b >,且满足5ab a b --=,则23a b +的最小值为___________.【答案】17【解析】5ab a b --=Q ,∴56111b a b b +==+--, ∴121223233(1)511a b b b b b +=++=-++--;1a >Q ,1b >,235a b ∴+≥265=⨯+17=. 故答案为:17.【名师点睛】本题考查消元代入法及基本不等式的应用,考查转化与化归思想,利用基本不等式求最值时,要注意“一正、二定、三等”三个条件都需满足.求解时,根据5ab a b --=可得a ,b 的关系,代入23a b +运用基本不等式求解.13.(天津市部分区2019-2020学年高三上学期期中数学试题)已知x >0,y >0,且211x y+=,若x +2y ≥m 2+2m 恒成立,则实数m 的取值范围________.【答案】[4,2]- 【解析】由211x y +=,可得()14224482x y x y x y y y x x ⎛⎫+=++=++≥+= ⎪⎝⎭, 而222x y m m +≥+恒成立()2min 22m m x y ⇔+≤+,所以228m m +≤恒成立,即2280m m +-≤恒成立,解得42m -≤≤, 故答案为:[4,2]-.【名师点睛】本题主要考查了基本不等式的性质,以及一元二次不等式的解法的运用,属于中档题.求解时,由211x y +=,可得()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭展开,利用基本不等式可求2x y +得最小值,不等式等价于()2min 22m m x y +≤+,据此求出m 的取值范围即可.14.(陕西省安康市2019-2020学年高三上学期12月阶段性考试数学试题)已知,x y 满足约束条件24022x y x y y ax+-≤⎧⎪-⎨⎪⎩……,若可行域为三角形,则a 的取值范围为________. 【答案】1126a -<< 【解析】作图如下,易知1(3,)2A ,则1126OA a k -<<=.故答案为:1126a -<<. 【名师点睛】本题考查利用可行域求参数取值范围,考查基本分析求解能力,属中档题.求解时,先作图,再根据图象确定a 的取值范围.15.(福建省厦门市双十中学2019-2020学年高三上学期期中数学试题)已知a ,b ,c 是ABC △的三条边.(1)求证:332251a b a b ab +++≥-;(2)若1abc =,求()()()a b c b c a c a b +-+-+-的最大值. 【答案】(1)证明见解析;(2)1.【解析】(1)只需证:332215a b a b ab ++++≥.∵3313a b ab ++≥=,222a b ab +≥,所以332215a b a b ab ++++≥. 当且仅当1a b ==时,等号成立.(2)设()()()S a b c b c a c a b =+-+-+-,()()a b c b c a +-+-22()()2a b c b c a b +-++-⎡⎤≤=⎢⎥⎣⎦, ()()b c a c a b +-+-22()()2b c a c a b c +-++-⎡⎤≤=⎢⎥⎣⎦, ()()a b c c a b +-+-22()()2a b c c a b a +-++-⎡⎤≤=⎢⎥⎣⎦, 所以22()1S abc ≤=,当且仅当a b c b c a c a b +-=+-=+-,即a b c ==时,()()()a b c b c a c a b +-+-+-的最大值为1.【名师点睛】本题考查利用基本不等式进行证明,利用基本不等式求最大值,属于中档题.求解时,(1)利用基本不等式,得到3313a b ab ++≥,222a b ab +≥,从而进行证明;(2)根据基本不等式,得()()a b c b c a +-+-22()()2a b c b c a b +-++-⎛⎫≤= ⎪⎝⎭,同理2()()c b c a c a b ≤+-+-,2()()a a b c c a b ≤+-+-,三式相乘,整理化简后可得所求式子的最大值为1.1.(2019年高考全国II 卷理数)若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │【解析】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ; 因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D , 因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【名师点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.2.(2019年高考全国Ⅰ卷理数)已知集合2|42{|60}{},M x x N x x x =-<<=--<,则M N I = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<<D .}{23x x <<【答案】C【解析】由题意得2|42,{|60}{}|23}{M x x N x x x x x =-<<=--<=-<<, 则{|22}M N x x =-<<I . 故选C .【名师点睛】注意区分交集与并集的不同,交集取公共部分,并集包括二者所有的部分. 3.(2019年高考全国Ⅱ卷理数)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1)C .(–3,–1)D .(3,+∞)【答案】A【解析】由题意得,2{560|}{2|A x x x x x =-+><=或3}x >,{10}{1|}|B x x x x =-<=<,则{|1}(,1)A B x x =<=-∞I .故选A .【名师点睛】本题考点为集合的运算,为基础题目.4.(2019年高考全国Ⅲ卷理数)已知集合2{1,0,1,2},{|1}A B x x =-=≤,则A B =I A .{}1,0,1- B .{}0,1 C .{}1,1-D .{}0,1,2【解析】∵21,x ≤∴11x -≤≤,∴{}11B x x =-≤≤,又{1,0,1,2}A =-,∴{}1,0,1A B =-I . 故选A .【名师点睛】本题考查了集合交集的求法,是基础题.5.(2018新课标全国Ⅰ理科)已知集合{}220A x x x =-->,则A =R ð A .{}12x x -<< B .{}12x x -≤≤C .}{}{|1|2x x x x <->UD .}{}{|1|2x x x x ≤-≥U【答案】B【解析】解不等式x 2−x −2>0得x <−1或x >2,所以A ={x|x <−1或x >2},所以可以求得{}|12A x x =-≤≤R ð,故选B .6.(2018新课标全国△理科)设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B【解析】∵0.2log 0.3a =,2log 0.3b =,.0.3030.211log ,lo 2g a b∴==, 0.311lo 0.g 4a b∴+=,∴0<1a +1b <1,即0<a+bab <1, 又∵a >0,b <0,∴ab <0,即ab <a +b <0, 故选B.7.(2017新课标全国Ⅱ理科)设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是A .15-B .9-C .1D .9【答案】A【解析】画出不等式组表示的平面区域如下图中阴影部分所示,目标函数即:2y x z =-+,其中z 表示斜率为2k =-的直线系与可行域有交点时直线的纵截距,数形结合可得目标函数在点(6,3)B --处取得最小值,min 2()3)56(1z --=⨯+=-,故选A .