基于课程标准《12.4用公式法因式分解 (第1课时:平方差公式法)》的导学案

合集下载

初中数学_用公式法进行因式分解教学设计学情分析教材分析课后反思

初中数学_用公式法进行因式分解教学设计学情分析教材分析课后反思

教学设计学情分析学生已经学习了乘法公式中的完全平方公式和平方差公式,在上一节课学习了提公因式法和平方差公式分解因式,初步体会了分解因式与整式乘法的互逆关系,为本节课的学习奠定了良好的基础。

学生已经建立了较好的预习习惯,为本节课的难点突破提供了先决条件。

效果分析通过本节课的学习,大部分学生能够发现用公式法进行因式分解与乘法公式互为逆运算,能够说出平方差公式、完全平方公式的结构特征,并能运用公式法进行因式分解。

但一部分同学因为公式不熟,用错公式,还有几个同学对因式分解的概念理解不足,在计算时错用乘法公式,因此还应多加强练习,并及时反馈。

总体来说,安排的检测题题型并不复杂,直接运用公式不超过两次,习题难易有梯度,满足不同层次学生的需要。

教材分析分解因式与数系中分解质因数类似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。

在后面的学习过程中应用广泛,如: 将分式通分和约分,二 次 根 式 的 计 算 与 化 简 , 以及解方程都将以它为基础。

因此分解因式这一章在整个教材中起到了承上启下的作用。

同时, 在因式分解中体现了数学的众多思 想,如:“化归”思想、“类比”思想、“整体”思想等。

因此,因式分解的学习是数学学习的重要 内容。

根据《课标》的要求,本 章 介 绍 了 最 基 本 的 两 种 分 解 因 式 的 方 法 : 提公因式 法和运用公式法(平方差、完全平方公式)。

因此公式法是分解因式的重要方法之一, 是现阶段的学习重点。

评测练习一、选择题(5分)1.下列各式中,不能用平方差公式分解因式的是( )A.y 2-49x 2B.4491x - C.-m 4-n 2 D.9)(412-+q p2.下列各式中,可用平方差公式分解因式的是( ) A.a ²+b ² B. -a ²-b ² C.-a ²+b ² D. a ²+(-b)²3.下列因式分解错误的是( ) A.1-16a 2=(1+4a )(1-4a ) B.x 3-x =x (x 2-1)C.a 2-b 2c 2=(a +bc )(a -bc )D.)l .032)(32l .0(l 0.09422n m m n n m -+=- 4.下列各式分解因式的结果是-(2x-y )(2x+y)的是( ) A.4x ²-y ²B. 4x ²+y ²C. -4x ²-y ²D. -4x ²+y ²5.把x ²-22x+121分解因式可得( ) A.(x-11)² B. (x+11)² C. x(x-22)+121 D.(x-11)(x+11)二、解答题(10分)1.9a 2-41b 2 2.9a 2+6ab+b 23.m 2–9132+m 214.4x x ++2225.25a b c -课后反思没有一节课能够做到真正的完美,总是会有这样那样的不足,而这些不足和遗憾,正是提升我们教学水平的动力。

平方差公式教案范文

平方差公式教案范文

平方差公式教案范文一、教学目标:1.知识目标:掌握平方差公式的概念和应用。

2.能力目标:能够熟练使用平方差公式解决相关问题。

3.情感目标:培养学生对数学的兴趣,提高解决问题的能力。

二、教学重点:1.平方差公式的定义和使用。

2.通过实例演练,巩固和扩展平方差公式的运用。

三、教学难点:1.学生理解平方差公式的推导过程。

2.学生能够将平方差公式灵活运用到实际问题中。

四、教学准备:1. 教师准备一个平方差公式的推导过程的ppt。

2.学生准备纸和笔,做相关练习。

五、教学过程:1.情境导入(10分钟)教师可以通过一个问题来导入平方差公式的概念,比如:已知一个正方形的边长为a,要构造一个面积为4a的正方形,该正方形的边长应该是多长?引导学生思考求解方法。

