(完整版)材料成形过程模拟仿真

合集下载

材料成型过程数值模拟

材料成型过程数值模拟

Teaching Materials/Yuandong Li
18
第1章 绪 论
一般说来,微分方程的边值问题只是在方程的 性质比较简单、问题的求解域的几何形状十分 规则的情况下,或是对问题进行充分简化的情 况下,才能求得解析解。而实际的材料成形问 题求解域往往是十分复杂的,而且场方程往往 相互耦合,因此无法求得解析解,面在对问题 进行过多简化后得到的近似解可能误差很大, 甚至是错误的。
Teaching Materials/Yuandong Li
13
第1章 绪 论
三、计算机在材料成型领域中的应用
5、计算机数值模拟(仿真)系统
计算机数值模拟在各行业中应用
1)铸造:
温度场模拟 流动场模拟 四场模拟 应力场模拟 溶质场模拟 流动与传热耦合设计 微观组织模拟 M-C法、CA法、相场法
Teaching Materials/Yuandong Li
第1章 绪 论
计算机数值模拟在各行业中应用
3)金属塑性加工:
塑性变形过程
温度、应力、应变等分布规律
微观组织、力学、机械及物化性能的变化
4)热处理:
温度场数值模拟
应力场模拟
组织转变
相图的模拟
Teaching Materials/Yuandong Li
16
第1章 绪 论
四、材料成型过程的模拟方法
材料成形的方法种类繁多,涉及到的物理、化学和 力学现象十分复杂,是一个多学科交叉、融合的研 究和应用领域。例如,在液态金属成形过程中,涉 及液态金属的流动,包含了相变与结晶的凝固现象 。在固态金属的塑性成形中,金属在发生大塑性变 形的同时,也伴随着组织性能的变化,有时也涉及 到相变和再结晶现象。在金属的焊接过程中,也包 含了相变与结晶和内在应力的变化。

材料成形过程模拟

材料成形过程模拟
材料成形过程模拟
第一章 金属液态成形过程
金属的液态成形和固态成形都是制造业获得产品
的主要手段。
液态金属 浇注 模具型金属铸造(foundry,casting)
1. 定义:将熔炼好的液态金属浇注到与零件形状尺
寸相适应的铸型型腔(mold cavity)内,待其冷却凝固
5. 金属材料塑性加工的主要方向
(1)常规材料加工工艺的短流程化和高速、高效化 连铸连轧 ; (2)发展先进的成形加工技术,实现组织与性能的 精确控制热连轧,冷连轧; (3)材料设计、制备与成形加工一体化整体构件;
(4)开发新型制备与成形加工技术,发展新材料 和新制品快速冷凝、喷射沉积; (5)发展计算机数值模拟、仿真模拟及神经网络 技术,构筑完善的材料数据库; (6)材料的智能制备与成形加工技术。
4. 塑性加工理论的发展概况
(1)金属塑性加工力学:连续介质力学+晶体力学 CMTP (Continuum Mechanics of Textured Polycrystals) 是随塑性力学在金属塑性加工中的应用 而发展起来的一个分支。 a.1864年Tresca首次提出最大剪切屈服准则; b.1925年Karman将塑性力学应用于塑性加工;
后,获得毛坯或零件的方法。 2. 优点:适应性强,金属种类、铸件尺寸、形状不 缺点:铸造工艺复杂;铸件缺陷多,废品率高;铸 件力学性能一般较同类锻件差;劳动环境差等。
受限制;成本低;尤其适于制造内腔复杂的大型箱体件。
3.铸造方法:砂型铸造(sand casting process); 特种铸造(special casting process)
2. 机器造型:填砂、紧实、起模等操作由机器来完成。
其生产率高,铸型质量好。但投资大,准备生产周期长, 主要用于成批大量生产。

复合材料层合板成形仿真

复合材料层合板成形仿真

复合材料层合板成形仿真目录1问题描述 (1)2ABAQUS前处理 (1)2.1 Part (1)2.2 Property (1)2.3 Assembly (4)2.4 Step (4)2.5 Load (5)2.6 Mesh (1)2.7 Job (2)3ABAQUS后处理 (2)3.1 显示铺层 (2)3.2 查看各单层计算值 (3)4附录 (6)5参考文献 (9)I11 问题描述本文实例来源于百度文库“复合材料ABAQUS 分析---精讲版”,本文目的在于了解分层壳单元的使用方法及其注意事项,同时收集整理相关知识点。