【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.8.(2018新课标I 理科)若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为_____________.【答案】6【解析】根据题中所给的约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,画出其对应的可行域,如图所示:由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值,由220x y y --=⎧⎨=⎩,解得()2,0B ,此时max 3206z =⨯+=,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.9.(2018新课标II 理科)若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9【解析】不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域是以()()()5,4,1,2,5,0A B C 为顶点的三角形区域,如下图所示,目标函数z x y =+的最大值必在顶点处取得,易知当5,4x y ==时,max 9z =.【名师点睛】线性规划问题是高考中常考考点,主要以选择或填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.。

专题02等比数列(解析版)-2020年高考数学(理)数列与不等式二轮专项提升

专题02等比数列(解析版)-2020年高考数学(理)数列与不等式二轮专项提升

《2020年数学(理)数列与不等式二轮专项提升》专题02 等比数列一、 高考题型特点:数列部分高考题型一般是2道客观题,有时有一道解答题.对小题的考查一般以等差、等比数列的基本量运算、等差、等比数列的性质、数列的递推式等为主.解答题一般考查求数列的通项公式、等差及等比数列的判定及计算、错位相减法、裂项相消法、公式法求和. 二、重难点:等比数列的性质,基本运算量的计算,通项、求和等. 三、 易错注意点:1.特别注意q =1时,S n =na 1这一特殊情况.2.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n -S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1时且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立. 四、典型例题:例1.(2019全国卷I )记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=____________.【答案】【解析】设公比为q,由例2.(2019全国卷III )已知各项均为正数的等比数列{a n }的前4项为和为15,且a 5=3a 3+4a 1,则a 3=( ) A . 16 B . 8C .4D . 2【答案】C【解析】由a 5=3a 3+4a 1,得由由得,故选C例3.(2019全国卷II )已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+ ,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+, 即112n n n n a b a b ++-=-+.又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.例4.(2018•全国卷Ⅰ)记S n 为数列{a n }的前n 项和,若S n =2a n +1,则S 6=________. 【答案】 -63【解析】 根据S n =2a n +1,可得S n +1=2a n +1+1,两式相减得a n +1=2a n +1-2a n ,即a n +1=2a n ,当n =1时,S 1=a 1=2a 1+1,解得a 1=-1,所以数列{a n }是以-1为首项,以2为公比的等比数列,所以S 6=-1-261-2=-63.例5.(2017全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏【答案】 B【解析】 设塔的顶层的灯数为a 1,七层塔的总灯数为S 7,公比为q ,则由题意知S 7=381,q =2,∴S 7=a 11-q 71-q =a 11-271-2=381,解得a 1=3.故选B.例6.(2017全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 【答案】 -8【解析】 设等比数列{a n }的公比为q ,∵a 1+a 2=-1,a 1-a 3=-3, ∴a 1(1+q )=-1,① a 1(1-q 2)=-3.②②÷①,得1-q =3,∴q =-2. ∴a 1=1,∴a 4=a 1q 3=1×(-2)3=-8.例7.(2017北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.【答案】 1【解析】 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 则由a 4=a 1+3d ,得d =a 4-a 13=8--13=3,由b 4=b 1q 3得q 3=b 4b 1=8-1=-8,∴q =-2.∴a 2b 2=a 1+db 1q =-1+3-1×-2=1. 例8.(2017江苏卷)等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8=________.【答案】 32【解析】 设{a n}的首项为a 1,公比为q ,则⎩⎪⎨⎪⎧a 11-q 31-q=74,a11-q 61-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,所以a 8=14×27=25=32.例9.(2018全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 【解析】 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n-1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1--2n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6.综上,m =6. 五、强化提升训练:1.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( )A .-3B .5C .-31D .33 【答案】D【解析】 设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18,∴1-q 31-q 6=218,得q 3=8,∴q =2.∴S 10S 5=1-q 101-q 5=1+q 5=33,故选D. 2.S n 是正项等比数列{a n }的前n 项和,a 3=18,S 3=26,则a 1=( )A .2B .3C .1D .6【答案】 A【解析】 设等比数列{a n }的公比为q ,因a 3=18,S 3=26,则有a 3+a 3q +a 3q 2=26,即18+18q +18q 2=26,可解得:q =3或q =-34,又由数列{a n }为正项等比数列,得q =3,则a 1=a 3q 2=189=2,故选A.3.