2010年走美杯五年级初赛试卷(A卷)
2009年第七届走美杯初赛五年级试题及详解
第七届走美杯五年级一、填空题(每题8分,共40分)(第七届走美五年级初赛第1题)200920082008200820092009⨯-⨯=_______(第七届走美五年级初赛第2题)在175、3.04、3.4、133四个小数中,第二小的数是________(第七届走美五年级初赛第3题)A、B都是整数,A大于B,且2009A B⨯=,那么A B-的最大值为________ ,最小值为_______。
(第七届走美五年级初赛第4题)乒乓球从高考空下,到达地面后弹起的高度约为落下高度的0.4倍,若乒乓球从25米高处落下,那么弹起后再落下,弹_______次时它的弹起的高度不足0.5米。
(第七届走美五年级初赛第5题)弹簧测力计可以用来称物体质量,弹簧伸长的长度也不同,观察下表,当物体重0.5千克时,弹簧伸长______厘米,如果弹簧伸长8厘米,物体重______千克。
二、填空题(第题10分,共50分)(第七届走美五年级初赛第6题)从20以内的质数中选出6个数,写在一个正方体的六个面上,使两个相对面的和都相等,所选的6个数是__________________(第七届走美五年级初赛第7题)一天,红太狼和灰太狼同时从“野猪林”出发,到“天堂镇”。
红太狼一半路程溜达,一半路程奔跑。
灰太狼一半时间溜达,一半时间奔跑。
如果它们溜达的速度相同,奔跑的速度也相同,则先到“天堂镇”是_______。
(第七届走美五年级初赛第8题)58的分母扩大到32,要使分数大小不变,分子应该为__________。
(第七届走美五年级初赛第9题)请将三个“数”、三个“学”、三个“美”填入右图中,使得每一横排、每一竖排都有这三个字,如果在左上角摆上“数”,那么可能有_______几种不同的摆法。
(第七届走美五年级初赛第10题)地震时,地震中心同时向各个方向传播纵波与横波,纵波的传播速度每秒是3.96千米,横波的传播速度每秒是2.58千米。
在汶川地震中,地震监测点用地震仪接收到地震的纵波后,隔了6.9秒接收到这个地震的横波,那么地震的中心距离监测点__________千米。
第十届走美杯五年级初赛真题
第十届“走进美妙数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1. 考生按要求在密封线内填好考生的有关信息.2. 不允许使用计算器.小学五年级试卷(B 卷)一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天修了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩全长的______。
2.一块玉米地的形状如右图(单位:米)。
它的面积是_____平方米。
3.7A 是最简分数且7710A ,A 最小是____。
4.学校参加体操表演的学生人数在60~100之间。
把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。
参加这次表演的同学至少有______人。
5.右图的量杯可以盛6杯水或4碗水。
现将1杯水和2碗水倒入量杯,这时水面应到刻度_______。
二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013 =________。
7.有一张残缺的发票如右图,那么单价是_______元。
8.200到220之间有唯一的质数,它是______。
9.右图中共能数出______个三角形来。
10.平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时。
现在正值雨季,水流速度为平时的2倍,那么,从A到B再回到A共需_____小时。
三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种。
单筒玉米炮每次发射一根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米炮每次发射3根玉米,每根玉米消灭16个僵尸。
玉米炮一共开炮10次发射玉米23根,消灭_____个僵尸。
12.小华需要构造一个3×3的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______。
第届走美杯级初赛试题
第届走美杯级初赛试题 The Standardization Office was revised on the afternoon of December 13, 2020第八届“走进美妙的数学花园"中国青少年数学论坛趣味数学解题技能展示大赛初赛注意事项:1.考生要按要求在密封线内填好考生的有关信息.2.不允许使用计算器.小学五年级试卷一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。
2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。
这个车间原有人。
3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。
现在,小明已经涂了两格,请你替他把剩下的两格涂上。