一块边长254mm 的方形两层层合板,两层厚度均为2.54mm ,第一层铺层角o 45,第二层铺层角o -45;板的四边完全固支,板的上表面受到689.4KPa 的压强。

各单层的材料相同,材料属性如下:1=276GPa E ,2=6.9GPa E ,3=5.2GPa E ,120.25γ=,12 3.4GPa G =,13 3.4GPa G =,23 3.4GPa G =。

2 ABAQUS 前处理2.1 Part已知为边长为254mm 的正方形层合板,因此可建立层合板部件,命名为“Part-Laminate ”,“3D, Deformable, Shell, Planar ”,输入点(-127,127)、(127,-127)建立矩形平面,如图2-1所示。

图2-1 建立层合板部件2.2 Property(1) 定义复合材料层合板的材料属性由于采用了IS (mm )单位制,故输入的数值如表2-1所示。

建立材料属性,2命名为“Mat-Laminate ”,输入设置如图2-2所示。

由于复合材料是分层的,因此并不在此处分配和创建截面属性。

表2-1 IS (mm )单位制参数1E 2E 3E 12 12G 13G 23G 原始276GPa 6.9GPa 5.2GPa 0.25 3.4GPa 3.4GPa 3.4GPa IS(mm) 276000MPa 6900MPa 5200MPa 0.25 3400MPa 3400MPa 3400MPa图2-2 创建复合材料层合板的材料属性(a )(b ) 图2-3 创建局部坐标系 (2) 创建局部坐标系在如图2-3图所示处创建局部坐标系。

材料成形过程数值模拟2

材料成形过程数值模拟2
材料成形过程数值模拟 (二)
金属铸造成形的数值模拟
发展历史:

丹麦forsund于1962年首次采用电子计算机模拟铸件凝固过程 美国在60年代中期开始进行大型铸钢件温度场的计算机数值模拟计算 研究 我国始于70年代末期,沈阳铸造研究所与大连工学院率先开展了铸造 工艺过程的计算机数值模拟研究工作
2v 2v 2v v v v v p u v w gy 2 2 2 x y z y t x y z
2w 2w 2w w w w w p u v w gz 2 2 2 x y z z y z t x







Levy—Mises理论
材料为理想刚塑性材料,即弹性应变增量为零,塑 性应变增量就是总应变增量; 材料服从Mises屈服准则,即 s ; 塑性变形时体积不变,即应变增量张量就是应变增 量偏张量;
在以上假设基础上可假设应变增量与应力偏张量成正比
d d ij ij

局限性: 金属材料塑性变形时的特性超出了现有本构关系的描述范 围,或者摩擦特性超出了现有摩擦理论的范围时,模拟结 果会偏离实际情况。
弹塑性有限元法



最早是由Marcal等提出的,它同时考虑弹性变形和塑性变 形,弹性区采用Hook定律,塑性区采用Ruess方程和 Mises屈服准则。 不仅能按照变形路径得到塑性区的变化,而且能够有效地 处理卸载问题,计算残余应力和残余应变,从而可以进行 回弹计算以及缺陷预测分析。 但是,弹塑性有限元法由于要考虑变形历史的相关性,须 采用增量加载,在每一步增量加载中,都须做弹性计算来 判断原来处于弹性区的单元是否已经进入屈服,对进入屈 服后的单元就要采用弹塑性本构关系,从而改变单元刚度 矩阵。

材料成型过程数值模拟-南京农业大学

材料成型过程数值模拟-南京农业大学

材料成型过程数值模拟上机指导书姓名班级学号南京农业大学工学院机电工程教研室2013年1月上机实践一:Moldflow基础及网格划分一、目的1. 熟练Moldflow软件的界面。

2. 掌握三维绘图软件生成实体模型导入Moldflow方法。

3. 掌握Moldflow模流分析的基本步骤及详细的操作方法。

4. 熟练掌握Moldflow中网格的类型、各种网格类型的应用条件、网格的划分、网格结果检查、修改等。

5. 熟练掌握Moldflow进行最佳浇口分析及填充分析。

6. 熟练掌握Moldflow最佳浇口和流动分析结果导出。

二、内容1. 采用pro/E三维绘图软件建立三维模型,并以STL格式导出。

2. 对模型划分网格、检查网格、修改网格等。

3. 利用Moldflow对该模型进行最佳浇口、填充和流动分析。

4. 导出Moldflow模流分析的结果。

三、上机实践1. 采用三维软件建立实体模型,并以STL格式导出。

2. 模型导入2.1打开软件双击桌面上打开Moldflow软件,会出现如图1所示界面图1 Moldflow初始界面图2 输入对话框2.2导入产品模型(1)执行【文件】→【导入】命令(如图2所示),会弹出如图所示的对话框。

