【数学】山西省2019-2020学年高二下学期6月联合考试(文)

合集下载

精品解析:山西省实验中学2019-2020学年九年级上学期10月月考数学试题(解析版)

精品解析:山西省实验中学2019-2020学年九年级上学期10月月考数学试题(解析版)

山西省实验中学2019-2020学年第一学期九年级第一次阶段性测评九年级数学一、选择题(共10小题,满分20分,每小题2分)1.下列方程是一元二次方程的是( )A. x 2+2y =1B. x 3﹣2x =3C. x 2+21x =5D. x 2=0 【答案】D【解析】【分析】根据一元二次方程的定义解答.一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、x 2+2y =1是二元二次方程,故A 错误;B 、x 3﹣2x =3是一元三次方程,故B 错误;C 、x 2+21x =5是分式方程,故C 错误; D 、x 2=0是一元二次方程,故D 正确;故选:D .【点睛】本题考查了一 元二次方程的定义,掌握其定义 是解题的关键.2.把一元二次方程x (x +1)=3x +2化为一般形式,正确的是( )A. x 2+4x +3=0B. x 2﹣2x +2=0C. x 2﹣3x ﹣1=0D. x 2﹣2x ﹣2=0【答案】D【解析】【分析】方程移项变形即可得到结果.【详解】一元二次方程的一般形式为20ax bx c ++=x(x+1)=3x+2x2+x﹣3x﹣2=0,x2﹣2x﹣2=0故选:D.【点睛】本题考查一元二次方程的一般形式,难度较小.3.下列说法中不正确的是()A. 四边相等的四边形是菱形B. 对角线垂直的平行四边形是菱形C. 菱形的对角线互相垂直且相等D. 菱形的邻边相等【答案】C【解析】【分析】根据菱形的判定与性质即可得出结论.【详解】解:A.四边相等的四边形是菱形;正确;B.对角线垂直的平行四边形是菱形;正确;C.菱形的对角线互相垂直且相等;不正确;D.菱形的邻边相等;正确;故选:C.【点睛】本题考查了菱形判定与性质以及平行四边形的性质;熟记菱形的性质和判定方法是解题的关键.4.一元二次方程2x2+x﹣3=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 无法确定【答案】B【解析】试题分析:在方程2x 2+x ﹣3=0中,△=12﹣4×2×(﹣3)=25>0,∴该方程有两个不相等的实数根.故选B .考点:根的判别式5.如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x 米,则下列方程正确的为( )A. ()58200x x -=B. ()29200x x -=C. ()292200x x -=D. ()582200x x -=【答案】D【解析】【分析】 根据题意用含x 的代数式表示出饲养室的宽,由矩形的面积=长×宽列式.【详解】解:∵垂直于墙的边长为xm ,∴平行于墙的一边为(58-2x )m .根据题意得:x (58-2x )=200,故选:D .【点睛】利用矩形的性质,正确理解题意,然后根据题意列出方程即可解决问题.6.下列说法中,正确的有( )个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形。

2019-2020学年山西省晋中市榆社中学高二下学期期中考试理科数学试卷Word版含答案

2019-2020学年山西省晋中市榆社中学高二下学期期中考试理科数学试卷Word版含答案

2019-2020学年山西省晋中市榆社中学下学期期中考试高二理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R =,集合{}26A x N x x =∈<,{}38B x N x =∈<<,则下图阴影部分表示的集合是( )A.{}1,2,3,4,5B.{}3,4C.{}1,2,3D.{}4,5,6,72.复数()()141i i z i--=+的共轭复数的虚部为( )A.4i -B.4-C.4iD.43.现有这么一列数:2,32,54,78,( ),1332,1764,…,按照规律,( )中的数应为 A.916B.1116C.12D.11184.已知球O 的半径为R ,体积为V ,则“10R >”是“36V π>”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件5.执行如图所示的程序框图,则输出的x 等于( )A.2B.4C.8D.166.若双曲线22:14x C y -=的左、右焦点分别为1F 、2F ,P 为双曲线C 上一点,满足120PF PF ⋅=u u u r u u u u r 的点P 依次记为1P 、2P 、3P 、4P ,则四边形1234PP P P 的面积为( ) A.855B.25C.865D.267.7522x ⎛⎫- ⎪⎝⎭的展开式中系数为有理数的各项系数之和为( )A.156-B.128-C.28-D.1288.一桥拱的形状为抛物线,该抛物线拱的高为h ,宽为b ,此抛物线拱的面积为S ,若3b h =,则S 等于( )A.2hB.22hC.232hD.274h 9.现有3个命题:1p :函数()lg 2f x x x =--有2个零点.2p :面值为3分和5分的邮票可支付任何()7,n n x N >∈分的邮资.3p :若2a b c d +=+=,4ac bd +>,则a 、b 、c 、d 中至少有1个为负数. 那么,这3个命题中,真命题的个数是( ) A.0B.1C.2D.310.设n S 为正项数列{}n a 的前n 项和,23a =,()11242n n n n S S n S nS +++-=,则25a 等于( ) A.2332⨯B.2432⨯C.232D.24211.某高校大一新生中的6名同学打算参加学校组织的“雅荷文学社”、“青春风街舞社”、“羽乒协会”、“演讲团”、“吉他协会”五个社团,若每名同学必须参加且只能参加1个社团且每个社团至多两人参加,则这6个人中至多有1人参加“演讲团”的不同参加方法数为( ) A.4680B.4770C.5040D.520012.对任意的正数x ,都存在两个不同的正数y ,使()22ln ln 0x y x ay --=成立,则实数a 的取值范围为( ) A.10,2e ⎛⎫ ⎪⎝⎭B.1,2e ⎛⎫-∞ ⎪⎝⎭C.1,2e ⎛⎫+∞ ⎪⎝⎭D.1,12e ⎛⎫⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若复数32iz i-=-,则z = . 14.若9个人任意排成一排,则甲排中间,且乙与丙相邻的概率为 . 15.已知[]x 表示不大于x 的最大整数,设函数()221log 9x f x ⎡⎤+=⎢⎥⎣⎦,得到下列结论:结论1:当23x <<时,()max 1f x =-. 结论2:当45x <<时,()max 1f x =. 结论3:当67x <<时,()max 3f x =. ……照此规律,结论6为 .16.已知抛物线()220y px p =>的焦点为F ,过抛物线上点()02,P y 的切线为l ,过点P 作平行于x 轴的直线m ,过F 作平行于l 的直线交m 于M ,若5PM =,则p 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1)求512x ⎛⎫- ⎪⎝⎭的展开式中3x 的系数及展开式中各项系数之和;(2)从0,2,3,4,5,6这6个数字中任取4个组成一个无重复数字的四位数,求满足条件的四位数的个数.18.在ABC △中,a 、b 、c 分别为内角A 、B 、C 的对边,()sin 3sin b A b c B =-. (1)若2sin 3sin A B =,且ABC △的周长为8,求c ; (2)若ABC △为等腰三角形,求cos 2B .19.已知()2,0A ,直线4310x y ++=被圆()()()22:3133C x y m m ++-=<所截得的弦长为,且P 为圆C 上任意一点.(1)求PA 的最大值与最小值;(2)圆C 与坐标轴相交于三点,求以这三个点为顶点的三角形的内切圆的半径.20.如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,12AA =,AC BC ⊥,D 是线段AB 上一点.(1)确定D 的位置,使得平面1B CD ⊥平面11ABB A ;(2)若1AC ∥平面1B CD ,设二面角1D CB B --的大小为θ,求证:3πθ<. 21.已知椭圆()2222:10x y C a b a b +=>>的短轴长为2,且函数26516y x =-的图象与椭圆C 仅有两个公共点,过原点的直线l 与椭圆C 交于M ,N 两点. (1)求椭圆C 的标准方程;(2)点P 为线段MN 的中垂线与椭圆C 的一个公共点,求PMN △面积的最小值,并求此时直线l 的方程. 22.已知函数()1,x f x e ax a R -=+∈. (1)讨论函数()f x 的单调区间;(2)若[)1,x ∀∈+∞,()ln 1f x x a +≥+恒成立,求a 的取值范围.2019-2020学年山西省晋中市榆社中学下学期期中考试高二理科数学试卷参考答案一、选择题1-5:CDBAC 6-10:CABDA 11-12:CA二、填空题14.14215.当1213x <<时,()max 9f x =根据规律,可以归纳得出结论:n :当221n x n <<+时,()max 23f x n =-. 16.6三、解答题17.解:(1)∵()51512rrr r T C x -+⎛⎫=- ⎪⎝⎭,∴展开式中3x 的系数为2351522C ⎛⎫-=- ⎪⎝⎭.令1x =,得各项系数之和为511232⎛⎫-=- ⎪⎝⎭.(2)若不选0,则有45120A =个;若选0,则有1335180C A =个. 故能组成120180300+=个不同的四位数.18.解:(1)由()sin 3sin b A b c B =-,得()3ab b c b =-, ∴3a b c =-,即3a c b +=,∵2sin 3sin A B =,∴23a b =,又3a c b +=,∴48a b c b ++==,∴2b =,∴3a =,3c =. (2)若a b =,则2c b =,∴a b c +=,与三角形两边之和大于第三边矛盾,故a b ≠. 同理可知,c b ≠.故只能是a c =,∵3a c b +=,∴23b a =,∴2222222273cos 229a a a cb B ac a ⎛⎫- ⎪+-⎝⎭===, ∴217cos 22cos 181B B =-=.19.解:(1)∵直线4310x y ++=被圆()()()22:3133C x y m m ++-=<所截得的弦长为, ∴()3,C m -到直线4310x y ++=的距离为123115m -++==,解得2m =或163m =,又3m <,∴2m =.∴29AC =,∴min 2913PA =-,max 2913PA =+.(2)由(1)知圆C 的方程为()()223213x y ++-=, 令0x =,得0y =或4y =;令0y =,得0x =,或6x =-. ∴这三个点的坐标为()0,4M ,()0,0O ,()6,0N -. 易知,MON △为直角三角形,且斜边213MN =, 则MON △内切圆的半径为462135132+-=-.20.解:(1)当CD AB ⊥时,∵AC BC ⊥,∴由射影定理得2AC AD AB =⨯,∴95AD =. ∵1BB ⊥平面ABC ,∴1BB CD ⊥. ∵1AB BB B =I ,∴CD ⊥平面11ABB A . 又CD ⊂平面1B CD ,∴当95AD =时,平面1B CD ⊥平面11ABB A . (2)以CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则()3,0,0A ,()10,4,2B ,()0,4,0B . 连接1BC 交1B C 于点O ,则O 为1BC 的中点.∵平面1ABC I 平面1B CD OD =,且1AC ∥平面1B CD ,∴1OD AC ∥,∴D 为AB 的中点. ∴3,2,02CD ⎛⎫= ⎪⎝⎭u u u r ,()10,4,2CB =u u u r,设平面1CDB 的法向量为()1,,n x y z =u u r,则13202CD n x y ⋅=+=u u u r u u r ,且11420CB n y z ⋅=+=u u u r u u r,令4x =,可取平面1B CD 的一个法向量()14,3,6n =-u u r, 而平面1CBB 的一个法向量为()21,0,0n =u u r,∴12cos ,n n <>=u u r u u r 1D CB B --为锐角,∴cos θ=12>=,∴3πθ<.21.解:(1)由题意可知,22b =,则1b =,联立()22211x y a a +=>与26516y x =-得422216581490816x x a⨯⎛⎫+-+= ⎪⎝⎭, 根据椭圆C 与抛物线26515y x =-的对称性,可得2216581490864a⨯⎛⎫∆=--= ⎪⎝⎭,∴1656388a 2-=±,又1a >, ∴2a =,∴椭圆C 的标准方程为2214x y +=.(2)①当直线l 的斜率不存在时,1222PMN S b a =⨯⨯=△;当直线l 的斜率为0时,1222PMN S a b =⨯⨯=△. ②当直线l 的斜率存在且不为0时,设直线l 的方程为y kx =,由2214x y y kx ⎧+=⎪⎨⎪=⎩,得22222414414x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩,∴MN ==由题意可知线段MN 的中垂线方程为1y x k =-,由22141x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,得222224444k x k y k ⎧=⎪⎪+⎨⎪=⎪+⎩,∴OP ==∴()()()()()222222414118251445122PMNk k S MN OP k kk ++=⨯⨯=≥==++++△, 即85PMN S ≥△,当且仅当22144k k +=+,即1k =±时等号成立,此时PMN △的面积取得最小值85, ∵825>,∴PMN △面积的最小值为85,此时直线l 的方程为y x =±.22.解:(1)()1'x f x e a -=+.(i )当0a ≥时,()'0f x >,函数()f x 在R 上单调递增; (ii )当0a <时,令()'0f x =,则()ln 1x a =-+, 当()'0f x >,即()ln 1x a >-+,函数()f x 单调递增; 当()'0f x <,即()ln 1x a <-+时,函数()f x 单调递减.综上,当0a ≥时,函数()f x 在R 上单调递增;当0a <时,函数()f x 的单调递增区间是()()ln 1,a -++∞,单调递减区间是()(),ln 1a -∞-+.(2)令1a =-,由(1)可知,函数()1x f x e x -=-的最小值为()10f =,所以10x e x --≥,即1x e x -≥.()ln 1f x x a +≥+恒成立与()ln 10f x x a +--≥恒成立等价,令()()ln 1g x f x x a =+--,即()()()11ln 11x g x e a x x x -=+-+-≥,则()11'x g x e a x-=++.①当2a ≥-时,()111'20x g x e a x a a a x x -=++≥++≥+=+≥.(或令()11x x e xϕ-=+,则 ()121'x x e x ϕ-=-在[)1,+∞上递增,∴()()''10x ϕϕ≥=,∴()x ϕ在[)1,+∞上递增,∴()()12x ϕϕ≥=. ∴()'0g x ≥).∴()g x 在区间[)1,+∞上单调递增, ∴()()10g x g ≥=, ∴()ln 1f x x a +≥+恒成立. ②当2a <-时,令()11x h x ea x -=++,则()2112211'x x x e h x e x x ---=-=, 当1x ≥时,()'0h x ≥,函数()h x 单调递增. 又()120h a =+<,()111111110111n h a e a a a a a a---=++≥-++=+>---, ∴存在()01,1x a ∈-,使得()00h x =,故当()01,x x ∈时,()()00h x h x <=,即()'0g x <,故函数()g x 在()01,x 上单调递减;当()0,x x ∈+∞时,()()00h x h x >=,即()'0g x >,故函数()g x 在()0,x +∞上单调递增, ∴()()()0min 10g x g x g =<=,即[)1,x ∀∈+∞,()ln 1f x x a +≥+不恒成立, 综上所述,a 的取值范围是[)2,-+∞.。