2.引出平方差公式(15分钟)在引出平方差公式之前,教师可以通过举例子的方式让学生感受平方差的规律。

例如:(a+b)² = a² + b² + 2ab,(a-b)² = a² + b² -2ab,便于学生对比两个式子的不同。

接下来,通过几何图形的方式解释平方差公式的推导过程,并一步一步地推导出平方差公式。

3.平方差公式的应用(30分钟)教师可以设计一些实际问题,让学生将平方差公式应用到解题中。

例如:已知一个矩形的长为a,宽为b,且它的面积为16,求a²-b²的值。

通过这样的练习,培养学生灵活运用平方差公式解决实际问题的能力。

4.练习和巩固(25分钟)教师可以给学生一些练习题,让他们巩固和扩展平方差公式的运用。

例如:(1)求下列各式的值:(2a-3b)²、(3a+4b)²、(2x-5y)²等。

(2)若a²-b²=20,a+b=10,求a和b的值。

(3)若一个长方形的面积是32,较长的边长大于较短的边长2,求长方形的长和宽。

五、小结和拓展(10分钟)教师对本节课的内容进行小结,强调平方差公式的重要性和运用方法。

(完整版)公式法因式分解导学案.doc

(完整版)公式法因式分解导学案.doc

公式法因式分解姓名:一、教学目标:1、常握平方差公式、完全平方和(差)公式、十字相乘法公式。

2、会用公式法进行因式分解。

二、预习新知:1、平方差公式:2、完全平方和公式:3、完全平方差公式:4、十字相乘法公式:5、完全平方式:6、因式分解一般步骤:(1)先提公因式,( 2)再用公式。

三、拓展新知:运用括号法理解应用公式1、平方差公式:(括号 1、3、5 相同,2、4、6 相同,定 1 填3、5,定 2 填4、6。

)()2 -()2 =〔()+()〕〔() -()〕↑↑↓↓↓↓4x2 - 9y2 = (+ )(- )2、完全平方和公式:(1、 2、 5 相同,3、4、 6 相同,常定 1、4,验证 2、3,再填5、6)()2+ 2()()+()2 =〔()+()〕2↑检↓验↑↓↓9x2 + 24xy + 16y 2 = (+ )23、完全平方差公式:(1、 2、 5 相同, 3、4、 6 相同,常定 1、4,验证 2、3,再填5、6)()2- 2()()+()2 =〔()-()〕2↑检↓验↑↓↓9x2 - 24xy + 16y 2 = (- ) 2注:也可定1,填 2,得 3,验 4,最后填 5、 6;或定 4,填 3,得 2,验 1,最后填 5、 6。

4、十字相乘公式:(括号 1、3、5 相同, 2、4、 6 相同,定 3、4 验证 1、2,填5、6。

)x2 +〔()+()〕x +()()=〔 x +()〕〔 x +()〕x2↓↑↓↓+ 6x + 8 =( x + )( x + )注:常数为正取同号,同为一次系数的符号,求和。

故同为正号。

x2 +〔()+()〕x +()()=〔 x +()〕〔 x +()〕x2↓↑↓↓+ 5x - 14 =( x + )( x - )注:常数为负取异号,大数为一次系数的符号,求差。

故大正小负。

x2 +〔()+()〕x +()()=〔 x +()〕〔 x +()〕x2↓↑↓↓- 4x + 3 =( x - )( x - )注:常数为正取同号,同为一次系数的符号,求和。

用公式法进行因式分解

用公式法进行因式分解

12、4用公式法进行因式分解(第1课时)学法指导:1.教学方法:讲练结合法、自主学习、小组探究合作.2.学生学习本节时,要注意:(1)进一步弄清因式分解与整式乘法的区别和联系。

(2)分解因式时,要先观察题目的结构特征,看使用哪个公式,同时要养成及时检验的学习习惯。

学习目标1.理解运用公式法因式分解的含义,熟记因式分解公式。

2.搞清楚每个公式的特征,能运用公式进行因式分解。

3.探究逆用乘法公式的过程中培养逆向思维和观察能力。

学习重难点:1、重点:用公式法进行因式分解。

2、难点:“灵活”运用平方差、完全平方公式解决实际问题。

学习过程:(一)温故知新,情境导航:1、什么叫因式分解?我们学过的因式分解的方法是什么?2、因式分解与整式乘法有什么区别和联系?你能对a 2-b 2,a 2+2ab+b 2,n 2-4进行因式分解吗?(二)课堂探究:探究一:平方差篇(一)根据乘法公式计算:① =_________ ② =_________③ =_________(二)根据等式的对称性填空① =_________② =_________③ =_________(2)(2)m m +-()()a b a b -+)22)(22(-+n n 42-m 22b a -442-n讨论:对比(一)和(二)你有什么发现?结合上面规律把平方差公式反过来进行因式分解,你会得到什么?(学生总结)平方差公式因式分解特征:典题探讨(1)4 x 2-25 (2) 16a 2 -9 b 2探究二:完全平方差篇(一)根据乘法公式计算:① =_________ ② =_________③ =_________(一)根据乘法公式计算:① =_________ ② =_________③ =_________讨论:对比(一)和(二)你有什么发现?结合上面规律把完全平方公式反过来进行因式分解,你会得到什么?(学生总结)完全平方公式因式分解特征:例2:把下列各式进行因式分解: (1)25x 2+20x+4 (2)9m 2-6mn+n 2 (3)(三)课堂小结,回顾反思学习了本节课,你有什么收获?如何利用乘法公式进行因式分解?说出来与大家分享吧!2)(b a +2)(b a -2)2(+m 222b ab a ++222b ab a +-442++m a 41x x 2++(四)课当堂检测1、因式分解(1) 4x 2-16y 2 (2)64m 2-25n 2(3)4x 2-12xy+9y 2 (4)81m 2-144mn+64n 22、多项式4 x 2-x 加上一个怎样的单项式,就成为一个完全平方式?并对其进行因式分解(五)课后作业必做题:习题12.4第1题。