对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列 【答案】D【解析】设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D. 4.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x 的图象上,等比数列{b n }满足b n +b n+1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T n B .T n =2b n +1 C .T n >a n D .T n <b n +1【答案】D【解析】由题意可得S n +3=3×2n ,S n =3×2n -3,由等比数列前n 项和的特点可得数列{a n }是首项为3,公比为2的等比数列,数列的通项公式a n =3×2n-1,设b n =b 1q n -1,则b 1q n -1+b 1q n =3×2n -1,当n =1时,b 1+b 1q =3,当n =2时,b 1q +b 1q 2=6, 解得b 1=1,q =2,数列{b n }的通项公式b n =2n -1,由等比数列求和公式有:T n =2n -1,观察所给的选项: S n =3T n ,T n =2b n -1,T n <a n ,T n <b n +1.5.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( )A .5B .9C .log 345D .10【答案】D【解析】由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里【答案】B【解析】设等比数列{a n }的首项为a 1,公比为q =12,由题意得a 1⎝⎛⎭⎫1-1261-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.7.若1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ).A. -12B. 12C. -14D. 14【答案】 -12【解析】 ∵1,a 1,a 2,4成等差数列, ∴3(a 2-a 1)=4-1,∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0,∴b 2=2, ∴a 1-a 2b 2=-(a 2-a 1)b 2=-12.8.在公比为q 的正项等比数列{a n }中,a 4=4,则当2a 2+a 6取得最小值时,log 2q =( )A.14 B .-14C.18 D .-18【答案】A【解析】 2a 2+a 6≥22a 2a 6=22a 24=82,当且仅当q 4=2时取等号,所以log 2q =log 2214=14,选A. 9.在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 .【答案】 4【解析】 因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4,得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,q 2=-1(舍去),a 6=a 2q 4=1×22=4. 10.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和为 .【答案】 2n -1【解析】 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴数列{a n }的前n 项和为1-2n 1-2=2n-1.11.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n = .【答案】12n【解析】 ∵a n +S n =1,① ∴a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),又a 1=12,∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×⎝⎛⎭⎫12n -1=12n .12.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n = .【答案】a n =3n -1+12【解析】 ∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12.13.已知等比数列{a n }的公比不为-1,设S n 为等比数列{a n }的前n 项和,S 12=7S 4,则S 8S 4= .【答案】 3【解析】 由题意可知S 4,S 8-S 4,S 12-S 8成等比数列,则(S 8-S 4)2=S 4·(S 12-S 8),又S 12=7S 4,∴(S 8-S 4)2=S 4·(7S 4-S 8),可得S 28-6S 24-S 8S 4=0,两边都除以S 24,得S 8S 42-S 8S 4-6=0,解得S 8S 4=3或-2,又S 8S 4=1+q 4(q 为{a n }的公比),∴S 8S 4>1,∴S 8S 4=3. 14.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n +3= .【答案】 43⎝⎛⎭⎫1-14n +2【解析】 由题意,得S 2n +3=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2n +2+a 2n +3)=1+14+116+…+14n +1=43⎝⎛⎭⎫1-14n +2.15.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .【解析】 (1)∵a n ·a n +1=⎝⎛⎭⎫12n, ∴a n +1·a n +2=⎝⎛⎭⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12,∴a 2=12,∴b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×⎝⎛⎭⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .16.已知等比数列{a n }的各项均为正数,且a 2=4,a 3+a 4=24.(1)求数列{a n }的通项公式;(2)若数列{b n }的前n 项和S n =n 2+n +2n +1-2(n ∈N *),求证:数列{a n -b n }是等差数列. 【解析】 (1)设等比数列{a n }的公比为q ,依题意知q >0.由已知得⎩⎪⎨⎪⎧a 1q =4,a 1q 2+a 1q 3=24,两式相除得q 2+q -6=0, 解得q =2或q =-3(舍去),所以a 1=a 2q =2,所以数列{a n }的通项公式为a n =a 1·q n -1=2n . (2)证明:由已知得,当n =1时,b 1=4;当n ≥2时,b n =S n -S n -1=n 2+n +2n +1-(n -1)2-(n -1)-2n =2n +2n , 又b 1=4符合上式,∴b n =2n +2n (n ∈N *).设c n =a n -b n ,则c n =-2n ,当n ≥2时,c n -c n -1=-2, ∴{c n }即{a n -b n }是等差数列. 17.数列{a n }中,a 1=2,a n +1=n +12n a n(n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式;(2)设b n =a n4n -a n ,若数列{b n }的前n 项和是T n ,求证:T n <2.【解析】(1)由题设得a n +1n +1=12·a n n,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×12n -1=22-n ,a n =n ·22-n =4n 2n .