00Hexaferrite--FeCo nanocomposite
锰掺杂的碳点作为纳米模拟酶用于比色检测毒死蜱
热带作物学报2019, 40(6): 1195-1204Chinese Journal of Tropical Crops锰掺杂的碳点作为纳米模拟酶用于比色检测毒死蜱白秋月1,2,杨春亮2*,林丽云2,叶剑芝21. 华中农业大学,湖北武汉430070;2. 中国热带农业科学院农产品加工研究所,广东湛江524001摘要以碳酸锰、脲、柠檬酸、双氧水为原料,采用微波加热法合成具有纳米模拟酶催化活性的锰掺杂碳点(Mn-CDs)。
Mn-CDs可催化3,3',5,5'-四甲基联苯胺(TMB)产生蓝色的ox-TMB。
乙酰胆碱酯酶(AChE)催化底物乙酰硫代胆碱(ATCh)生成的硫代胆碱(TCh),还原所生成的ox-TMB使溶液蓝色褪去。
有机磷类农药能有效抑制AChE的活性,使TCh的生成量减少,溶液的蓝色变深。
根据吸光度的变化可以定量检测有机磷农药含量,由溶液颜色的深浅可以构建毒死蜱的可视化半定量检测方法。
本研究表征了Mn-CDs的表面结构及微观形貌,以有机磷类农药主要品种毒死蜱作为分析模型,初步探讨了比色法检测毒死蜱的原理;考察了毒死蜱检测的最优条件,检测的线性范围是0~3.5 μg/mL,检测限为0.013 μg/mL。
将该检测方法用于苹果实际样品中毒死蜱的测定,回收率为95.2%~102.8%,表明该方法有望应用于实际样品中有机磷的高灵敏测定。
关键词掺杂碳点;纳米模拟酶;毒死蜱;比色检测中图分类号S481.8 文献标识码 AMn Doped Carbon Dots as Nano-mimetic Enzyme for the Colorimetric Detection of ChlorpyrifosBAI Qiuyue1,2, YANG Chunliang2*, LIN Liyun2, YE Jianzhi21. Huazhong Agricultural University, Wuhan, Hubei 430070, China;2. Agricultural Products Processing Research Institute , Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, ChinaAbstract Manganese-doped carbon dots (Mn-CDs) with nano-simulated enzyme catalytic activity were synthesized by citric acid, urea, hydrogen peroxide and manganese carbonate. Mn-CDs catalyze the production of blue ox-TMB by 3,3',5,5'- tetramethylbenzidine (TMB). Acetylcholinesterase (AChE) catalyzes the thiocholine (TCh) produced by the substrate acetylthiocholine (ATCh), and the resulting ox-TMB reduces the blue color of the solution. Organophosphorus pesticide can effectively inhibit the activity of AChE, reduce the production of TCh, and darken the blue of the solution. A visual detection method for organophosphorus pesticide can be constructed according to the depth of the solution color. The work described the surface structure and micromorphology of Mn-CDs. Utilized chlorpyrifos as an analytical model, which is the main species of organophosphorus pesticides. The principle of colorimetric detection of chlorpyrifos was discussed. The conditions for the detection of chlorpyrifos were investigated. The linear range of detection was 0-3.5 μg/mL and the detection limit was 0.013 μg/mL. The detection method was applied to the determination of chlorpyrifos in apple samples, and the recovery rate ranged from 95.2% to 102.8%, indicating that the method is expected to be ap-plied to the highly sensitive determination of organic phosphorus in actual samples.Keywords doped carbon dots; nano-mimetic enzyme; chlorpyrifos; colorimetric detectionDOI 10.3969/j.issn.1000-2561.2019.06.023有机磷农药(OPs)因其具备良好的预防、控制及根除害虫的能力而广泛应用于农业生产收稿日期 2018-12-20;修回日期 2019-02-18基金项目 海南省自然科学基金青年基金项目(No. 219QN290),农业农村部财政专项农产品质量安全监管(风险评估)项目(No. GJFP2018011);中国热带农业科学院基本科研业务费专项资金项目(No. 1630122017020)。
亚甲基双-苯并三唑基四甲基丁基酚结构式__解释说明
亚甲基双-苯并三唑基四甲基丁基酚结构式解释说明1. 引言1.1 概述亚甲基双-苯并三唑基四甲基丁基酚(Methyl-Bis(phenylthiobenzotriazolyl)-4-methylpiperidinol)是一种重要的有机化合物,具有广泛的应用领域和潜在的研究价值。
该化合物以其独特的结构和性质而备受关注。
本文将详细介绍亚甲基双-苯并三唑基四甲基丁基酚的定义、结构式解释及其特点,探讨其在药物研究与开发、化学工业中的用途以及环境监测和分析方法方面的应用。
此外,我们还将讨论制备亚甲基双-苯并三唑基四甲基丁基酚的方法和工艺参数对产率与纯度的影响,并探索可能存在的改进和优化方向。
最后,本文将总结亚甲基双-苯并三唑基四甲基丁基酚的重要性和应用价值,并对未来发展趋势进行展望。
1.2 文章结构本文共包括引言、亚甲基双-苯并三唑基四甲基丁基酚的定义与特点、亚甲基双-苯并三唑基四甲基丁基酚的应用领域、制备亚甲基双-苯并三唑基四甲基丁基酚的方法与工艺参数控制以及结论与展望等五个部分。
下面将对每个部分的内容进行详细阐述。
1.3 目的本文旨在全面介绍亚甲基双-苯并三唑基四甲基丁基酚这一化合物的相关知识,包括其定义、结构式解释和特点,并深入探讨其在药物研究与开发、化学工业以及环境监测和分析方法方面的应用。
此外,我们还将探讨制备该化合物的方法和工艺参数对产率与纯度的影响,并提出可能存在的改进和优化方向。
最后,本文将总结该化合物的重要性和应用价值,并对未来发展趋势进行展望。
通过本文的研究,希望能够加深对亚甲基双-苯并三唑基四甲基丁基酚这一化合物的认识,并促进相关领域研究和产业应用的进一步发展。
2. 亚甲基双-苯并三唑基四甲基丁基酚的定义与特点2.1 定义:亚甲基双-苯并三唑基四甲基丁基酚是一种有机化合物,化学式为C21H23N5O。
它由一个亚甲基(CH2)连接两个苯并三唑环,并且具有四个甲基和一个丁基取代在苯并三唑环上。
光谱纯溶剂
光
1.06048.0500 1.13720.0009 1.04200.0009 1.00930.1000 1.02950.0500 1.03424.0009 1.03562.0009
Dichloromethane Dichloromethane-D2 min. 99.8% for NMR Dichloromethane-D2 min. 99.95% for NMR Diethyl ether Dimethyl sulfoxide Dimethyl sulfoxide-D6 min. 99.8% for NMR Dimethyl sulfoxide-D6 min. 99.95% for NMR Dimethyl sulfoxide-D6 with TMS (0,1 1.03587.0100 vol.%) 1.11656.0009 min. 99,9% for NMR min. 99.5% for NMR Dimethylformamide-D7 1.00980.0500 Ethanol 1.00980.2500 1.03450.0001 Ethanol-D6 min. 99% for NMR 1.00863.0500 Ethyl acetate 1.13365.0010 Formic acid-D2 min. 99.5% for NMR 1.04718.2500 Isooctane 1.06002.0500 Methanol 1.06002.2500 1.06028.0009 Methanol-D4 min. 99,8 % for NMR 1.06025.0009 Methanol-D4 min. 99.95% for NMR 1.02937.0500 N,N-Dimethylformamide 1.02937.2500 1.04366.0500 n-Heptane 1.04366.2500 1.04372.0500 n-Hexane 1.04372.2500 1.02914.0002 Nitromethane-D3 min. 99% for NMR 1.07179.1000 n-Pentane 1.07161.0100 Paraffin liquid 1.04907.0100 Potassium bromide for IR 1.07475.0009 Pyridine-D5 min 99.8% for NMR 1.01984.1000 tert-Butyl methyl ether 1.00965.0500 Tetrachloroethylene 1.08110.0500 Tetrahydrofuran 1.13364.0009 Tetrahydrofuran-D8 min 99.5% for NMR 1.08183.0010 Tetramethylsilane for NMR 1.08331.1000 Toluene 1.13368.0010 Toluene-D8 min. 99.5% for NMR 1.08262.0025 Trifluoroacetic acid 1.08262.0100 Trifluoroacetic acid 1.13363.0010 Trifluoroacetic acid-D1 min. 99.5% for NMR