4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。
在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。
5、甲、乙、丙、丁四人中只有1人会开汽车。
甲说:“我会开”。
乙说“我不会开”。
丙说:“甲不会开”。
丁什么也没说。
已知甲、乙、丙三人的话中只有一句是真话。
会开车的是。
二、填空题II(每题10分,共50分)6、定义x y x y1☆12☆23☆310☆10。
++++==+☆37。
()()()()7、有边长分别为10cm,11cm,12cm,13cm,14cm的正方形巧克力各一块,小哈利每天吃吃22cm,他一共可以吃___天。
8、一些不相同的正整数,平均值为100。
其中有一个是108。
如果去掉108,平均数就变为99。
这些数中最大的数是。
9、如图,梯形ABCD中,ABE和ADE的面积分别是cm22,3,CDE的面积是cm2。
cm210、在~120这二十个数中,任取十个数相加的和与其余十个数相加的和相乘,能得到___________个不同的乘积。
2010年走美杯五年级初赛试卷(A卷)_5
2010年走美杯五年级初赛试卷(A卷)一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。
分析:3.7×8+2010÷67=(4-0.3)×8+30=32-2.4+30=59.6考点:本题难度较低,考察速算中的凑整技巧、对年份数2010=2×3×5×67的熟悉。
2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。
这个车间原有人。
分析:调走前男工人数是女工的2倍,调走后男工人数变成女工的0.5倍。
所以以女工人数为单位“1”,那么可以求出女工人数为12÷(2-0.5)=8(人)这个车间原有8×(1+2)=24(人)考点:本题难度中等,考察差倍应用题与分数应用题的结合,需要学生对这类问题中单位“1”的找法有明确的理解。
3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。
现在,小明已经涂了两格,请你替他把剩下的两格涂上。
分析:涂法如下图所示考点:本题难度较低,主要需要学生利用逆向思维,先在根据已经涂色的格子在图中找到不能染色的格,再根据排除的结果,找到符合要求的唯一染色方法。
4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。
在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。
分析:由已知条件,第20次吹出肥皂泡时,没有破的肥皂泡中有第18、19、20分钟吹出来的。
第20分钟吹出来的有100个,第19分钟吹出来的剩100÷2=50(个),第18分钟吹出来的有100÷20=5(个),所以共有100+50+5=155(个)肥皂泡没有破。
考点:本题难度较低,考查学生对题意的理解和分类讨论思想。
5、甲、乙、丙、丁四人中只有1人会开汽车。
2012年第十届走美杯初赛小学五年级(含解析)
第十届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天休了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩下全长的_________.2.一块玉米地的形状如图(单位:米).它的面积是_________平方米.3.7A 是最简分数且7A >710,A 最小是_________.4.学校参加体操表演的学生人数在60~100之间,把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完.参加这次表演的同学至少有_________人.5.右图的量杯可以盛6杯水或4碗水,现将1杯水和2碗水倒入量杯,这时水面应到刻度_________.二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013=_________.7.有一张残缺的发票如右图,那么单价是_________.8.200到220之间有唯一的质数,它是_________.9.右图共能数出_________个三角形来.10.平时轮船从A 地顺流而下到B 地要行20小时,从B 地逆流而上到A 地要行28小时.现正值雨季,水流速度为平时的2倍,那么,从A 到B 再回到A 共需_________小时.三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种,单筒玉米炮每次发射1根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米每次发射3根玉米,每根玉 消灭16个僵尸,玉米炮一共开炮10次,发射玉米23根,消灭_________个僵尸.12.小华需要构造一个33 的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;如图,现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x 等于______.13.有五个互不相等的非零自然数.如果其中一个减少45,另外四个数都变成原先的2倍,那么得到的仍然是这五个数.