(2)证明:b n =a n 4n -a n=4n2n 4n -4n 2n=12n -1,因为对任意n ∈N *,2n -1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=21-12n <2.18.已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).【解析】 (1)设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n (n ∈N *). (2)证明:由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n =1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n(2n +1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=32+23=136.当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=34+43=2512.故对于n ∈N *,有S n +1S n ≤136.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年高考数学(理) 热点07 数列与不等式【命题趋势】 在目前高考卷的考点中,数列主要以两小或一大为主的考查形式,在小题中主要以等差数列和等比数列为主,大题与三角函数,解三角形的内容交替考查,早在2014年和2015年卷中,以数列的通项与求和为主,而近3年的第17题(即解答题的第1题的位置),完全是考查解三角形.但是数列仍然作为解答题第一题的热点.由于三角函数与数列均属于解答题第一题,考查的内容相对比较简单,这一部分属于必得分,对于小题部分,一般分布为一题简单题一道中等难度题目,对于不等式一般以线性规划以及作为一个工具配合其他知识点出现.主要是以基本不等式作为切入点形式出现,题目难度中等本.专题针对高考中数列,不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式.请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结. 【知识点分析以及满分技巧】等差数列如果记住基本的通项公式以及求和公式,所有的等差数列问题都可以解决. 数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案,本专题有相应的题目供参考.线性规划类题目技巧是可以直接采用边界点代入解析式求出最值即可. 对于基本不等式类的题目应注意等号成立地条件. 【考查题型】选择,填空,解答题(数列)【限时检测】(建议用时:50分钟)1.(2019·湖北高三月考(理))已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan()3a a π⋅=( )A .BC .D .【答案】B 【解析】 【详解】依题意,得3234364a a a a ==-,所以34a =-.由2764a =,得78a =-,或78a =(由于7a 与3a 同号,故舍去).所以463732a a a a ==.4632ππtan tan tan 11tan 3333a a πππ⎛⎫⎛⎫⎛⎫⋅=⋅=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故选A.2.(2019·海南高考模拟(理))等差数列{}n a 的首项为2,公差不等于0,且2317a a a =,则数列11{}n n a a +的前2019项和为( ) A .10092020 B .20194042C .10094042D .20192021【答案】B 【解析】 【分析】先设等差数列{}n a 的公差为d ,根据题中条件求出公差,得到1n a n =+,再由裂项相消法即可求出结果. 【详解】设等差数列{}n a 的公差为d ,由12a =,2317a a a =,可得()()222226d d +=+,所以1d =,因此1n a n =+,所以111112n n a a n n +=-++, 所以201911111111...23344520202021S ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭112019*********=-=. 故选B【名师点睛】本题主要考查等差数列的通项公式、以及裂项相消法求数列的和,熟记公式即可,属于常考题型.3.(2019·河南高考模拟(理))记n S 为数列{}n a 的前n 项和.“任意正整数n ,均有0n a >”是“{}n S 为递增数列”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分析:“a n >0”⇒“数列{S n }是递增数列”,“数列{S n }是递增数列”不能推出“a n >0”,由此知“a n >0”是“数列{S n }是递增数列”的充分不必要条件. 详解:⇒“a n >0”⇒“数列{S n }是递增数列”,所以“a n >0”是“数列{S n }是递增数列”的充分条件.如数列{}n a 为-1,0,1,2,3,4,L ,显然数列{S n }是递增数列,但是n a 不一定大于零,还有可能小于等于零,所以“数列{S n }是递增数列”不能推出“a n >0”, ⇒“a n >0”是“数列{S n }是递增数列”的不必要条件. ⇒“a n >0”是“数列{S n }是递增数列”的充分不必要条件. 故答案为:A .点睛:说明一个命题是真命题,必须证明才严谨.要说明一个命题是一个假命题,只要举一个反例即可.4.(2019·辽宁高考模拟(理))各项均为正数的等比数列{}n a 的前n 项和n S ,若264a a =,31a =,则29()42n nS a +的最小值为( )A .4B .6C .8D .12【答案】C 【解析】 【分析】由题意,根据等比中项得出2444,2a a == ,然后求得公比2,q =首项114a =,再利用公式求得n S ,通项n a 代入用基本不等式求最值. 【详解】因为264a a =,且等比数列{}n a 各项均为正数,所以2444,2a a ==公比432,a q a ==首项114a = 所以1(1)2114n n n a q S q --==- ,通项11124n n n a a q --==所以29()2164448242n n n n S a +=++≥=当且仅当216,342n n n =∴=所以当3n =时,2942n nS a ⎛⎫+ ⎪⎝⎭的最小值为8故选C 【名师点睛】本题考查了等比数列的通项、求和以及性质,最后还用到基本不等式,属于小综合题型,属于中档题,需要注意的是利用基本不等式要有三要素“一正、二定、三相等”.5.(2018·河北衡水中学高考模拟(理))已知实数x ,y 满足约束条件5001202x y y x y x ⎧⎪+-≥⎪-≥⎨⎪⎪--≤⎩,若不等式()()2212420a x xy a y -++-≥恒成立,则实数a 的最大值为( )A .73B .53CD【答案】A 【解析】【详解】绘制不等式组表示的平面区域如图所示,考查目标函数yt x=,由目标函数的几何意义可知,目标函数在点()23C ,处取得最大值max 32y t x ==,在点A 或点B 处取得最小值min 1t =,即312t ⎡⎤∈⎢⎥⎣⎦,.