(2)在对话框中找到*.stl文件所在的路径,选择该文件,然后单击【打开】按钮打开文件,会弹出模型“输入”选项设置对话框(图3),选择网格类型和单位尺寸,单击【确定】完成导入模型。

图3 “输入”选项设置对话框3.网格划分执行【网格】→【生成网格】命令(图4)后,工程管理视窗中的“工具”页面显示“生成网格”定义信息(图5),设定参数并单击【立即划分网格】按钮,系统将自动对模型进行网格划分和匹配。

网格划分信息可以在模型显示区域下方的“网格日志”中查看。

图4 图54.网格检验与修补4.1执行【网格】→【网格诊断】命令(图4),系统自动弹出【网格诊断】对话框,如图5所示,上面显示了网格的信息。

网格统计提供了网格不同特性快速评价,针对具体的分析内容对网格进行修补。

《材料成型过程的数值模拟》课程教学大纲

《材料成型过程的数值模拟》课程教学大纲

《材料成型过程的数值模拟》课程教学大纲课程编号:081096211课程名称:材料成型过程数值模拟英文名称:Computer Simulation of Materials Processing课程类型:专业课课程要求:必修学时/学分:32/2(讲课学时:16,实验学时:0,上机学时:16适用专业:材料成型及控制工程专业一、课程性质与任务本双语课程作为材料成型及控制工程专业专业必修课,目的是向材料成型及控制工程专业的高年级本科生介绍现代计算机模拟和仿真技术在材料成型中应用的专业课程。

通过本课程的学习,使学生初步掌握模拟与仿真的概念,培养高级的材料成型研究专门人才。

本课程教学内容方面着重基本知识、基本理论和基本方法;在培养学生的实践能力方面,着重计算机软件应用基本能力的训练,培养学生在工程问题分析与设计构思方面的能力,掌握一定的计算机模拟手段预测材料在成型过程中的变化,并能指导实际工程的工业生产项目,以适应当代工业工程发展的需要。

本课程采用双语教学,提升学生相关专业知识和国际视野和外语学习能力,培养与国际工程技术人员之间的沟通能力。

二、 课程与其他课程的联系先修课:金属材料及热处理,材料力学性能,金属液态成型原理,金属塑性成形原理,材料冶金传输原理,模具设计及运用, 材料成型工艺本课程为材料成型及控制工程专业大四学生开设,本课程开设目的是在学生学习材料成型相关理论、工程知识后能够运用计算机辅助设计软件对材料成型及控制问题进行设计,能够运用计算机辅助工程软件对材料成型过程问题进行分析与预测,得到有效结论,因此学生对于前期课程的学习、理解是本课程开设基础。

三、课程教学目标1.了解材料成型过程计算机模拟与仿真的概念、方法、特点及用途,具有分析、选用相关现代模拟手段进行工程问题模拟仿真能力;(支撑毕业能力要求5.1)2.了解材料成型过程数值模拟领域的发展历程和现状,熟悉计算机模拟的基本理论;能够根据,了解主流的计算机模拟软件及其应用范围;(支撑毕业能力要求2.3,5.2)3. 能够根据具体工程问题选用软件对工程问题的关键环节和参数进行模拟仿真,并根据模拟结果分析、解决问题或优化工艺参数;(支撑毕业能力要求5.3,3.2)4.熟练掌握一种以上计算机模拟软件的基本操作过程,培养学生应用计算机模拟手段的工程应用的能力;强化外语应用能力,能够熟练应用英语表达材料成型工程领域专业技术问题,熟悉国际材料成型计算机模拟与仿真发展趋势,具有一定的国际视野和交流能力。

多孔材料压制成型过程的仿真实验研究

多孔材料压制成型过程的仿真实验研究
o g y , 1 9 9 5 ( 4 8 ) : 3 9 1 — 3 9 7 .
4 结

[ 6 ] 李 尚健 . 金属 塑性成 形过 程模 拟 [ M] . 北京 : 机 械 工 业
出 版社 。 2 0 0 2 .
1 ) 自由锻 压时 , 大变形 区域 主要 集 中在 中n t o f Pr e s s i ng Fo r mi ng o f Po r o u s M at e r i a l
1 0 4