这五个数的总和是______.14.如图,直角三角形ABC 两直角边的长为3、4,M 为斜边中点,以两直角边向外作两个正方形.那么三角形MEF 的面积是_________.15.甲以每分钟60米的速度从A 地出发去B 地;甲出发5分钟后,乙每分钟80米的速度从B 地出发去A 地;结果他们在距两地中点100米的某处相遇.A 、B 两地相距_________米.第十届“走进美妙的数学花园”青少年展示交流活动图3趣味数学解题技能展示大赛初赛 小学五年级试卷参考答案1 2 3 4 5 6 7 8 18 85 5 72 4 20120001 1.36 2119 10 11 12 13 14 153252.5382369312.251000或3800参考解析一、填空题Ⅰ(每题8分,共40分)1.一段路,第一天休了全长的12,第二天修了剩下的12,第三天又修了剩下的12,还剩下全长的________.【考点】分数应用题 【难度】☆ 【答案】18【解析】相当于每天将剩余的减少到12,共减少了3次,共减少到11112228⨯⨯=.2.一块玉米地的形状如图(单位:米).它的面积是_________平方米.【考点】几何 【难度】☆【答案】87【解析】分成一个三角形和一个平行四边形,其面积为6827987⨯÷+⨯=.3.7A 是最简分数且7A >710,A 最小是_________.【考点】最值问题 【难度】☆☆ 【答案】5【解析】两边乘以7得到494.910A >=,所以所求的最小值为5.4.学校参加体操表演的学生人数在60~100之间,把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完.参加这次表演的同学至少有_________人. 【考点】数论整除 【难度】☆☆【答案】72【解析】8和12的最小公倍数为24,其倍数依次为:48、72、108、……所以为72.5.右图的量杯可以盛6杯水或4碗水,现将1杯水和2碗水倒入量杯,这时水面应到刻度_________.【考点】几何【难度】☆☆☆【答案】4【解析】每杯水相当于661÷=个刻度,每碗水相当于64 1.5÷=个刻度,所以1杯水和2碗水相当于12 1.54+⨯=个刻度.二、填空题Ⅱ(每题10分,共50分)6.2012×20122012-2011×20122013=_________. 【考点】速算巧算 【难度】☆☆☆【答案】20120001【解析】原式201220120000201220122011201200002011201320120001=⨯+⨯-⨯-⨯=.7.有一张残缺的发票如右图,那么单价是_________.【考点】数论弃九法 【难度】☆☆☆【答案】1.36【解析】可观察到个位数字为7,由于72是9的倍数,可得其数字和为9的倍数,百分位为2.经检验,符合题意:97.9272 1.36÷=.8.200到220之间有唯一的质数,它是_________. 【考点】质数合数 【难度】☆☆☆【答案】211【解析】依次划去所有2、3、5、7、11的倍数可得其为211.9.右图共能数出_________个三角形来.【考点】几何计数 【难度】☆☆☆【答案】32【解析】小正三角形有6个,大正三角形有2个,以大正六边形的边为底的等腰三角形有6个,以大正六边形的两条相邻的边为腰的等腰三角形有6个,直角三角形有12个,共32个.10.平时轮船从A地顺流而下到B地要行20小时,从B地逆流而上到A地要行28小时.现正值雨季,水流速度为平时的2倍,那么,从A到B再回到A共需_________小时.【考点】行程问题【难度】☆☆☆【答案】52.5【解析】设全程为1,每小时顺水行驶的距离为1720140=,逆水行驶的距离为1528140=,则观察到水速增加后,每小时顺水行驶的距离和逆水行驶的距离分别为8140和4140,所求的时间为140140+=52.584小时.三、填空题Ⅲ(每题12分,共60分)11.玉米炮有单筒玉米炮、双筒玉米炮、三筒玉米炮三种,单筒玉米炮每次发射1根玉米,可以消灭20个僵尸;双筒玉米炮每次发射2根玉米,每根玉米消灭17个僵尸,三筒玉米每次发射3根玉米,每根玉米消灭16个僵尸,玉米炮一共开炮10次,发射玉米23根,消灭_________个僵尸.【考点】鸡兔同笼【难度】☆☆☆【答案】382【解析】三种玉米炮每发射一次分别消灭20个,34个,48个僵尸,成等差数列.也就是说,无论哪种玉米炮,发射一次,消灭的僵尸数等于玉米数146⨯+.多次发射后,消灭的僵尸数应该等于总玉米数14⨯+发射次数6⨯.那么,总共发射了10次,所以消灭的僵尸数等于2314106382⨯+⨯=.12.小华需要构造一个33⨯的乘积魔方,使得每行、每列、每条对角线上三个正整数的乘积都相等;如图,现在他已经填入了2,3,6三个数,那当小华的乘积魔方构造完毕后,x等于______.【考点】幻方【难度】☆☆【答案】36【解析】幻积等于中间数6的立方,所以362336x=÷÷=.13.有五个互不相等的非零自然数.如果其中一个减少45,另外四个数都变成原先的2倍,那么得到的仍然是这五个数.这五个数的总和是______.【考点】数论倍数约数【难度】☆☆☆【答案】93【解析】如果一开始的五个数分别是1、2、4、8、16,则将16减少15后,将其他四个数都乘以2,可以仍然得到这5个数.而45153÷=,所以原来的五个数是1、2、4、8、16的3倍,总和为313=93⨯.14.