2023八年级数学下册第四章因式分解3公式法第1课时用平方差公式进行因式分解教案(新版)北师大版

2023八年级数学下册第四章因式分解3公式法第1课时用平方差公式进行因式分解教案(新版)北师大版
7. 实际例题解析:
- 通过例题,展示平方差公式的应用过程,分析解题思路。
- 对不同类型的题目进行分类解析,让学生掌握各类题型的解题方法。
8. 练习题设计与解析:
- 设计不同难度的练习题,涵盖平方差公式的各种应用场景。
- 对练习题进行详细解析,帮助学生巩固知识点,提高解题能力。
9. 小组讨论与交流:
3. 成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
五、总结回顾(用时5分钟)
今天的学习,我们了解了平方差公式的概念、推导、应用以及在实际问题中的运用。通过实践活动和小组讨论,我们加深了对平方差公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
重点题型整理
题型一:应用平方差公式进行因式分解
例1:对多项式x^2 - 4进行因式分解。
解答:观察多项式x^2 - 4,符合平方差公式的结构特点,即a^2 - b^2的形式。这里a是x,b是2。因此,应用平方差公式,得到:
x^2 - 4 = (x + 2)(x - 2)。
题型二:解决实际问题中的平方差问题
x^4 - 16 = (x^2 + 4)(x^2 - 4)。
进一步,注意到x^2 - 4可以继续分解,得到:
x^4 - 16 = (x^2 + 4)(x + 2)(x - 2)。
题型五:综合应用平方差公式
例5:对多项式4x^2 - 9y^2进行因式分解。
解答:观察多项式4x^2 - 9y^2,可以看出它是两个平方项的差,即a^2 - b^2的形式。这里a是2x,b是3y。因此,应用平方差公式,得到:

平方差公式优秀教案

平方差公式优秀教案

平方差公式优秀教案一、教学目标1.知识与技能目标:使学生理解平方差公式的概念,掌握平方差公式的推导过程,并能熟练运用平方差公式进行计算。

2.过程与方法目标:通过自主探究、合作交流,培养学生运用平方差公式解决问题的能力,提高学生的逻辑思维和推理能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生主动探索、积极参与的精神,增强学生的团队合作意识。

二、教学内容1.平方差公式的定义:平方差公式是指两个数的平方差可以表示为两个数的和与差的乘积。

2.平方差公式的推导:通过具体的例子,引导学生观察、分析,发现平方差公式,并运用多项式乘法进行验证。

3.平方差公式的应用:解决实际问题,如计算平方差、因式分解等,培养学生运用平方差公式解决问题的能力。

三、教学重点与难点1.教学重点:平方差公式的推导和应用。

2.教学难点:平方差公式的理解和灵活运用。

四、教学过程1.导入新课:通过实际生活中的例子,如计算土地面积、求解速度问题等,引出平方差的概念。

2.自主探究:让学生观察具体的平方差例子,如\(a^2b^2\),引导学生发现平方差公式。

3.合作交流:分组讨论,让学生互相分享自己的发现,共同推导平方差公式。

4.课堂讲解:对学生的发现进行总结,给出平方差公式的定义,并进行推导。

5.案例分析:通过具体的例题,讲解平方差公式的应用,如计算平方差、因式分解等。

6.练习巩固:布置相关练习题,让学生独立完成,巩固平方差公式的运用。

7.课堂小结:总结本节课的主要内容,强调平方差公式的推导和应用。

8.课后作业:布置课后作业,让学生运用平方差公式解决实际问题。

五、教学评价1.过程评价:观察学生在课堂上的参与程度、合作交流的表现,评价学生在自主探究、合作交流中的表现。

2.练习评价:检查学生在练习中的完成情况,评价学生对平方差公式的理解和运用能力。

3.课后作业评价:批改课后作业,评价学生对平方差公式的掌握程度,以及运用平方差公式解决问题的能力。

《因式分解》导学案

《因式分解》导学案

《因式分解》导学案【复习目标】1.了解因式分解的意义。

2.区别因式分解与整式乘法。

3.掌握因式分解的方法:提公因式法,公式法(直接用公式不超过两次),十字相乘法,分组分解法。

4.能选择适当方法实行因式分解。

【复习难点】能选择适当方法实行因式分解【教学过程】一、课前热身1、计算①a(x+y+z) ②(a+b)(a-b)2、分解因式①ax+ay+az ②a2-b2二、旧知回顾1、分解因式①3a2-a ②3x2-6x2y+3xy ③(x+y)2-3(x+y)2、分解因式①a2-4 ②(x-1)2-9 ③(a+b)2-6(a+b)+93、分解因式①x2-2x-8 ②x2-5x+6 ③x2+3x-184、分解因式①x2+7x-xy-7y ②a2-b2-2a+1 ③m2-n2+2m-2n 三、归纳总结。