题中的不等式即:()2222224a x y x xy y +≤++,则:22222224421221x xy y t t a x y t ++++≤=++恒成立,原问题转化为求解函数 ()2242131212t t f t t t ++⎛⎫=≤≤ ⎪+⎝⎭的最小值,整理函数的解析式有:()22211112424221211131224112122t t t f t t t t t ⎛⎫⎪ ⎪⎛⎫ ⎪++- ⎪ ⎪=⨯=⨯+=+ ⎪ ⎪ ⎪++ ⎪⎝⎭-++⎪ ⎪-⎝⎭,令12m t =-,则112m ≤≤, 令()34g m m m=+,则()g m在区间12⎛ ⎝⎭上单调递减,在区间1⎫⎪⎪⎝⎭上单调递增, 且()172124g g ⎛⎫== ⎪⎝⎭,,据此可得,当112m t ==,时,函数()g m 取得最大值,则此时函数()f t 取得最小值,最小值为:()2241211712113f ⨯+⨯+==⨯+.综上可得,实数a 的最大值为73.本题选择A 选项.【名师点睛】本题主要考查基本不等式,在用基本不等式求最值时,应具备三个条件:一正二定三相等.⇒一正:关系式中,各项均为正数;⇒二定:关系式中,含变量的各项的和或积必须有一个为定值;⇒三相等:含变量的各项均相等,取得最值.若等号不成立,则利用对勾函数的单调性解决问题.6.(2019·安徽高考模拟(理))已知等差数列{}n a 的前n 项和是n S ,公差d 不等于零, 若236,,a a a 成等比数列,则 A .130,0a d dS >> B .130,0a d dS >< C 、130,0a d dS <>D .130,0a d dS <<【答案】C 【解析】 【分析】由236,,a a a 成等比数列.可得2326a a a =,利用等差数列的通项公式可得(211125a d a d a d +=++)()() ,解出11020a d a d <,+= .即可. 【详解】由236,,a a a 成等比数列.可得2326a a a =,可得(211125a d a d a d +=++)()(),即2120a d d +=,⇒公差d 不等于零,11020a d a d ∴+=<,.23133302dS da d d ∴=+=()>. 故选:C .【名师点睛】本题考查了等差数列的通项公式、考查了计算能力,属于基础题.7.(2019·江西高考模拟(理))已知实数x ,y 满足不等式组21035328x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩,若(>0)z ax y a =-的最小值为9,则实数a 的值等于( ) A .3B .5C .8D .9【答案】B 【解析】 【分析】先由不等式组画出可行域,再画出目标函数确定在点()A 21,取得最小值,代入求解出a 即可. 【详解】解:如图,画出不等式组21035328x y x y x y -≤⎧⎪+≤⎨⎪+≥⎩代表的可行域如图中阴影部分因为0a >,可画出目标函数所代表直线y ax z =-如图中虚线所示, 且过点A 处目标函数最小 由35328x y x y +=⎧⎨+=⎩,解得()A 21,代入目标函数219z ax y a =-=-=,得5a = 故选:B.【名师点睛】本题考查了简单线性规划,目标函数中含有参数时可先观察其所代表的直线特点画出其可能的图像,然后分析其最优解.8.(2019·山西高考模拟(理))已知数列{}n a 的前n项和S 满足*1(1)26()2n n n n S a n n N --=-+∈,则100S =( ) A .196 B .200 C .10011942+D .10211982+【答案】B 【解析】 【分析】已知递推公式再递推一步,得到两个递推公式,相减,对这个式子分类讨论,求出需要的项,然后求值. 【详解】()11262nn n nS a n --=-+(1) 当2n ≥时,()1111112(1)62n n n n S a n ------=--+(2), (1)-(2)得; ()()1112112n n n n n n a a a --=-+---,当n 为偶数时,1122n n a -=-,当102n =时,101102122a -=,当n 为奇数时,11222n n n a a -=-+,101n =时,1001011012122a a +=- 100100162a ∴=- 100100100120062002S a ∴=+-+=.【名师点睛】本题考查了数列的递推公式,重点考查了分类讨论思想.9.(2019·天津高考模拟(理))在等差数列{}n a 中,若981a a <-,且它的前n 项和n S 有最小值,则当0n S >时,n 的最小值为() A .14 B .15C .16D .17【答案】C 【解析】分析:根据题设条件,利用等差数列的性质推导出811520a a a =+<,891160a a a a +=+>,由此能求出0n S >时,n 的最小值.详解:⇒数列{}n a 是等差数列,它的前n 项和n S 有最小值 ⇒公差0d >,首项10a <,{}n a 为递增数列⇒981a a <- ⇒890a a ⋅<,890a a +>由等差数列的性质知:811520a a a =+<,891160a a a a +=+>. ⇒1()2n n a a nS +=⇒当0n S >时,n 的最小值为16.故选C.【名师点睛】:本题考查等差数列的前n 项和的应用,考查数列的函数特性,是中档题.解答本题的关键是根据80a <,90a >,确定0n S >时,n 的最小值.10.(2019·西藏高考模拟(理))若曲线3222y x x =-+在点A 处的切线方程为46y x =-,且点A 在直线10mx ny +-=(其中0m >,0n >)上,则12m n+的最小值为( )A .B .3+C .6+D .【答案】C 【解析】 【分析】设A (s ,t ),求得函数y 的导数可得切线的斜率,解方程可得切点A ,代入直线方程,再由基本不等式可得所求最小值. 【详解】解:设A (s ,t ),y =x 3﹣2x 2+2的导数为y ′=3x 2﹣4x , 可得切线的斜率为3s 2﹣4s ,切线方程为y =4x ﹣6,可得3s 2﹣4s =4,t =4s ﹣6, 解得s =2,t =2或s 23=-,t 263=-, 由点A 在直线mx +ny ﹣l =0(其中m >0,n >0), 可得2m +2n =1成立,(s 23=-,t 263=-,舍去),则12m n +=(2m +2n )(12m n +)=2(32n m m n ++)≥2(当且仅当n =时,取得最小值,故选:C .【名师点睛】本题考查导数的运用:求切线斜率,以及基本不等式的运用:求最值,考查运算能力,属于基础题.11.(2019·广东高考模拟(理))已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C 【解析】 【分析】利用待定系数法求得()()32x y x y x y -=++-,由11x y -≤+≤,13x y ≤-≤,结合38212yx y x-⎛⎫⋅ ⎪⎝⎭=,从而可得结果. 【详解】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,⇒12s t =⎧⎨=⎩, 又11x y -≤+≤,…⇒⇒13x y ≤-≤,⇒()226x y ≤-≤…⇒ ⇒⇒+⇒得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .【名师点睛】本题主要考查不等式的性质以及指数函数的性质,意在考查综合运用所学知识解答问题的能力,属于中档题.12.(2019·湖北黄冈中学高考模拟(理))设{}n a 是各项为正数的等比数列,q 是其公比,n K 是其前n 项的积,且56K K <,678K K K =>,则下列结论错误的是( )A .01q <<B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】C 【解析】分析:利用等比数列11n n a a q -=的通项公式,解出n K 的通项公式,化简整理56K K <,678K K K =>这三个表达式,得出结论.