如图,直角三角形ABC两直角边的长为3、4,M为斜边中点,以两直角边向外作两个正方形.那么三角形MEF的面积是_________.【考点】几何【难度】☆☆☆【答案】12.25【解析】1(43)4142BEFS=⨯+⨯=△,1(43)310.52CBFS=⨯+⨯=△,以EF为底,则MEF△的高是BEF△和CEF△的高的平均值,所以面积也是它们的平均值,等于12.25.15.甲以每分钟60米的速度从A地出发去B地;甲出发5分钟后,乙每分钟80米的速度从B地出发去A地;结果他们在距两地中点100米的某处相遇.A、B两地相距_________米.【考点】行程问题【难度】☆☆☆【答案】1000或3800【解析】设两地相距2x米,则有10010056080x x+-=+或10010056080x x-+=+,得到500x=或1900x=,则答案为1000或3800.。
2011年走美初赛(五年级)B卷
五年级-1第九届“走进美妙的数学花园”中国青少年数学论坛趣味数学解题技能展示大赛初赛 (B 卷)注意事项:1. 考生要按要求在密封线内填好考生的有关信息.2. 不允许使用计算器.小学五年级试卷一、填空题Ⅰ(每题8分,共40分)1. 0.888×125×73+999×3=__________。
2. 在幻方中,每行、每列和每条主对角线上的数字的和都相同。
那么在如图所示的未完成的幻方中x 应该是________。
3. 某班男生人数是女生人数的2倍,若调走20名男生,增加15名女生,女生人数是男生人数的3倍.该班原有男女学生一共 人.4. 有两根同样长的绳子,第一根平均剪成3段,第二根平均剪成7段.第一根剪成的每段比第二根剪成的每段长8米.原来每根绳子长 米.5. 冥王星有3颗卫星。
绕冥王星一周卫星①需6天,卫星②需10天,卫星③需15天。
从图中所示的位置开始,三颗卫星最少需要________天才能同时回到原来的位置。
二、填空题Ⅱ(每题10分,共50分)6. 如图,在每个方框中填入一个数字,使得乘法竖式成立.两个乘数的和是 .7. 从1,2,3,4,5,6,7,8,9中最多可以选出________个数,使得选出的数中,两两之和不同。
8.如图,大正方形的边长是5厘米,阴影部分的面积是________平方厘米。
9.6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有种.10.有一个出了故障的计算器。
当打开电源时,视窗上显示数字0。
如果按下“+”键它会加上51;按下“-”键它会减去51;按下“×”键它会加上85;按下“÷”键它会减去85;而其它的按键无效。
打开计算器电源,任意操作上述按键,可以得到最接近2011的数是_________。
三、填空题Ⅲ(每题12分,共60分)11.n名棋手进行单循环比赛,即任两名棋手间都比赛一场.胜者得2分,平局各得1分,负者得0分.比赛完毕后,前4名依次得8、7、5、4分.n=.12.将一个10×10×10的正方体切为1×1×1的小正方体。
五年级上册数学试题-第十二届走美杯初赛A卷全国通用 含答案
第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(A 卷)填空题Ⅰ(每题8分,共40分)1.计算20140309=7(2877000+17_____)××.2.4个人围坐在一张圆桌就餐,有_________种不同的坐法.3.像2,3,5,7这样只能被1和自身整除的大于1的自然数叫做质数或素数.每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=22×,6=23×,8=222××,9=33×,10=25×等,那么,2222331×××××−写成这种形式为_________.4.一个自然数,它是3和7的倍数,并且被5除余2,满足这些条件的最小的自然数是_________. 5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(1,11,12,13A J Q K ====)通过加减乘除四则运算得出24,最先找到算法者取胜.游戏规定4张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q ,则可以由算法(2)(43)Q ××−得到24.王亮在一次游戏中抽到了7,7,7,3,他发现7+7+7+3=24,如果将这种能够直接相加得到24的4张牌称为“友好牌组”.那么,含有最大数字为7的不同“友好牌组”共有_________组.填空题Ⅱ(每题10分,共50分)6.如图由一些棱长为1的单位小立方体构成,一共有_________个小立方体.7.下图中有_________个平行四边形.8.用2种颜色对一个22×棋盘上的4个小方格染色,有_________种不同的染色方案.9.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:三角形数:1,3,6,10,15…… 四边形数:1,4,9,16,25…… 五边形数:1,5,12,22,35…… 六边形数:1,6,15,28,45…… ……则按照上面的顺序,第6个六边形数为_________.10.边长为a b +的正方形纸片有以下两种剪裁方法,按照“等量减等量差相等”的原则,阴影部分所表示的三个小正形的面积之间的关系可以用,,a b c 表示为_________.