因式分解的一般步骤:一、因式分解1、因式分解:2、因式分解与整式乘法的关系二、因式分解的方法1、提公因式法公因式:2、公式法①平方差公式②完全平方公式3、十字相乘法4、分组分解法四、反馈检测(一)填空题:1、分解因式:16x 2 -9y 2 =2、分解因式:a 3 +2a 2 +a = (二)选择题3、下列式子中,从左到右的变形是因式分解的是( ) A a(x +y) = ax + ay B x 2 -4x + 4 = x(x -4) +4 C 10x 2 -5x =5x(2x -1) D x 2 -16 +3x = (x +4)(x -4) +3x 5.下列各式中,能用提公因式法分解因式的是( ) A x 2 -y B x 2 +2x C x 2 +y 2 D x 2 -xy +y 2 (三)解答题 6、分解因式(1)2m(a-b)-3n(b-a) (2)x 3-9x .(3)a 2+a+ 41(4) 3(x -y )3-6(y -x )2(5)22()()a x y b x y --- (6)x 4 – 2x 2+1(7)x 2-7xy +12 y 2 (8)x 2- 2xy + y 2+ 2x - 2y + 17、已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

《运用平方差公式因式分解》教案、导学案、同步练习

《运用平方差公式因式分解》教案、导学案、同步练习

《第1课时运用平方差公式因式分解》教学设计程设计教学过(4) x 2y 2-z 2 (5) (x+2)2-9 (6)(x+a)2-(y+b)2(7)25(a+b)2-4(a -b)23.在边长为16.4cm 的正方形纸片的四角各剪去一边长为1.8cm 的正方形,求余下的纸片的面积。

4.已知x 2-y 2=-1 , x+y=21,求x -y 的值。

四、小结归纳1.明确分解因式的顺序是:先提公因式,再用公式法 分解因式必须到不能再分解为止.2.运用平方差公式分解因式的步骤: ①先写成平方的形式;②再写成和与差的积.五、作业设计 1计算: ① 22218b a - 学生通过练习巩固刚刚学习的新知识。