碳酸锂煅烧制备氧化锂的工艺研究
-2-轻金属2020年第11期-氧化铝氟化盐-碳酸锂煅烧制备氧化锂的工艺研究尤晶1王耀武2贺晓军2(1.辽宁科技学院,辽宁本溪117024;2.东北大学冶金学院,辽宁沈阳112919)摘要:由于碳酸锂熔点低于分解温度,碳酸锂直接煅烧难以获得较好的分解效果。
本论文对以碳酸锂和氧化铝混合物料为原料煅烧制备含锂氧化物的工艺进行了研究。
通过对煅烧产物的x射线衍射物相分析,探讨了混合物料中碳酸锂的分解机理。
研究结果表明,碳酸锂中加入氧化铝煅烧由于生成Li2O-AI2O3,使碳酸锂的分解温度大幅度地降低,在AI2O3与L2CO3摩尔比为lOO:,煅烧温度高于七的条件下,碳酸锂分解率可达99%以上。
关键词:碳酸锂;铝酸锂;煅烧;氧化锂中图分类号:TF42+.62文献标识码:A文章编号:1202-1742(2222)11-0024-23DOI:12.13662/k2.qjs.6222.11.(22Study on preparation of lithium oxide by calcination of lithium carbonateYou Jin/,Waag Yaowu2aad He Xiaojuk2(1Liaoning Institute of Science and Technology,Benxi117224,China;2.SchooO of Metallurgy,NofUeastern Unaersite,Shenyang1Hl11,China)Abstrrci:Io is difficnlo to oUtain/00U decomposition effect by direct calcination uf lithium cnrbouate,because the melting point of lithium cnrbouate is lower than the decomposition temperature.The process uf prepaena lithium oxine by calcining the mixture uf lithium carbonate ank alumiau wue stuUied in the paper.Thc decompositiou mechanism uf lithium carbonate in thc mixture was stuUiec by X-ray diffractiou analysis uf calcikeP proUucts.Thc resuUs show thaO he decomposition temperature uf lithium car0ouatc is greatly rePuceP due te the formation uf Li2 O•AI2O3.Tc decomposition rate uf lithium car0ou-atc is over96%w C gs the mole ratio uf Al2O3te Li2CO3is1.64:1and the calcinaPon temperature is higeer thaa80。
有机化学常用试剂英文缩写
Ac acetyl 乙酰基acac acetylacetonate 乙酰基丙酮化物AIBN 2,2'-azobisisobutyronitrile 偶氮二异丁腈Ar aryl 芳基的BBN borabicyclo[3.3.1]nonane 硼双环[3.3.1]壬烷BCME dis(chloromethyl)ether 双氯甲醚BHT butylated hydroxytoluene (2,6-di-t-butyl -p-cresol)别名抗氧化剂264 2,6-二叔丁基-4-甲基苯BINAL-H 2,2'-dihydroxy-1,1'-binaphthyl-lithium aluminum hydride 手性烷氧基联萘酚氢化铝锂BINAP 2,2' - bis(diphenylphosphino)-1,1' -binaphthyl双二苯基磷酰联萘BINOL 1,l'-bi-2,2'-naphthol 1,1'-联-2,2'-萘酚bipy 2,2' –bipyridyl 2,2'-联吡啶BMS borane-dimethyl sulfìde 硼烷吡啶Bn benzyl 苯甲基Boc t-butoxycarbonyl叔丁氧羰基BOM benzyloxymethyl苄氧甲基bp boiling point 沸点Bs brosyl (4-bromobenzenesulfonyl) 4-溴苯磺酰基BSA N, O-bis( trimethylsilyl )acetamide N,O-双三甲硅基乙酰胺Bu n-butyl 正丁基Bz benzoyl 苯甲酰CAN cerium(lV) ammonium nitrate 硝酸铈(Ⅳ)铵Cbz benzyloxycarbonyl 苄氧羰基CDI N,N-carbonyldiimidazole N,N'-羰基二咪唑CHIRAPHOS 2,3-bis(diphenylphosphino)butane 2,3-双(二苯基膦)丁烷Chx =Cy 环己基cod cyclooctadiene 环辛二烯cot cyclooctatetraene环辛四烯Cp cyclopentadienyl 环戊二烯基CRA complex reducing agent 复合还原试剂CSA 10-camphorsulfonic acid 10-樟脑磺酸CSI chlorosulfonyl isocyanate 氯磺酰异氰酸酯Cy cyclohexyl 环己基d density 密度DABCO 1,4-diazabicyclo[2.2.2]octane 1,4-重氮二环[2.2.2]辛烷DAST N,N'-diethylaminosulfur trifluoride二乙胺基三氟化硫dba dibenzylideneacetone二亚苄叉丙酮DBAD di-t-butyl azodicarboxylate偶氮二甲酸二叔丁酯DBN 1,5-diazabicyclo[4.3.0]non-5-ene 1,5-二氮杂二环[4,3,0]壬烯-5DBU 1 ,8-diazabicyclo[5.4.0]undec-7-ene 1,8-二氮杂二环-双环(5,4,0)-7-十一烯DCC N,N-dicyclohexylcarbodiimide N,N'二环己基碳二亚胺DCME dichloromethyl methyl ether二氯甲基甲醚DDO dimethyldioxirane双十二烷基二硫代乙二酰胺(又称钯试剂)DDQ 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 2,3-二氯-5,6-二氰-1,4-苯醌de diastereomeric excess 非对映体过量DEAD diethyl azodicarboxylate偶氮二甲酸二乙酯DET diethyl tartrate酒石酸二乙酯DIBAL diisobutylaluminum hydride二异丁基氢化铝DIEA =DIPEA 二异丙基乙胺DIOP 2,3-O-isopropylidene-2,3-dihydroxy-1,4- bis-(diphenylphosphino)butane异丙烯-2,3-二羟-1,4-双二丙基膦丁烷DIPEA diisopropylethylamine二异丙基乙基胺diphos =dppe 1,2-双(二苯基磷酰)乙烷DIPT diisopropyl tartrate 二异丙基酒石酸盐DMA dimethylacetamid 二甲基乙酰胺DMAD dimethyl acetylenedicarboxylate 丁炔二酸二甲酯,别名:催泪瓦斯DMAP 4-(dimethylamino)pyridine 4-二甲基氨基吡啶DME 1,2-dimethoxyethane乙二醇二甲醚(二甲氧基乙烷)DMF dimethylformamide 二甲基甲酰胺dmg dimethylglyoximato 丁二酮肟(与Ni2+形成鲜红色螯合物)DMPU N,N' -dimethylpropyleneurea N,N-二甲基丙烯基脲DMS dimethyl sulfide 二甲基硫DMSO dimethyl sulfoxide 二甲基亚砜DMTSF dimethyl(methylthio)sulfonium tetrafluoroborate 二甲基(甲硫代)锍四氟硼酸盐dppb l ,4-bis(diphenylphosphino)butane 1,4-双(二苯基膦)丁烷dppe 1,2-bis(diphenylphosphino)ethane 1,2-双(二苯基磷)乙烷dppf l ,l'-bis(diphenylphosphino)ferrocene l , l'-双(二苯基磷)二茂铁dppp 1,3-bis(diphenylphosphino)propane 1,2-双(二苯基磷)丙烷DTBP di-t-butyl peroxide二叔丁基过氧化物EDA ethyl diazoacetate 重氮乙酸乙酯EDC l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐EDCI = EDCee enantiomeric excess对映体过量EE l-ethoxyethyl 乙氧基乙基Et ethyl 乙基ETSA ethyltrimethylsilylacetate (三甲基硅基)醋酸乙酯EWG electron withdrawing group 吸电基团Fc ferrocenyl 二茂铁基Fmoc 9-fluorenylmethoxycarbonyl 9-芴甲氧羰酰基fp ftash point 闪点Hex n-hexyl 正己基HMDS hexamethyldisilazane六甲基二硅胺烷HMPA hexamethylphosphoric triamide六甲基膦酸三酰胺HOBt 1-hydroxybenzotriazole 1-羟基苯并三唑HOBT =HOBtHOSu N-hydroxysuccinimide N-羟基琥珀酰亚胺Im imidazole (imidazolyl) 咪唑Ipc isopinocampheyl 异松蒎基IR infrared 红外KHDMS potassium hexamethyldisilazide 六甲基二硅胺钾LAH lithium aluminum hydride 氢化铝锂LD50 dose that is lethal to 50% of test subjects 致死量为受试者的50%LDA lithium diisopropylamide 二异丙基氨基锂LDMAN lithium1-(dimethylamino)naphthalenide ? 