填空题Ⅲ(每题12分,共60分)11.将1到16的自然数排成44×的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.10阶幻方的幻和等于_________.cc c bbaba cbaaabbba12.吴宇写好了四封信和四个信封,要将每封信放入相应的信封中,一个信封只放入一封信,四封信全部被装错的情形有_________种.13.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制0 1 2 3 4 5 6 7 8 …二进制0 1 10 11 100 101 110 111 1000 …十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,……熟知十进制10个2相乘等于1024,即102=1024,在二进制中就是10000000000.那么二进制中的10110用十进制表示是_________.14.2014年3月9日是星期日,根据这一消息,可以算出2014年全年天数最多的是星期_________.15.有一个两人游戏,13颗围棋子是游戏道具,用抓阄等方式确定谁先走,把先走的一方称为先手方,后走的一方称为后手方,游戏规则如下:先走方必须选择拿走1颗或2颗围棋子;先手完成后,后手方开始按照同样的规则取围棋子:双方轮流抓取,直到取完所有的棋子.取走最后一颗围棋子的人获胜.这个游戏先手方是有必胜策略的,如果要取胜,先手方应该留给对手的围棋子数目从第一轮开始到取胜依次为_________.第十二届“走进美妙的数学花园”青少年展示交流活动趣味数学解题技能展示大赛初赛小学五年级试卷(A 卷)1 2 3 4 5 6 7 811 6 143=1113× 424 32 17 69 1011 12 13 14 15 66222c a b =+505922星期三12,9,6,3填空题Ⅰ(每题8分,共40分)1.计算20140309=7(2877000+17_____)××.【考点】速算巧算 【难度】☆【答案】11【解析】(2014030972877000)1711÷−÷=.2.4个人围坐在一张圆桌就餐,有_________种不同的坐法. 【考点】计数 【难度】☆ 【答案】6种【解析】先选定一个人,然后其他3个人在他右边开始全排列,3316A ×=3.像2,3,5,7这样只能被1和自身整除的大于1的自然数叫做质数或素数.每一个自然数都能写成若干个(可以相同)质数的乘积,比如,4=22×,6=23×,8=222××,9=33×,10=25×等,那么,2222331×××××−写成这种形式为_________.【考点】分解质因数 【难度】☆ 【答案】143=1113×【解析】先计算得到143,再将143分解质因数.4.一个自然数,它是3和7的倍数,并且被5除余2,满足这些条件的最小的自然数是_________. 【考点】最小公倍数 【难度】☆☆ 【答案】42.【解析】3和7的最小公倍数是21,21的倍数中满足被5除余2的最小数为42.5.“24点游戏”是很多人熟悉的数学游戏,游戏过程如下:任意从52张扑克牌(不包括大小王)中抽取4张,用这4张扑克牌上的数字(1,11,12,13A J Q K ====)通过加减乘除四则运算得出24,最先找到算法者取胜.游戏规定4张扑克牌都要用到,而且每张牌只能用一次,比如2,3,4,Q ,则可以由算法(2)(43)××−得到24.Q王亮在一次游戏中抽到了7,7,7,3,他发现7+7+7+3=24,如果将这种能够直接相加得到24的4张牌称为“友好牌组”.那么,含有最大数字为7的不同“友好牌组”共有_________组.【考点】计数【难度】☆☆【答案】4组【解析】分别为7,7,7,3;7,7,6,4;7,7,5,5;7,6,6,5.填空题Ⅰ(每题8分,共40分)6.如图由一些棱长为1的单位小立方体构成,一共有_________个小立方体.【考点】立体几何【难度】☆☆☆【答案】32个【解析】44+82=32××个7.下图中有_________个平行四边形.【考点】几何计数【难度】☆☆☆【答案】17个【解析】设小三角形面积为1,面积2的平行四边形有:11个;面积的4的平行四边形有:6个.×棋盘上的4个小方格染色,有_________种不同的染色方案.8.用2种颜色对一个22【考点】染色计数【难度】☆☆☆【答案】6【解析】用枚举法可以获得.9.古希腊的数学家们将自然数按照以下方式与多边形联系起来,定义了多边形数:三角形数:1,3,6,10,15…… 四边形数:1,4,9,16,25…… 五边形数:1,5,12,22,35…… 六边形数:1,6,15,28,45…… ……则按照上面的顺序,第6个六边形数为_________. 【考点】找规律 【难度】☆☆☆ 【答案】66【解析】差依次为5,9,13,17,21.10.边长为a b +的正方形纸片有以下两种剪裁方法,按照“等量减等量差相等”的原则,阴影部分所表示的三个小正形的面积之间的关系可以用,,a b c 表示为_________.【考点】勾股定理 【难度】☆☆☆【答案】222c a b =+【解析】两个正方形一样,空白部分都是4ab ,阴影部分一样.11.