在此基础上加深知识的应用. 学生做题,教师纠正讲解。

学生总结,教师强调。

识,分析各项与公式中字母的对应关系,在反复练习中掌握用平方差公式法进行分解因式.让学生正确运用平方差公式法进行分解因式,对所学知识心中有数。

② 362-m ③ 464981y x - ④125422-y x ⑤ 22)()(y x y x --+ ⑥ 22)(9)(16b a b a --+ 2.见课本习题板 书 设 计14.3.2 公式法《第1课时运用平方差公式因式分解》教案教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)] =5y (2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).三、随堂练习,巩固深化1.求证:当n是正整数时,n3-n的值一定是6的倍数.2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本习题.板书设计14.3.2 公式法《第1课时运用平方差公式因式分解》导学案学习目标:1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.重点:运用平方差公式进行因式分解.难点:综合运用提公因式法和平方差公式对多项式进行因式分解.一、知识链接1.什么叫多项式的因式分解?2.下列式子从左到右哪个是因式分解?哪个整式乘法?它们有什么关系?① a(x+y)=ax+ay;②ax+ay=a(x+y)3. 20162+2016 能否被2016整除?4.计算:(1)(a+5)(a-5)=___________;(2)(4m+3n)(4m-3n)=___________.二、新知预习试一试:观察以上计算结果,并根据因式分解与整式乘法是互逆运算,分解下列因式:(1)a2-25=___________;(2)16m2-9n=___________.做一做:分解因式a2-b2=____________.要点归纳:a2-b2=____________.即两个数的平方差,等于这两个数的_____与这两个数的______的________.三、自学自测填一填:(1)(a+2)(a-2)=_____________;a2-4=___________;(2)(5+b)(5-b)=______________;25-b2=___________;(3)(x+4y)(x-4y)=______________;x2-16y2=___________.四、我的疑惑_____________________________________________________________________ _____________________________________________________________________ ____________一、要点探究探究点1:用平方差公式分解因式想一想:观察平方差公式a2-b2=(a+b)(a-b),它的项、指数、符号有什么特点?要点归纳:(1)左边是____次____项式,每项都是____的形式,两项的符号相反.(2)右边是两个多项式的____,一个因式是两数的____,另一个因式是这两个数的____.练一练:下列各式中,能用平方差公式分解因式的有( )①x2+y2;②x2-y2;③-x2+y2;④-x2-y2;⑤1-14a2b2;⑥x2-4.A.2个B.3个C.4个D.5个方法总结:能用平方差公式分解因式的多项式具有以下特征:两数是平方,减号在中央.例1:分解因式:(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.方法总结:公式中的a、b无论表示数、单项式、还是多项式,只要被分解的多项式能转化成平方差的形式,就能用平方差公式因式分解.例2:分解因式:(1)5m2a4-5m2b4; (2)a2-4b2-a-2b.方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.注意分解因式必须进行到每一个多项式都不能再分解因式为止.例3:已知x2-y2=-2,x+y=1,求x-y,x,y的值.方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问题中,通常需先因式分解,然后整体代入或联立方程组求值.例4:计算下列各题:(1)1012-992; (2)53.52×4-46.52×4.方法总结:较为复杂的有理数运算,可以运用因式分解对其进行变形,使运算得以简化.1.下列因式分解正确的是( )A.a2+b2=(a+b)(a+b) B.a2-b2=(a+b)(a-b)C.-a2+b2=(-a+b)(-a-b) D.-a2-b2=-(a+b)(a-b)2.因式分解:(1)a2-125b2; (2)x-xy2;(3)(2x+3y)2-(3x-2y)2; (4)3xy3-3xy;3.用简便方法计算:8.192×7-1.812×7.1.下列多项式中能用平方差公式分解因式的是( )A.a2+(-b)2 B.5m2-20mnC.-x2-y2 D.-x2+92.分解因式(2x+3)2 -x2的结果是()A.3(x2+4x+3) B.3(x2+2x+3)C.(3x+3)(x+3) D.3(x+1)(x+3)3.若a+b=3,a-b=7,则b2-a2的值为()A.-21 B.21 C.-10 D.104.把下列各式分解因式:(1) 16a2-9b2=_________________;(2) (a+b)2-(a-b)2=_________________;(3) 9xy3-36x3y=_________________;(4) -a4+16=_________________.5.若将(2x)n-81分解成(4x2+9)(2x+3)(2x-3),则n的值是_____________.6.已知4m+n=40,2m-3n=5.求(m+2n)2-(3m-n)2的值.7.如图,在边长为6.8 cm正方形钢板上,挖去4个边长为1.6 cm的小正方形,求剩余部分的面积.8. (1)992-1能否被100整除吗?(2)n为整数,(2n+1)2-25能否被4整除?14.3.2 公式法《第1课时运用平方差公式因式分解》导学案平方差公式:a 2-b 2=(a+b )(a-b ).两数的平方差,等于这两数的和与这两数差的积。

用因式分解法求解一元二次方程导学案

用因式分解法求解一元二次方程导学案

用因式分解法求解一元二次方程导学案一、学习目标1、理解因式分解法解一元二次方程的概念。

2、掌握用提公因式法、公式法(平方差公式、完全平方公式)进行因式分解来解一元二次方程。

3、体会“降次”化归的数学思想。

二、重点难点1、重点(1)用因式分解法解一元二次方程。

(2)让学生通过比较解一元二次方程的多种方法感悟用因式分解法解方程的简洁性。

2、难点如何发现方程可以通过因式分解来求解。

三、知识回顾1、我们已经学习了一元二次方程的哪些解法?配方法:通过配方将一元二次方程转化为完全平方式来求解。

公式法:对于一元二次方程$ax^2 + bx + c = 0$($a≠0$),其求根公式为$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。

2、因式分解的方法有哪些?提公因式法:如$ma + mb = m(a + b)$。

公式法:平方差公式:$a^2 b^2 =(a + b)(a b)$完全平方公式:$a^2 ± 2ab + b^2 =(a ± b)^2$四、新课导入我们知道,若$ab = 0$,则$a = 0$或$b = 0$。

那么对于一元二次方程,如果可以将其化为两个一次式的乘积等于 0 的形式,是不是就可以求解了呢?这就是我们今天要学习的因式分解法解一元二次方程。

五、探究新知1、示例:解方程$x^2 3x = 0$我们可以将方程左边因式分解为$x(x 3) = 0$因为两个因式的乘积为 0,所以$x = 0$或$x 3 = 0$解得$x_1 = 0$,$x_2 = 3$2、再看方程:$(x + 2)(x 1) = 0$则$x + 2 = 0$或$x 1 = 0$解得$x_1 =-2$,$x_2 = 1$3、一般地,如果方程的一边可以因式分解,另一边为 0,那么就可以将原方程化为两个一次方程,从而实现降次求解。