1-(二甲氨基)萘锂LHMDS(LiHMDS)lithium hexamethyldisilazide 六甲基叠氮乙硅锂, 六甲基二硅氨基锂LICA lithiuim isopropylcyclohexylamide 异丙基环己氨基锂LiTMP(LTMP) lithium2,2,6,6-tetramethylpiperidide 2,2,6,6-四甲基哌啶锂哌啶(氮杂环己烷)LTA lead tetraacetate 四乙酸铅lut 2,6-lutidine 二甲基吡啶MCPBA(m-CPBA) m-chloroperbenzoic acid 间氯过氧苯酸MA maleic anhydride 顺丁烯二酸酐MAD methyl aluminum bis(2,6-di-t-butyl-4-methylphenoxide) ?MAT methyl aluminum bis(2,4,6-tri-t-butylphenoxide) ?Me methyl 甲基MEK methyl ethyl ketone 甲基乙基酮MEM 2-methoxyethoxymethyl (2-甲氧基乙氧基)甲基-MIC methyl isocyanate 甲基异氰酸酯MMPP magnesium monoperoxyphthalate 单过氧邻苯二甲酸镁MOM methoxymethyl 甲氧甲基MoOPH oxodiperoxomolybdenum(pyridine)-(hexamethylphosphoric triamide)?mp melting point 熔点MPM methoxy(phenylthio)methyl 甲氧基(苯硫基)甲基,Ms methanesulfonyl (mesyl) 甲基磺酰基(保护羟基用)MS mass spectrometry 质谱MS Molecular sieves 分子筛MTEE (MTBE) methyl t-butyl ether 甲基叔丁基醚MTM methylthiomethyl 二甲硫醚MVK methyl vinyl ketone 甲基乙烯基酮n refractive index 折射率NaHDMS sodium hexamethyldisilazide 六甲基二硅胺钠Naph(Np) naphthyl 萘基NBA N-bromoacetamide N-溴乙酰胺NBD norbornadiene(bicyclo[2.2.1]hepta-2,5-diene) 二环庚二烯(别名:降冰片二烯)NBS N-bromosuccinimide N-溴代丁二酰亚胺(别名:N-溴代琥珀酰亚胺)NCS N-chlorosuccinimide N-氯代丁二酰亚胺. (别名:N-氯代琥珀酰亚胺)NIS N-iodosuccinimide N-碘代丁二酰亚胺(别名:N-碘代琥珀酰亚胺)NMO N-methylmorpholine N-oxide N-甲基氧化吗啉NMP N-methyl-2-pyrrolidone N-甲基-2-吡咯烷酮NMR nuclear magnetic resonance 核磁共振NORPHOS 5,6-bis(diphenylphosphino)-2-norbornene ?5,6-双(二苯基磷)-2-降冰片烯PCC pyridinium chlorochromate 吡啶氯铬酸盐PDC pyridinium dichromate 二氯吡啶酯Pent n-pentyl 正戊基Ph phenyl 苯基Phen 1,10-phenanthroline 1,10-菲罗啉Phth phthaloyl 邻苯二甲酰基Piv pivaloyl 新戊酰基PMB p-methoxybenzyl 对甲氧苄基;对甲氧苯甲基PMDTAPPA polyphosphoric acid 多聚磷酸PPE Polyphenylene Ether 聚苯醚PPTS pyridinium p-toluenesulfonate吡啶对甲苯磺酸Pr propyl丙基PTC phase-transfer catalysis (phase-transfer catalyst)相转移催化(相转移催化剂)PTSA(or TsOH) p-toluenesulfonic acid对甲苯磺酸Py (pyr) pyridine (or pyridyl)吡啶(或吡啶)PAMPrt room temperature 室温salen 双水杨酰胺乙基钴SAMP (S)-1-amino-2-(methoxymethyl)pyrrolidine(s)-1 -氨基- 2-(甲氧甲基)吡咯烷SET single electron transfer单电子转移Sia siamyl (s-isoamyl or 1,2-dimethylpropyl)TASF tris(diethylamino)sulfonium difluorotrimethylsilicateTBAB tetra-n-butylammonium bromide四丁基溴化铵TBAF tetra-n-butylammonium fluoride四丁基氟化TBADTBAI tetra-n-butylammonium iodide四丁基碘化TBAPTBDMS(TBS) t-butyldimethylsilyl二甲基硅烷TBDPS(BPS) t-butyldiphenylsilylTBHP t-butyl hydroperoxide叔丁基氢TBS t-butyldimethylsilyl二甲基硅烷TCNE tetracyanoethylene四氰基乙烯TCNQ 7,7,8,8-tetracyano-para-quinodimethaneTEA triethylamine三乙胺TEAB tetratehylammonium bromideTEBAC triethylbenzylammonium chloride三乙基氯化铵TEMPO 2,2,6,6-tetramethylpipedinyloxyTES triethylsilyl三乙基硅烷Tf trifluoromethanesulfonyl三氟甲基TFA trifluoroacetic acid三氟乙酸TFAA trifluoroacetic anhydride三氟乙酸酐THF tetrahydrofuran四氢呋喃THP 2-tetrahydropyranyl2 -吡喃ThxTIPS triisopropylsilylTMAO (TMANO) trimethylamine N-oxide三甲胺氮氧化物TMEDA N,N,N',N-tetramethyl- -hexaacetic acidTMG 1,1,3,3-tetramethylguanidineTMS tetramethylsilane四甲基Tol p-tolyl对甲苯TPAP tetra-n-propylammonium perruthenateTBHPTPP thiamine pyrophosphate5,10,15,20 -四苯基卟啉Tr triphenylmethyl (trityl)三苯(三苯甲基)Ts p-toluenesulfonyl (tosyl)对甲苯磺酰(磺酰)TTN thallium(III)-trinitrate硝酸铊(Ⅲ)UHP urea-hydrogen peroxide complex尿素过氧化氢复合Z benzyloxycarbonyl苄氧羰基。
四氧杂四烯衍生物荧光熄灭法测定微量草酸
( 益阳师范高等专科学校化学系, 阳 434) 益 109
摘 要: 基于草 酸对 荧光试 剂 2 2 77 1,2 1 ,7八 甲基 .12 ,3 2. ,, , ,2 1,7 1. 2 ,22 ,4四氧
杂 四烯镁( T E 的 荧 光熄 灭 , 立 了测 定微 量草 酸 的 荧 光分 祈 方 法。在 D MgO ) 建 H 40NA . A . a cH c缓 冲体 系中 , 定 的最 大激发 波 长和发 射 波长 分 别 为 25n 和 测 4 m
和酶 法 一 , 些方法或 灵敏度 低 、 等 这 或选择性 差 、 或
仪器操作繁琐、 分析费用高 动力学光度法_ 测 6 J 定草酸以其灵敏度高 , 设备简单等优点在草酸测定 方 面得 到 了应用 , 目前 很少有 直接 用荧 光法测 定 但 草酸含量 的报道。本文用呋哺与丙酮等物质为原 料合 成 了一 种荧 光试 剂 2 27 7 1,2 1,7八 , , ,,2 1 ,7 1. 甲基 .12 ,32. 2 ,22 ,4四氧杂 四烯 镁 ( gO )发 现 草 MTE ,
酸能有效 地熄 灭其荧光 , 定草 酸有较 高 的灵 敏 对测
浓盐酸充分搅拌混合并快速加入呋哺 , 室温下反应 约 6h 后加入少量的水 。混合液用苯萃取 3 , 次 浓 缩萃取液得粗品 , 品用乙醇重结晶 2 粗 次得灰色晶 体, 晶体真空干燥 2 , 得产物。其产率 3 .%, h 84 熔 点 23C~25 与文献值 [2 相符。其结 构如 4 ̄ 4 ̄ C, 1]
CB一) a " ( q
() 2
为便于数 据处 理, 引入相对荧光 响应值 a a ,
之 为游 离 的 M T E浓度 c( 与 总浓度 c O 。 比 : gO s ) B()
常用有机溶剂共沸点
常用有机溶剂共沸点乙醚的性质1. 乙醚为无色、透明、易流动的液体,挥发性极大,它的蒸气有芳香味,但有麻醉性。
沸点34.6℃、凝固点-116℃,所以能耐剧冷而不凝冻。
比重很轻,在15℃时为0.720。
微溶于水,能溶于乙醇、苯、氯仿等有机溶剂中。
