14高三必修同步数学练习题简单的线性规划
高中数学简单线性规划复习题及答案(最全面)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
高三数学线性规划试题
高三数学线性规划试题1.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为()A.2B.1C.D.【答案】C【解析】不等式组为如图所表示的阴影区域.由图可知当M与C重合时,直线OM 斜率最小.解不等式组得C(3,-1),∴直线OM斜率的最小值为2.已知点满足,则的最小值是.【答案】【解析】根据线性规划的知识画出不等式的可行域如图所示,则目标函数在交点处取得最小值为,故填.【考点】线性规划3.设实数满足则的最大值等于________.【答案】2 【解析】实数满足所以x,y 的可行域如图所示.的最大值即为目标函数在y 轴的截距最小.即过点A (2,0),所以的最大值为2. 【考点】1.线性规划.2.截距最大对应的目标函数的最小值. 4. 已知满足不等式设,则的最大值与最小值的差为( )A .4B .3C .2D .1【答案】A【解析】作出不等式组所表示的区域,,由图可知,在点取得最小值,在点取得最大值,故的最大值与最小值的差为.【考点】线性规划.5. 已知实数x ,y 满足若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________. 【答案】[-1,1]【解析】作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴-1≤-a≤1,即-1≤a≤1.6. 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1kg 、B 原料2kg ;生产乙产品1桶需耗A 原料2kg ,B 原料1kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少? 【答案】2800元【解析】设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z=300x+400y,且画可行域如图所示,目标函数z=300x+400y可变形为y=-x+,这是随z变化的一簇平行直线,解方程组∴即A(4,4),∴z=1200+1600=2800(元).max故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2800元.7.设变量x.y满足约束条件则目标函数的最大值和最小值分别为()A.3,一11B.-3,一11C.11,—3D.11,3【答案】A【解析】线性约束条件表示三角形及其内部,当目标函数经过点时,取最小值,经过点时取最大值.【考点】线性规划求最值8.若关于的不等式组表示的平面区域是一个三角形,则的取值范围是.【答案】.【解析】当时,,因此根据图象可知,要使得不等式组所表示的平面区域是一个三角形,那么的取值范围是.【考点】线性规划.9.已知x,y满足则z=2x+4y的最小值为().A.5B.-5C.6D.-6【答案】D【解析】画出线性约束条件下的平面区域.由,得点P(3,-3).此时z=2x+4y达到最小值,最小值为-6.10.已知实数满足约束条件,则的最小值是____________.【答案】【解析】因为实数满足约束条件,x,y的可行域如图为三角形ABC围成的区域.又因为目标函数.所以要求z的最小值即为求出的最小值,即过原点直线的斜率的最小值.通过图形可知过点A的最小,由题意得A(3,1).所以z的最小值为.故填.【考点】1.线性规划问题.2.构造的思想.3数形结合的思想.11.已知O是坐标原点,点M的坐标为(2,1),若点N(x,y)为平面区域上的一个动点,则的最大值是________.【答案】3【解析】=2x+y,设z=2x+y,则y=-2x+z,不等式组对应的区域为BCD.平移直线y=-2x+z,由图可知当直线y=-2x+z经过点C时,直线y=-2x+z的截距最大,此时z最大,由,解得,即C(1,1),代入z=2x+y得z=2x+y=3,所以的最大值为3. 12.已知实数,满足约束条件则的最大值为.【答案】【解析】解线性规划问题,不仅要正确确定可行域,本题是直角三角形及其内部,而且要挖出目标函数的几何意义,本题中可理解为坐标原点到可行域中点的距离的平方.要求目标函数最大值,就是求的最小值,即坐标原点到直线的距离的平方,为.【考点】线性规划求最值13.若变量满足线性约束条件,则的最大值为________.【答案】5【解析】由约束条件,得如下图所示的三角形区域,由得直线过点时,取得最大值为5.【考点】线性规划.14.已知变量x,y满足约束条件则z=4x·2y的最大值为。