水 电
学 院


2 0 1 3年 l 0月




×
奁 一


0 04 08 1 2 1 6 20 24 2 8 32 3 . 6 40
0 0 . 4 0. 8 1 . 2 1 . 6 20 24 2 8 3 . 2 3 , 6 40
所产 生 的压力 对于 凸 模 远没 有 达 到 屈 服 , 满足 所 需
的 强度要 求 , 故 设计 达标 .
[ 5 ]T o s h i o S a n o . K e n s u k e k a t o a n d d e d o r ma t i o n m e c h a n i s m s i n p o w d e r m e t a l s [ J ] . J o u r n a l o f Ma t e r i a l s P r o c e s s i n g T e c h n o l -
力. ) 代入 相关 参数 , 计算 可得
:Z : 3 7 : r o =— — — — — — - = / . 3 j M Pa <23 < 5 MP . M a 0. 0 4 8‘ 1 『

材料成型计算机模拟(纯手工 打造)

材料成型计算机模拟(纯手工    打造)

一、名词解释1计算机模拟的概念:根据实际体系在计算机上进行模拟实验,通过将模拟结果与实际体系的实验数据进行比较,可以检验模型的准确性,也可以检验由模型导出的解析理论作为所作的简化近似是否成功。

12材料设计是指(主要包含三个方面的含义):理论计算→预报→组分、结构和性能;理论设计→订做→新材料;按照生产要求→设计→制备和加工方法。

13数学模拟的定义:就是利用数学语言对某种事务系统的特征和数量关系建立起来的符号系统。

4数学建模是一种具有创新性的科学方法,它将实现问题简化,抽象为一个数学问题或数学模型,然后采用适当的数学方法进行求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题的目的。

15数学模型的建立方法——理论分析法:应用自然科学中的定理和定律,对被研究系统的有关因素进行分析、演绎、归纳,从而建立系统的数学模型。

6数学模型的建立方法——模拟方法:如果模型的结构及性质已经了解,但是数量描述及求解却相当麻烦。

如果有另一种系统,结构和性质与其相同,而且构造出的模型也是类似的,就可以把后一种模型看作是原来模型的模拟,对后一个模型去分析或实验,并求得其结果。

7数学模型的建立方法——类比分析法:如果有两个系统,可以用统一形式的数学模型来描述,则此两个系统就可以相互类比。

类别分析法是根据两个(或两类)系统某些属性或关系的相似,去猜想两者的其他属性或关系也可能相似的一种方法。

8数学模型的建立方法——数据分析法:当有若干能表征系统规律、描述系统状态的数据可以利用时,就可以通过描述系统功能的数据分析来连接系统的结构模型。

9材料成型:采用铸造、锻造等方法将金属原材料加工成所需形状、尺寸,并达到一定的组织性能要求,这一过程称为材料成型。

110逼近误差:差商和与导数之间的误差表明差商逼近导数的程度,称为逼近误差。

211差商的精度:逼近误差相对于自变量差分(增量△x)的量级称为用差商代替导数的精度。

212截断误差:用差分方程近似代替微分方程所引起的误差,称为截断误差。

成型仿真操作流程的归纳

成型仿真操作流程的归纳

成型仿真操作流程的归纳Molding simulation is an essential process in manufacturing to predict the flow and behavior of molten material during the molding process. 成型仿真是制造过程中的一个必要步骤,用于预测在成型过程中熔融材料的流动和行为。

The operation flow of molding simulation can be summarized into several steps. 成型仿真操作流程可以概括为几个步骤。

Firstly, the materials and parameters need to be input into the simulation software. 首先,需要将材料和参数输入到仿真软件中。

Next, the model of the product and the mold is created in the software based on the design. 接下来,根据设计,在软件中创建产品和模具的模型。

Once the model is set up, the simulation is run to analyze the flow, cooling, and any potential defects in the final product. 一旦模型设置完成,就运行仿真来分析流动、冷却和最终产品中可能存在的任何缺陷。

After the simulation, the results are analyzed to make any necessary adjustments to the design or process. 仿真之后,需要分析结果,并对设计或工艺进行必要的调整。

Finally, the optimized design and process are implemented for actual production. 最后,优化后的设计和工艺被用于实际生产。