详解:设等比数列11n n a a q -=,n K 是其前n 项的积所以()121n n n n K a q-=,由此55611K K a q <⇒<,66711K K a q =⇒=,77811K K a q >⇒>所以6711a a q ==,所以B 正确,由551111a q a q <<,,各项为正数的等比数列,可知01q <<,所以A 正确 ()162111n n nn a q K a q -==,,可知()()113221n n n n n n K a q q--==,由01q <<,所以xq 单调递减,()132n n -在n 6,7=时取最小值,所以n K 在n 6,7=时取最大值,所以D 正确.故选C【名师点睛】:本题应用了函数的思想,将等比数列当作指数型函数对其单调性进行研究,n K 为复合函数,对于复合函数的单调性“同增异减”.13.(2019·江西高考模拟(理))设等差数列{}n a 的前n 项和为n S ,已知()()201920212017201720171201912000a a a -++-=,()()20192021202020202020-1+201912038a a a +-=,则4036S =( )A .2019B .2020C .2021D .4036【答案】D 【解析】【分析】根据已知关系式可凑得()()()20192021201720172017120191119a a a -+-+-=-和()()()20192021202020202020120191119a a a -+-+-=,从而构造函数20192021()2019f x x x x =++;经验证()f x 为奇函数,可得201720202a a +=;根据等差 数列求和公式和角标性质求得结果. 【详解】 由()()201920212017201720171201912000a a a -++-=得:()()()20192021201720172017120191119a a a -+-+-=-……⇒由()()201920212020202020201201912038a a a -++-=得:()()()20192021202020202020120191119a a a -+-+-=……⇒令20192021()2019f x xx x =++则⇒式即为:()2017119f a -=-,⇒式即为:()2020119f a -= 又()()0f x f x -+=,即()f x 奇函数则:()()20172020110a a -+-=,即:201720202a a +=()()40361403620012072201820184036S a a a a ∴=+=+=本题正确选项:D【名师点睛】本题考查等差数列前n 项和的求解问题,关键是能够利用已知关系式构造出函数,利用函数的奇偶性确定首项与末项和,从而使问题得到求解;对于学生转化与化归思想、函数与方程思想的应用要求较高,属于难题.14.(2019·浙江高考模拟)已知数列{}n a 满足()2*110,n n n a a a a ta n N+=>=-+∈,若存在实数t ,使{}n a 单调递增,则a 的取值范围是( ) A .()0,1 B .()1,2 C .()2,3 D .()3,4【答案】A 【解析】 【分析】由{}n a 单调递增,可得1n n a a +>恒成立,则1n t a >+*()n N ∈,分析11t a >+和21t a >+可排除错误选项.【详解】由{}n a 单调递增,可得21n n n n a a ta a +=-+>,由10a a =>,可得0n a >,所以1n t a >+*()n N ∈.1n =时,可得1t a >+.⇒2n =时,可得21t a ta >-++,即()()()111a t a a -<+-.⇒若1a =,⇒式不成立,不合题意;若1a >,⇒式等价为1t a <+,与⇒式矛盾,不合题意. 排除B,C,D,故选A.【名师点睛】本题考查数列的性质,结合不等式的性质求解. 15.(2019·山东高考模拟(理))已知数列:()12,,,11k k N k k *⋅⋅⋅∈-,按照k 从小到大的顺序排列在一起,构成一个新的数列{}n a :1212381,,,,,,,213219⋅⋅⋅则首次出现时为数列{}n a 的A .第44项B .第76项C .第128项D .第144项【答案】C 【解析】 【分析】从分子分母的特点入手,找到89出现前的所有项,然后确定89的项数. 【详解】观察分子分母的和出现的规律:2,3,4,5L , 把数列重新分组:11212312(),(,),(,,),(,,,)12132111kk k -L L ,可看出89第一次出现在第16组,因为12315120++++=L ,所以前15组一共有120项;第16组的项为1278(,,,,)1615109L L ,所以89是这一组中的第8项,故89第一次出现在数列的第128项,故选C.【名师点睛】本题主要考查数列的通项公式,结合数列的特征来确定,侧重考查数学建模的核心素养. 二、填空题16.(2019·湖南师大附中高考模拟(理))已知等比数列{a n }的前n 项积为T n ,若124a =-,489a =-,则当T n 取最大值时,n 的值为_____.【答案】4 【解析】 【分析】设等比数列{a n }的公比为q ,求得13q =,得到()()1121231(2)34n n n n n T a a a a -=⋅⋅⋅=-,进而利用指数函数的性质,即可判定,得到答案. 【详解】设等比数列{a n }的公比为q ,因为124a =-,489a =-,可得341127a q a ==,解得13q =,则()()()1112312(2131)(32424)n n nnn n n T a a a a q-+++⋅⋅⋅+-=⋅⋅⋅=-=-, 当T n 取最大值时,可得n 为偶数,函数13xy =()在R 上递减, 又由2192T =,4489T =,66983T =,可得246T T T <>,当6n >,且n 为偶数时,6n T T <, 故当4n =时,T n 取最大值.【名师点睛】本题主要考查了等比数列的通项公式,以及等差数列求和公式的应用,其中解答中根据等比数列的通项公式求得公比,进而利用等差数列的求和公式,得到n T 的表达式,结合指数函数的单调性求解是解答的关键,着重考查了推理与运算能力,属于中档试题.17.(2019·天津高考模拟(理))函数()()120,1x f x aa a -=->≠的图象恒过定点A ,若点A 在直线10mx ny --=上,其中0m >,0n >,则12m n+的最小值为______________.【答案】1 【解析】⇒ 函数1()2(0,1)x f x a a a -=->≠的图象恒过定点A ⇒(1,1)A -⇒点A 在直线40mx ny --=上 ⇒4m n += ⇒0m >,0n > ⇒111111()(11)(121)1444m n n m m n m n m n ++=+⨯=⨯+++≥⨯++=,当且仅当1n mm n==即1m n ==时,取等号 ⇒11m n+的最小值为1 故答案为1【名师点睛】:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.18.(2019·福建高三期中(理))已知数列{}n a 的前n 项和为n S (*n N ∈),且满足212n n S S n n ++=+,若对*1,n n n N a a +∀∈<恒成立,则首项1a 的取值范围是__________.