高考数学专题复习七-7.2简单的线性规划-高考真题练习(附答案)
7.2简单的线性规划考点简单的线性规划1.(2018天津理,2文,2,5分)设变量x,y 满足约束条件+≤5,2t ≤4,-+≤1,≥0,则目标函数z=3x+5y 的最大值为()A.6B.19C.21D.45答案C 本题主要考查线性目标函数最值的求解.由变量x,y 满足的约束条件画出可行域(如图阴影部分所示).作出基本直线l 0:3x+5y=0,平移直线l 0,当经过点A(2,3)时,z 取最大值,z max =3×2+5×3=21,故选C.2.(2018北京理,8,5分)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A 答案D 本题主要考查不等式组的解法,元素与集合的关系.若(2,1)∈A,则有2−1≥1,2+1>4,2−≤2,解得a>32.结合四个选项,只有D 说法正确.故选D.易错警示注意区分集合条件中的“或”与“且”.本题容易把三个不等式的中间联结词认为是“或”而错选A.3.(2017课标Ⅲ文,5,5分)设x,y 满足约束条件3+2t6≤0,≥0,≥0,则z=x-y 的取值范围是()A.[-3,0]B.[-3,2]C.[0,2]D.[0,3]答案B 由题意,画出可行域(如图中阴影部分所示),易知A(0,3),B(2,0).由图可知,目标函数z=x-y 在点A,B 处分别取得最小值与最大值,z min =0-3=-3,z max =2-0=2,故z=x-y 的取值范围是[-3,2].故选B.4.(2017课标Ⅰ文,7,5分)设x,y 满足约束条件+3≤3,t ≥1,≥0,则z=x+y 的最大值为()A.0B.1C.2D.3答案D 本题考查简单的线性规划问题.作出约束条件表示的可行域如图:平移直线x+y=0,可得目标函数z=x+y 在A(3,0)处取得最大值,z max =3,故选D.一题多解由约束条件求出三个交点的坐标(3,0),(1,0),3212分别代入目标函数z=x+y,得到z max =3.5.(2016北京理,2,5分)若x,y 满足2t ≤0,+≤3,≥0,则2x+y 的最大值为()A.0B.3C.4D.5答案C 画出可行域,如图中阴影部分所示,令z=2x+y,则y=-2x+z,当直线y=-2x+z 过点A(1,2)时,z 最大,z max =4.故选C.思路分析先画出可行域,再令z=2x+y 并改写成斜截式,找到令z 取最大值时的点,代入求值.评析本题考查简单的线性规划,属容易题.6.(2016天津理,2,5分)设变量x,y 满足约束条件t +2≥0,2+3t6≥0,3+2t9≤0,则目标函数z=2x+5y 的最小值为()A.-4B.6C.10D.17答案B 由线性约束条件画出可行域(如图中阴影部分).当直线2x+5y-z=0过点A(3,0)时,z min =2×3+5×0=6,故选B.评析本题考查了简单的线性规划问题,正确画出可行域是求解的关键.7.(2016山东,4,5分)若变量x,y 满足+≤2,2t3≤9,≥0,则x 2+y 2的最大值是()A.4B.9C.10D.12答案C 作出不等式组所表示的平面区域,如图(阴影部分)所示,x 2+y 2表示平面区域内的点到原点的距离的平方,由图易知平面区域内的点A(3,-1)到原点的距离最大,所以x 2+y 2的最大值是10,故选C.评析本题考查了数形结合的思想方法.利用x 2+y 2的几何意义是求解的关键.8.(2016浙江,4,5分)若平面区域+t3≥0,2tt3≤0,t2+3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.355 B.2C.322D.5答案B 作出可行域如图.由2tt3=0,+t3=0,得A(2,1),由+t3=0,t2+3=0,得B(1,2).