将1到16的自然数排成44×的方阵,每行每列以及对角线上数的和都等于34,这样的方阵称为4阶幻方,34称为4阶幻方的幻和.10阶幻方的幻和等于_________.cc c bbaba cbaaabbba【考点】数阵图——幻方【难度】☆☆☆【答案】505.【解析】(1+100)10020505×÷=,从横向和竖向看,每个数字出现两次,共20行(列).对角线必可以通过对换使之满足条件.12.吴宇写好了四封信和四个信封,要将每封信放入相应的信封中,一个信封只放入一封信,四封信全部被装错的情形有_________种.【考点】计数——枚举法【难度】☆☆☆【答案】9【解析】枚举法可得13.日常生活中经常使用十进制来表示数.要用10个数码:0,1,2,3,4,5,6,7,8,9.在电子计算机中用二进制,只要两个数码0和1,正像在十进制中加法要“逢十进一”,在二进制中必须“逢2进1”,于是,可以得到一下自然数的十进制与二进制表示对照表:十进制0 1 2 3 4 5 6 7 8 …二进制0 1 10 11 100 101 110 111 1000 …十进制的0在二进制中还是0,十进制的1在二进制中还是1,十进制的2在二进制中变成了1+1=10,十进制的3在二进制中变成了10+1=11,……熟知十进制10个2相乘等于1024,即102=1024,在二进制中就是10000000000.那么二进制中的10110用十进制表示是_________.【考点】进制问题【难度】☆☆☆【答案】22.2+2+2=22【解析】即:42114.2014年3月9日是星期日,根据这一消息,可以算出2014年全年天数最多的是星期_________.【考点】周期问题【难度】☆☆☆【答案】星期三.【解析】31+28+8=67,通过递推,2014年1月1日为星期三.又36571÷ ,所以最多的是星期三.15.有一个两人游戏,13颗围棋子是游戏道具,用抓阄等方式确定谁先走,把先走的一方称为先手方,后走的一方称为后手方,游戏规则如下:先走方必须选择拿走1颗或2颗围棋子;先手完成后,后手方开始按照同样的规则取围棋子:双方轮流抓取,直到取完所有的棋子.取走最后一颗围棋子的人获胜.这个游戏先手方是有必胜策略的,如果要取胜,先手方应该留给对手的围棋子数目从第一轮开始到取胜依次为_________.【考点】操作问题【难度】☆☆☆【答案】12,9,6,3.【解析】欲取走最后一颗,需给对方剩下3颗;需给对方剩下3颗,需达到给对方剩下6颗的情况……。
小学数学走美杯试卷
一、选择题(每题3分,共30分)1. 小明有5个苹果,他吃掉了其中的3个,还剩下多少个苹果?A. 2个B. 3个C. 5个D. 8个2. 下列哪个数是奇数?A. 7B. 8C. 9D. 103. 一辆汽车从甲地开往乙地,行驶了120千米,速度是每小时60千米,这辆汽车行驶了几个小时?A. 1小时B. 2小时C. 3小时D. 4小时4. 小红有10个气球,小明有8个气球,他们一共有多少个气球?A. 18个B. 19个C. 20个D. 21个5. 下列哪个图形是正方形?A. 长方形B. 三角形C. 正方形D. 圆形6. 下列哪个分数是最简分数?A. $\frac{6}{8}$B. $\frac{4}{6}$C. $\frac{2}{3}$D. $\frac{5}{10}$7. 一桶油原来有20升,用去了$\frac{1}{4}$,还剩多少升?A. 15升B. 16升C. 17升D. 18升8. 小华买了3支铅笔和2个橡皮,一共花了9元,每支铅笔的价格是多少钱?A. 2元B. 3元C. 4元D. 5元9. 下列哪个数是质数?A. 4B. 5C. 6D. 710. 一辆自行车每小时行驶15千米,它行驶了3小时,一共行驶了多少千米?A. 30千米B. 45千米C. 60千米D. 75千米二、填空题(每题3分,共30分)11. 7加上3等于______。
12. 下列分数中,最大的分数是______。
13. 下列图形中,周长最大的是______。
14. 下列算式中,正确的是______。
15. 下列数中,既是偶数又是质数的是______。
16. 一本书有100页,小明已经看了$\frac{1}{4}$,还剩下______页。
17. 一辆火车每小时行驶80千米,它行驶了5小时,一共行驶了______千米。
18. 小红有5个苹果,小明给了她2个,小红现在有______个苹果。
19. 下列图形中,面积最大的是______。
走美杯五年级考试试题类型分析(2008—2012).doc
走美杯五年级考试试题类型分析(2008—2012)奥数一直都是小学学生学习的重点,父母想尽办法要提高孩子的数学成绩,给孩子上最好的学校,小学频道为大家提供了走美杯五年级考试试题类型分析,希望对大家有所帮助。