常用有机溶剂共沸点溶剂沸点/℃共沸点/℃含水量/%氯仿61.2 56.1 2.5甲苯110.5 85.0 20四氯化碳77.0 66.0 4.0正丙醇97.2 87.7 28.8苯80.4 69.2 8.8异丁醇108.4 89.9 88.2丙稀腈78.0 70.0 13.0 二甲苯137-40.5 92.0 37.5 二氯乙烷83.7 72.0 19.5 正丁醇117.7 92.2 37.5乙睛82.0 76.0 16.0吡啶115.5 94.0 42乙醇78.3 78.1 4.4异戊醇131.0 95.1 49.6乙酸乙酯77.1 70.4 8.0正戊醇138.3 95.4 44.7异丙醇82.4 80.4 12.1氯乙醇129.0 97.8 59.0乙醚35 34 1.0二硫化碳46 44 2.0甲酸101 107 26溶剂mp bp D420 nD20Acetic acid 乙酸17 118 1.049 1.3716 6.15 12.9 1.68Acetone 丙酮-95 56 0.788 1.3587 20.7 16.2 2.85Acetonitrile 乙腈-44 82 0.782 1.3441 37.5 11.1 3.45Anisole 苯甲醚-3 154 0.994 1.5170 4.33 33 1.38Benzene 苯 5 80 0.879 1.5011 2.27 26.2 0.00 Bromobenzene 溴苯 -31 156 1.495 1.5580 5.17 33.7 1.55Carbon disulfide 二硫化碳-112 46 1.274 1.6295 2.6 21.3 0.00Carbon tetrachloride 四氯化碳 -23 77 1.594 1.4601 2.24 25.8 0.00 Chlorobenzene 氯苯-46 132 1.106 1.5248 5.62 31.2 1.54 Chloroform 氯仿-64 61 1.489 1.4458 4.81 21 1.15 Cyclohexane 环己烷6 81 0.778 1.4262 2.02 27.7 0.00 Dibutyl ether 丁醚-98 142 0.769 1.3992 3.1 40.8 1.18 o –Dichlorobenzene 邻二氯苯-17 181 1.306 1.5514 9.93 35.9 2.27 1,2-Dichloroethane 1,2-二氯乙烷-36 84 1.253 1.4448 10.36 21 1.86 Dichloromethane 二氯乙烷-95 40 1.326 1.4241 8.93 16 1.55 Diethylamine 二乙胺-50 56 0.707 1.3864 3.6 24.3 0.92 Diethyl ether 乙醚-117 35 0.713 1.3524 4.33 22.1 1.30 1,2-Dimethoxyethane 1,2-二甲氧基乙烷 -68 85 0.863 1.3796 7.2 24.1 1.71 N,N –Dimethylacetamide N,N-二甲基乙酰胺 -20 166 0.937 1.4384 37.8 24.2 3.72 N,N –DimethylformamideN,N-二甲基甲酰胺-60 152 0.945 1.4305 36.7 19.9 3.86 Dimethyl sulfoxide二甲基亚砜19 189 1.096 1.4783 46.7 20.1 3.90 1,4-Dioxane 1,4-二氧六环12 101 1.034 1.4224 2.25 21.6 0.45 Ethanol 乙醇-114 78 0.789 1.3614 24.5 12.8 1.69 Ethyl acetate 乙酸乙酯-84 77 0.901 1.3724 6.02 22.3 1.88 Ethyl benzoate 苯甲酸乙酯-35 213 1.050 1.5052 6.02 42.5 2.00 Formamide 甲酰胺3 211 1.133 1.4475 111.0 10.6 3.37 Hexamethylphosphoramide7 235 1.027 1.4588 30.0 47.7 5.54 Isopropyl alcohol 异丙醇-90 82 0.786 1.3772 17.9 17.5 1.66 isopropyl ether 异丙醚-60 68 1.36 Methanol 甲醇-98 65 0.791 1.3284 32.7 8.2 1.70 2-Methyl-2-propanol 2-甲基-2-丙醇 26 82 0.786 1.3877 10.9 22.2 1.66 Nitrobenzene 硝基苯6 211 1.204 1.5562 34.82 32.7 4.02 Nitromethane 硝基甲烷 -28 101 1.137 1.3817 35.87 12.5 3.54 Pyridine 吡啶-42 115 0.983 1.5102 12.4 24.1 2.37 tert-butyl alcohol 叔丁醇25.5 82.5 1.3878 Tetrahydrofuran 四氢呋喃-109 66 0.888 1.4072 7.58 19.9 1.75 Toluene 甲苯-95 111 0.867 1.4969 2.38 31.1 0.43 Trichloroethylene 三氯乙烯-86 87 1.465 1.4767 3.4 25.5 0.81 Triethylamine 三乙胺-115 90 0.726 1.4010 2.42 33.1 0.87 Trifluoroacetic acid 三氟乙酸-15 72 1.489 1.2850 8.55 13.7 2.26 2,2,2-Trifluoroethanol 2,2,2-三氟乙醇 -44 77 1.384 1.2910 8.55 12.4 2.52 Water 水0 100 0.998 1.3330 80.1 3.7 1.82 o -Xylene 邻二甲苯-25 144 0.880 1.5054 2.57 35.8 0.62Common Organic Solvents: Table of Properties 1,2,3acetic acidC 2H 4O 2 60.05 11816.6 1.049 Miscible6.1539acetone C 3H 6O 58.08 56.2 -94.3 0.786 Miscible 20.7(25) -18 acetonitrile C 2H 3N 41.05 81.6 -46 0.786 Miscible 37.5 61-butanol C4H10O 74.12 117.6 -89.5 0.81 6.3 17.8 352-butanol C 4H10O 74.12 98 -115 0.808 15 15.8(25) 262-butanone C4H8O 72.11 79.6 -86.3 0.805 25.6 18.5 -7t-butyl alcohol C4H10O 74.12 82.2 25.5 0.786 Miscible 12.5 11 carbon tetrachloride CCl4153.82 76.7 -22.4 1.594 0.08 2.24 --chlorobenzene C6H5Cl 112.56 131.7 -45.6 1.1066 0.05 2.71 29 chloroform CHCl3119.38 61.7 -63.7 1.498 0.795 4.81 --cyclohexane C6H1284.16 80.7 6.6 0.779 <0.1 2.02 -201,2-dichloroethane C2H4 Cl298.96 83.5 -35.3 1.245 0.861 10.42 13 diethyl ether C4H10O 74.12 34.6 -116.3 0.713 7.5 4.34 -45 diethylene glycol C4H10O3106.12 245 -10 1.118 10 31.7 143diglyme (diethyleneglycoldimethyl ether) C6H14O3134.17 162 -68 0.943 Miscible 7.23 67 1,2-dimethoxy- ethane (glyme, DME) C4H10O2 90.12 85 -58 0.868 Miscible 7.2 -6dimethylether C2H6O 46.07 -22 -138.5 NA NA NA -41dimethyl- formamide (DMF) C3H7NO 73.09 153 -61 0.944 Miscible 36.7 58 dimethyl sulfoxide (DMSO) C2H6OS 78.13 189 18.4 1.092 25.3 47 95dioxane C4H8O288.11 101.1 11.8 1.033 Miscible 2.21(25) 12 ethanol C2H6O 46.07 78.5 -114.1 0.789 Miscible 24.6 13 ethyl acetate C4H8O 288.11 77 -83.6 0.895 8.7 6(25) -4ethylene glycol C2H6O262.07 195 -13 1.115 Miscible 37.7 111 glycerin C3H8O392.09 290 17.8 1.261 Miscible 42.5 160heptane C7H16100.20 98 -90.6 0.684 0.01 1.92 -4Hexamethylphosphoramide (HMPA) C6H18N3OP 179.20 232.5 7.2 1.03 Miscible 31.3 105 Hexamethylphosphorous C6H18 N3P 163.20 150 -44 0.898 Miscible ?? 26triamide (HMPT) hexane C 6H 14 86.18 69 -95 0.659 0.014 1.89 -22methanol CH 4O 32.04 64.6 -980.791 Miscible 32.6(25) 12methyl t-butyl ether (MTBE) C 5H 12O 88.15 55.2-109 0.7415.1 ?? -28 methylene chlorideCH 2Cl 2 84.93 39.8 -96.7 1.326 1.32 9.08 1.6 N -methyl-2-pyrrolidinone (NMP) CH 5H 9NO 99.13 202 -24 1.033 10 32 91 nitromethane CH 3NO 2 61.04 101.2 -291.3829.50 35.9 35 pentane C 5H 12 72.15 36.1 -129.7 0.626 0.04 1.84 -49 Petroleum ether(ligroine) ----30-60 -400.656-----301-propanol C 3H 8O 88.15 97-126 0.803 Miscible 20.1(25) 152-propanol C 3H 8O 88.15 82.4 -88.5 0.785 Miscible 18.3(25) 12 pyridineC 5H 5N 79.10 115.2 -41.6 0.982 Miscible 12.3(25) 17 tetrahydrofuran (THF) C 4H 8O 72.11 66-108.4 0.886 30 7.6 -21 toluene C 7H 892.14 110.6 -930.8670.05 2.38(25) 4 triethyl amine C 6H 15N 101.19 88.9 -114.7 0.728 0.02 2.4 -11 water H 2O 18.02 100.00 0.00 0.998 --78.54 -- water, heavyD 2O20.03 101.341.107 Miscible?? -- o -xylene C 8H 10 106.17 144 -25.2 0.897 Insoluble2.57 32 m -xylene C 8H 10 106.17 139.1 -47.8 0.868 Insoluble 2.37 27 p -xyleneC 8H 10 106.17 138.4 13.3 0.861 Insoluble2.2727。