斜率为1的平行直线l 1,l 2分别过A,B 两点时它们之间的距离最小.过A(2,1)的直线l 1:y=x-1,过B(1,2)的直线l 2:y=x+1,此时两平行直线间的距离=2.故选B.9.(2015重庆,10,5分)若不等式组+t2≤0,+2t2≥0,t +2≥0表示的平面区域为三角形,且其面积等于43,则m 的值为()A.-3 B.1C.43D.3答案B 如图,要使不等式组表示的平面区域为三角形,则-2m<2,即m>-1,所围成的区域为△ABC,S △ABC =S △ADC -S △BDC .点A 的纵坐标为1+m,点B 的纵坐标为23(1+m),C,D 两点的横坐标分别为2,-2m,所以S △ABC =12(2+2m)(1+m)-12(2+2m)·23(1+m)=13(1+m)2=43,解得m=-3(舍去)或m=1.故选B.10.(2015山东理,6,5分)已知x,y 满足约束条件t ≥0,+≤2,≥0.若z=ax+y 的最大值为4,则a=()A.3B.2C.-2D.-3答案B 作出可行域如图.①当a<0时,显然z=ax+y 的最大值不为4;②当a=0时,z=y 在B(1,1)处取得最大值,为1,不符合题意;③当0<a<1时,z=ax+y 在B(1,1)处取得最大值,z max =a+1=4,故a=3,舍去;④当a=1时,z=x+y 的最大值为2,不符合题意;⑤当a>1时,z=ax+y 在A(2,0)处取得最大值,z max =2a=4,得a=2,符合题意.综上,a=2.11.(2015福建文,10,5分)变量x,y 满足约束条件+≥0,t2+2≥0,B-≤0.若z=2x-y 的最大值为2,则实数m 等于()A.-2B.-1C.1D.2答案C 当m<0时,约束条件所表示的平面区域是开放的,目标函数z=2x-y 无最大值,排除A,B,当m=2时,目标函数z=2x-y 的最大值为0,于是排除D,故选C.12.(2014课标Ⅱ理,9,5分,0.798)设x,y 满足约束条件+t7≤0,t3+1≤0,3tt5≥0,则z=2x-y 的最大值为()A.10B.8C.3D.2答案B 由约束条件得可行域如图阴影部分所示.由+t7=0,t3+1=0得A(5,2).当直线2x-y=z 过点A 时,z=2x-y 取得最大值.其最大值为2×5-2=8.故选B.方法总结解决线性规划问题的一般步骤:①画出可行域;②根据目标函数的几何意义确定其取得最优解的点,并求出该点坐标;③求出目标函数的最大值或最小值.13.(2014课标Ⅱ文,9,5分,0.700)设x,y 满足约束条件+t1≥0,tt1≤0,t3+3≥0,则z=x+2y 的最大值为()A.8B.7C.2D.1答案B 约束条件表示的平面区域如图中阴影部分所示,由z=x+2y,得y=-12x+2,2为直线y=-12x+2在y 轴上的截距,要使z 最大,则需2最大,所以当直线y=-12x+2经过点B(3,2)时,z 最大,最大值为3+2×2=7,故选B.14.(2014课标Ⅰ文,11,5分,0.236)设x,y 满足约束条件+≥st≤−1,且z=x+ay 的最小值为7,则a=()A.-5B.3C.-5或3D.5或-3答案B 二元一次不等式组表示的平面区域如图所示,其中平移直线x+ay=0,可知在点,z 取得最值,因此t12+a×r12=7,化简得a 2+2a-15=0,解得a=3或a=-5,但a=-5时,z 取得最大值,故舍去,故选B.解后反思本题也可由排除法选出答案,当a=-5时,目标函数无最小值,当a=3时,可以判断出目标函数的最小值为7,所以选B.15.(2014北京理,6,5分)若x,y 满足+t2≥0,B-+2≥0,≥0,且z=y-x 的最小值为-4,则k 的值为()A.2B.-2C.12D.-12答案D 由t =−4,=0得A(4,0).由图推测直线kx-y+2=0必过A(4,0),得k=-12,经验证符合题目条件.故选D.16.(2014课标Ⅰ理,9,5分)不等式组+≥1,t2≤4的解集记为D.有下面四个命题:p 1:∀(x,y)∈D,x+2y≥-2,p 2:∃(x,y)∈D,x+2y≥2,p 3:∀(x,y)∈D,x+2y≤3,p 4:∃(x,y)∈D,x+2y≤-1.其中的真命题是()A.p 2,p 3B.p 1,p 2C.p 1,p 4D.p 1,p 3答案B 不等式组+≥1,t2≤4表示的平面区域D 如图阴影区域所示.