走美杯五年级考试试题类型分析(级)考试试题类型分析题目第1题计算分数计算计算速算与巧算计算小数计算计算速算与巧算应用题工程问题第2题数论质数与合数计算比较大小应用题差倍问题应用题和倍问题几何巧求面积第3题数字游戏数阵图数论质数与合数杂题逻辑推理几何巧求面积计算分数计算第4题杂题操作类问题杂题逻辑推理计数数列计数应用题差倍问题数论约数与倍数第5题几何巧求面积应用题比例问题杂题逻辑推理杂题找规律应用题等量代换问题第6题数论整除问题数论约数与倍数计算定义新运算数字游戏数字谜计算速算与巧算第7题杂题逻辑推理杂题逻辑推理几何巧求面积杂题操作类问题数字游戏数字谜第8题数论带余除法计算分数计算应用题平均数问题杂题逻辑推理数论质数与合数第9题杂题游戏与策略数字游戏数阵图几何四边形数论质数与合数计数几何计数第10题行程变速问题杂题杂题计数排列组合数字游戏数独行程流水行船问题第11题数字游戏数字谜杂题逻辑推理行程火车过桥问题杂题体育比赛应用题鸡兔同笼问题第12题计数乘法原理几何燕尾定理杂题游戏与策略几何巧求面积数字游戏幻方第13题数论余数问题行程相遇问题数字游戏数字谜杂题逻辑推理杂题操作类问题第14题行程走停问题计数乘法原理杂题游戏与策略计数几何计数几何巧求面积第15题几何最值问题杂题逻辑推理行程多人多次相遇行程追及问题行程相遇问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年走美杯五年级初赛试卷(A卷)一、填空题I(每空8分,共40分)1、.⨯+÷=378201067。
分析:3.7×8+2010÷67=(4-0.3)×8+30=32-2.4+30=59.6考点:本题难度较低,考察速算中的凑整技巧、对年份数2010=2×3×5×67的熟悉。
2、某车间男工人数是女工人数的2倍,若调走12名男工,则女工人数是男工人数的2倍。
这个车间原有人。
分析:调走前男工人数是女工的2倍,调走后男工人数变成女工的0.5倍。
所以以女工人数为单位“1”,那么可以求出女工人数为12÷(2-0.5)=8(人)这个车间原有8×(1+2)=24(人)考点:本题难度中等,考察差倍应用题与分数应用题的结合,需要学生对这类问题中单位“1”的找法有明确的理解。
3、小明要在⨯44的方格表中选择4个方格表图上阴影,使得每行,每列,每条对角线上都恰好有一个格子涂上阴影。
现在,小明已经涂了两格,请你替他把剩下的两格涂上。
分析:涂法如下图所示找到符合要求的唯一染色方法。
4、小华每分钟吹一次肥皂泡泡,每次恰好吹出100个,肥皂泡泡吹出后,经过一分钟就有一半破了,经过两分钟还有二十分之一没有破,经过两分半肥皂泡泡全破了。
在第20次吹出了肥皂泡泡的时候,没有破的肥皂泡泡有个。
分析:由已知条件,第20次吹出肥皂泡时,没有破的肥皂泡中有第18、19、20分钟吹出来的。
第20分钟吹出来的有100个,第19分钟吹出来的剩100÷2=50(个),第18分钟吹出来的有100÷20=5(个),所以共有100+50+5=155(个)肥皂泡没有破。
考点:本题难度较低,考查学生对题意的理解和分类讨论思想。
5、甲、乙、丙、丁四人中只有1人会开汽车。
甲说:“我会开”。
乙说“我不会开”。
丙说:“甲不会开”。
丁什么也没说。
已知甲、乙、丙三人的话中只有一句是真话。
会开车的是。
分析:甲和丙的话相互矛盾,所以两人说的话一定是一真一假。
根据已知条件,乙说的话一定是假的,所以乙会开车。
再根据四个人中只有一个人会开车,得出会开车的人是乙。
考点:本题难度中等,考察学生的逻辑推理能力。
寻找矛盾条件的方法是中年级逻辑推理问题的常用方法,本题主要考查学生对此类方法的熟练程度。
二、填空题II(每题10分,共50分)6、定义x y x yL。
++++=1☆12☆23☆310☆10=+☆37。
()()()()分析:1☆1=3×1+7×1=(3+7)×1=10×1=102☆2=3×2+7×2=(3+7)×2=10×2=20,依次类推。
所以1☆1+2☆2+…+10☆10=10+20+…+100=(10+100)×10÷2=550考点:本题难度中等,考察定义新运算知识点。
同时需要学生有一定的归纳能力,能够比较快地找到算式中加数之间的联系。
最后的求和用到等差数列知识,但对于五年级的同学们来说应该不成为难点。
7、有边长分别为10cm ,11cm ,12cm ,13cm ,14cm 的正方形巧克力各一块,小哈利每天吃吃22cm ,他一共可以吃___天。
分析:(102+112+122+132+142)÷2=365(天)考点:本题难度较低,主要需要学生对图形的边长和面积有比较明确的区分。
8、一些不相同的正整数,平均值为100。
其中有一个是108。
如果去掉108,平均数就变为99。
这些数中最大的数是 。
8. 分析:假设这些数本来一共有x 个,根据已知条件列出方程如下:100x-108=99(x-1),整理解得x=9,即原先一共有9个数因为这9个数是各不相同的正整数,且其中有一个为108所以这9个数中最大的一个至多是100×9-108-1-2-3-4-5-6-7=764考点:本题难度中等,综合性较强。
本题结合平均数问题与最值问题两个考点,一方面需要学生熟练地解出这些数字的个数,此外还需要综合题目条件,找出所求的最大值。
9、如图,梯形ABCD 中,ABE V 和ADE V 的面积分别是cm 22,cm 23,CDE V 的面积是 cm 2。
9. 分析:根据梯形蝴蝶定理,三角形BCE 的面积与三角形ADE 的面积相同,均为3cm 2,同时因为三角形ABE 的面积为2cm 2,所以BE :DE=2:3,说明三角形CDE 面积为3÷2×3=4.5(cm 2)。
考点:本题难度较低,可以应用梯形蝴蝶模型的结论直接求解,也可以应用比例模型的结论求解,只要学生对之前学习的五大模型结论有所掌握即可。
10、在~120这二十个数中,任取十个数相加的和与其余十个数相加的和相乘,能得到___________个不同的乘积。
第10题解析:1到20的和为210,从中挑10个,最小的为1到10为和55,最大的为11到20和为155,所挑10个数的和均在55到155之间,除105外,在挑出10个后,另外10个的和也在55到155之间。