材料成型计算机模拟分析(各种仿真软件介绍)课件

材料成型计算机模拟分析(各种仿真软件介绍)课件
33
• 4) 塑性理论中关于塑性应力应变关系与硬化 模型有多种理论,材料属性有的与时间无关, 有的则是随时间变化的粘塑性问题;于是,采 用不同的理论本构关系不同,所得到的有限元 计算公式也不一样。
• 5) 对于一些大变形弹塑性问题,一般包含材 料和几何两个方面的非线性,进行有限元计算 时必需同时单元的形状和位置的变化,即需采 用有限变形理论。而对于一些弹性变形很小可 以忽略的情况,则必需考虑塑性变形体积不变 条件,采用刚塑性理论。
27
• 结构静力分析用来求解外载荷引起的位移、应 力和力。静力分析很适合于求解惯性和阻尼对 结构的影响并不显著的问题。ANSYS 程序中的 静力分析不仅可以进行线性分析,而且也可以 进行非线性分析,如塑性、蠕变、膨胀、大变 形、大应变及接触分析。结构非线性导致结构 或部件的响应随外载荷不成比例变
• 化。ANSYS 程序可求解静态和瞬态非线性问题, 包括材料非线性、几何非线性和单元非线性三 种。
34
弹塑性有限元
• 在塑性变形过程中,如果弹性变形不能忽略并 对成形过程有较大的影响时,则为弹塑性变形 问题,如典型的板料成形。在弹塑性变形中, 变形体内质点的位移和转动较小,应变与位移 基本成线性关系时,可认为是小变形弹塑性问 题;而当质点的位移或转动较大,应变与位移 为非线性关系时,则属于大变形弹塑性问题; 相应地有小变形弹塑性有限元或大变形(有限 变形)弹塑性有限元。
24
25
有限元软件ANSYS
• ANSYS 软件是由世界上最大的有限元分析软件公司之 一的美国ANSYS 开发,是集结构、流体、电场、
• 磁场、声场分析于一体的大型通用有限元分析软件。
• ANSYS 的前处理模块提供了一个强大的实体建模及网 格划分工具,用户可以方便地构造有限元模型。

材料成型计算机模拟分析(各种仿真软件介绍)课件

材料成型计算机模拟分析(各种仿真软件介绍)课件

PPT学习交流
8
• 现代成形加工与模具正朝着高效率、高速度、 高精度、高性能、低成本、节省资源等方向发 展,因此传统的设计方式已远远无法满足要求。 20 多年来,随着计算机技术和数值仿真技
• 术的发展,出现了计算机辅助工程分析 (Computer Aided Engineering)这一新兴的技术, 该技术在成形加工和模具行业中的应用,即模 具CAE。模具CAE 是广义模具CAD/CAM 中的一 个主要内容,现已在实际中体现出了越来越重 要的作用,也得到越来越广泛的应用。
PPT学习交流
19
有限元法分析的基本
过程
• 根据有限元法的基本概念,其分析过程概括起来有如下 内容,现以连续结构的应力应变分析为例,逐
• 步加以说明。

有限元分析的第一步是结构的离散化,这也是有
限元法的基础。简单来说,离散化就是将结构划分成
• 为有限个单元体,并在单元体的指定点设置节点,将相 邻单元体通过节点连接起来组成单元的集合体,并
优化模块、超单元分析模块、气动弹性分析模 块、DMAP 用户开发工具模块及高级对称分析 模块。
PPT学习交流
23
• 结构动力学分析是MSC.NASTRAN 的主要强项 之一,其主要功能包括:正则模态及复特征值 分析、频率及瞬态响应分析、(噪)声学分析、随 机响应分析、响应及冲击谱分析、动力灵敏度 分析等。
PPT学习交流
15
PPT学习交流
16
• 从数学角度理解,是将图7-1 所示的求解区域 剖分成许多三角形子区域,子域内的位移可以 由相应各节点的待定位移合理插值来表示。根 据原问题的控制方程(如最小势能原理)和约 束条件,可以求解出各节点的待定位移,进而 求得其它场量。推广到其它连续域问题,节点 未知量也可以是压力、温度、速度等