2018-2019学年山西省高二下学期3月联合考试数学(文)试题(解析版)

2018-2019学年山西省高二下学期3月联合考试数学(文)试题(解析版)

2018-2019学年山西省高二下学期3月联合考试数学(文)试题一、单选题1.设命题:0p x ∀>,||x x =,则p ⌝为( ) A .0x ∀>,||x x ≠ B .00x ∃>,00x x ≠ C .0x ∀„,||x x = D .00x ∃„,00x x =【答案】B【解析】根据非命题的要求得解. 【详解】因为“任意”的否定是“存在”,“等于”的否定是“不等于” 故选B. 【点睛】本题考查非命题,注意区别非命题与命题的否定,属于基础题. 2.在复平面内,复数211(1)i --的共轭复数对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】先化简复数21111(1)2i i -=--,然后求其共轭复数,再利用复数的几何意义求解. 【详解】 因为复数21111(1)2i i -=--,其共轭复数为112i +,对应的点是11,2⎛⎫⎪⎝⎭, 所以位于第一象限. 故选:A 【点睛】本题主要考查复数的概念及其几何意义,还考查了理解辨析的能力,属于基础题.3.已知(){}2ln 9A x y x ==-+,{}2xB y y ==,则A B =I( )A .(]0,3B .(]0,ln9C .()3,0-D .()0,3【答案】D【解析】求函数定义域得集合A ,求函数值域得集合B ,取交集即可得答案. 【详解】由函数y =ln (9﹣x 2),得9﹣x 2>0, 即(x +3)(x ﹣3)<0,解得:﹣3<x <3, 所以集合A =(﹣3,3),由函数2xy =>0,得集合B =(0,+∞), 则A ∩B =()0,3. 故选D . 【点睛】本题考查交集的运算及函数定义域值域的求法,属于基础题.4.在建立两个变量y 与x 的回归模型中,分别选择了4个不同的模型,结合它们的相关指数2R 判断,其中拟合效果最好的为( ) A .模型1的相关指数2R 为0.3 B .模型2的相关指数2R 为0.25 C .模型3的相关指数2R 为0.7 D .模型4的相关指数2R 为0.85【答案】D【解析】根据相关指数2R 的大小作出判断即可得到答案. 【详解】由于当相关指数$212211()=()ni i i nii y y y R y ==---∑∑的值越大时,意味着残差平方和$21()nii i yy =-∑越小,即模型的拟合效果越好, 所以选项D 中的拟合效果最好. 故选D . 【点睛】本题考查回归分析中相关指数的意义,解题的关键是熟悉相关指数与拟合度间的关系,属于基础题.5.已知数列{}n a 是公比大于1的等比数列,若254116,17a a a a =+=,则124a a a ++⋅⋅⋅+=( )A .34B .255C .240D .511【答案】B【解析】由等比数列的性质可得241516a a a a ==,解得15,a a ,即可得到q ,进而利用等比数列前n 项和求解即可. 【详解】因为24151516,17,1a a a a a a q ==+=>, 所以151,16a a ==,则2q =,所以882125521S -==-故选:B 【点睛】本题考查等比数列的性质的应用,考查等比数列的前n 项和.6.“2m =-”是“直线()110m x y +++=与直线()2420x m y +++=互相垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】利用两直线垂直时它们的一般方程的系数间的关系可求m 的值. 【详解】若直线()110m x y +++=与直线()2420x m y +++=互相垂直, 则()()2140m m +++=,解得2m =-.所以“2m =-”是“直线()110m x y +++=与直线()2420x m y +++=互相垂直”的充要条件,选C. 【点睛】如果直线1111:0l A x B y C ++=,2222:0l A x B y C ++=, (1)若12l l ⊥,则12120A A B B +=;(2)若BDC ∠,则1212A B B A =且1212A C C A ≠或1212B C C B ≠;(2)若12,l l 重合,则1212A B B A =,1212A C C A =,1212B C C B =.7.若x ,y 满足约束条件0200x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则23z x y =-的最小值为( )A .2-B .1-C .0D .1【答案】B【解析】由题画出可行域,由目标函数可得233zy x =-,进而在可行域内找到截距最大值的点,代回即为所求. 【详解】作出约束条件表示的可行域,如图所示,由可行域可知,平移直线233z y x =-,当直线233zy x =-经过点(1,1)时,z 可取得最小值为1-. 故选:B 【点睛】本题考查由线性规划求最值,考查数形结合思想.8.某大学外语系有6名志愿者,其中志愿者1A ,2A ,C 只通晓英语,志愿者1B ,2B ,3B 只通晓俄语.现从这6名志愿者中选出2名,组成一个能通晓两种语言的小组,则C被选中的概率为( ) A .15B .14C .13D .25【答案】C【解析】先列出这6名志愿者中选出2名通晓两种语言的情况,再列出其中C 被选中的情况,进而求解即可. 【详解】从这6名志愿者中选出2名通晓两种语言的小组,有()11,B A ,()12,B A ,()1,B C ,()21,B A ,()22,B A ,()2,B C ,()31,B A ,()32,B A ,()3,B C ,共有9个基本事件,其中C 被选中的基本事件有()()()123,,,,,B C B C B C ,共3个, 所以所求概率为3193=, 故选:C 【点睛】本题考查列举法求古典概型的概率,属于基础题.9.某几何体的三视图如图所示,则该几何体的体积为( )A .16B .8C .83D .163【答案】C【解析】先根据三视图画出直观图,然后在直观图中,结合三视图求得底面积和高,再代入三棱锥体积公式求解. 【详解】三视图的直观图如图所示,过点P 作平面ABC 的垂线,垂足为D ,连接,BD AD ,如图所示:结合三视图数据,得11184223323P ABC ABC V S PD -=⨯⨯=⨯⨯⨯⨯=V . 故选:C 【点睛】本题主要考查三视图的应用,还考查了空间想象和理解辨析的能力,属于基础题. 10.将正整数排成下表: 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 …则在表中数字2019出现在( )A .第44行第82列B .第45行第82列C .第44行第83列D .第45行第83列 【答案】D【解析】观察数阵的规律,每行的最后一个数分别是1,4,9,16,…,可归纳出第n 行的最后一个数是2n ,然后根据2019,找平方数是2019附近的正整数即可. 【详解】因为每行的最后一个数分别是1,4,9,16,…, 可归纳出第n 行的最后一个数是2n , 因为22441936,452025==,所以2019出现在第45行,又2019193683-=, 所以2019出现在第45行第83列. 故选:D 【点睛】本题主要考查数列的应用,还考查了理解辨析的能力,属于基础题.11.设F 1,F 2是椭圆C :22159x y +=的两个焦点,P 为C 上一点,且|PF 1|=|F 1F 2|,则△PF 1F 2的内切圆的半径r =( ) A.BCD【答案】C【解析】首先根据椭圆的定义以及性质求出三角形的边长,从而求出面积,再根据()12S r a b c =++即可求出△PF 1F 2的内切圆的半径r【详解】因为椭圆C 的标准方程为22159x y +=,所以3,2a c ==,因为|PF 1|=|F 1F 2|,所以2242PF a =-=,所以()112442225S r r =⨯=⨯⨯++⇒=故选:C 【点睛】本题主要考查了椭圆的定义以及性质、三角形面积公式,属于基础题。

太原市2019_2020学年第一学期七年级期中考试数学(试卷)

太原市2019_2020学年第一学期七年级期中考试数学(试卷)

2019-2020学年第一学期第一次测评初一数学——试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下列相应位置)1.有理数-3的绝对值是()A.3B.-3 C.13D.132.下表是某年1月份我国几个城市的平均气温,在这些城市中,平均气温最低的城市是()城市北京上海沈阳广州太原平均气温-5.6℃ 2.3℃-16.8℃17.6℃-11.2℃A.北京B.沈阳C.广州D.太原3.如图,在数学活动课上,同学们用一个平面分别去截下列四个几何体,所得截面是三角形的是()4.下列运算正确的是()A.x2+x2=x4B.4x+(x-3y)=3x+3yC.x2y-2x2y=-x2yD.2(x+2)=2x+25.化简14(16x-12)-2(x-1)的结果是()A.2x-1B.x+1C.5x+3D.x-36.下列四个几何体,同一个几何体从正面看和从左面看的形状图相同,这样的几何体共有()A.1个B.2个C.3个D.4个7.有一个两位数,个位数字是n,十位数字是m,则这个两位数可表示为()。

A.mn B.10m+n C.10n+m D.m+n8.今年 9月世界计算机大会在湖南省长沙市开幕,大会的主题是“计算万物,湘约未来”.从心算、珠算的古老智慧到“银河”“天河”“神威”创造的中国速度,“中国计算”为世界瞩目.超级计算机“天河一号”的性能是 4700万亿次,换算成人工做四则运算,相当于60亿人算一年,它1秒就可以完成.数 4700万亿用科学记数法表示为( )。

A.4.7×107B.4.7×1011C.4.7×1014D..7×10159.“1285个服务站点”,“4.1万辆公共自行车”,“日均租骑量 32.54万次”,“1小时内免费”,···,自 2012年开通运营以来,太原公共自行车已经伴随太原市民走过近七个春秋,课外活动小组的同学们,在某双休日 11:30—12:00对我市某个公共自行车服务站点的租骑量进行了观察记录.用“-6”表示骑走了6辆自行车,记录结果如下表:(时间段不含前一时刻但含后一时刻,如 11:30—11:35不含 11:30但含 11:35)时间段11:30—11:35 11:35—11:40 11:40—11:45 11:45—11:50 11:50—11:55 11:55—12:00 自行车数量-15+8-11+10-6+13假设此服务站点在11:30时有自行车30辆,则在12:00时该站点有自行车()A.31辆B.30辆C. 29辆D.27辆10.和谐公园内有一段长方形步道,它由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道地砖的排列方式,若正方形地砖为连续排列且总共有 40块,则这段步道用了白色等腰直角三角形地砖( )A.80块B.81块C.82块D.84块二、填空题(本大题含5个小题,每小题3分,共15分)把结果直接填在横线上.11.如图,汽车的雨刮器能把前挡风玻璃上的雨水刮干净.这一现象,抽象成数学事实是.12.如图是小明设计的运算程序,若输入x的值为-2,则输出的结果是.13.代数式-2x+3的值随着x的值的逐渐变大而.(填“变大”或“变小”)14.成语“运筹帷幄”中“筹”的原意是指《孙子算经》中记载的“算筹”.算筹是中国古代用来计算的工具,它是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵、横两种形式(如图).当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的算筹需要纵、横相间;个位,百位,万位数用纵式表示;十位,千位,十万位数用横式表示;“0”用空位来代替,以此类推.如:数3306用算筹表示成.用算筹表示的数是.15.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.cm.A.该长方体礼品盒的容积为3B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为cm.三、解答题(本大题含8个小题,共55分)解答时应写出必要的文字说明、演算步骤或推理过程. 16.(本题共4个小题,每小题3分,共12分)(1)3(4)(5)--+-;(2)118()6(2)3⨯--÷-(3)572(36)12183⎛⎫-+⨯- ⎪⎝⎭;(4)321(2)8(3)3⎡⎤-÷-+-⨯⎢⎣⎦17.(本题6分)先化简,再求值:322232(2)2()n mn m n mn n -+---,其中31005m n==-,. 18.(本题4分)下面是小颖计算25( 3.4)(1)( 1.6)()33--+-+++的过程,请你在运算步骤后的括号内填写运算依据.解:原式=25( 3.4)(1)( 1.6)()33-+-+-++()=25( 3.4)( 1.6)(1)()33-+-+-++()=[]25( 3.4)( 1.6)(1)()33⎡⎤-+-+-++⎢⎥⎣⎦()=(5)0-+ ()=5-今年假期某校对操场进行了维修改造,如图是操场的一角,在长为a米,宽为b米的长方形场地中间,并排着两个大小相同的篮球场,这两个篮球场之间以及篮球场与长方形场地边沿的距离都为c米.(1)直接写出一个篮球场的长和宽;(用含字母a、b、c的代数式表示)(2)用含字母a、b、c的代数式表示这两个篮球场占地面积的和,并求出当a=42,b=36,c=4时,这两个篮球场占地面积的和.20.(本题6分)如图是用8个大小相同的小立方块搭成的几何体,请分别画出从正面,左面和上面看到的这个几何的形状图.从正面看从左面看从上面看21.(本题7分)某中学为打造体育特色学校,落实每天锻炼1小时的规定,经调查研究后决定在七、八、九年级分别开展跳绳、羽毛球、毽球项目,七年级共有六个班,每班的人数以a人为标准,各班人数情况如下表,八年级学生人数比七年级学生人数的2倍少240人,九年级学生人数的2倍刚好是七、八年级学生人数的和.(说明:1901班表示七年级一班)班级1901班1902班1903班1904班1905班1906班与标准人数的差(人)+3+2-2+20 -1(1)用含a的代数式表示七年级学生人数;(2)学校按每人一根跳绳、一个毽球,两人一副羽毛球拍的标准,购买相应的体育器材以满足学生锻炼需要,已知跳绳每根5元,毽球每个3元,羽毛球拍每副18元,当a=40时,求购买器材的总费用.下列等式:11222215513333-=⨯+-=⨯+,,…,具有a-b=1ab+的结构特征,我们把满足这一特征的一对有理数,a b称为“共生有理数对”,记作(a、b)如:数对12 25 33(,),(,)都是“共生有理数对”(1)在两个数对(-2,1),1 3 2(,)中,“共生有理数对”是;(2)若(m,n)是“共生有理数对”,则(-n,-m)“共生有理数对”;(填“是”或“不是”)(3)从AB两题中任选一题作答A.请再写出一对“共生有理数对” (要求:不与题目中已有的“共生有理数对”重复)B.是否存在“共生有理数对”(n,n),若存在,求出n的值;若不存在,请说明理由.23.(本题8分)如图,数轴的单位长度为1,点C,D表示的数互为相反数,结合数轴回答下列问题:(1)请在数轴上标出原点 O的位置;(2)直接写出点 A、B、C、D所表示的数,并判断哪一点表示的数的平方最大,最大是多少?(3)从 AB两题中任选一题作答.A.①若点 F在数轴上,与点 C的距离 C F =3.5,求点 F表示的数;设动点 P从点 B出发,以每秒 3个单位长度的速度沿数轴的正方向匀速向终点 D运动,运动时间为t秒,求P,C之间的距离CP.(用含t的代数式表示)B.设点M,N都从点A出发沿数轴的正方向匀速向终点D运动,点M的速度为每秒2个单位长度,点N的速度为每秒5个单位长度,当点M运动到点B时点N开始运动,设点M运动时间为t秒,求点M,N之间的距离MN(用含t的代数式表示)。

2019-2020学年第二学期六年级数学期末试题(含答案)

2019-2020学年第二学期六年级数学期末试题(含答案)