六、方法总结1、用因式分解法解一元二次方程的步骤:将方程右边化为 0。

七年级数学下册《用平方差公式因式分解》教案、教学设计

七年级数学下册《用平方差公式因式分解》教案、教学设计
1.课本习题:完成课本第chapter页的相关习题,包括基础题和拓展题。请注意在解题过程中,正确运用平方差公式,并注意运算的准确性。
基础题:旨在巩固平方差公式的理解和应用,培养学生的基本运算能力。
拓展题:旨在提高学生解决问题的能力,鼓励学生在掌握平方差公式的基础上,进行更深入的思考和探索。
2.实践应用题:结合生活实际,设计一道运用平方差公式解决的实际问题,并完成解答。例如:“一个正方形的边长是a+b,另一个正方形的边长是a-b,求这两个正方形面积之差。”
1.创设情境,激发兴趣
-通过引入生活实例,让学生感受数学知识在实际问题中的应用,激发学生的学习兴趣。
-设计有趣的问题,引导学生主动探究平方差公式的推导过程。
2.分层教学,循序渐进
-根据学生的认知水平和学习能力,设计不同难度的教学活动,使每个学生都能在课堂上得到锻炼和提高。
-逐步引导学生从简单的平方差公式应用过渡到复杂的因式分解问题,帮助学生建立信心。
-引导学生树立正确的价值观,认识到数学知识在生活中的重要作用。
四、教学内容与过程
(一)导入新课,500字
1.复习导入:首先,带领学生复习上节课所学的因式分解知识,通过提问方式引导学生回顾因式分解的概念和基本方法。然后,提出一个具有挑战性的问题:“我们已经学会了简单的因式分解,那么对于稍微复杂一些的多项式,如何进行因式分解呢?今天我们将学习一个新的方法——平方差公式。”
(五)总结归纳,500字
1.让学生回顾本节课所学的内容,总结平方差公式的推导过程、结构特点和应用方法。
2.强调因式分解在实际问题中的应用价值,引导学生认识到平方差公式在数学学习中的重要性。
3.鼓励学生在课后继续练习,巩固所学知识,提高因式分解的能力。

人教版数学八上《 公式法(第1课时)平方差公式》导学案

 人教版数学八上《 公式法(第1课时)平方差公式》导学案

本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

内容由一线名师原创,立意新,图片精,是非常强的一手资料。

14.3.2 公式法 第1课时 平方差公式1.能直接利用平方差公式因式分解.2.掌握利用平方差公式因式分解的步骤.阅读教材P116-117“思考及例3、例4”,独立完成下列问题:知识准备(1)填空:4a 2=(±2a )2; 94b 2=(±32b )2; 0.16a 4=(±0.4a 2)2; a2b 2=(±ab )2.(2)因式分解:2a 2-4a=2a(a-2);(x+y)2-3(x+y)=(x+y)(x+y-3).(1)计算填空:(x+2)(x-2)=x 2-4;(y+5)(y-5)=y 2-25.(2)根据上述等式填空:x 2-4=(x+2)(x-2);y 2-25=(y+5)(y-5).(3)公式:a 2-b 2=(a+b)(a-b).语言叙述:两个数的平方差等于这两个数的和与这两个数的差的积.自学反馈(1)下列多项式能否用平方差公式来分解因式?为什么?①x 2+y 2;②x 2-y 2;③-x 2+y 2;④-x 2-y 2.解:①不能,不符合平方差公式;②能,符合平方差公式;③能,符合平方差公式;④不能,不符合平方差公式.判断是否符合平方差公式结构.(2)分解因式:①a 2-251b 2; ②9a 2-4b 2; ③-a 4+16.解:①(a+51b)(a-51b); ②(3a+2b)(3a-2b); ③(4+a 2)(2+a)(2-a).活动1 学生独立完成例1 分解因式:(1)x 2y-4y; (2)(a+1)2-1; (3)x 4-1;(4)-2(x-y)2+32; (5)(x+y+z)2-(x-y+z)2.解:(1)原式=y(x 2-4)=y(x+2)(x-2);(2)原式=(a+1+1)(a+1-1)=a(a+2);(3)原式=(x 2+1)(x 2-1)=(x 2+1)(x+1)(x-1);(4)原式=-2[(x-y)2-16]=-2(x-y+4)(x-y-4);(5)原式=[(x+y+z)+(x-y+z)][(x+y+z)-(x-y+z)]=(x+y+z+x-y+z)(x+y+z-x+y-z)=2y(2x+2z)=4y(x+z).有公因式的先提公因式,然后再运用平方差公式;一直要分解到不能分解为止.例2 求证:当n 是正整数时,两个连续奇数的平方差一定是8的倍数.证明:依题意,得(2n+1)2-(2n-1)2=(2n+1+2n-1)(2n+1-2n+1)=8n.∵8n 是8的n 倍,∴当n 是正整数时,两个连续奇数的平方差一定是8的倍数.先用含n 的代数式表示出两个连续奇数,列出式子后分解因式.例3 已知x-y=2,x 2-y 2=6,求x ,y 的值.解:依题意,得(x+y)(x-y)=6.∴x+y=3. ∴⎩⎨⎧=+=3.y x ,2y -x ∴⎪⎪⎩⎪⎪⎨⎧==.21,25y x 先将x 2-y 2分解因式后求出x+y 的值,再与x-y 组成方程组求x ,y 的值.活动2 跟踪训练1.因式分解:(1)-1+0.09x 2; (2)x 2(x-y)+y 2(y-x); (3)a 5-a ; (4)(a+2b)2-4(a-b)2.解:(1)(0.3x-1)(0.3x+1); (2)(x+y)(x-y)2; (3)a(a 2+1)(a+1)(a-1); (4)3a(4b-a).2.计算: (1-221)(1-231)(1-241)…(1-220071)(1-220081). 解:40162009. 先分解因式后计算出来,再约分.活动3 课堂小结1.分解因式的步骤是:先排列,首系数不为负;然后提取公因式;再运用公式分解,最后检查各因式是否能再分解.2.不能直接用平方差公式分解的,应考虑能否通过变形,创造应用平方差公式的条件.教学至此,敬请使用学案当堂训练部分.本资源的初衷,是希望通过网络分享,能够为广大读者提供更好的服务,为您水平的提高提供坚强的动力和保证。