01.材料加工过程的数值模拟

01.材料加工过程的数值模拟

CAE技术的应用
• 8月17日,北京奥运会游泳比赛项目在“水立方”落下帷 幕,9天内,我们见证了19项新的世界纪录和7项新的奥运 会纪录的诞生,见证了泳坛巨星菲尔普斯身着“鲨鱼皮” 泳衣勇夺8金的奥运传奇。
CAE技术铸就“鲨鱼皮”
• 我们知道水的阻力是运动员提高游泳速度的最大障 碍,它的流动方式是决定泳速的关键因素,因此降 低水的阻力自然成为帮助游泳运动员提高成绩的最 有效途径,它同时也是最具难度的一项工作。而应 用CAE仿真技术的“鲨鱼皮”泳衣却令人难以置信 地比普通泳衣的阻力低38%!
4. 课程要求、进度安排
宏观--微观 多物理场耦合 数值模拟在特种成成形中的应用范围不断拓宽 基础性研究增大 反向模拟技术 模拟软件
协同工作
模拟结果与设备控制的关联
第一讲 材料成形数值模拟概述
1. 引言 2. 工程意义及应用现状 3. 发展趋势
4. 课程要求、进度安排
1.教材:
CAE在焊接结构上的应用
MSC.MARC
本课程学习基础及方法
应用MARC和Procast集成CAE仿真分析软件是一项比较复
杂、对使用者要求相对较高的技术。要求软件的使用者首先
要具备以下的背景知识及一定的工程实践经验,基础包括:
1. 2. 3. 4. CAD/CAE/CAM的基础知识 具有一定的有限元分析方法的理论知识 铸锻焊工艺基础及模具设计的理论 具备能熟练使用某一三维CAD软件进行三维造型的能力(ProE、UG 、 Solidworks、 CATIA ) 5. 具备一定的专业外语阅读水平
这样就可以确保工艺、设计和模具制造一次成功,主要问题在设 计阶段就完全解决,使塑性加工进入以模型化、最优化、和柔性化为 特征的工程科学阶段,提高塑性加工行业的科学化水平。

难变形材料复杂构件成形多场耦合多尺度全过程建模与仿真

难变形材料复杂构件成形多场耦合多尺度全过程建模与仿真

难变形材料复杂构件成形多场耦合多尺度全过程建模与
仿真
首先,建立基于场耦合多尺度的模型和仿真技术,来表征难变形材料的性能特点。

其次,利用模型从而增强数值模拟的能力,来筛选材料特性和实验参数,预测材料的行为规律,比如温度和力学变化。

最后,建立一个弹性有限元加载算法,用于分析复杂构件的组装过程和设计调试,以及反映其变形行为。

同时,对于复杂构件形状复杂的成形过程,还必须考虑材料冷喷成型或机械拉拔成型过程中的物理变形机理,如温度场、应力场和变形场的演变,以及难变形材料的微观结构变化,如金属流变破坏、机械耦合模型、显微结构分析和拉拔等,对其进行建模、仿真和分析。

此外,为了确保难变形材料复杂构件成形的准确性,还需要对各过程参数进行精细的校正和反馈,采用可视化技术,例如建立三维动态仿真系统。

材料成形过程模拟仿真

材料成形过程模拟仿真

MSC.Mvision

MSC.Mvision 是一个全面商品化的材料数据信息系统,包括 大量应用于航空航天和汽车行业的 材料数据,可以为用户提供 最丰富、最广泛的材料数据信息,如材料的构成图象(含金相), 材料的成分含量,材料的各种特性数据,材料数据的测试环境 信息,生产厂家及材料出厂牌号数据等,并可将材料特性作为 设计变量用于设计、分析阶段的整个过程。Mvision的材料构 造器和评估器可帮助用户建立和评估自己的材料数据信息系统。


将具有无限个自由度的连续体看成只具有有限个自由 度的单元集合体。 单元之间只在指定节点处相互铰接,并在节点处引入 等效相互作用以代替单元之间的实际相互作用。 对每个单元选择一个函数来近似描述其物理量,并依 据一定的原理建立各物理量之间的关系。 最后将各个单元建立起来的关系式加以集成,就可得 到一个与有限个离散点相关的总体方程,由此求得各 个离散点上的未知量,得到整个问题的解。
Laboratory of Materials Numerical Simulation 2008/10
塑性成型过程数值模拟的必要性



现代制造业的高速发展,对塑性成形工艺分析和模具设 计方面提出了更高的要求 。 若工艺分析不完善、模具设计不合理或材料选择不当, 则会在成型过程中产生缺陷,造成大量的次品和废品, 增加了模具的设计制造时间和费用。 传统工艺分析和模具设计,主要依靠工程类比和设计经 验,反复试验修改,调整工艺参数以消除成形过程中的 失稳起皱、充填不满、局部破裂等产品缺陷,生产成本 高,效率低。 随着计算机技术及材料加工过程数值分析技术的快速 发展,可以在计算机上模拟材料成型的整个过程,分析 各工艺参数对成型的影响,优化设计。
Laboratory of Materials Numerical Simulation 2008/10