2019-2020学年第二学期期末考试六年级数学试题(考试时间:120分钟 分值:120分)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共7页.2. 数学试题答题卡共4页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束后上交答题卡.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.第I 卷(选择题 共30分)一、选择题(本题共10小题,共30分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来。

每小题选对得3分,不选或选出的答案超过一个均记零分。

) 1.下列调查中,须用普查的是( ) A .了解我区六年级同学的视力情况 B .了解我区六年级同学课外阅读的情况C .了解我区六年级同学今年5月20日回校报到时的校园健康“入学码”情况D .了解我区六年级同学疫情期间参加晨练的情况 2.下列计算正确的有( )①3﹣1=﹣3;②(x²)3=x 5;③33x x =2x 3;④(π﹣3.14)0=1A .1个B .2个C .3个D .4个3.从五边形的一个顶点出发可以连接的对角线条数为( ) A .1B .2C .3D .44.新冠病毒(2019﹣nCoV )平均直径约为100nm (纳米),即0.0000001米. 0.0000001m 用科学记数法可以表示为( ) A .0.1×10﹣6m B .10×10﹣8mC .1×10﹣7mD .1×1011m5.小明在计算322(63)(3)x y x y xy -÷时,错把括号内的减号写成了加号,那么正确结果与错误结果的乘积是( ) A .22x xy -B .22x xy +C .4224x x y -D .无法计算6.如图,已知AB ∥ED ,∠ECF =65°,则∠BAF 的度数为( ) A .115° B .65°C .60°D .25°第6题图 第9题图7.若单项式﹣8x a y 和b2y x 41的积为﹣2x 5y 6,则ab 的值为( ) A .2B .30C .-15D .158.下列各式,运算结果为6a 的是( )A .42()a B .122a a ÷C .44a a +D .24a a ⋅9.如图是一辆汽车行驶的速度(千米/时)与时间(分)之间变化图,下列说法正确的是( )A .时间是因变量,速度是自变量B .从3分到8分,汽车行驶的路程是150千米C .时间每增加1分钟,汽车的速度增加10千米/时D .第3分钟时汽车的速度是30千米/时第10题图10.如图,已知直线AB ∥CD ,直线EF 分别与AB 、CD 交于点M 、N ,点H 在直线CD 上,HG ⊥EF 于点G ,过点作GP ∥AB .则下列结论:①∠AMF 与∠DNF 是同旁内角;②∠PGM =∠DNF ;③∠BMN +∠GHN =90°; ④∠AMG +∠CHG =270°.其中正确结论的个数是( ) A .1个B .2 个C .3个D .4个第II 卷(非选择题 共90分)二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.)11.在地球某地,温度T (℃)与高度d (m )的关系可以近似用T =10﹣50d来表示,根据这个关系式,当高度d 的值是400时,T 的值为__________.12.如图,点C 、D 在线段AB 上,点C 为AB 中点,若AC =5cm ,BD =2cm ,则CD = cm .第12题图 第14题图13.若a m•a2=a7,则m的值为.14.一副三角板如图摆放,过点D作DE∥AB,则∠CDE的度数为.15.若x2+y2=10,xy=3,则(x﹣y)2=.16.如图,射线OA的方向是北偏东20度,射线OB的方向是北偏西40度,OD是OB 的反向延长线.若OC是∠AOD的平分线,则射线OC的方向是北偏东________度.第16题图17.当m=1,n=2时,(m+n)(m²-mn+n²)的值为__________.18.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1)经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题: (5+1)(52+1)(54+1)(58+1)= .三、解答题(本大题共7小题,满分62分,解答应写出必要的文字说明、证明过程或推演步骤)19.(本题满分12分)计算:(1)(2x ﹣1)2﹣(2x +5)(2x ﹣5) (2)(2x 2)3﹣3x 2•4x 4+2x 8÷x 2 (3)321()n x x--⋅+22()nxx ⋅-20.(本题满分7分)如图,直线AB 、CD 相交于O ,OE ⊥CD ,且∠BOD 的度数是∠AOD 的5倍. 求:(1)∠AOD 、∠BOD 的度数; (2)∠BOE 的度数.21.(本题满分7分) 已知x =10,y =125-,求22[(2)(2)24]()xy xy x y xy +--+÷的值. 22.(本题满分7分)我市某学校在暑假期间开展“心怀感恩、孝敬父母”的社会实践活动,倡导学生在假期中帮助父母干家务.开学以后,校学生会随机抽取了部分学生,就暑假“平均每天帮助父母干家务所用时长”进行了调査,以下是根据相关数据绘制的统计图的部分.根据上述信息,回答下列问题:(1)在本次随机抽取的样本中,调查的学生人数_________人;(2)补全频数分布直方图;(3)如果该校共有学生1000人,请你估计“平均每天帮助父母家务的时长不少于30分钟”的学生大约有多少人?23.(本题满分9分)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值;(2)在(1)的条件下,求线段CD的长.24.(本题满分10分)【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示),通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式_________.(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(1)已知4m2-n2=12,2m+n=4,则2m﹣n的值为.(2)计算:20192﹣2020×2018.【拓展】计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.25.(本题满分10分)(1)已知,如图1,BE平分∠ABC,∠1=∠2,试说明∠AED=∠C成立的理由.下面是小鹏同学进行的说理,请你将小鹏同学的说理过程或说理根据补充完整.解:因为BE平分∠ABC(已知),所以∠1=①(角平分线的定义),又因为∠1=∠2(已知),所以∠2=∠3(②).所以DE//BC(③),所以∠AED=∠C(④).(2)如图2,如果a//b,找出图中各角之间的等量关系(找出3组即可).要使c//d,那么需要哪两个角相等?为什么?(图1)(图2)六年级数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题:本大题共10小题,共30分. 每小题选对得3分,选错、不选或选出的答案超过一个均记零分.题号 1 2 3 4 5 6 7 8 9 10答案 C B B C C A D D D C二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.2 12. 3 13.5 14. 15°15.4 16. 80 17. 918.×(516﹣1)三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分12分)解:(1)原式=4x2﹣4x+1﹣(4x2﹣25)=4x2﹣4x+1﹣4x2+25=﹣4x+26 ┈┈┈┈┈┈4分(2)原式=8x6﹣12x6+2x6=﹣2x6.┈┈┈┈┈┈8分(3)原式===0┈┈┈┈┈┈12分20.(本题满分7分)解:(1)∵AB是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD的度数是∠AOD的5倍,∴∠AOD=×180°=30°,∠BOD=×180°=150°.┈┈┈┈┈┈4分(2)∵∠BOC=∠AOD=30°,OE⊥DC,∴∠EOC=90°,∴∠BOE=∠EOC﹣∠BOC=90°﹣30°=60°.┈┈┈┈┈┈7分21.(本题满分7分)解:原式=┈┈┈┈┈┈2分==-xy ┈┈┈┈┈┈4分将x=10,y=代入上式,得= ┈┈┈┈┈┈7分22.(本题满分7分)解:(1)在本次随机抽取的样本中,调查的学生人数为60÷30%=200(人),┈┈┈┈┈┈2分(2)20﹣30分钟的人数为200﹣(60+40+50+10)=40(人),补全图形如下:┈┈┈┈┈┈4分(3)估计“平均每天帮助父母家务的时长不少于30分钟”的学生大约有1000×=300(人).┈┈┈┈┈┈7分23.(本题满分9分)解:(1)∵(a﹣16)2+|2b﹣8|=0,∴a﹣16=0,2b﹣8=0,∵a、b均为非负数,∴a=16,b=4,┈┈┈┈┈┈4分(2)∵点C为线段AB的中点,AB=16,CE=4,∴AC=AB=8,┈┈┈┈┈┈6分∴AE=AC+CE=12,┈┈┈┈┈┈7分∵点D为线段AE的中点,∴DE=AE=6,┈┈┈┈┈┈8分∴CD=DE﹣CE=6﹣4=2.┈┈┈┈┈┈9分24.(本题满分10分)解:【探究】答案为(a+b)(a﹣b)=a2﹣b2.┈┈┈┈┈┈2分【应用】(1)答案为3.┈┈┈┈┈┈4分(2)20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)┈┈┈┈┈┈5分=20192﹣(20192﹣1)┈┈┈┈┈┈6分=20192﹣20192+1=1┈┈┈┈┈┈7分【拓展】1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)┈┈┈┈┈┈8分=199+195+…+7+3┈┈┈┈┈┈9分=5050┈┈┈┈┈┈10分25.(本题满分10分)解:(1)①∠3 ┈┈┈┈┈┈1分②等量代换┈┈┈┈┈┈2分③内错角相等,两直线平行┈┈┈┈┈┈3分④两直线平行,同位角相等┈┈┈┈┈┈4分(2)∠1=∠2,∠2=∠3,∠1=∠3 ┈┈┈┈┈┈7分当∠4=∠6时,c//d ,┈┈┈┈┈┈8分理由:内错角相等,两直线平行。

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析

2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。

2019-2020学年山西省忻州一中高二(上)第一次月考数学试卷 (含答案解析)

2019-2020学年山西省忻州一中高二(上)第一次月考数学试卷 (含答案解析)