【答案】13(,)44- 【解析】因为212n n S S n n ++=+,所以212(1)1,(2)n n S S n n n -+=-+-≥,两式作差得141,2n n a a n n ++=-≥,所以145,3n n a a n n -+=-≥,两式再作差得114,3n n a a n +--=≥,可得数列{}n a 的偶数项是以4为公差的等差数列,从3a 起奇数项也是以4为公差的等差数列.若对*1,n n n N a a +∀∈<恒成立,当且仅当1234a a a a <<<.又12213213,32,742a S a a a a a +=∴=-∴=-=+,4311172a a a =-=-,所以1111324272a a a a <-<+<-,解得:11344a -<<. 即首项1a 的取值范围是13,44⎛⎫-⎪⎝⎭. 19.(2019·宁夏银川一中高考模拟(理))已知数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,满足12a =,3()n n S n m a =+,()m R ∈且12n n a b =.若对任意*n N ∈,n T λ>恒成立,则实数λ的最小值为__________.【答案】12【解析】 【分析】当1n =时,解得2m =,当2n ≥时,1333n n n a S S -=-,化简得111n n a n a n -+=-,利用累积法,求得(1)n a n n =+,进而得111()21n b n n =-+,利用裂项法得111(1)212n T n =-<+,进而利用对于任意,n n N T λ+∈>恒成立,即可求解.【详解】数列{}n a 的前n 项和为n S ,满足12,3()n n a S n m a ==+, 当1n =时,113(1)S m a =+,解得2m =,所以当2n ≥时,11333(2)(1)n n n n n a S S n a n a --=-=+-+,化简得111n n a n a n -+=-, 所以当2n ≥时,132111211432(1)1221n n n n n a a a a n n a a n n a a a a n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⨯⨯=+--L L , 当1n =时上式也成立,所以(1)n a n n =+, 因为12n n a b =,1111()2(1)21n b n n n n ==-++, 所以111111111(1)(1)22231212n T n n n =-+-++-=-<++L ,若对于任意,n n N T λ+∈>恒成立,则实数λ的最小值为12. 【名师点睛】本题主要考查了数列的递推公式的应用,以及“错位相减法”求和的应用,此 类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.20.(2019·湖南长郡中学高考模拟(理))在各项均为正数的等比数列{}n a 中,318a a -=,当4a 取最小值时,则数列2{}n na 的前n 项和为__________.【答案】(84)34nn S n =-+【解析】【分析】根据等比数列通项公式及318a a -=,则34281q a q =-;求导函数,令导函数等于0,可求得当4a 取最小值时q 的值,进而求得1a 的值,得到通项公式,代入数列{}2n na 可得1163n n -⨯;结合错位相减法可求得前n 项和. 【详解】等比数列{}n a 中,318a a -=,所以1281a q =- 3341281q a a q q ==- ,令()3281q f q q =-则()()()223422838''11q q q f q q q -⎛⎫== ⎪-⎝⎭-,令()'0f q =解得q =,因为各项均为正数的等比数列{}n a所以q =当q <()'0f q <当q >()'0f q >所以在q =()34281q a f q q ==-取得最小值设2n n b na =,代入q =1163n n b n -=⨯所以12321n n n n S b b b b b b --=+++⋅⋅⋅++()()0123211613233323133n n n n S n n n ---⎡⎤=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯+⨯⎣⎦ ()()1232131613233323133n n nn S n n n --⎡⎤=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯+⨯⎣⎦两式相减得()123212161333333n n n n S n ---=++++⋅⋅⋅++-⨯13216313n n n S n ⎛⎫--=-⨯ ⎪-⎝⎭83434n n n S n =⨯-⨯+()8434n n S n =-⨯+【名师点睛】本题考查了等比数列通项公式的应用,错位相减法求和,导数在求最值中的综合应用,考查知识点较多,属于难题.三、解答题21.(2019·安徽高考模拟(理))已知数列{}n a 的前n 项和为n S ,(1)n n S na n n =+-,且5a 是2a 和6a 的等比中项.(1)证明:数列{}n a 是等差数列并求其通项公式;(2)设11n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)见解析;(2) 12122n nT n=-【解析】 【分析】(1)由(1)n n S na n n =+-得()()1111n n S n a n n ++=+++,两式相减化简得12n n a a +-=-,又由2526a a a =,得111a =,即可得出结论;(2)化简1112132112n b n n ⎛⎫=-- ⎪--⎝⎭,利用裂项相消求和即可.【详解】(1) 由(1)n n S na n n =+-得()()1111n n S n a n n ++=+++ , 所以 ()+1112n n n n S S n a na n +-=+-+, 又11n n n S S a ++-= 所以12n n na na n +=+, 故12n n a a +-=-.故数列{}n a 是公差为2-的等差数列 ,且5a 是2a 和6a 的等比中项,即2526a a a = ,得()()()21118210a a a -=-- ,解得111a =, 所以132n a n =- . (2)由题得111112132112n n n b a a n n +⎛⎫==-- ⎪--⎝⎭, 12n n T b b b =+++L 1111111211997132112n n ⎡⎤⎛⎫⎛⎫⎛⎫=--+-++- ⎪ ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎝⎭⎣⎦L 11121111212122nn n⎛⎫=--= ⎪--⎝⎭ 【名师点睛】本题考查了等差数列的确定,训练了裂项相消法求数列的和,属于中档题. 22.(2019·浙江高考模拟)等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式; (2)设31323log log ......log n n b a a a =+++,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)13n n a = (2)21nn -+ 【解析】试题分析:(⇒)设出等比数列的公比q ,由23269a a a =,利用等比数列的通项公式化简后得到关于q 的方程,由已知等比数列的各项都为正数,得到满足题意q 的值,然后再根据等比数列的通项公式化简12231a a +=,把求出的q 的值代入即可求出等比数列的首项,根据 首项和求出的公比q 写出数列的通项公式即可;(⇒)把(⇒)求出数列{an}的通项公式代入 设b n =log 3a 1+log 3a 2+…+log 3a n ,利用对数的运算性质及等差数列的前n 项和的公式化简 后,即可得到bn 的通项公式,求出倒数即为1nb 的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{1nb }的前n 项和 试题解析:(⇒)设数列{a n }的公比为q,由23a =9a 2a 6得23a =924a ,所以q 2=19. 