分光光度法测定皮革中六价铬的含量
六价铬或者短暂的时间内吸入大含量的六价铬,均可能会导致人体器官癌变的危险。
2 分光光度法的相关特点分光光度法是广泛应用在分析和测定实验试样中某些微量金属元素组分的化学含量。
所以与传统的化学含量分析方法技术相比,它还有一些不同于其他传统的化学含量分析方法的主要优势。
(1)光度测定技术灵敏性高。
光度计常被广泛应用在定量检测和计算化学物质过程中的微量金属成分。
若是被纳入到测量中的各组数据都经过预先计算和收集,其灵敏性能够达到一个更高的级别。
(2)测定精度的准确度高。
一般化学分析采用光分析光度法精确测定的绝对误差一般在2%~5%,虽然它们比一般采用化学分析光度法的绝对误差很有可能更大(2‰以内),但由于这种光度法多数都是专门使用来精确地测定各种微量物质的组分,故由此误差导致引出的绝对误差很有可能并不大,完全可能够充分满足微量物质的测定和化学检验标准规范中所需的测定。
若使用精密度和性能较高的分子激光计和光度指数计来进行测量,相对误差也有可能较低[1]。
(3)软件操作简单快捷。
分光光度法所用的各种仪器都不复杂,操作方便。
先把有色试样经热处理转化成无色溶液,一般只需要经历溶液显色和直接测量试样分析透光度两个主要步骤,就已经可以测得出试样分析后的结果。
(4)广泛应用于痕量分析的各个领域。
几乎所有的无机阳离子和许多其他的有机化合物都是通过可以直接或者间接地使用有机分子发光方法和发射光度方法来进行检测。
分光光度法可以被用来专门研究一些化学反应的主要机理,例如:用来0 引言随着人们健康安全意识的提高,对皮革及其制品的安全越来越关心。
皮革及其制品中可能含有少量的六价铬。
六价铬对人体健康危害比较大,其化合物在体内具有致癌作用,甚至会直接引起许多的其他健康危害事件。
例如:直接吸收一些比较高浓度的铬和六价铬金属化合物有可能导致流鼻涕、打喷嚏、瘙痒、鼻出血、溃疡等,严重时导致鼻中隔气管穿孔。
短时间内如果进行小剂量的接触,会与人体其他部位相互作用,对人体健康产生一系列的不良反应,包括发生口腔溃疡等症状。
基于二氰基异佛尔酮的荧光探针在检测苯硫酚中的应用
关键词:异佛尔酮;苯硫酚;荧光增强;生物成像
中图分类号:TQ617.3
文献标识码:A
文章编号:1001‑4861(2021)07‑1245‑06
DOI:10.11862/CJIFra bibliotek.2021.161
Application of Fluorescent Probe Based on Dicyanoisophorone in Detection of Thiophenol
Abstract: To develop a method with high selectivity and sensitivity to detect thiophenol, based on the excellent opti‑ cal properties and good membrane permeability of dicyanoisophorone dyes, we chose dicyanoisophorone derivatives as fluorophores and introduced a strong electron‑withdrawing 2,4‑dinitrobenzene synthetic fluorescent probe (YC1) for the specific recognition of thiophenol. The probe showed obvious red fluorescence on thiophenol (emission wave‑ length: 594 nm, excitation wavelength: 420 nm) and had a fluorescence‑enhanced (turn‑on) property for the recogni‑ tion of thiophenol. The probe had a good selectivity for the recognition of thiophenol and the detection limit of the probe was 0.65 μmol·L-1 in PBS/DMSO system (PBS=phosphate buffer saline, DMSO=dimethyl sulfoxide). In addi‑ tion, the probe has been successfully applied to the fluorescence imaging of 4‑methylthiophenol in HeLa cells.
氧化锌-氧化铜纳米复合物可见光诱导光催化降解2,4-二氯酚性能(英文)
氧化锌-氧化铜纳米复合物可见光诱导光催化降解2,4-二氯酚性能(英文)E.D.Sherly;J.Judith Vijaya;L.John Kennedy【期刊名称】《催化学报》【年(卷),期】2015(36)8【摘要】Nanostructured ZnO and CuO, and coupled oxides, i.e., ZnCu, Zn2Cu, and ZnCu2, with ZnO:CuO molar ratios of 1:1, 2:1, and 1:2, respectively, were successfully prepared through a simple, one-step, microwave-assisted urea–nitrate combustion synthesis, without the use of organic solvents or surfactants. The prepared samples were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, Fourier-transform infrared spectroscopy, diffuse reflectance spectroscopy, and photoluminescence spectroscopy. The optical absorption of Zn O extended into the visible region after CuO loading. The photocatalytic activities of ZnO, CuO, and the coupled oxides were evaluated based on photodegradation of 2,4-dichlorophenol under visible-light irradiation. The coupled metal oxide Zn2Cu showed the best photocatalytic activity; this was mainly attributed to the extended photoresponsive range and the increased charge separation rate in the nanocomposite. The photocatalytic degradation process obeyed pseudo-first-order kinetics. The results suggest that the coupled metal oxideZn2Cu has potential applications as an efficient catalytic material with high efficiency and recyclability for the photocatalytic degradation of organic pollutants in aqueous solution under visible-light irradiation.【总页数】10页(P1263-1272)【关键词】光催化降解效率;纳米复合材料;光催化性能;对氯酚;光诱导;X-射线光电子能谱;傅里叶变换红外光谱;纳米ZnO【作者】E.D.Sherly;J.Judith Vijaya;L.John Kennedy【作者单位】Catalysis and Nanomaterials Research Laboratory,Department of Chemistry,Loyola College;Materials Division,School of Advanced Sciences,Vellore Institute of Technology (VIT) University,Chennai Campus 【正文语种】中文【中图分类】O643.36;TQ134.11【相关文献】1.Cu2O/TiO2复合光催化材料的合成及其对2,4-二氯酚降解性能的研究 [J], 王贞;华宁;范晓芸2.氮掺杂Bi2O3光催化剂可见光催化降解2,4-二氯酚 [J], 卢远刚;杨迎春;刘盛余;叶芝祥3.极性光催化剂Na3 VO2 B6 O11在不同因素影响下对2,4-二氯酚降解性能的研究 [J], 张杨; 范晓芸; 翟羽飞; 粟智; 殷娇4.纳米TiO_2薄膜光催化降解2,4-二氯酚的动力学研究 [J], 孙振世;杨晔;陈英旭;朱松5.高活性多壁碳纳米管/TiO_2纳米复合物光催化剂光催化降解活性黑5染料(英文)[J], Sharifah Bee Abd Hamid;Tong Ling Tan;Chin Wei Lai;Emy Marlina Samsudin因版权原因,仅展示原文概要,查看原文内容请购买。
环氧基双酚芴
■聚合物添加剂
环氧基双酚芴
化学成分
化学名称9,9-二[(2,3-环氧丙氧基)苯基]芴
CAS 47758-37-2
分子式C31H28O4
化学结构
规格指标及物理特性
规格单位标准
外观白色结晶或白色粉状物
分子量g/mol 464.43
熔点℃150.00-152.00
液相纯度% ≥97.00
色度Hazen ≤20
主要用途
●环氧基双酚芴作为一种重要的含有多苯环芴结构的热固性环氧树脂,可以降低树脂固化后的交联密度,而苯环数目的增加即可提高分子链的刚性,使树脂的玻璃化转变温度提高,又可使分子的非极性增加,降低了树脂的吸水性,因而这种树脂的耐湿热性能得到很大提高,被广泛用于复合材料基体,绝缘材料、胶黏剂和光学涂膜材料等领域。