2019-2020学年山西省忻州一中高二(上)第一次月考数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合A={(x,y)|y2<x},B={(x,y)|xy=−2,x∈Z,y∈Z},则A∩B=()A. ⌀B. {(2,−1)}C. {(−1,2),(−2,1)}D. {(1,−2),(−1,2),(−2,1)}2.设x,y∈R,向量a⃗=(1,x),b⃗ =(3,2−x),若a⃗⊥b⃗ ,则实数x的取值为()A. 1B. 3C. 1或−3D. 3或−13.已知直线m,n,平面α,下列条件能判断出m⊥α的是()A. m//n,n⊆αB. m//n,n⊥αC. m⊥n,n//αD. m⊥n,n⊥α4.已知α,β是相异两个平面,m,n是相异两直线,则下列命题中正确的是()A. 若m//n,m⊂α,则n//αB. 若,,则α//βC. 若m⊥n,m⊂α,n⊂β,则α⊥βD. 若α∩β=m,n//m,则n//β5.ΔABC的斜二侧直观图如图所示,则ΔABC原图形的面积为()D.A. 2B. 1C. √22√26.下面使用类比推理,得到的结论正确的是()A. 直线a,b,c,若a//b,b//c,则a//c.类比推出:向量a⃗,b⃗ ,c⃗,若a⃗//b⃗ ,b⃗ //c⃗,则a⃗//c⃗(a+b+c)r,其中a,b,c为三角形的边长,r为三角形内切圆的半B. 三角形的面积为S=12(S1+S2+S3+S4)r,其中S1,S2,S3,S4分别为四面体的径.类比推出:四面体的体积为V=13四个面的面积,r为四面体内切球的半径C. 同一平面内的三条直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中的三条直线a,b,c,若a⊥c,b⊥c,则a//bD. 已知a,b为实数,若方程x2+ax+b=0有实数根,则a2≥4b.类比推出:已知a,b为复数,若方程x2+ax+b=0有实数根,则a2≥4b7.下列说法正确的是()A. 平面α和平面β只有一个公共点B. 两两相交的三条线共面C. 不共面的四点中,任何三点不共线D. 有三个公共点的两平面必重合8. 已知某几何体的三视图如图所示,设该几何体任意两个顶点之间的距离为d ,则d 的最大值为( )A. 2B. √6C. 2√2D. 4 9. 执行如图所示的流程图,输出的S 值为( ) A. 23B. 1321C. 137D. 30535710. 已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为( ) A. 27π B. 36πC. 54πD. 81π 11. 将函数f (x )的图象向左平移π2个单位长度后得到函数g (x )=sin [ωx +π4(2ω−1)]的图象,若函数f (x )的图象关于直线x =π2对称,则当ω取得最小正实数时,tan2ωx 的最小正周期为( ) A. 2π B. 4π3 C. 2π3 D. π3 12. 已知函数f (x )={lnx,x >02x +1,x ≤0,若方程f(x)=ax 有三个不同的实数根x 1,x 2,x 3,且x 1<x 2<x 3,则x 1−x 2的取值范围是( )A. (1e −e,e 1−2e )B. (2e 21−2e ,−32)C. (12−e,1−e 2e−1)D. (12−e,1e −1)二、填空题(本大题共4小题,共20.0分)13. 已知三棱锥S −ABC 中,SA =BC =√41,SB =AC =√29,SC =AB =√30,则该三棱锥的外接球表面积为______.14. 已知实数x,y 满足约束条件{x +2y ⩾22x +y ⩽44x −y ⩾−1,若a ⃗ =(x,y ),b ⃗ =(3,−1),设z 表示向量a ⃗ 在b ⃗ 方向上的投影,则z 的取值范围是_______.15. 已知公比为2的等比数列{a n }中,a 2+a 5+a 8+a 11+a 14+a 17+a 20=13,则该数列前21项的和S n =______.16.如图所示,是正方体的平面展开图.在这个正方体中,①BM与ED平行;②CN与BE是异面直线;③CN与BM成60°角;④DM与BN垂直.以上四个命题中,正确命题的序号是_______.三、解答题(本大题共6小题,共70.0分)17.已知△ABC中,a,b,c分别为角A,B,C的对边,sin(2C−π2)=12,且a2+b2<c2.(1)求角C的大小;(2)求a+bc的取值范围.18.记S n为等差数列{a n}的前n项和,已知a4+a8=22,S6=36.(1)求数列{a n}的通项公式;(2)记b n=(−1)n+1a n,求数列{b n}的前2019项和T2019.19.如图,在四棱锥P−ABCD中,底面ABCD是边长为1的菱形,∠ABC=π,且PA⊥平面ABCD,3PA=2,M为PA的中点.(Ⅰ)求证:直线PC//平面MBD;(Ⅱ)求异面直线AB与MD所成角的余弦值.20.如图,在四棱锥E−ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.(Ⅰ)求证:AB//平面CDE;(Ⅱ)求证:平面ACE⊥平面CDE;(Ⅲ)求三棱锥E−ACD的体积.21.某校高三年级本学期共进行了四次阶段考试,在每份数学试卷中,第Ⅰ卷共10道选择题,每小题得对的5分,答错得0分,学生甲、乙在四次考试中选择题答错的题目数如下所示:甲3201乙4320Ⅰ卷的平均得分;(2)记以甲每次考试答错的题目数为元素构成集合A,以乙每次考试答错的题目数为元素构成集合B,在直角坐标平面上有点P(x,y),Q(−1,−2),其中x∈A,y∈B,记直线PQ的斜率为k,求满足k≥2的事件的概率.22.如图,在四棱柱ABCD−A1B1C1D1中,AB//CD,AD⊥AB,且CD=AA1=2AB=2√2,AD=2,AC与BD交于点O,点A1在底面ABCD内的投影刚好是点O.(1)证明:平面B1CD1⊥平面AA1C.(2)求三棱锥A1−B1CD1的体积.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查了元素与集合关系和交集及其运算,属于基础题.利用交集的运算,结合元素与集合的关系计算得结论.【解答】解:因为B={(x,y)|xy=−2,x∈Z,y∈Z}={(1,−2),(−1,2),(2,−1),(−2,1)},而A={(x,y)|y2<x},因此(2,−1)∈A,所以A∩B={(2,−1)}.故选B.2.答案:D解析:解:∵a⃗⊥b⃗ ,∴a⃗⋅b⃗ =3+x(2−x)=0,化为x2−2x−3=0,解得x=3或−1.故选:D.由a⃗⊥b⃗ ,可得a⃗⋅b⃗ =0,解出即可得出.本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于基础题.3.答案:B解析:【分析】本题考查直线与平面垂直的判定,利用直线与平面垂直的定义判断即可.【解答】解:对A,D,m//α或m在α内,对B,n⊥α,则n与α内任一直线都垂直,m//n,则m与α内任一直线都垂直,所以m⊥α;对C,m//α或m在α内或m与α相交,故选B.4.答案:B解析:【分析】本题考查了空间直线与直线,直线与平面,平面与平面的位置关系,属于基础题目.根据空间中线线,线面及面面的位置关系,逐一判断即可.【解答】解:A.若m//n,m⊂α,则n//α或n⊂α,A不正确;B.若m⊥a,m⊥β,则a//β,B正确;C.若m⊥n,m⊂α,n⊂β,则α与若β相交平行都有可能,C不正确;D.若α∩β=m,n//m,则n//β或n⊂β,D不正确.故选B.5.答案:A解析:【分析】本题要求我们将一个直观图形进行还原,并且求出它的面积,着重考查了斜二侧画法和三角形的面积公式等知识,属于基础题.用斜二侧画法的法则,可知原图形是一个两边分别在x、y轴的直角三角形,x轴上的边长与原图形相等,而y轴上的边长是原图形边长的一半,由此不难得到平面图形的面积.【解答】解:∵OA=1,OB=2,∠ACB=45°∴原图形中两直角边长分别为2,2,×2×2=2.因此,Rt△ACB的面积为S=12故选A.6.答案:B解析:【分析】本题主要考查类比推理,考查逻辑推理素养.类比推理是依据两类对象的相似性,将已知的一类对象的性质类比到另一类对象上,其一般步骤:(1)找出两类对象的相似性或一致性;(2)用一类对象的性质去推测另一类对象的性质,得到一个明确的结论,属于基础题.逐项判断即可.【解答】解:对于A,因为0⃗和任意向量都平行,所以若b⃗ =0⃗时,则无法得到a⃗//c⃗,所以A是错误的;(S1+S2+对于B,若四面体的四个面的面积分别为S1,S2,S3,S4,内切球的半径为r,则体积为V=13S3+S4)r,所以B是正确的;对于C,空间中的三条直线a,b,c,若a⊥c,b⊥c,则直线a,b可以平行、相交或异面,所以C 是错误的;对于D,方程x2+ix+(−1+i)=0有实根,但不满足a2≥4b,所以D是错误的.故选B.7.答案:C解析:【分析】本题考查平面的性质及其推论的应用,属于基础题.根据题意,逐项判断即可.【解答】解:对于A:可知如果两个不重合的平面有一个公共点,那么它们有且仅有一条经过该点的公共直线,所以面面相交是直线,所以A错误;对于B:若三条直线相交于一个公共点,则三条直线不一定共面,所以B错误;对于C:若任何三点共线,则任意4点共面,则条件不成立,即不共面的四点中,任何三点不共线,所以C正确.对于D:这两个平面有三个公共点,当三个公共点在一条直线上时,此时两个平面可以相交,不一定重合,所以D错误.故选:C.8.答案:B解析:【分析】本题考查了复杂几何体的三视图的运用,主要是恢复几何体的直观图,利用几何体的性质判断即可,属于中档题.根据三视图得出:空间几何体的性质得出直线平面的垂直问题,判断各个线段的长度比较即可.【解答】解:∵根据三视图得出:几何体为平行放置的底面为直角梯形的四棱柱,根据几何体的性质得出:d的最大值为:√(√3)2+12+(√2)2=√6故选B.9.答案:B解析:解:模拟程序的运行,可得i=0,S=1,i=1执行循环体,S=23,i=2不满足条件i≥2,执行循环体,S=1321.满足条件i≥2,退出循环,输出S的值为1321故选:B.模拟程序框图的运行过程,即可得出该程序执行的结果.本题考查循环结构的程序框图的应用,解决程序框图中的循环结构时,常采用写出前几次循环结果,找规律,属于基础题.10.答案:B解析:【分析】本题考查了圆柱的体积,意在考查学生的计算能力和空间想象能力.设圆柱的底面半径r,该圆柱的高为2r,利用侧面积得到半径,再计算体积.【解答】解:设圆柱的底面半径为r.因为圆柱的轴截面为正方形,所以该圆柱的高为2r.因为该圆柱的体积为54π,πr2ℎ=2πr3=54π,解得r=3,所以该圆柱的侧面积为2πr×2r=36π.故选B.11.答案:D解析:【分析】本题考查三角函数y=Asin(ωx+φ)的图象与性质和正切函数的性质,根据函数g(x)求出函数f(x)的解析式,结合函数f(x)的图象关于直线x=π对称,求出ω,再结合正切函数的性质求出函数的周2期即可.解:由已知函数f(x)的图象向左平移π2个单位长度后得到函数g(x)=sin[ωx+π4(2ω−1)]的图象,所以函数,又f(x)的图象关于直线x=π2对称,所以,即ϖ=4k+32,k∈Z,所以ω取得最小正实数时ϖ=32,所以,所以.故选D.12.答案:B解析:【分析】本题考查根的存在性与根的个数判断,考查数形结合的解题思想方法与数学转化思想方法,属于中档题.【解答】解:作出函数f(x)={lnx,x>02x+1,x≤0,的图象如图:设直线y=ax与y=lnx相切于(x,ln x),则y′|x=x=1x0,∴曲线y=lnx在切点处的切线方程为y−lnx=1x0(x−x),把原点(0,0)代入可得:−lnx=−1,得x=e.要使直线y=ax与y=f(x)交于三个不同的点,则n∈(1,e),则x1−x2的取值范围是(2e21−2e ,−32),13.答案:50π解析:解:将三棱锥补成一个长、宽、高分别为a ,b ,c 的长方体, 由题意可得a 2+b 2=41,b 2+c 2=29,c 2+a 2=30, 设三棱锥的外接球的半径为R , 则4R 2=a 2+b 2+c 2=50, 所以该外接球表面积为50π. 故答案:50π.构造长方体,使得面上的对角线长分别为√41,√29,√30,则长方体的对角线长等于三棱锥S −ABC 外接球的直径,即可求出三棱锥S −ABC 外接球的表面积.本题考查球内接多面体,考查学生的计算能力,构造长方体,利用长方体的对角线长等于四面体外接球的直径是关键.14.答案:[−2√10,√10]解析: 【分析】本题考查简单线性规划问题的运用以及平面向量的投影的运用; 首先画出可行域,明确目标函数的表达式即为z =a ⃗ ·b⃗ |b⃗ |=√1010(3x −y ),根据其几何意义求最值.【解答】 解:z =a ⃗ ·b⃗ |b⃗ |=√1010(3x −y ),由约束条件得到可行域如图:,当直线分别经过B(2,0),C(12,3)时,纵截距分别最小和最大,则z分别最大和最小,所以z的最大值为6√1010,最小值为√1010(12×3−3)=−3√1020,所以z的取值范围是[−32√10,6√10];故答案为[−32√10,6√10].15.答案:912解析:解:∵已知公比为2的等比数列{a n}中,a2+a5+a8+a11+a14+a17+a20=13,∴a1×2(1−87)1−8=13,∴2a1(221−1)7=13,∴a1(221−1)=912.∴该数列前21项的和S n=a1(1−221)1−2=a1(221−1)=912,故答案为912.由已知条件利用等比数列的前n项和公式求得a1(221−1)=912,再根据该数列前21项的和S n=a1(1−221)1−2=a1(221−1),从而得到结果.本题主要考查等比数列的定义和性质,等比数列的前n项和公式的应用,属于中档题.16.答案:③④解析:【分析】本题考查异面直线的判定,异面直线及其所成的角,空间中直线与直线之间的位置关系,几何体的折叠与展开,考查空间想象能力,是基础题.【解答】解:展开图复原的正方体如图,不难看出:①BM与ED平行是错误的,是异面直线;②CN与BE是异面直线是错误的,是平行线;③CN与BM成60°;正确;④DM与BN垂直,正确判断正确的答案为③④故答案为③④.17.答案:解:(1)∵a 2+b 2<c 2,∴由余弦定理得:cosC =a 2+b 2−c 22ab<0,∴C 为钝角, ∴π2<2C −π2<3π2,∵sin(2C −π2)=12, ∴2C −π2=5π6,则C =2π3;(2)由(1)得C =2π3,根据余弦定理得:c 2=a 2+b 2−2abcos2π3=a 2+b 2+ab =(a +b)2−ab ≥(a +b)2−(a+b 2)2=34(a +b)2,即(a+b c)2≤43,a+b c≤2√33, 又a +b >c ,即a+b c>1,则a+b c的范围为(1,2√33].解析:此题考查了余弦定理,基本不等式的运用,以及完全平方公式的运用,熟练掌握定理及公式是解本题的关键.(1)由余弦定理表示出cos C ,根据已知不等式得到cos C 的值小于0,C 为钝角,求出2C −π2的范围,再由sin(2C −π2)的值,利用特殊角的三角函数值很即可求出C 的度数; (2)由cos C 的值,利用余弦定理列出关系式,利用完全平方公式变形,求出a+b c的范围,再根据三边之和大于第三边,即可求出a+b c的具体范围.18.答案:解:(1)设{a n }的公差为d ,则由已知得{2a 1+10d =226a 1+6×52d =36, 解得{a 1=1d =2, ∴a n =a 1+(n −1)d =2n −1;(2)∵b n =(−1)n +1a n =(−1)n+1(2n −1),∴T 2019=1+(−3+5)+(−7+9)+⋯+ [−(2×2018−1)+(2×2019−1)]=1+2×1009=2019.解析:本题考查的知识要点:数列的通项公式的求法及应用,分组转化法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于中档题.(1)设{a n}的公差为d,由已知条件,列出关于a1与d的方程组,从而即可求出数列{a n}的通项公式;(2)由(1)可知,b n=(−1)n+1(2n−1),从而利用分组转化求和法即可得出T2019.19.答案:解:(Ⅰ)连接AC交BD于点O,连接MO;∵底面ABCD是边长为1的菱形,∴O是AC中点,又M为PA的中点,∴MO//PC,又MO⊂平面MBD,PC⊄平面MBD,∴直线PC//平面MBD.(Ⅱ)连MC,∵CD//AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)由题可知:AC=1,MC=√MA2+AC2=√2,MD=√MA2+AD2=√2,在△MCD中,由余弦定理可得:cos∠MDC=MD2+CD2−MC22MD·CD =2√2=√24,∴AB与MD所成角的余弦值为√24.解析:本题考查线面平行的证明,考查异面直线所成角的大小的求法,是基础题.(Ⅰ)连接AC交BD于点O,连接MO,由MO//PC,由此能证明直线PC//平面MBD.(Ⅱ)由CD//AB,得∠MDC为异面直线AB与MD所成的角(或其补角),由此能求出AB与MD所成角的余弦值.20.答案:证明:(Ⅰ)∵CD⊥平面ADE,AB⊥平面ADE,∴AB//CD,∵AB⊄平面CDE,CD⊂平面CDE,∴AB//平面CDE;(Ⅱ)∵CD⊥平面ADE,AE⊂平面ADE,∴CD⊥AE.又∵AE⊥DE,CD∩DE=D,CD,DE⊂平面CDE,∴AE⊥平面CDE.又∵AE⊂平面ACE,∴平面ACE⊥平面CDE;解:(Ⅲ)∵CD⊥平面ADE,∴CD是三棱锥C−AED的高,在Rt△AED中,AE=√AD2−ED2=√62−32=3√3,∴S△AED=12×3×3√3=9√32,∴四棱锥E−ACD的体积V E−ACD=V C−AED=13S△AED⋅CD=13×9√32×6=9√3.解析:(Ⅰ)由线面垂直的性质得AB//CD,再由线面平行的判定得AB//平面CDE;(Ⅱ)由CD⊥平面ADE,得CD⊥AE.再由线面垂直的判定得AE⊥平面CDE,进一步由面面垂直的判定得平面ACE⊥平面CDE;(Ⅲ)把三棱锥E−ACD的体积转化为C−AED的体积求解得答案.本题考查线面平行、面面垂直的判定,考查棱锥体积的求法,训练了等积法,是中档题.21.答案:解:(1)答对题目x⃗ =14(7+8+10+9)=8.5.第Ⅰ卷的平均得分x=8.5×5=42.5分,(2)∵P(x,y),Q(−1,−2),其中x∈A,y∈B,记直线PQ的斜率为k,∴k=y+2x+1,∵k≥2,∴y+2x+1≥2,即y≥2x−1,∵记以甲每次考试答错的题目数为元素构成集合A=(3,2,0,1),以乙每次考试答错的题目数位元素构成集合B=(4,3,2,0),在直角坐标平面上有点P(x,y),其中x∈A,y∈B,∴满足条件的基本事件有(3,4),(3,3),(3,2),(3,0),(2,4),(2,3),(2,2),(2,0),(0,4),(0,3),(0,2),(0,0),(1,4),(1,3),(1,2),(1,0),共16种基本事件,其中满足y≥2x−1,由图可知有8种,故满足k≥2的事件的概率为816=12.解析:本题考查了平均数和古典概型的概率问题,根据题意得到y≥2x−1是关键,属于中档题.(1)根据平均数的计算公式计算即可;(2)根据斜率公式,以及k≥2得到y≥2x−1,分别列举出所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.22.答案:(1)证明:因为AB//CD,AD⊥AB,且CD=2AB=2√2,AD=2,所以tan∠ABD=ADAB =√2,tan∠CAD=CDAD=√2,所以∠ABD=∠CAD.又∠CAD+∠BAC=90∘,所以∠BAC+∠ABD=90∘,即AC⊥BD,而B1D1//BD,所以AC⊥B1D1,又A1O⊥平面A1B1C1D1,所以A1O⊥B1D1,所以B1D1⊥平面AA1C,从而平面B1CD1⊥平面AA1C;(2)解:由(1)知AC=√22+(2√2)2=2√3,AO=13AC=2√33,所以A1O=√8−43=2√153.又V A1−B1CD1=V C−A1B1D1,S▵A1B1D1=12×2×√2=√2,所以V A1−B1CD1=13×√2×2√153=2√309.解析:本题主要考查面面垂直的判断以及三棱锥的体积的计算,要求熟练掌握空间线面垂直的判定定理和三棱锥的体积公式.(1)根据面面垂直的判定定理只需证明B1D1⊥平面AA1C,即可证明平面B1CD1⊥平面AA1C;(2)根据三棱锥的条件公式,即可求三棱锥A1−B1CD1的体积.。