公式法法进行因式分解

公式法法进行因式分解

12.4《用公式法进行因式分解》第1课时预习学案
(总第课时)
设计人:执教人:
班级姓名
一、预习目标:
1 了解因式分解的意义及其与整式乘法的区别与联系。

2 了解公因式的概念,会用提公因式法分解因式。

二、预习重点:掌握利用平法差公式和完全平方公式因式分解。

三、预习难点:“变用”“活用”“逆用”平方差、完全平方公式。

四、预习过程:
(一)预习准备
1、平方差公式、完全平方公式的字母表示及语言叙述
平方差公式:
完全平方公式:
(二)预习新知:
任务一:把平方差公式、完全平方公式反过来,就得到
(1)
(2)
把它们当做公式,就可以把某些多项式进行因式分解,这种因式分解的方法叫做公式法。

任务二:
例1:把下列各式进行因式分解:
(1)4x2-25 (2)16a2-9b2
思考:(1)遇到例1题型时,使用哪个公式,注意什么事项?
任务三:把下列各式进行因式分解:
(3)25x2+20x+4 (4)9m2-6mn+n2
1
(5)x2+x+
4
(三)预习诊断:
把下列各式进行因式分解
(1)m2-9 (2)36-4x2y2(3)x2+2xy+y2 (4)4a2-12ab+9b2
(四)预习质疑
预习收获:
预习困惑:。

新湘教版七年级数学下册《公式法(1)》导学案2)

新湘教版七年级数学下册《公式法(1)》导学案2)

《公式法(1)》导学案2学习目标1、会应用平方差公式进行因式分解,发展学生推理能力;2、经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性;3、培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重点利用平方差公式分解因式。

难点领会因式分解的解题步骤和分解因式的彻底性。

课前预习预习指导结合学习目标,阅读教材P63-64,请组长组织本组成员认真完成“预习自测题”的题目,可以在组内交流展示,并把疑点难题写在“自学交流”栏中。

预习自测说一说:平方差公式议一议:如何把25-a2和229-16m n进行因式分解选一选:下列分解因式正确的是()A.)1(23-=-xxxx B.)2)(3(62-+=-+mmmmC.16)4)(4(2-=-+aaa D.))((22yxyxyx-+=+填一填:=29y()2=294x()2思考:你觉得什么时候用平方差公式的逆运用?课堂活动设计激情导入随笔自学交流展示质疑1. 把下列各式分解因式:(1)x2-9y2;(2)m2(16x-y)+n2(y-16x).2.展示例1,例2,例3讨论,分解因式时,应注意什么?点拨质疑1.填空题(1)简便计算:。

-=2271.229.7(2)因式分解=-222yyx2.把下列多项式因式分解(1)2216ayax-(2)2222)1(2axxa-+3.利用分解因式证明:127525-能被120整除。