由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13. 故数列{a n }的通项公式为a n =13n. (⇒)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-()21n n +.故()1211211n b n n n n ⎛⎫=-=-- ⎪++⎝⎭. 121111111122122311n n b b b n n n L L ⎡⎤⎛⎫⎛⎫⎛⎫+++=--+-++-=- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦ 所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn -+ 考点:等比数列的通项公式;数列的求和23.(2019·河北高考模拟(理))已知数列{}n a 满足()*1102n n a a n N +-=∈, 且 234,2,a a a + 成等差数列. (1)求数列{}n a 的通项公式; (2)令()*11111n n n b n N a a +=-∈--,数列{}n b 的前n 项和为n T ,求n T 的取值范围. 【答案】(1)2nn a =(2)213n T -<≤-【解析】 【分析】(1)由题意可得数列{}n a 是等比数列,且公比为2q =.结合234,2,a a a +成等差数列求得数列的首项即可确定数列的通项公式;(2)裂项求和可得11121n n T +=--,结合前n 项和表达式的单调性确定n T 的取值范围即可.【详解】 (1)由1102n n a a +-=知()*12,n n a n N a +=∈∴数列{}n a 是等比数列,且公比为2q =. 234,2,a a a +Q 成等差数列,()()32411122,24228a a a a a a ∴+=++=+ 12a ∴= 2n n a ∴=(2)122311111111n T a a a a ⎛⎫⎛⎫=-+- ⎪⎪----⎝⎭⎝⎭ 11111111111n n n a a a a ++⎛⎫+⋯+-=- ⎪----⎝⎭ 1111111221n n ++=--=--- 易知n T 单调递减,123n T T ∴≤=- 当n →+∞时,1n T →-n T ∴的取值范围为213n T -<≤-【名师点睛】本题主要考查数列通项公式的求解,列项求和的方法等知识,意在考查学生的转化能力和计算求解能力.24.(2018·河北衡水中学高考模拟(理))已知等差数列{}n a 的前*()n n N ∈项和为n S ,数列{}n b 是等比数列,13a =,11b =,2210b S +=,5232a b a -=. (1)求数列{}n a 和{}n b 的通项公式;(2)若2,,n n nn S c b n 为奇数为偶数⎧⎪=⎨⎪⎩,设数列{}n c 的前n 项和为n T ,求2n T .【答案】(1)21n a n =+,12n n b -=(2)21121321n n ++-+ 【解析】分析:(1)根据等差数列{}n a 的前()*n n N∈项和为nS,数列{}n b 是等比数列,13a =,11b =,2210b S +=,5232a b a -=列出关于公比q 、公差d 的方程组,解方程组可得q与 d 的值,从而可得数列{}n a 和{}n b 的通项公式;(2))由(1)知,()()32122n n n S n n ++==+,⇒111,22,n n n c n n n -⎧-⎪=+⎨⎪⎩为奇数为偶数,利用分组求和与裂项相消法求和,结合等比数列范求和公式可得结果.详解:(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q , ⇒13a =,11b =,2210b S +=,5232a b a -=⇒331034232q d d q d +++=⎧⎨+-=+⎩,⇒2d =,2q =⇒21n a n =+,12n n b -=.(2)由(1)知,()()32122n n n S n n ++==+,⇒111,22,n n n c n n n -⎧-⎪=+⎨⎪⎩为奇数为偶数⇒2111(1..335n T =-+-+ 11.)2121n n +-+-- ()13521222 (2)n -++++ 21121321n n ++=-+【名师点睛】:本题主要考查等差数列的通项与等比数列的通项公式、求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.25.(2019·天津市滨海新区塘沽第一中学高考模拟(理))已知数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,且*12,1,2n N a a ∈==.(1)求 {}n a 的通项公式;(2)设*1,n n n b a a n N +=⋅∈,求数列{}n b 的前2n 项和2n S ;(3)设()2121nn n n c a a -=⋅+-,证明:123111154n c c c c ++++<L 【答案】(1)2()2()n n n n a n ⎧⎪∴=⎨⎪⎩为奇数为偶数(2)32(1)28n n S n +=-+(3)详见解析【解析】试题分析:(1)由数列{}n a 满足22,2,n n n a n a a n ++⎧=⎨⎩为奇数为偶数,且*12,1,2n N a a ∈==..当n 为奇数时,22n n a a +-=,此时数列{}*21k a k N -∈()成等差数列.当n 当为偶数时,22n n a a +=,此时数列{}*2k a k N ∈()成等比数列,即可得出. (2)*1n n n b a a n N +=∈,,可得:21221222142k k k k k k k b b a a a a k --++=+=⋅ .利用“错位相减法”与分组求和即可得出.(3)21212121n n nn n n c a a n -=+-=-⋅+-()()(). 可得()()1111321212n n n n C n +=<≥-- n 为奇,()()1111221212n n n n C +=<≥-+ n 为偶,即可证明. 试题解析:(1)当n 为奇数时,22n n a a +-=,此时数列{}*21k a k N -∈()成等差数列. 2d = 当n 当为偶数时,22n n a a +=,此时数列{}*2k a k N ∈()成等比数列 2q = ()()22n n n n a n ⎧⎪∴=⎨⎪⎩为奇数为偶数(2)()()21221222121222142kkk k k k k k k b b a a a a k k k --++=+=-⋅++=⋅()()()21234212n n n S b b b b b b -=++++++L23241222322nn S n ⎡⎤∴=⋅+⋅+⋅+⋅⎣⎦L ()2312241222122n n n S n n +⎡⎤=⋅+⋅++-+⋅⎣⎦L 12242222n nn S n +⎡⎤∴-=+++-⋅⎣⎦L(3)()()3121nn n C n =-+-()()()()21212121nn n n n C n n ⎧-⋅-⎪∴=⎨-⋅+⎪⎩为奇为偶 ()()1111321212n n n n C n +=<≥-- n 为奇 ()()1111221212n n n n C +=<≥-+ n 为偶.。

相关文档
最新文档