解析】山西省2019-2020学年高二6月联合考试化学试题 Word版含解析

解析】山西省2019-2020学年高二6月联合考试化学试题 Word版含解析

2019~2020学年山西省高二下学期6月联合考试考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共100分。

考试时间90分钟。

2.请将各题★答案★填写在答题卡上。

3.本试卷主要考试内容:高考全部内容。

4.可能用到的相对原子质量:H 1 C 12 N 14 O 16 Al 27 S 32 Zn 65 Ba 137第Ⅰ卷(选择题共42分)一、选择题(本题包括14小题,每小题3分,共42分。

每小题只有一个选项符合题意) 1. 化学与生产、生活、科技密切相关。

下列说法错误的是( ) A. 高温或“84”消毒液可使新型冠状病毒蛋白质变性B. “时气错逆,霾雾蔽日”中的雾所形成的气溶胶能产生丁达尔效应C. 北斗卫星导航的“中国芯”,其主要成分为SiO 2D. 甲骨文是中华文化的瑰宝,甲骨中含有钙盐 【★答案★】C 【解析】【详解】A.84消毒液的主要成份是次氯酸钠,次氯酸钠具有强氧化性,高温和强氧化剂都能使蛋白质变性,故A 正确;B.雾所形成的气溶胶属于胶体,具有胶体的性质,能产生丁达尔效应,故B 正确;C.芯片的主要成分为单质硅,不是二氧化硅,故C 错误;D.甲骨坚硬的原因是甲骨中含有钙盐,故D 正确; 故选C 。

2. 溴与氢气在一定条件下反应的热化学方程式如下:①()()()22Br g H g 2HBr g +11kJ mol H Q -∆=-⋅;②()()()22Br l H g 2HBr g +21kJ mol H Q -∆=-⋅,(1Q 、2Q 均大于零)下列说法正确的是( )A. 12Q Q <B. 1 mol HBr(g)具有的能量大于1 mol HBr(l)具有的能量C. 相同条件下,()()()22Cl g H g 2HCl g + 11kJ mol H Q -∆>-⋅D. 向1 mol Br 2(g)中加入1 mol H 2(g)在该条件下充分反应,放出1Q kJ 热量 【★答案★】B 【解析】【详解】A .由于溴蒸汽变成液溴的过程放热,将方程式①和②相减得到Br2(g)Br 2(l)ΔH =Q 2-Q 1<0,则Q 1>Q 2,A 错误;B .物质由气态变为液态要放出热量,所以1molHBr(g)具有的能量大于1molHBr(l)具有的能量,B 正确;C .因为Cl 2比Br 2活泼,Cl-Cl 键键能较大,放出的热量更多,因放出热量ΔH 为负值,则Cl 2与H 2反应生成HCl 的反应热ΔH <-Q 1,C 错误;D .由于溴和氢气的反应为可逆反应,故1mol 溴和1mol 氢气完全反应生成的溴化氢的量小于2mol ,故放出的热量小于Q 1kJ ,D 错误; 故选B 。

2018-2019学年山西省高二下学期期中数学(文)试题(解析版)

2018-2019学年山西省高二下学期期中数学(文)试题(解析版)
【详解】
证明:(1)记 为等差数列 前 项中奇数项的和,
为等差数列 前 项中偶数项的和,
由等差数列的前 项和公式可得 ,

.
命题成立.
(2)解:类比猜想可得:各项均为正数的等比数列 的前 项中奇数项的积与偶数项的积的比为 .
证明:记各项均为正数的等比数列 的前 项中奇数项的积为 ,
偶数项的积为 ,
,即 ,
(1)请评出第三次数学对抗赛的优胜小组,并求出这40位学生完成第三次数学解题对抗赛所需时间的中位数 ;
(2)对于(1)中的中位数 ,根据这40位学生完成第三次数学对抗赛所需时间超过 和不超过 的人数,完成下面的列联表,并判断能否有 的把握认为甲、乙两个小组在此次的数学对抗赛中的成绩有差异?
超过
不超过
【解析】将 化简即可得出答案
【详解】

所对应的向量坐标为 .
故选:B
【点睛】
本题考查的是复数的计算及其几何意义,较简单.
4.下列说法正确的是()
A.流程图可以直观、明确地表示动态过程从开始到结束的全部步骤
B.结构图通常用来描述一个过程性的活动
C.流程图的基本要素之间一般为概念上的从属关系或逻辑上的先后关系
其中叙述正确的个数为()
A.1B.2C.3D.4
【答案】B
【解析】由独立性检验常用等髙条形图表示列联表数据的频率特征知①正确,由独立性检验依据的是小概率原理知②正确,由独立性检验的结果是不完全正确的知③不正确,④中应是 越大, 与 有关系的把握程度就越大.
【详解】
因为独立性检验常用等髙条形图表示列联表数据的频率特征,故①正确;
【详解】
推理是人们思维活动的过程,是根据一个或几个已知的判断来确定

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一下学期期末数学试卷 (解析版)

2019-2020学年山西省太原市高一第二学期期末数学试卷一、选择题(共12小题).1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.162.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣14.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.15.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±47.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.29.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣211.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为km.15.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.参考答案一、选择题:本题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将其字母标号填入下表相应位置.1.在等差数列{a n}中,a1=1,d=2,则a4=()A.5B.7C.8D.16【分析】由已知直接利用等差数列的通项公式求解.解:在等差数列{a n}中,由a1=1,d=2,得a4=a1+3d=1+3×2=7.故选:B.2.不等式x(x﹣1)>0的解集是()A.(﹣∞,0)B.(0,1)C.(1,+∞)D.(﹣∞,0)∪(1,+∞)【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选:D.3.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为()A.2B.﹣2C.1D.﹣1【分析】根据条件便有,进行向量数量积的坐标运算便可得出k的值.解:∵;∴;∴k=2.故选:A.4.在△ABC中,A=30°,b=,c=1,则a=()A.2B.C.D.1【分析】利用余弦定理即可求出a的值.解:因为A=30°,b=,c=1,∴a2=b2+c2﹣2bc cos A==1,故a=1.故选:D.5.已知a<b,则下列结论正确的是()A.a2<b2B.<1C.>D.2a<2b【分析】通过举例利用排除法可得ABC不正确,即可得出结论.解:由a<b,取a=﹣2,b=﹣1,可知A,B不正确;取a=﹣1,b=1,可得C不正确.故选:D.6.在等比数列{a n}中,若a1a3a5=8,则a2a4=()A.2B.4C.±2D.±4【分析】根据等比数列的性质知:a1a3a5=(a2q)3=8,a2q=a3=2,a2a4=a32=4.解:设等比数列{a n}的公比为q,则a1a3a5=•a2q•a2q3=(a2q)3=8,则a2q=a3=2.又a2a4=•a3q=a32=22=4.故选:B.7.cos45°cos15°+sin15°sin45°的值为()A.B.C.D.【分析】直接利用两角差的余弦公式,求得所给式子的值.解:cos45°cos15°+sin15°sin45°=(cos45°﹣15°)=cos30°=,故选:B.8.若||=1,||=2,且,的夹角为120°,则|+|的值()A.1B.C.D.2【分析】根据向量的平方等于模的平方,利用数量积定义和数量积的性质即可得出.解:∵||=1,||=2,且,的夹角为120°,∴=1,=4,•=﹣1,∴|+|2=(+)2=+﹣2•=1+4﹣2=3,故|+|=,故选:B.9.在数列{a n}中,a1=0,a n+1=(n∈N*),则a2020=()A.0B.C.﹣D.【分析】利用数列{a n}的通项公式求出数列{a n}的前4项,得到{a n}是周期为3的周期数列,从而a2020=a1,由此能求出结果.解:在数列{a n}中,a1=0,a n+1=(n∈N*),∴=,=﹣,=0,∴{a n}是周期为3的周期数列,∵2020=673×3+1,∴a2020=a1=0.故选:A.10.已知x>0,y>0,且x+2y=1,则+的最小值是()A.+1B.3+2C.﹣1D.3﹣2【分析】利用“乘1法”与基本不等式的性质即可得出.解:因为x>0,y>0,且x+2y=1,则+=(+)(x+2y)=3+,当且仅当且x+2y=1即y==,x=时取等号,故选:B.11.若不等式ax2+2ax﹣1<0对于一切实数x都恒成立,则实数a的取值范围是()A.(﹣∞,﹣1]B.(﹣1,0)C.(﹣1,0]D.[0,+∞)【分析】由已知对a进行分类讨论,然后结合二次不等式的性质可求.解:当a=0时,﹣1<0恒成立,当a≠0时,可得,解可得,﹣1<a<0,综上可得,﹣1<a≤0,故选:C.12.已知等差数列{a n}满足a1>0,a2019+a2020>0,a2019•a2020<0.其前n项和为S n,则使S n>0成立时n最大值为()A.2020B.2019C.4040D.4038【分析】差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,可得a2019>0,a2020<0.再利用求和公式及其性质即可得出..解:∵等差数列{a n}的首项a1>0,a2019+a2020>0,a2019•a2020<0,∴a2019>0,a2020<0.于是S4038==>0,S4039==4039•a2020<0.∴使S n>0成立的最大正整数n是4038.故选:D.二、填空题:本大题共4个小题,每个小题3分,共12分,把答案填在横线上.13.已知扇形的半径为1,圆心角为45°,则该扇形的弧长为.【分析】根据弧长公式进行计算即可.解:由题意得,扇形的半径为8cm,圆心角为45°,故此扇形的弧长为:=.故答案为:.14.一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东60°处;行驶4h后,船到达C处,看到这个灯塔在北偏东15°处.这时船与灯塔的距离为30 km.【分析】根据题意画出相应的图形,求出∠B与∠BAC的度数,再由AC的长,利用正弦定理即可求出BC的长.解:根据题意画出图形,如图所示,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:=,即=,∴BC=30km,则这时船与灯塔的距离为30km.故答案为:3015.已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,则+的值为2.【分析】由题意可得b2=ac,2x=a+b,2y=b+c,代入要求的式子+,化简求得结果.解:∵已知a,b,c成等比数列,a,x,b成等差数列,b,y,c也成等差数列,可得b2=ac,2x=a+b,2y=b+c,∴+=+===2,故答案为2.16.已知数列{a n}满足a n+1+(﹣1)n a n=2n﹣l(n∈N*),则该数列的前80项和为3240.【分析】由数列递推式判断数列的特征,4项一组,求和后得到一个等差数列,然后求和即可.解:设a1=a,由a n+1+(﹣1)n a n=2n﹣l,得a2=a+1,a3=2﹣a,a4=7﹣a,a5=a,a6=a+9,a7=2﹣a,a8=15﹣a,a9=a,a10=a+17,a11=2﹣a,a12=23﹣a.可知:a1+a2+a3+a4=10,a5+a6+a7+a8=26,a9+a10+a11+a12=42,…10,26,42,…是等差数列,公差为16,∴数列{a n}的前80项和为:20×10+×16=3240.故答案为:3240.三、解答题(共3小题,满分30分)17.已知等差数列{a n}中,a2=3,a4=7.等比数列{b n}满足b1=a1,b4=a14.(1)求数列{a n}通项公式a n;(2)求数列{b n}的前n项和S n.【分析】(1)设等差数列{a n}的公差为d,运用等差数列的通项公式,解方程可得首项和公差,进而得到所求通项公式;(2)设等比数列{b n}的公比为q,运用等比数列的通项公式,解方程可得公比,进而得到所求和.解:(1)设等差数列{a n}的公差为d,由a2=3,a4=7,可得a1+d=3,a1+3d=7,解得a1=1,d=2,则a n=1+2(n﹣1)=2n﹣1,n∈N*;(2)设等比数列{b n}的公比为q,由b1=a1=1,b4=a14=q3=27,解得q=3,数列{b n}的前n项和S n==(3n﹣1).18.已知sinα=,α∈(,π).(1)求cosα,tanα;(2)求的值.【分析】(1)由题意利用同角三角函数的基本关系,求得结果.(2)由题意利用诱导公式,求得结果.解:(1)∴已知sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα==﹣.(2)==﹣cos2α=﹣.19.已知△ABC中,A=60°,a=6,B=45°.(1)求b;(2)求△ABC的面积.【分析】(1)由已知利用正弦定理可得b的值.(2)由已知利用两角和的正弦函数公式可求sin C的值,进而根据三角形的面积公式即可求解.解:(1)∵△ABC中,A=60°,a=6,B=45°.∴由正弦定理,可得b===2.(2)∵A+B+C=180°,A=60°,B=45°.∴sin C=sin(A+B)=sin A cos B+cos A sin B=+=,∴S△ABC=ab sin C=×=9+3.(请同学们在甲,乙两题中任选一题作答)20.已知向量=(1,cos x),=(1+sin x,1),x∈R,函数f(x)=•﹣1,(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≥1,求x的取值范围.【分析】(1)写出f(x)解析式,根据正弦函数的周期及对称中心可得答案;(2)条件等价于sin(x+)≥,解之即可解:由题可得f(x)==1+sin x+cos x﹣1=sin(x+),(1)由f(x)解析式可得其最小正周期T=2π,令x+=kπ,则x=kπ﹣,k∈Z,即f(x)的对称中心为(kπ﹣,0),k∈Z;(2)由f(x)≥1得sin(x+)≥,解得2kπ+≤x+≤2kπ+π,k∈Z,则2kπ≤x≤2kπ+,k∈Z,所以x的取值范围为[2kπ,2kπ+](k∈Z).选做题21.已知向量=(1,cos2x),=(1+sin2x,1),x∈R,函数f(x)=•.(1)求函数f(x)的最小正周期和对称中心;(2)若f(x)≤2,求x的取值范围.【分析】(1)根据平面向量数量积的运算得到f(x)解析式,结合正弦函数性质即可得到答案;(2)由f(x)≤2得到sin(2x+)≤,解之即可解:由题得f(x)==1+sin2x+cos2x=1+sin(2x+)(1)则函数f(x)的最小正周期为T==π,令2x+=kπ,解得x=(k∈Z),即函数的对称中心为(,1)(k∈Z);(2)当f(x)≤2时,即1+sin(2x+)≤2,所以sin(2x+)≤,则﹣+2kπ≤2x+≤+2kπ,解得﹣+kπ≤x≤kπ(k∈Z),即x的取值范围是[﹣+kπ,kπ](k∈Z)(请同学们在甲、乙两题中任选一题作答)22.已知数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).(1)证明:{}为等差数列;(2)设b n=(n∈N*),求数列{b n}的前n项和S n.【分析】(1)直接利用定义的应用求出结果.(2)利用(1)的应用求出数列的通项公式,进一步利用裂项相消法在数列求和中的应用求出结果.【解答】证明:(1)数列{a n}满足a1=3,(n+2)a n+1=(n+3)a n+n2+5n+6(n∈N*).整理得:(常数),所以数列{}是以为首项,1为公差的等差数列.解:(2)由(1)得:,解得:a n=n(n+2).所以.所以:==选做题23.已知数列{a n}满足a1=5,a n+1=2a n+2n+1﹣1(n∈N*),b n=(n∈N*).(1)是否存在实数λ,使得{b n}为等差数列?若存在,求出λ的值;若不存在,请说明理由.(2)利用(1)的结论,求数列{a n}的前n项和S n.【分析】(1)由a n+1=2a n+2n+1﹣1,得,然后利用累加法求得数列{a n}的通项公式,再由等差数列的定义求使{b n}为等差数列的λ值;(2)由(1)知,,令{(n+1)•2n}的前n项和为T n,利用错位相减法求得T n,进一步求得数列{a n}的前n项和S n.解:由a n+1=2a n+2n+1﹣1,得,∴,得,,,…(n≥2).累加得:==.∴(n≥2).a1=5适合上式,∴.则b n==.=.若{b n}为等差数列,则λ﹣1=0,即λ=1.故存在实数λ=1,使得{b n}为等差数列;(2)由(1)知,.令{(n+1)•2n}的前n项和为T n,则,.∴=,得.∴数列{a n}的前n项和S n=n•2n+1+n.。