共有100÷2=50组不同的积;加上105与105,共有51组不同的乘积。
三、填空题Ⅲ(每题12分,共60分)11、长120米的客车,以80千米/小时的速度向东行驶,长280米的货车往西行驶。
它们在一座长130米的铁路桥西端相遇,在桥的东端离开,货车的速度是________________千米/小时。
11. 分析:两车错车过程中,客车行驶路程为130+120=250(米),货车行驶路程为280-130=150(米),两段路程是在相同的时间里完成的所以货车的速度为客车速度的150÷250=0.6倍货车速度为80×0.6=48(千米/小时)考点:本题难度中等,是对火车过桥知识点的综合考察,涉及火车过桥问题的四种不同位置状态:刚刚开始上桥、刚刚完全上桥、刚刚开始下桥、刚刚完全下桥。
必须利用题目中的方向条件正确区分几种情况,才能列出正确的算式求解。
12、如图,小张驾车从T 出发,经过A ,B ,C ,D ,E 各一次后,最后回到T ,不允许走重复路线。
图中道路旁边的数值表示汽车经过这段公路所用的小时数,小张完成计划行程至少要用____________小时。
分析:与T 相连的五条路中要选择相邻的两条路走,经过比较可得,经过T-C-D-E-A-B-T (或者相反路线)可以有最短时间:2+7+3+9+9+5=35(小时)。
考点:本题难度中等,需要学生掌握一定的统筹规划思想,并能够应用在解题中。
13、在两个三位数相乘所得的乘法算式:AAA BBB CDEFGB ⨯=,其中,A B ≠,B ,C ,D ,E ,F ,G 这6个字母恰好代表17化成小数后循环节中的6个数字(顺序不一定相同)。
___________A B +=。
【解析】AAA BBB=CDEFGB ⨯且A B ≠, 则AAA BBB=111A 111B=12321A B=CDEFGB ⨯⨯⨯⨯⨯⨯ 由于CDEFGB 最小为142857,而142857÷12321的商大于11,则A B ⨯需大于11, 此题为17的一部分,则B 必为1、4、2、8、5、7一个,而12321B ⨯的末尾已为B , 则当B 为1时,A 只能为1,相等不符合条件;当B 为4时,A 为2、6;A 为2时,AB 11⨯ 不符合;A 为6时,444666295074⨯=不符合;当B 为2时,A 为1,6; A 为1时,A B ⨯<11不符合;A 为6时,222666147852⨯=符合条件,此时A+B=8;当B 为5时,A 为1,3,7,9A 为1时,明显不符合;A 为3时,555333184815⨯=不符合;A 为7时,555777431235⨯=不符合;A 为9时,555999554445⨯=不符合;当B 为7时,A 为1,不符合;所以A+B=8。
(2010年第8届走美杯5年级第14题)14、2010盏灯排成一排,开始都亮着。
第一次从左边第一盏开始,每隔一盏灯拉一下开关(即拉左数第1,3,5,…,2009盏)。
第二次从右边第一盏灯开始,每隔两盏灯拉一下开关。
第三次又从左边第一盏灯开始,每隔三盏灯拉一下开关,三次都拉到灯的有__________盏,亮着的还有________盏。
【分析】第一次拉的灯2个里拉1个有:1、3、5、7、9、11……2005,2007,2009;第二次拉的灯3个里拉1个有:3,6,9,12,15,18,……2004,2007,2010;第三次拉的灯4个里拉1个有:1,5,9,13,17,……2001,2005,2009;(1)、最小的被拉3次的灯为9号,以后每隔2、3、4的最小公倍数即被拉3次,即每隔[]2,3,412=个均被拉了3次,编号最大的被拉3次的为2001,则共有(2001-9)÷12+1=167盏灯被拉3次。
(2)、最后还亮着的有两种,没拉过的和只拉过两次的;现已知第1次拉的有:2010÷2=1005盏;第2次拉的有:2010÷3=670盏;第3次拉的有:(2009-1)÷4+1=503盏;第1、2次拉的为从3开始,编号公差为6的等差数列,有:(2007-3)÷6+1=335盏;第1、3次拉的有:1,5,9…2009共(2009-1)÷4+1=503盏;第2、3次拉的有:9,21…2001,共()20019121167-÷+=盏;第1、2、3次均拉的共有:(2001-9)÷12+1=167盏。
根据容斥原理,拉过的灯共有:1005+670+503-335-503-167+167=1340盏;所以没有拉过的有:2010-1340=670盏;仅拉过两次的有:335-167+503-167+167-167=168+336=504 所以最后还亮着的灯有:670+504=1174盏;(2010年第8届走美杯五年级第15题)15、10:00甲、乙两人分别同时从A 、B 两地出发相向而行,10:20甲、乙两人相遇,10:30乙与从A 出发向B 行走的丙相遇,10:45甲、丙两人同时到B 。
丙从A 出发时是10点________分,乙到A 时是10点_______分。
【分析】根据已知条件,乙从10:00到10:30这段时间(30分钟)内走的路程,丙在10:30到10:45之间(15分钟)就走完了,说明丙的速度是乙的2倍。
同时,甲、乙用了20分钟相遇,而甲用45分钟走完全程,说明甲走45-20=25(分钟)的路程乙只需要20分钟完成,即甲的速度是乙的0.8倍,于是甲、乙、丙的速度比为4:5:10。