1 / 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hexaferrite–FeCo nanocomposite particles and their electrical and magnetic properties at high frequenciesC.Sudakar,G.N.Subbanna,a)and T.R.N.Kutty b)Materials Research Centre,Indian Institute of Science,Bangalore560012,India͑Received28April2003;accepted8August2003͒Nanocomposites are realized by chemical reduction whereby the conducting magnetic particles ofFe–Co alloy are generated within the insulating ferrimagnetic BaCo2Fe16O27or Ba2Co2Fe12O22hexaferrite matrix.Transmission electron microscopy revealed that metal nanoparticles precipitatecoherently as thinflakes along the a–b planes of the derivative magnetoplumbite lattice of thehexaferrites above the characteristic reduction temperature,T RϾ375°C in H2atmosphere.The coercivity increases with T R in the early stages of the solid-state precipitation and then decreaseswith the formation of larger fractions of Fe–Co alloy;a converse trend is noticed for magnetization.The complex permittivity increases with reduction toϳ50in the broad frequency range of4–18GHz.The complex permeability is also enhanced with the content of Fe–Co nanoparticles.It isproposed that the spin reorientation at the Fe–Co/hexaferrite interface gives rise to broadbandresponse,rendering these composite particles useful as electromagnetic microwave absorbers.©2003American Institute of Physics.͓DOI:10.1063/1.1614848͔I.INTRODUCTIONComposites,where the magnetic particles are usually embedded in either insulating or conducting matrix,are often employed in high speed electronic circuits to reduce the elec-tromagnetic interference͑EMI͒,decrease the noise level of signals and ensure the electromagnetic compatibility.1EM radiation shields,either reflection or absorption based,need be thin and lightweight,responsive to broader frequency range and nearly independent of the incident angle.As far as the thickness and working frequency bandwidth are con-cerned,the magnetic composites have definitive advantages over their dielectric analogues.The most commonly used fillers are spinel ferrites or hexaferrites.The latter with pla-nar magnetic anisotropy are of great interest for use as elec-tromagnetic energy dissipation materials in microwave fre-quency range.2BaCo2Fe16O27(WCo2)and Ba2Co2Fe12O22 (YCo2)hexaferrites are soft magnetic materials with planar anisotropy;they have relatively high resonance frequency and high permeability.However for broadband operation, magnetic nanocomposites are desirable.Nanosize iron par-ticles dispersed in an oxide matrix by reaction milling have been studied.3However composite materials with conducting magnetic particles generated in situ by chemical reactions within the ferrimagnetic hexaferrite insulating matrix are scarcely known.II.EXPERIMENTIn this article we report the structural,magnetic,and microwave absorption properties at very high frequencies ͑4–18GHz͒of the hexaferrite–FeCo alloy nanocomposites obtained by controlled chemical reduction of hexa-ferrite,WCo2,and YCo2.WCo2and YCo2hexaferrites with oriented grains were prepared by heat-treating atϳ1250°C the precursors obtained by the wet chemical gel-to-crystallite conversion.4Hexaferrite particles on controlled reduction in flowing hydrogen at350–450°C causes in situ precipitation of FeCo alloy͑iron rich͒nanoparticles within the hexaferrite matrix.Sample identifications used in the subsequent sec-tions have been denoted with the type of hexaferrite followed by the heat-treatment condition in H2.Thus,for example, WCo2–R400represents WCo2hexaferrite reduced at 400°C.Phase identification of the powders was investigated by x-ray diffraction͑XRD͒using a Philips PW1050diffrac-tometer equipped with Cu K␣radiation.Metal content in the composite is evaluated by wet chemical analyses5as well by comparing the relative intensity of x-ray reflections of hexa-ferrite and iron from standard mixtures.Further,the compo-sitional variations are evaluated by x-ray photoelectron spec-tra͑XPS͒of the samples with a VG ESCA3MK II instrument using Al K␣x rays.Transmission electron mi-croscopy observations were performed on the nanocompos-ites for morphological and lattice imaging studies,with a JEOL,JEM200CX microscope.Magnetization measure-ments were carried out betweenϪ9andϩ9kOe at room temperature,by means of a vibrating sample magnetometer ͑VSM͒͑Lakeshore7300͒.Complex permittivities(Ј–jЉ) and complex permeabilities(Ј–jЉ)were calculated from the measured reflection coefficients using the vector network analyzer͑Agilent8722ES͒in the frequency range of4–18 GHz,wherein the samples are loaded in coaxial cells.III.RESULTS AND DISCUSSIONFigure1shows the XRD patterns of WCo2and YCo2 hexaferrites heat treated at1250°C.The relative intensities of WCo2x-ray reflections show oriented grain growth along certain crystallographic planes,predominantly(00l)reflec-a͒Deceased on16th July2003.b͒Author to whom correspondence should be addressed;electronic mail:kutty@mrc.iisc.ernet.inJOURNAL OF APPLIED PHYSICS