成型仿真操作流程的归纳

成型仿真操作流程的归纳

成型仿真操作流程的归纳下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!成型仿真操作流程的归纳一、前处理1. 模型导入:将需要进行成型仿真的零件或装配体模型导入到成型仿真软件中。

材料成型计算机模拟

材料成型计算机模拟

目录第一章挤压工艺参数的确定 (1)1.1挤压工艺参数的确定 (1)1.1.1摩擦系数的确定 (1)1.1.2挤压杆速度的确定 (1)1.1.3挤压温度的确定 (1)1.1.4挤压模锥角的确定 (1)1.1.5工模具预热温度 (1)第二章挤压工具参数的确定 (2)2.1 模具尺寸的确定 (2)2.1.1 挤压示意图 (2)2.1.2挤压筒尺寸的确定 (2)2.1.3 挤压模尺寸确定 (4)第三章挤压方案的分配 (6)3.1挤压方案的分配 (6)第四章模拟挤压及提取数据 (7)4.1模拟挤压的过程 (7)4.1.1挤压工模具及工件的三维造型 (7)4.1.2挤压模拟 (7)4.2 后处理 (8)4.2.1挤压杆挤压速度对挤压力的影响 (8)4.2.2挤压杆挤压速度对破坏系数的影响 (9)第五章实验数据分析 (10)5.1 挤压杆挤压速度对挤压力的影响 (10)5.2 挤压杆挤压速度对破坏系数的影响 (11)总结 (12)参考文献 (13)工作总结 (14)第一章 挤压工艺参数的确定1.1挤压工艺参数的确定 1.1.1摩擦系数的确定摩擦系数对挤压有着重要的影响,对挤压力的影响最为显著。

根据设计要求,故挤压垫与坯料之间的摩擦系数可取0.6,挤压筒与坯料之间的摩擦系数根据设计要求取0.1。

1.1.2挤压杆速度的确定允许的挤压速度与金属再结晶和塑性区的温度范围有关,当变形和再结晶速度不协调或金属与模壁有较大摩擦时,挤压件将出现横向裂纹。

通常有色金属允许的挤压速度见表1-1。

表1-1 有色金属材料允许的挤压速度根据设计要求以及结合表1-1,可取挤压速度为1-s mm 60~10⋅。

1.1.3挤压温度的确定确定挤压温度的原则与确定热轧温度的原则相同,也就是说,在所选择的温度范围内,保证金属具有良好的塑性及较低的变形抗力,同时要保证制品的获得均匀良好的组织性能等。