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析

2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。

长治第二中学校高二下学期第二次月考数学(文)试卷含答案

长治第二中学校高二下学期第二次月考数学(文)试卷含答案

2018—2019学年第二学期高二第二次月考数学试题(文科)命题人:武贤发 审题人:王宏伟【满分150分,考试时间为120分钟】一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={1,2,3,4},若A ={1,3},B ={3},则(∁U A )∩(∁U B )等于( ) A .{1,2} B .{1,4}C .{2,3}D .{2,4}2.在复平面内,复数z 1和z 2对应的点分别是A (2,1)和B (0,1),则z 1z 2等于( )A .-1-2iB .-1+2iC .1-2iD .1+2i3. “p ∧q 为假”是“p ∨q 为假”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 4.已知a =4.09.1,b =9.1log 4.0,c =9.14.0,则( ) A .a >b >cB .b >c >aC .a >c >bD .c >a >b5.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是( ) A .y =1xB .y =|x |-1C .y =lg xD .y =x)21(6.某大型超市开业天数x 与每天的销售额y 的情况如下表所示:根据上表提供的数据,求得y 关于x 的线性回归方程为y =9.5467.0 x ,由于表中有一个数据模糊看不清,请你推断出该数据的值为( )A .67B .68C .3.68D .717.如图是一个程序框图,若输入n 的值是13,输出S 的值是46,则a 的取值范围是( ) A .9≤a <10B .9<a ≤10C .10<a ≤11D .8<a ≤98.函数f (x )=)1(1-+x x e x e (其中e 为自然对数的底数)的图象大致为()9.已知f (x )为定义在R 上周期为2的奇函数,当-1≤x <0时,f (x )=x (ax +1),若1)25(-=f ,则a 等于( ) A .6B .4C .-1425D .-610.已知函数f (x )=320192019+--x x ,则关于x 的不等式f (1-2x )+f (x )>6的解集为( )A .(1,2)B .(1,4)C .(1,+∞)D .(-∞,1)11.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,1,12,则此三棱锥外接球的表面积为()A .174πB .214πC .4πD .5π12.设f (x )=⎪⎩⎪⎨⎧>++≤-0,10,)(2x a x x x a x ,若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]二.填空题(本大题共4小题,每小题5分,共20分。

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科) 含解析

2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。

山西省名校2024-2025学年高二上学期10月联合考试数学试卷(含解析)

山西省名校2024-2025学年高二上学期10月联合考试数学试卷(含解析)

2024—2025学年山西名校十月联合考试高二数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册、必修第二册、选择性必修第一册第一章至第二章2.4.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量,.若,则( )A.4B. C.8D.2,将函数的图象向左平移个单位长度后得到函数的图象,则( )A. B. C. D.3,若直线:与直线:垂直,且直线:与直线:垂直,则( )A.1B. C.2D.4.若点在圆:的外部,则的取值范围为( )A. B.C. D.5.在山西的某个旅游景点内有刀削面、油炸糕、糖火烧、炕馍、莜面这5种传统小吃.某游客从中随机选择3种品尝,则该游客选择了油炸糕和莜面品尝的概率为( )A.B.C.D.6.我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵中,,,,,分别是所在棱的中点,则下列3个直观图中满足的有( )()1,a m = ()2,8b m =-//a b m =4-8-()sin 9f x x =19()g x ()g x =()sin 91x +1sin 981x ⎛⎫+⎪⎝⎭1sin 99x ⎛⎫+⎪⎝⎭πsin 99x ⎛⎫+⎪⎝⎭1l 320ax y -+=2l 330ax y ++=3l 240a x y -+=4l ()20x a y ++=a =1-2-()2,2P C 2224380x y ax y a +++++=a 24,17⎛⎫-- ⎪⎝⎭()24,4,7⎛⎫-∞--+∞ ⎪⎝⎭()1,+∞()24,14,7⎛⎫--+∞ ⎪⎝⎭353102513111ABC A B C -π2ABC ∠=1AB BC AA ==D E F BF DE ⊥A.0个B.1个C.2个D.3个7.在四面体中,为的外心,底面,,,,则四面体外接球的表面积为( )A.B. C.D.8.已知,直线:,过点作的垂线,垂足为,则点到轴的距离的最小值为( )A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得分分,有选错的得0分.9.已知集合,,,则()A. B. C. D.10.已知一组数据为1,,,3,4,,1,1,3,2,其中,则( )A.这组数据的中位数不可能为3B.当这组数据的众数为1时,C.当时,这组数据的方差为1.25D.当这组数据的平均数为2.2时,的最小值为11.已知四棱柱的底面是边长为6的菱形,平面,,,点满足,其中,则( )A.当为底面的中心时,B.当时,C.当时,长度的最大值为6ABCD E ABC △DE ⊥ABC 1AC =DE =1sin 4ABC ∠=ABCD 49π318π50π320π()1,3A -l ()()21210m x m y m +-++-=A l B B x 444+8-1,2M x x m m ⎧⎫==+∈⎨⎬⎩⎭Z 32,2N x x n n ⎧⎫==-∈⎨⎬⎩⎭Z ,2p P x x p ⎧⎫==∈⎨⎬⎩⎭Z N P⊆P M⊆N M⊆M N⊆x y x 05x y <<≤3x ≠340x y -+-=24x y +1671111ABCD A B C D -1AA ⊥ABCD 13AA =π3DAB ∠=P 1AP AB AD t AA λμ=++ [],,0,1t λμ∈P 1111A B C D 53t λμ++=1t λμ++=AP 1t λμ++=APD.当时,为定值三、填空题:本题共3小题,每小题5分,共15分.把答案填在答题卡中的横线上.12.若复数满足,则的虚部为______,______.13.已知在正四棱台中,,,,则异面直线与所成角的余弦值为______.14.已知函数.若不等式对任意恒成立,则的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,角,,的对边分别为,,,已知.(1)若,求;(2)若,,求的面积.16.(15分)如图,在正六棱柱中,为的中点.设,,.(1)用,,表示向量,;(2)若,求的值.17.(15分)已知圆经过点,,.(1)求圆的标准方程;(2)若一条光线从点射向直线,经该直线反射后经过圆上的点,求该光线从点到点的路线长的最小值.18.(17分)如图,已知,,,四点均在直径为6的球的球面上,,,,221t λμλμ++==1A Pz ()2i 10z +⋅=z z =1111ABCD A B C D -()0,4,0AB = ()13,1,1CB =- ()112,0,0A D =-1DB 11A D ())3311log 4f x x x =-++()()()42320x x f f m f -+⋅+-<x ∈R m ABC △A B C a b c 2cos c b a B +=π2A =B a =1b =ABC △111111ABCDEF A B CDEF -M 1FF AB a = AF b = 1AA c =a b c DM 1BE2a c ==1DM BE ⋅ M ()1,3A ()2,4B ()3,3C M ()0,1D 40x y --=M E D E A O C P B 6AP =0AO OC ⋅= AH HO =,,直线与平面所成的角为,点在线段上运动.(1)证明:平面.(2)设平面与平面的夹角为,求的最大值.19.(17分)过点作斜率分别为,的直线,,若(),则称直线,是定积直线或定积直线.(1)已知直线:(),直线:,试问是否存在点,使得直线,是定积直线?请说明理由.(2)在中,为坐标原点,点与点均在第一象限,且点在二次函数的图象上.若直线与直线是定积直线,直线与直线是定积直线,直线与直线是定积直线,求点的坐标.(3)已知直线与是定积直线,设点到直线,的距离分别为,,求的取值范围.OK KC = PC AC =PO AOC π3D PC CP ⊥AOC BOC KHD θcos θ()00,A x y 1k 2k 1l 2l 12k k μ=0μ≠1l 2l ()A K μ()()00,xy K μa y kx =0k ≠b 13y x k=-A a b ()A K μOPM △O P M ()00,M x y 23y x =-OP OM ()()0,01K OP PM ()2P K -OM PM ()00,202x y K x ⎛⎫- ⎪⎝⎭P m n ()()2,44K --()0,0O m n 1d 2d 12d d2024—2025学年山西名校十月联合考试高二数学参考答案1. D 根据题意可得,解得.2. A 易得.3. B 由得.4. D 根据题意可得解得或.5. B 将刀削面、油炸糕、糖火烧、炕馍、莜面这5种传统小吃分别设为,,,,,根据题意可得该游客从中随机选择3种品尝的所有情况有,,,,,,,,,,共10种,其中该游客选择了油炸糕和莜面品尝的情况有3种,故所求概率为.6. C 设,以,,所在直线分别为轴,轴,轴建立空间直角坐标系(图略),则.在图①中,,,,则,,所以,满足;在图②中,,,,则,,所以,满足;在图③中,,,,则,,所以,不满足.7. C 设四面体的外接球为球,其半径为,外接圆的半径为.由正弦定理得,则.由,,得,解得,所以球的表面积为.82m m -=8m =-()()11sin 9sin 9199g x f x x x ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭()22330,20,a a a ⎧-=⎪⎨-+=⎪⎩1a =-()24448380,4164380,a a a a +++++>⎧⎨+-+>⎩2417a -<<-4a >A B C D E ()A,B,C ()A,B,D ()A,B,E ()A,C,D ()A,C,E ()A,D,E ()B,C,D ()B,C,E ()B,D,E ()C,D,E 3102AB =BA BC 1BB x y z ()0,0,0B ()1,0,2D ()0,1,0E ()1,1,0F ()1,1,0BF = ()1,1,2DE =--110BF DE ⋅=-+=BF DE ⊥()1,0,2D ()1,1,0E ()0,2,1F ()0,2,1BF = ()0,1,2DE =-220BF DE ⋅=-= BF DE ⊥()1,0,0D ()1,1,0E ()1,1,2F ()1,1,2BF = ()0,1,0DE =10BF DE ⋅=≠BF DE ⊥ABCD O r ABC △R 24sin ACR ABC==∠2CE R ==OC OD =OE CE ⊥)2222r r =+r =O 250π43r π=8. B 由,得.令解得即过定点,所以点在以为直径的圆上,其中圆心.因为圆心到轴的距离为4,所以点到轴的距离的最小值为.9. AC 由题意得,,所以,A ,C 正确,B,D 错误.10. BCD 当时,这组数据的中位数为3,A 错误.当这组数据的众数为1时,若,则这组数据的众数为3,这与这组数据的众数为1矛盾,所以,B 正确.当时,,,,,C 正确.当这组数据的平均数为2.2时,,则,当且仅当,即时,等号成立,D 正确.11. BCD 连接,.设与交于点,则.当为底面的中心时,.()()21210m x m y m +-++-=()2210m x y x y -++--=20,210,x y x y -+=⎧⎨--=⎩3,5,x y =⎧⎨=⎩l ()3,5C B AC M ()1,4M =M x B x 4-21,2m M x x m ⎧+⎫==∈⎨⎬⎩⎭Z ()4114341,,222n n k N x x n x x k ⎧⎫-+-⎧+⎫⎪⎪===∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z 221,2k x x k ⎧⨯+⎫==∈⎨⎬⎩⎭Z N M P ÞÞ3x ≥3x =3x ≠340x y -+-=3x =4y = 2.5x =()222150.55 1.5 1.2510s =⨯⨯+⨯=2 2.210157x y +=⨯-=()(241241281162887777y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭28y x x y =722y x ==11A C 11B D 11A C 11B D E 1111111112222A E AB A D AB AD =+=+P 1111A B C D 1111122AP AA A E AB AD AA =+=++因为,所以,,所以,A 错误.当时,点在平面内,则长度的最大值为6,长度的最小值即到平面的距离.设到平面的距离为,则,解得,B ,C 均正确.因为,所以在底面上,且,则,得,D 正确.12.;依题意得,则的虚部为,.依题意得,设异面直线与所成的角为,因为,所以14. 因为的定义域为,1AP AB AD t AA λμ=++ 12λμ==1t =2t λμ++=1t λμ++=P 1A BD AP AP A 1A BD A 1A BD h 11π1166sin 3632332h ⨯⨯⨯⨯⨯=⨯⨯h =221t λμλμ++==P 1111A B C D 1A P AB AD λμ=+()2222222123636A P AB AD AB AD λμλμλμλμ=++⋅=++= 16A P =2-()()()102i 102010i42i 2i 2i 2i 5z --====-++-z 2-z ==()1113,3,1DB DC CB AB CB =+=+= 1DB 11A D θπ0,2θ⎛⎤∈ ⎥⎝⎦111111111cos cos ,DB A D DB A D DB A D θ⋅====(),4-∞()f x R ())3311log 4f x x x-=--+-,所以为奇函数.因为函数在上单调递增,函数在上单调递增,所以在上单调递增.因为为奇函数,所以在上单调递增,因为,所以不等式即为,则.因为,所以,即.因为,当且仅当,即时,等号成立,所以,即的取值范围是.15.解:(1)因为,所以.因为,所以,则或(舍去),所以.因为,所以.(2)由(1)得.因为,解得所以,,,所以.故的面积为.16.解:(1).)()3331311log 1log 44x x x f x =--+=-+-=-()f x 3114y x =-[)0,+∞)3log y x =+[)0,+∞()f x [)0,+∞()f x ()f x R ()()3232f f --=()()()42320xx ff m f -+⋅+-<()()()4232x x f f m f -+⋅<()4232x x f m -+⋅<()34311log 932f =-+=424xxm -+⋅<444222x x xx m +<=+4242x x +≥=422xx =1x =4m <m (),4-∞2cos c b a B +=sin sin 2sin cos C B A B +=()sin sin sin cos cos sin C A B A B A B =+=+()sin sin cos cos sin sin B A B A B A B =-=-B A B =-πB A B +-=2A B =π2A =π4B =2A B =sin sin a bA B=1sin B =cos B =π4B =π2A =π4C =1c b ==ABC △111122⨯⨯=()111222DM DE EF FM AB AB AF AA a b c =++=--++=--+ ()111122BE BA AF FE EE AB AF AB AF AA AF AA a c=+++=-++++=+=+(2)由题意易得,,则.17.解:(1)设圆的标准方程为().代入,,的坐标,得解得所以圆的标准方程为.(2)设点关于直线对称的点的坐标为,则解得即.由(1)可得圆的圆心为,半径,则该光线从点到点的路线长的最小值为.18.(1)证明:由题意可知为球的直径,所以,.又因为,所以,,所以平面,平面,所以,,所以平面.(2)解:如图,以为坐标原点,,所在直线分别为轴,轴建立空间直角坐标系.2π1cos 22232a b a b ⎛⎫⋅=⨯=⨯⨯-=- ⎪⎝⎭0a c ⋅= ()11222DM BE a b c b c⎛⎫⋅=--+⋅+ ⎪⎝⎭22221142242222a b a c b b c b c c a b a c b c=-⋅-⋅--⋅+⋅+=-⋅-⋅-+ ()2214222222=-⨯--⨯+⨯=M ()()222x a y b r -+-=0r >()1,3A ()2,4B ()3,3C ()()()()()()22222222213,24,33,a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩2,3,1,a b r =⎧⎪=⎨⎪=⎩M ()()22231x y -+-=()0,1D 40x y --=D '(),m n 111,0140,22n m m n -⎧⨯=-⎪⎪-⎨+⎪--=⎪⎩5,4,m n =⎧⎨=-⎩()5,4D '-M ()2,3M 1r =D E 11D M r '-=-=-AP B AC CP ⊥AO OP ⊥0AO OC ⋅=AO OC ⊥OC OP O = AO ⊥POC CP ⊂POC AO CP ⊥AO AC A = CP ⊥AOC O OA OC x y根据题意可得,,,则,所以,,,,,,则,,,设平面的法向量为,则取.设(),则.设平面的法向量为,则取.令,,,6AP =PC AC ==π3POC ∠=OC ==AO ==()A ()C )HK ⎛⎫⎪ ⎪⎝⎭(P B OB = ()OC = HK ⎛⎫= ⎪ ⎪⎝⎭BOC ()111,,m x y z =11110,0,m OB y z m OC ⎧⋅=+=⎪⎨⎪⋅==⎩ (m = ()CD CP λ==01λ≤≤KD KC CD ⎛⎫=+= ⎪ ⎪⎝⎭KHD ()222,,n x y z =22220,0,n HK y n KD y z ⎧⋅=+=⎪⎪⎨⎪⋅=+=⎪⎩ ),,1n =- cos cos ,m n m n m n θ⋅====31t λ=+[]1,4t ∈11,14t ⎡⎤∈⎢⎥⎣⎦则,当,即,时,.19.解:(1)由题意可得,由得故存在点,使得,是定积直线,且.(2)设直线的斜率为(),则直线的斜率为,直线的斜率为.依题意得,得,即或.直线的方程为,因为点在直线上,所以.因为点在第一象限,所以,解得或(舍去),,,所以直线的方程为,直线的方程为,由得即点的坐标为.(3)设直线:,直线:,其中,则,,当且仅当,即时,等号成立,所以,即,故的取值范围为.cos θ===123t =32t =16λ=cos θ1133k k ⎛⎫⋅-=- ⎪⎝⎭()0,1,3y kx k y x k ⎧=≠⎪⎨=-⎪⎩0,0,x y =⎧⎨=⎩()0,0A a b ()A K μ13μ=-OM λ0λ≠OP 1λPM 2λ-()2022x λλ⋅-=-2201x λ=01x λ=1-OM y x λ=()200,3M x x -OM 2003x x λ-=M 20031x x λ-==02x =2-12λ=()2,1M OP 12y x x λ==PM ()2213y x x λ=--+=-+2,3,y x y x =⎧⎨=-+⎩1,2,x y =⎧⎨=⎩P ()1,2m ()42y t x -=+n ()442y x t -=-+0t ≠12d d ===2216171725t t ++≥=2216t t=24t =08≤<1208d d ≤<12d d [)0,8。