VOLUME94,NUMBER91NOVEMBER200360300021-8979/2003/94(9)/6030/4/$20.00©2003American Institute of Physicstions and (hkl )with larger l (Ͼh ϩk )as strong peaks,indi-cating that the particles are grown as platelets with the c axis nearly perpendicular to the plane of observation.The average grain size of the particles from scanning electron microscopy is ϳ20m.The XRD patterns of YCo 2also show narrow linewidths indicative of high crystallinity.On reducing these crystallites chemically at 350–450°C in hydrogen atmo-sphere,reflections of Fe–Co alloy ͑bcc ͒show up in the XRD patterns along with those of hexaferrite.However,reflections of the latter become line broadened and the intensities de-crease drastically with the extent of reduction.At T R у450°C,the intensities of Fe–Co reflections increase.The characteristic temperature at which discernible reduction takes place,as observed from XRD and chemical analyses,differs for WCo 2and YCo 2.WCo 2has ϳ5%FeCo forma-tion at T R Х400°C (WCo 2–R400)for 1h,whereas YCo 2has the same percent of reduction at T R ϳ425°C (YCo 2–R425).Above these temperatures,the percentage of Fe–Co increases exponentially.The estimated ͑Fe–Co ͒con-tent for samples heat treated at different temperatures in hy-drogen atmosphere is given in Table I.The atomic ratio of Fe and Co estimated from XPS analyses in the reduced samples of WCo 2is in the range of 6–8,whereas in YCo 2it is around 4–6.Figure 2͑a ͒shows the high resolution electron micro-scope image of the oriented hexaferrite particles (WCo 2)reduced at 425°C.Uniform lattice fringes are discernible with regular coherent growth of the basic structural blocks in WCo 2,which are disturbed with the extent of chemical re-duction.Just near the characteristic reaction temperature,T R ϳ400°C,the lattice images reveal embedded metal par-ticles coherently growing along the a –b planes.The metallic region expands with higher T R ͑у425°C ͒.The lattice gets distorted as can be deciphered from the wrinkling of the lattice fringes due to stacking faults.This leads to further disintegration of the monocrystalline particles at T R у450°C to composite multicrystallites of separate phases ͑Fe–Co alloy,BaO,and BaFe 2O 4).Interestingly,the reduced regions grow perpendicular to the c axis ͑along a –b plane ͒of hexagonal magnetoplumbite structure.The high resolution image of a particle taken with the beam along the c axis reveals the internal structure of hexaferrite platelet with the embedded metal particle as thin nanoflakes ͓Fig.2͑b ͔͒.The particles are well separated at T R р425°C.The selectedareaFIG.1.XRD patterns of hexaferrites (WCo 2and YCo 2)before and afterreduction.FIG.2.High resolution electron micrographs of the WCo 2–R425nanocom-posite with beam direction along ͑a ͓͒110͔and ͑b ͓͒001͔.Corresponding SAED patterns are shown in the insets.TABLE I.Estimated %of FeCo at different T R and magnetic properties of WCo 2and YCo 2hexaferrites.SampleIdentification T R ͑°C ͒%of FeCo ͑Fe/Co from XPS analyses ͒M S͑emu/g ͒H C ͑Oe ͒WCo 2–R375375-----69.7200WCo 2–R400400 4.962247WCo 2–R42542512.6͑7.5͒53496WCo 2–R45045017.8͑7.1͒50.5581WCo 2–R50050035͑6.5͒69645WCo 2–R70070075͑6.6͒169.752YCo 2–R400400-----35205YCo 2–R425425 5.232.4275YCo 2–R45045014͑5.2͒30.8437YCo 2–R50050025͑4.6͒38.6694YCo 2–R70070054͑4.6͒122.672electron diffraction ͑SAED ͒of such composites show very feeble reflections from the embedded metal nanoparticles.Similar observations were made with Y–Co 2hexaferrite as well.However,the metal particles grow and coalesce,fol-lowed by the disintegration of the matrix at higher T R .The particles with composite characteristics,namely the hexaferrite matrix still remaining intact with minimum de-fects and the coherent flaky metallic phase ͑FeCo alloy ͒pre-cipitated in situ ,give rise to modified magnetic properties as well as microwave absorption in contrast to the correspond-ing bulk phases.The variation of magnetization as a function of applied magnetic field for differently reduced samples is shown in Fig.3.For W–Co 2hexaferrite,the as-prepared particles have specific magnetization,M S ϭ69.7emu/g and coercivity,H C ϭ190Oe,whereas samples reduced at 400°C in H 2have M S Ϸ62emu/g and H C Ϸ250Oe.For WCo 2–R425M S decreases further to ϳ53emu/g,whereas H C increases to ϳ500Oe.The decrease in M S can be un-derstood from the formation of defective hexaferrite matrix with nanocrystalline Fe–Co particles.On the other hand,the coercivity of the particles increased due to the pinning of the domains by the presence of defects.Thus,the composites exhibit combination dependent magnetic property rather than contributions from the individual components.For samples reduced at 500°C,M S increases to 69emu/g with H C further increasing to 645Oe.The increase in M S results from the larger amounts