根据设计要求及“三图”(合金的状态图、金属与合金的塑性图、第二类再结晶图)原则,可取挤压温度为610℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在未变形体(毛坯)与变形体(产品)之间建立运动 学关系,预测塑性成形过程中材料的流动规律,包括 应力场、应变场的变化、温度场变化及热传导等。
计算材料的成形极限,即保证材料在塑性变形过程中 不产生任何表面及内部缺陷的最大变形量可能性。
预测塑性成形过程顺利进行所需的成形力及能量,为 正确选择加工设备和进行模具设计提供依据。
有限元法能考虑多种外界因素对变形的影响,如温度、 摩擦、工具形状、材料性质不均匀等。除边界条件和 材料的热力学模型外,有限元的求解精度从理论上看 一般只取决于有限元网格的疏密。
利用有限元进行数值分析可以获得成形过程多方面的 信息,如成形力、应力分布、应变分布、变形速率、 温度分布和金属的流动方向等。
Laboratory of Materials Numerical Simulation 2008/10
有限元法的基本原理
将具有无限个自由度的连续体看成只具有有限个自由 度的单元集合体。
单元之间只在指定节点处相互铰接,并在节点处引入 等效相互作用以代替单元之间的实际相互作用。
对每个单元选择一个函数来近似描述其物理量,并依 据一定的原理建立各物理量之间的关系。
Laboratory of Materials Numerical Simulation 2008/10
有限元法的优点
由于单元形状具有多样性,使用有限元法处理任何材料模型,任意的边 界条件,任意的结构形状,在原则上一般不会发生困难。材料的塑性加 工过程,基本上可以利用有限元法进行分析,而其它的数值方法往往会 受到一些限制。
塑性成形的数值模拟方法
上限法(Upper Bound Method)
用于分析较为简单的准稳态变形问题;
边界元法(Boundary Element Method)
用于模具设计分析和温度计算 ;
有限元法(Finite Element Method)
用于大变形的体积成形和板料成形,变形过程常呈 现非稳态,材料的几何形状、边界、材料的性质等 都会发生很大的变化。
Laboratory of Materials Numerical on 2008/10
塑性成型过程数值模拟的必要性
现代制造业的高速发展,对塑性成形工艺分析和模具设 计方面提出了更高的要求 。
若工艺分析不完善、模具设计不合理或材料选择不当, 则会在成型过程中产生缺陷,造成大量的次品和废品, 增加了模具的设计制造时间和费用。
由于计算过程完全计算机化,既可以减少一定的试验工作,又可直接与 CAD/CAM实现集成,使模具设计过程自动化。
Laboratory of Materials Numerical Simulation 2008/10
模拟塑性加工过程的有限元法
弹塑性有限元法 刚塑性有限元法 刚粘塑性有限元法
的对形视应量增状累之的同于节等量又力间性过热硬度研本非应流有轧步于量为力量态加计步上时小点问可应的去法和限加化具究牛的动制构长大较刚应变,变算进进考塑位题以变相弹分非元工效有热顿有的等关不多小塑变形下形方可行虑性移。分及互塑析稳法(应较加不限热工系能数,性增来一几法取的弹变,对析回作性。态常再不大工可元力艺。太体 可 体 量 说 步 何 来得,性形适于卸弹用有既问用结显的问压列耦过把大积以。进,计形处大因变所用大载、。限可题来晶著敏题缩式合程热,成忽这行材算状理一此形求于塑过以可元以,分温,感时流,计加计。形略种求料是和大些,和的结性程及以法分其析度材性要体可算工算问,方解仍在硬变,可塑未构变,模处主析缺拉以料,采,以,时工题即法,处材化形但以性知失形计具理要加点拔上对因用建进刚金作,可不计于料特问对用变量稳,算和几适载是、)变此粘立行粘属量弹将需算小以性题于小形是,采残工何用过所挤应形,塑了稳塑视繁性材要时变前基,每变,单屈用余件非于程取压变速在性相态性为重变料用增形的础并次形对元服增应之线分,是、。 且计析算板模料型成较形简、单弯。曲刚等塑工性序有。限元 法常用于一些金属的冷加工问题。 Laboratory of Materials Numerical Simulation 2008/10
能够提供塑性成形过程中变形的详细信息(应力应变场、速度场、温度 场、网格畸变等),为优化成形工艺参数及模具结构设计提供详细而可 靠的依据。
虽然有限元法的计算精度与所选择的单元种类,单元的大小等有关,但 随着计算机技术的发展,有限元法将提供高精度的技术结果。
用有限元法编制的计算机程序通用性强,可以用于求解大量复杂的问题, 只需修改少量的输入数据即可。
塑性加工过程数值模拟
上机实验
材料模拟仿真实验室 贠冰
主要内容
数值模拟的有限元法简介 实验室简介 上机实验软件Ansys简介 上机实验内容及操作步骤 上机分组
Laboratory of Materials Numerical Simulation 2008/10
塑性加工过程的 有限元法
成型过程数值分析方法的功能
最后将各个单元建立起来的关系式加以集成,就可得 到一个与有限个离散点相关的总体方程,由此求得各 个离散点上的未知量,得到整个问题的解。
Laboratory of Materials Numerical Simulation 2008/10
有限元法的基本原理(二)
它对问题的性质、物体的形状和材料的性质几乎没有 特殊的要求,只要能构成与有限个离散点相关的总体 方程就可以按照有限元的方法求解。
传统工艺分析和模具设计,主要依靠工程类比和设计经 验,反复试验修改,调整工艺参数以消除成形过程中的 失稳起皱、充填不满、局部破裂等产品缺陷,生产成本 高,效率低。
随着计算机技术及材料加工过程数值分析技术的快速 发展,可以在计算机上模拟材料成型的整个过程,分析 各工艺参数对成型的影响,优化设计。
Laboratory of Materials Numerical Simulation 2008/10
著名有限元分析软件
ABAQUS:大型有限元软件,广泛模拟性能,杰出的非线性分析 能力
相关文档
最新文档