山西省太原市2018-2019学年高二上学期期中考试数学试题(解析版)

山西省太原市2018-2019学年高二上学期期中考试数学试题(解析版)

山西省太原市2018-2019学年高二上学期期中考试数学试卷一、选择题(本大题共12小题,每小题3分,共36分。

)1.在空间直角坐标系中,点关于平面对称的点的坐标为()A. B. C. D.【答案】A【解析】【分析】根据关于yOz平面对称,x值变为相反数,其它不变这一结论直接写结论即可.【详解】在空间直角坐标系Oxyz中,点A(1,2,3)关于yOz平面对称的点的坐标为(﹣1,2,3).故选:A.【点睛】本题考查空间向量的坐标的概念,考查空间点的对称点的坐标的求法,属于基础题.2.由下列主体建筑物抽象得出的空间几何体中为旋转体的是()A. B.C. D.【答案】B【解析】【分析】利用旋转体的定义、性质直接求解.【详解】在A中,主体建筑物抽象得出的空间几何体不为旋转体,故A错误;在B中,主体建筑物抽象得出的空间几何体为旋转体,故B正确;在C中,主体建筑物抽象得出的空间几何体不为旋转体,故C错误;在D中,主体建筑物抽象得出的空间几何体不为旋转体,故D错误.故选:B.【点睛】本题考查旋转体的判断,考查旋转体的定义及性质等基础知识,考查运算求解能力,是基础题.3.已知,则直线AB的倾斜角为()A. 0°B. 90°C. 180°D. 不存在【答案】B【解析】【分析】由直线经过A(0,1),B(0,﹣1)两点,直线AB的斜率不存在,从而能求出直线AB的倾斜角.【详解】∵直线经过A(0,1),B(0,﹣1)两点,∴直线AB的斜率不存在,∴直线AB的倾斜角90°.故选:B.【点睛】本题考查直线的倾斜角的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.4.下列四面体中,直线EF与MN可能平行的是()A. B.C. D.【答案】C【解析】【分析】利用异面直线判定定理可确定A,B错误;利用线面平行的性质定理和过直线外一点有且仅有一条直线与已知直线平行,可判定D错误.【详解】根据过平面内一点和平面外一点的直线,与平面内不过该点的直线异面,可判定A,B中EF,MN异面;D中,若EF∥MN,则过EF的平面与底面相交,EF就跟交线平行,则过点N有两条直线与EF平行,不可能;故选:C.【点睛】此题考查了异面直线的判定方法,线面平行的性质等,难度不大.5.已知点在直线上,若,则直线的斜率为()A. 2B. ﹣2C.D.【答案】A【解析】【分析】由点A(2,3)在直线11:2x+ay﹣1=0上,求出直线l1:2x﹣y﹣1=0,再由l2∥l1,能示出直线l2的斜率.【详解】∵点A(2,3)在直线11:2x+ay﹣1=0上,∴2×2+3a﹣1=0,解得a=﹣1,∴直线l1:2x﹣y﹣1=0,∵l2∥l1,∴直线l2的斜率k=2.故选:A.【点睛】本题考查直线的斜率的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题.6.设为三条不同的直线,为三个不同的平面,则下列结论成立的是()A. 若且,则B. 若且,则C. 若且,则D. 若且,则【答案】C【解析】【分析】在A中,a与c相交、平行或异面;在B中,α与γ相交或平行;在C中,由线面垂直的判定定理得b⊥α;在D中,a与β相交、平行或a⊂β.【详解】由a,b,c为三条不同的直线,α,β,γ为三个不同的平面,知:在A中,若a⊥b且b⊥c,则a与c相交、平行或异面,故A错误;在B中,若α⊥β且β⊥γ,则α与γ相交或平行,故B错误;在C中,若a⊥α且a∥b,则由线面垂直的判定定理得b⊥α,故C正确;在D中,若α⊥β且a∥α,则a与β相交、平行或a⊂β,故D错误.故选:C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.7.已知圆C的一条直径的端点坐标分别是和,则圆C的方程是()A. B.C. D.【答案】C【解析】【分析】利用中点公式求得圆心坐标,再求出半径,可得圆C的方程.【详解】圆C的一条直径的端点坐标分别是(4,1)和(﹣2,3),故利用中点公式求得圆心为(1,2),半径为,故圆的方程为(x﹣1)2+(y﹣2)2=10,故选:C.【点睛】本题主要考查求圆的方程的方法,关键是求出圆心和半径,属于基础题.8.一个长方体由同一顶点出发的三条棱的长度分别为2,2,3,则其外接球的表面积为()A. B. C. D.【答案】B【解析】【分析】利用长方体的外接圆直径为体对角线,容易得解.【详解】长方体的外接球直径即为长方体的体对角线,由题意,体对角线长为:,外接球的半径R=,=17π,故选:B.【点睛】此题考查了长方体的外接球面积,属容易题.一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.9.已知满足不等式组,则的最大值为()A. 12B. 16C. 18D. 20【答案】B【解析】【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【详解】作出x,y满足不等式组对应的平面区域,由z=5x+2y,得y=x+z,平移直线y=x+z,由图象可知当直线y=x+z,经过点B时,直线y=x+z的截距最大,此时z最大.由,得A(2,3),此时z的最大值为z=5×2+2×3=16,故选:B.【点睛】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