of coarser Fe–Co alloy formation.The in-creasing trend of coercivity indicates that the defects still play a role in pinning down the domain reversals in the fer-rimagnetic components.The trend of changes in M S and H C with the T R is shown clearly in the inset of Fig.3.For deeply reduced samples ͑at ϳ700°C ͒the magnetization increasesenormously ͑ϳ169emu/g ͒,indicating ϳ75%͑by weight ͒constitute the metallic FeCo particle.Y–Co 2hexaferrites re-duced in H 2display nearly similar changes ͑Fig.3͒.The magnetic properties of reduced samples of YCo 2hexaferrites are listed in Table I.The as-prepared samples of Y–Co 2have M S ϭ35emu/g and H C ϭ205Oe.The coercivity initially in-creases with the T R ͑Ͻ500°C ͒and then decreases with the precipitation of more Fe–Co in the composite.Magnetiza-tion decreases when T R р450°C,with a reversing trend when the samples are reduced at higher temperatures.The complex dielectric as well as magnetic properties of the ferrite powders are measured in the region of 4–18GHz.The dielectric properties of the samples do not show signifi-cant changes in comparison to the bulk at these frequency ranges ͓Figs.4͑a ͒and 4͑b ͔͒.However,the properties differ for the hexaferrites after reduction.The as-prepared powders have real part of complex permittivity (Ј)around 7–8and the imaginary parts (Љ)of 0.1–0.3for WCo 2and YCo 2.The Јincreases with the extent of reduction.For WCo 2–R400,Јincreases to ϳ12and further to ϳ50for WCo 2–R425.Јdecreases with increasing frequency for WCo 2–R425and YCo 2–R425.The imaginary part of per-mittivity (Љ)also shows an increase to ϳ30for these samples.For the as-prepared samples,the dielectric loss tan-gent (tan ␦ϭЉ/Ј)is very small with near zero values,whereas,tan ␦is high for reduced samples.The real (Ј)and imaginary (Љ)parts of relative complex permeability are shown in Figs.4͑c ͒and 4͑d ͒,wherein Јdecreases with frequency in all samples owing to the broadening of ferri-magnetic resonance.The magnetic resonance behavior is bet-ter discernible in oriented WCo 2and YCo 2grains.The natu-ral resonance frequency due to spin rotation is around 12–13GHz for WCo 2and ϳ18GHz for YCo 2,corresponding to the maximum observed in Љfrequency curves.These samples have larger values of magnetic loss tangent (tan ␦ϭЉ/Ј)in the vicinity of the resonance frequency,whereas for unoriented crystals,Љis low ͑ϳ0.3͒with shallow mag-netic loss and the resonance is discernible around 8–10GHz.The magnetic loss spectra have similar changes with Љand have the highest absorption loss just above the resonance frequency,where the loss tangent is maximum.Themaxi-FIG.3.M S –H curves of WCo 2and YCo 2samples reduced at different T R .Inset shows the variation of M S and H C with T R for reduced WCo 2hexa-ferrites.FIG.4.Frequency dependence of ͑a ͒Јand Љ,͑b ͒tan ␦(Љ/Ј),͑c ͒Јand Љ,and ͑d ͒tan ␦(Љ/Ј)of WCo 2and YCo 2before and after reduction.mum magnetic loss is observed for oriented W–Co2hexafer-rite atϳ15GHz.For reduced samples,permeability in-creases slightly with the reduction temperature.The largerpermeability in the high frequency region for the compositeparticles in which theflaky thin metal nanoparticles are ori-ented in the a–b planes of the hexagonal platelets,resultsfrom the anisotropic morphology of the constituent particles.Thus,the hexaferrite metal nanoparticle composites showconsiderably smaller reluctance in the oriented directionsthan the unoriented particle system.The high permeability ofthe magnetic composite over a broad range of frequency ͑4–18GHz͒makes it possible to produce thinner electro-magnetic wave absorbers.The magnetic structure at themetal/hexaferrite interface in the composite,with magnetiza-tion direction dictated by the combined anisotropyfields ofthe ferrimagnetic components,can lead to its own character-istic relaxation processes due to complex spin reorientationat high frequencies.Thus the magnetic loss spectra showbroad absorption from4to18GHz.IV.CONCLUSIONIn conclusion,composites of hexaferrites containing Fe–Co alloy͑iron rich͒nanoparticles precipitated in situ are good candidates for wide bandwidth electromagnetic micro-wave absorption in broad frequency ranges.Such nanocom-posites are easier to prepare when compared to iron particle dispersed in oxide matrix by mechanochemical milling. ACKNOWLEDGMENTThe Board for Smart Materials Research and Technology of NPSM,Government of India,is thanked for the research funding.1S.-H.Yu and M.Yoshimura,Adv.Funct.Mater.12,9͑2002͒.2T.Inui,K.Konishi,and K.Oda,IEEE Trans.Magn.35,3148͑1999͒.3M.Pardavi-Horvath,J.Magn.Magn.Mater.215–216,171͑2000͒.4C.Sudakar,G.N.Subbanna,and T.R.N.Kutty,J.Magn.Magn.Mater. 263,253͑2003͒.5A.I.V ogel,Textbook of Quantitative Chemical Analysis,5th ed.͑Long-man,Singapore,1991͒,p.376.。