总结1. 通过本节的学习,你学到了什么?测2.在相同的时间内,看哪个小组最先完成p64练习1-4题。

评疑问反思。

《因式分解《公式法》优质课获奖教案

   《因式分解《公式法》优质课获奖教案

按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。

2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。

从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。

本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。

《公式法》教学目标1.了解运用公式法分解因式的意义;2.掌握用平方差公式和完全平方公式分解因式.教学重点掌握运用平方差公式和完全平方公式分解因式.教学难点将某些单项式化为平方形式,再用平方差公式分解因式.教学过程Ⅰ.创设问题情境,引入新课我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法——公式法.Ⅱ.新课讲解1.请看乘法公式(1)(a+b)(a-b)=a2-b2左边是整式乘法,右边是一个多项式,把这个等式反过来就是(2)a2-b2=(a+b)(a-b)左边是一个多项式,右边是整式的乘积.判断一下,第二个式子从左边到右边是否是因式分解?第(1)个等式可以看作是整式乘法中的平方差公式,第(2)个等式可以看作是因式分解中的平方差公式.同理,完全平方公式需要反向运用2.例题讲解[例1]把下列各式分解因式:(1)25-16x2;(2)9a 2-41b 2. 解:(1)25-16x 2=52-(4x )2=(5+4x )(5-4x );(2)9a 2-41 b 2=(3a )2-(21b )2 =(3a +21b )(3a -21b ). [例2]把下列各式分解因式: (1)9(m +n )2-(m -n )2;(2)2x 3-8x .解:(1)9(m +n )2-(m -n )2=[3(m +n )]2-(m -n )2=[3(m +n )+(m -n )][3(m +n )-(m -n )]=(3m +3n +m -n )(3m +3n -m +n )=(4m +2n )(2m +4n )=4(2m +n )(m +2n )(2)2x 3-8x =2x (x 2-4)=2x (x +2)(x -2)说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式,例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法.[例3]分解因式:(1)3ax 2+6axy +3ay 2 (2)(a +b )2-12(a +b )xy +36x 2y 2Ⅲ.课堂练习1.判断正误(1)x 2+y 2=(x +y )(x -y );( )(2)x 2-y 2=(x +y )(x -y );( )(3)-x 2+y 2=(-x +y )(-x -y );( )(4)-x 2-y 2=-(x +y )(x -y ).( )2.把下列各式分解因式(1)a 2b 2-m 2(2)(m -a )2-(n +b )2(3)x2-(a+b-c)2(4)-16x4+81y43.下列各式是否是完全平方式?如果不是,请说明理由.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+4b2;(4)a2-2ab+b2;(5)x2-6x-9;(6)a2+a+0.25.[教学反思]学生对生活中的立体图形感兴趣,气氛极好,能认识圆柱、圆椎、正方体、长方体、棱柱、球,并能用自己的语言简单描述它们的某些特征,也能分别举出生活中的物体哪些是属于圆柱、圆椎、正方体、长方体、棱柱、球.本节课的教学活动,主要是让学生通过观察、动手操作,熟悉长方体、正方体的展开图以及图形折叠后的形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于课程标准《12.4用公式法因式分解 (第1课时:平方差公式法)》的导学案
【课程标准的相关陈述】
【学习目标】
1、使学生能明确因式分解与整式乘法之间的关系,让学生在探索中进行新知识的比较,理解因式分解的过程,发现其第二种基本方法;
2、使学生明白可以将因式分解的结果先乘出来就能检验因式分解的正确性。

3、激发学生的兴趣,让学生体会到数学的应用价值
预习案
1、口述多项式与多项式相乘法则;
2、计算:
①(3)(3)x x +- ②(31)(31)x x -+
③(7)(7)x y x y -+ ④(23)(23)x y x y +-
二、预习探索 合作探究:
1、小试身手:
总结a 2-b 2 =( )( )
2.观察变形:
整式乘法:(a+b) (a-b)= a 2-b 2 因式分解:a 2-b 2=(a+b) (a-b)
我们可以运用平方差公式来分解因式
两个数的平方差,等于这两个数的和与这两个数的差的积。

3.庖丁解牛: a 2
2
16a 2-1 =(4a)-1=(4a+ 1) ( 4a- 1)
3、试着讨论下列多项式能否用平方差公式分解因式?说说你的理由。

b
①4x2+y2 ②4x2-(-y)2 ③-4x2-y2 ④-4x2+y2 ⑤ a2-4 ⑥a2+3
探究案
能用平方差公式分解因式的多项式的特征:
①由两部分组成;②两部分符号相反;③每部分都能写成某个式子的平方。

小试牛刀
运用a2-b2=(a+ b)(a- b)
例1 、把下列各式进行分解因式:
①-m2n2+4p2②x2 - y2③(x+z)2-(y+z)2
(四)巩固训练:
(1) x2-1 (2)m2-9
(3)x2-4y2 (4) 25x2-4
(5) 0.01s2-t2 (6) 121-4a2b2
(7) a6-81 (8) –x2+25
(9) 16a2-9b2 (10) - 4a2b2+c2
达标提升案
1、判对错,并改正
(1)分解因式:
4x2–y2=(4x+y)(4x-y )()
正确分解:
(2)分解因式
①x4–y4=(x2+y2)(x2–y2)()
②(4a+5b)2–(2a-b)2=(6a+4b)(2a+6b)()
正确分解:
2、怎样把多项式4x3y - 9xy3分解因式?
3、提高(注意分解彻底)
分解因式:
(1)4x3-x ( 2 ) (3x-4y)2-(4x+3y)2
(3)a4-81 (4)16(3m-2n)2-25(m-n)2
4、计算:(1)9992-9982 (2)25×2652-1352×25 (3) 91×89
5.请问993-99能否被100整除?
今日我最大收获________________________________________。

相关文档
最新文档