山西省2023-2024学年高二上学期10月联合考试 数学含解析

山西省2023-2024学年高二上学期10月联合考试 数学含解析

2023~2024学年山西省高二10月联合考试数学(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.本试卷主要考试内容:人教A 版选择性必修第一册第一章至第二章2.2。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系中,点()7,9,5A 关于xOy 平面对称的点的坐标为A.()7,9,5- B.()7,9,5- C.()7,9,5- D.()7,9,5---2.直线l 320y -+=的倾斜角为A.150︒B.120︒C.60︒D.30︒3.已知向量(),2,3a x = ,()3,4,3b =-- ,若()a b a +⊥,则x =A.4- B.4C.4-或1D.4或1-4.已知点()1,4A ,()3,2B -,则经过线段AB 的中点,且与直线290x y -+=平行的直线的方程为A.280x y --= B.20x y -=C.2100x y +-= D.250x y +-=5.若直线l :0Ax By C ++=的倾斜角为α,则“0A B ⋅<”是“α不是钝角”的A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知点()1,2A ,(),B a b ,(),C c d ,若A 是直线1l :10ax by ++=和2l :10cx dy ++=的公共点,则直线BC 的方程为A.210x y +-= B.210x y ++=C.210x y +-= D.210x y ++=7.如图,将菱形纸片ABCD 沿对角线AC 折成直二面角,E ,F 分别为AD ,BC 的中点,O 是AC 的中点,23ABC π∠=,则折后平面OEF 与平面ABC 的夹角的余弦值为A.31111 B.1111 C.31313D.2178.正方体1111ABCD A B C D -的棱长为2,P 是空间内的动点,且1PB PD += ,则AP PB ⋅的最小值为A.1-B.1C.4-+D.4--二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为矩形,E ,F 分别为PB ,PD 的中点,则A.BF 在AD 方向上的投影向是为12ADB.EF 在AD 方向上的投影向还为ADC.CE 在AB 方向上的投影向是为12AB-D.CF 在AB方向上的投影向是为AB- 10.经过点()6,3P -,且在两坐标轴上的截距相等的直线的方程可能为A.20x y += B.90x y --=C.30x y +-= D.2150x y --=11.直线1l :y ax b =+与2l :y bx a =+在同一平面直角坐标系内的位置可能是A. B. C. D.12.已知正方体1111ABCD A B C D-的棱长为2,P是正方体1111ABCD A B C D-所在空间内一点,下列结论正确的是A.若()1014AP AB ADλλ=+,则1B P PD+B.若()()101AP AB ADλλλ=+-,则平面1PAD截正方体1111ABCD A B C D-所得截面积的最大值为C.若112AP AD=,则三棱锥P ABC-的表面积为2D.若()101AP ADλλ=,则直线1C D与BP所成角的最小值为45︒三、填空题:本题共4小题,每小题5分,共20分.13.已知点()3,2,3A,()1,1,4B,()2,0,1C,则AB AC⋅=______.14.已知直线l:310x y+-=的倾斜角为α,则cosα=______.15.如图,已知二面角A EF D--的平面角大小为3π,四边形ABFE,EDCF均是边长为4的正方形,则BD=______.16.某公园的示意图为如图所示的六边形ABCDEF,其中AB AF⊥,AF BC∥,AB DE∥,BCD AFE∠∠=,且3tan4BCD∠=-,50CD EF==米,80BC DE==米.若计划在该公园内建一个有一条边在AB上的矩形娱乐健身区域,则该娱乐健身区域面积(单位:平方米)的最大值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l :210ax y a -++=经过第一、二、四象限.(1)求a 的取值范围;(2)若直线1l :()37230a x y +-+=与直线l 垂直,求a 的值.18.(12分)《九章算术》中将四个面都为直角三角形的四面体称为鳖臑.如图,在鳖臑P ABC -中,PA ⊥平面PBC ,BC ⊥平面PAB ,D 为PC 的中点,2BE EA =.(1)设PA a = ,PB b = ,BC c = ,用a ,b ,c表示DE ;(2)若1PA PB BC === ,求AC DE ⋅.19.(12分)已知直线l :()()22150a x a y ++-+=.(1)证明无论a 为何值,直线l 经过定点P ,并求出点P 的坐标;(2)若斜率大于0,且经过(1)中点P 的直线与x 轴,y 轴分别交于A ,B 两点,O 为坐标原点,求OAB △面积的最小值.20.(12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,且60BAD ∠=︒,E ,F ,G 分别为11B C ,AC ,1A C 的中点,12AA AB ==.(1)求直线1D F 与EG 所成角的余弦值;(2)求点1D 到平面EFG 的距离.21.(12分)已知ABC △的三个顶点是()1,1A ,()3,3B ,()2,8C .(1)过点B 的直线1l 与边AC 相交于点D ,若BCD △的面积是ABD △面积的3倍,求直线1l 的方程;(2)求BAC ∠的角平分线所在直线2l 的方程.22.(12分)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2AB =,5PA PD ==,E 为BC 的中点.(1)证明:AD PE ⊥.(2)若二面角P AD B --的平面角为23π,G 是线段PC 上的一个动点,求直线DG 与平面PAB 所成角的最大值.2023~2024学年山西省高二10月联合考试数学参考答案1.A 点()7,9,5A 关于xOy 平面对称的点的坐标为()7,9,5-.2.D设l 的倾斜角为α,则tan 3α=.因为0180α︒︒< ,所以30α=︒.3.C 因为()a b a +⊥ ,所以22133170a a b x x +⋅=++-= ,解得4x =-或1.4.B 线段AB 中点的坐标为()2,1,过点()2,1且与直线290x y -+=平行的直线的方程为20x y -=.5.A 若0A B ⋅<,则l 的斜率0AB->,则α不是钝角.若0α=︒或90α=︒,则0A B ⋅=.故“0A B ⋅<”是“α不是钝角”的充分不必要条件.6.B 由点()1,2A 在1l :10ax by ++=上可知,210a b ++=,同理210c d ++=,故点(),B a b 与(),C c d 均满足方程210x y ++=,因此直线BC 的方程为210x y ++=.7.D以O 为原点,OB ,OC ,OD 所在的直线分别为x 轴、y 轴、z 轴,AB 为两个单位长度,建立如图所示的空间直角坐标系,则()0,0,1D,10,,22E ⎛⎫- ⎪ ⎪⎝⎭,1,,022F ⎛⎫ ⎪ ⎪⎝⎭,10,,22OE ⎛⎫=- ⎪ ⎪⎝⎭,1,22OF ⎛⎫= ⎪ ⎪⎝⎭.设平面OEF 的法向量为(),,n x y z = ,则0,0,n OE n OF ⎧⋅=⎪⎨⋅=⎪⎩得10,2210,22y z x y ⎧-+=⎪⎪⎨⎪+=⎪⎩,取1y =,则x =,z =,得平面OEF的一个法向量为(n =,易得平面ABC 的一个法向量为()0,0,1OD =,所以平面OEF 与平面ABC的夹角的余弦值为7n OD n OD⋅= .8.D 取1BD 的中点M ,连接PM (图略),则12PB PD PM +=,则12PB PD PM +==,即PM =,故动点P 的轨迹为以M为球心,.由正方体1111ABCD A B C D -的棱长为2,可知正方体1111ABCD A B C D -即动点P 的轨迹为正方体1111ABCD A B C D -的外接球.取AB 的中点N ,连接PN (图略),则()()()()2221AP PB PN NA PN NB PN NA PN NA NA PN PN ⋅=-+⋅+=-+⋅-=-=- .由题可知,MN =PN,255PN -+则2414PN ----+ 9.ACD 由图可知,BF 在AD 方向上的投影向量为12AD ,EF 在AD 方向上的投影向量为12AD ,CE在AB 方向上的投影向量为12AB -,CF 在AB 方向上的投影向量为AB - .故选ACD.10.AC 若直线在两坐标轴上的截距均为0,则直线的方程为20x y +=,A 正确.若直线在两坐标轴上的截距不为0,可设直线的方程为1x ya a+=,将()6,3P -代入方程得3a =,则直线的方程为30x y +-=,C 正确.11.BC对于A 选项,两条直线的斜率和截距均大于0,且其中一条直线的斜率和截距均大于另一条直线的斜率和截距,不符合题意,A 不正确.对于B 选项,当0ab <时,符合题意,B 正确.对于C 选项,当0,0a b =⎧⎨<⎩或0,a b <⎧⎨=⎩时,符合题意,C 正确.对于D 选项,其中一条直线斜率不存在,不符合题意,D 不正确.12.ABD 对于A 选项,在AB 上取点H (图略),使得14AH AB =,在CD 上取点K ,使得14DK DC = ,则由14AP AB AD λ=+ ,得AP AH AD λ-= ,即HP AD λ=,故P 是线段HK 上一点.将平面11HKC B 沿HK 展开至与平面AHKD 共面,此时113AB AH B H =+=,当1B ,P ,D 三点共线时,1B P PD +A 正确.对于B 选项,由()()101AP AB AD λλλ=+-,可知P 是线段BD 上一点.连接AC 并与BD 交于点Z (图略).当P 与D 重合时,平面1PAD 与平面11ADD A 重合,不符合题意.当P 在线段DZ (不含点D )上时,平面1PAD 截正方体1111ABCD A B C D -所得截面为三角形,且当P 与Z重合时,截面面积最大,最大值为当P 在线段BZ (不含点B ,Z )上时,延长AP 并与BC 交于点W ,作1WR AD ∥并与1CC 交于点R ,则截面为等腰梯形1AWRD ,设BW x =,则1AW D R ==)2WR x =-.梯形1AWRD 的高h =,面积为()(14122x AD WR h -+⋅=<.当P 与B 重合时,截面为矩形11ABC D ,面积为.故平面1PAD 截正方体1111ABCD A B CD -所得截面积的最大值为,B 正确.对于C 选项,因为112AP AD =,所以P 为1AD 的中点,三棱锥P ABC -的表面积为1111222222222⨯⨯+⨯⨯⨯⨯+,C 不正确.对于D 选项,以1A 为坐标原点,建立如图所示的空间直角坐标系,则()12,2,0C ,()0,2,2D ,()2,0,2B ,()0,2,22P λλ-,则()12,0,2C D =- ,()2,2,2BP λλ=--,111cos ,C D BP C D BP C D BP ⋅==因为01λ,所以202,所以直线1C D 与BP 所成角的最小值为45︒,D 正确.13.2因为()3,2,3A ,()1,1,4B ,()2,0,1C ,所以()2,1,1AB =-- ,()1,2,2AC =--- ,2AB AC ⋅=.14.10-由题可知tan 3α=-,因为[)0,απ∈,所以cos 10α=-.15.因为BD BF FC CD=++ ,所以()22222222BD BF FC CDBF FC CD BF FC BF CD FC CD =++=+⋅+++⋅+⋅ .又二面角A EF D --的平面角大小为3π,四边形ABFE ,EDCF 均为边长为4的正方形,所以22216BF FC CD === ,14482BF FC ⎛⎫⋅=⨯⨯-=- ⎪⎝⎭,0BF CD FC CD ⋅=⋅= ,所以232BD =,则BD =.16.338003以AF 所在直线为x 轴,DE 所在直线为y 轴建立平面直角坐标系,娱乐健身区域为矩形PQMN .由题可知,直线EF 的方程为3304y x =-+,直线CD 的方程为31104y x =+.设3,304P a a ⎛⎫-+ ⎪⎝⎭,其中040a ,则3,1104Q a a ⎛⎫+ ⎪⎝⎭,3120,304N a ⎛⎫-+ ⎪⎝⎭,则3802PQ a =+,120PN a =-,四边形PQMN 的面积()23310033800801202233S PQ PN a a a ⎛⎫⎛⎫==+-=--+⎪⎝⎭⎝⎭.当1003a =时,S 取得最大值338003.17.解:(1)将直线l 的方程转化为21y ax a =++.因为l 经过第一、二、四象限,所以0,210,a a <⎧⎨+>⎩解得102a -<<,即a 的取值范围为1,02⎛⎫- ⎪⎝⎭(2)将直线1l 的方程转化为37322a y x +=+,因为1l l ⊥,所以()3712a a +=-解得2a =-或13a =-.又102a -<<,所以13a =-.18.解:(1)连接BD ,PE (图略).DE PE PD PA AE PB BD=-=+--因为D 为PC 的中点,2BE EA = ,所以1111111,3332222AE AB PB PA BD BP BC PB BC==-=+=-+所以211211362362DE PA PB BC c =--=-- .(2)因为AC AP PB BC PA PB BC =++=-++,所以()211362AC DE PA PB BC PA PB ⎛⎫⋅=-++⋅-- ⎪⎝⎭222211572362663PA PB BC PA PB PA BC PB BC =---+⋅+⋅-⋅.因为PA ⊥平面PBC ,BC ⊥平面PAB ,所以PA PB ⊥,PA BC ⊥,PB BC ⊥.又1PA PB BC === ,所以22221157243626633PA PB BC PA PB PA BC PB BC ---+⋅+⋅-⋅=- ,即43AC DE ⋅=- .19.(1)证明:将直线l 的方程转化为()2250x y a x y ++-+=,令20, 250,x y x y +=⎧⎨-+=⎩,解得2,1,x y =-⎧⎨=⎩,故无论a 为何值,直线l 经过定点P ,且点P 的坐标为()2,1-.(2)解:依题意可设该直线的方程为()12y k x -=+,0k >令0y =,得12,0A k ⎛⎫-- ⎪⎝⎭,令0x =,得()0,21B k +,则OAB △的面积()1112112224222k S OA OB k k k k+==⋅⋅+=++ ,当且仅当12k =时,等号成立,故OAB △面积的最小值为4.20.解:(1)连接BD ,因为底面ABCD 是菱形,所以AC BD⊥因为F ,G 分别为AC ,1A C 的中点,所以1FG AA ∥,则FG ⊥平面ABCD .以F 为坐标原点,FA ,FB ,FG 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.由60BAD ∠=︒,12AA AB ==,得()0,0,0F ,()10,1,2D -,()0,0,1G,1,,222E ⎛⎫- ⎪ ⎪⎝⎭,则()10,1,2D F =-,1,,122GE ⎛⎫=- ⎪ ⎪⎝⎭.111122cos ,20D F GE D F GE D F GE-⋅==-,故直线1D F 与EG所成角的余弦值为20.(2)由(1)知()0,0,1FG = .设平面EFG 的法向量为()000,,m x y z =,则000010,220,x y z z ⎧-++=⎪⎨⎪=⎩令01x =,得()m =.点1D 到平面EFG 的距离为132D F m m⋅=.21.解:(1)设()00,D x y ,则()001,1AD x y =-- ,()002,8DC x y =--因为BCD △的面积是ABD △面积的3倍,所以3DC AD = 则()()0000231,831,x x y y -=-⎧⎪⎨-=-⎪⎩解得005,411,4x y ⎧=⎪⎪⎨⎪=⎪⎩故直线1l 的方程为()113433534y x --=--,即7180x y -+=.(2)显然,2l 的斜率存在且不为零,设2l 的方程为()11y k x -=-,则过点B 且与2l 垂直的直线l 的方程为()133y x k-=--.设点B 关于直线l 对称的点为()111,33B x x k ⎛⎫-- ⎪⎝⎭',因为直线AC 的方程为760x y --=,所以()()1111173360,1333311,22x x kx x k k ⎧-+--=⎪⎪⎨+--⎪+⎛⎫-=-⎪⎪⎝⎭⎩整理得322320k k k --=.因为0k ≠,所以22320k k --=,解得2k =或12k =-.又70AC k =>,10AB k =>,所以0k >,故直线2l 的方程为()121y x -=-,即210x y --=.22.(1)证明:如图,取AD 的中点F ,连接PF ,EF .∵底面ABCD 是正方形,PA PD =,∴AD EF ⊥,AD PF ⊥,∵EF PF F = ,EF ,PF ⊂平面PE ,∴AD ⊥平面PEF 又∵PE ⊂平面PEF ,∴AD PE⊥(2)解:如图,由(1)可知,二面角P AD B --的平面角为PFE ∠,且23PFE π∠=,过点P 作PO 垂直于直线EF ,垂足为O .以O 为原点,OE ,OP 所在的直线分别为y 轴、z 轴,建立如图所示的空间直角坐标系.易得3PFO π∠=,2PF =,1OF =,PO =,则(P ,()1,1,0A ,()1,3,0B ,()1,3,0C -,()1,1,0D -,(1,1,PA = ,()0,2,0AB =,(1,DP =-,(1,3,PC =- 设平面PAB 的法向量为(),,n x y z = ,则0,0,n PA n AB ⎧⋅=⎪⎨⋅=⎪⎩得0,20,x y y ⎧+=⎪⎨=⎪⎩取1z =,则)n =设(),3,PG PC λλλ==- ,[]0,1λ∈,则()1,3DG DP PG λλ=+=--设直线DG 与平面PAB 所成的角为θ,则sin cos ,DG nDG n DG nθ--⋅===.令1t λ=-,则[]0,1t ∈,sin θ-==.当0t =时,sin 0θ=,0θ=;当0t≠时,sin θ==。

2024-2025学年山西省名校高一上学期10月联合考试数学试题(含答案)

2024-2025学年山西省名校高一上学期10月联合考试数学试题(含答案)

2024-2025学年山西省名校高一上学期10月联合考试数学试题一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A={1,2,3,5},B={2,3,4,6},则A∪B=( )A. {1,2,3,4,5,6}B. {1,5}C. {2,3}D. {4,6}2.已知ab>bc,则下列不等式一定成立的是( )A. a>cB. a<cC. ab <cbD. ab>cb3.金钱豹是猫科豹属中的一种猫科动物.根据以上信息,可知“甲是猫科动物”是“甲是金钱豹”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.如图,书架宽84cm,在该书架上按图示方式摆放语文书和英语书,已知每本英语书厚0.9cm,每本语文书厚1.1cm,语文书和英语书共84本恰好摆满该书架,则书架上英语书的本数为( )A. 38B. 39C. 41D. 425.若x>0,则(x+2)2x的最小值是( )A. 2B. 4C. 6D. 86.已知−5≤2a+b≤1,−1≤a+2b≤3,则a−b的最大值是( )A. 1B. 2C. 4D. 87.已知p是q的充分不必要条件,q是s的充要条件,s是r的充分不必要条件,r是q的必要不充分条件,则p 是s的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有( )A. 5名B. 4名C. 3名D. 2名二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知命题p:有些三角形是轴对称图形,命题q:梯形的对角线相等,则( )A. p是存在量词命题B. q是全称量词命题C. p是假命题D. ¬q是真命题10.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的定义出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代.所谓戴德金分割,是指将有理数集Q划分为两个非空的子集E与F,且满足E∪F=Q,E∩F=⌀,E中的每个元素都小于F中的每个元素,称(E,F)为戴德金分割.下列结论正确的是( )A. E={x∈Q|x<1},F={x∈Q|x>1}是一个戴德金分割B. 存在一个戴德金分割(E,F),使得E有一个最大元素,F没有最小元素C. 存在一个戴德金分割(E,F),使得E有一个最大元素,F有一个最小元素D. 存在一个戴德金分割(E,F),使得E没有最大元素,F也没有最小元素11.已知a>0,b>0,且1a +2b=2,则( )A. ab的最大值为2B. a+2b的最小值为92C. a2+b2的最小值为4D. 1a +4b2的最小值为74三、填空题:本题共3小题,每小题5分,共15分。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档