设z=x+2y,作出基本直线l 0:x+2y=0,经平移可知直线l:z=x+2y 经过点A(2,-1)时z 取得最小值0,无最大值.对于命题p 1:由于z 的最小值为0,所以∀(x,y)∈D,x+2y≥0恒成立,故x+2y≥-2恒成立,因此命题p 1为真命题;由于∀(x,y)∈D,x+2y≥0,故∃(x,y)∈D,x+2y≥2,因此命题p 2为真命题;由于z=x+2y 的最小值为0,无最大值,故命题p 3与p 4错误,故选B.17.(2013课标Ⅱ文,3,5分,0.693)设x,y 满足约束条件t +1≥0,+t1≥0,≤3,则z=2x-3y 的最小值是()A.-7B.-6C.-5D.-3答案B 由约束条件得可行域(如图),当直线2x-3y-z=0过点A(3,4)时,z min =2×3-3×4=-6.故选B.18.(2013课标Ⅱ理,9,5分,0.788)已知a>0,x,y 满足约束条件≥1,+≤3,≥ot3).若z=2x+y 的最小值为1,则a=()A.14B.12C.1D.2答案B 由约束条件画出可行域(如图所示的△ABC 及其内部),由=1,=ot3)得A(1,-2a),当直线2x+y-z=0过点A 时,z=2x+y 取得最小值,所以1=2×1-2a,解得a=12,故选B.解题关键根据约束条件准确画出可行域,从而经过平移确定直线z=2x+y 过可行域内的点A 时z 取得最小值是解题的关键.19.(2013湖北文,9,5分)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为()A.31200元B.36000元C.36800元D.38400元答案C 设旅行社租用A 型客车x 辆,B 型客车y 辆,租金为z 元,则线性约束条件为+≤21,t ≤7,36+60≥900,≥0,≥0,目标函数为z=1600x+2400y.画出可行域:当目标函数z=1600x+2400y 经过点A(5,12)时,z min =1600×5+2400×12=36800.选C.20.(2012课标,5,5分)已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x,y)在△ABC 内部,则z=-x+y 的取值范围是()A.(1-3,2)B.(0,2)C.(3-1,2)D.(0,1+3)答案A 由题意知可行域为△ABC(不含边界).当直线-x+y-z=0过点C(1+3,2)时,z min =1-3;当过点B(1,3)时,z max =2.故选A.评析本题考查了简单的线性规划,考查了数形结合的思想.正确理解直线的斜率、截距的几何意义是求解的关键.21.(2016浙江,3,5分)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域t2≤0,+≥0,t3+4≥0中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()A.22B.4C.32D.6答案C 由不等式组画出可行域,如图中的阴影部分所示.因为直线x+y-2=0与直线x+y=0平行,所以可行域内的点在直线x+y-2=0上的投影构成的线段的长|AB|即为|CD|.易得C(2,-2),D(-1,1),所以|AB|=|CD|=(2+1)2+(−2−1)2=32.故选C.22.(2022全国乙文,5,5分)若x ,y 满足约束条件+≥2,+2≤4,≥0,则z =2x -y 的最大值是()A.-2B.4C.8D.12答案C 由约束条件作出可行域如图中阴影部分所示,联立+2=4,=0,可得A (4,0),当直线z =2x -y 过点A 时,z =2x -y 取最大值,z max =2×4-0=8,故选C .23.(2021全国乙文,5,5分)若x ,y 满足约束条件+≥4,−≤2,≤3,则z =3x +y 的最小值为()A.18B.10C.6D.4答案C 解题指导:思路一:先画出可行域,然后移动直线3x +y =0,最后由z 与纵截距的关系得最优解,计算即可;思路二:先求出可行域顶点的坐标,然后分别求出各顶点处目标函数值,通过比较大小得到z 的最小值.解析解法一:作出不等式组表示的可行域,如图.作直线l :3x +y =0,平行移动直线l ,可知当平移后的直线过点(1,3)时,纵截距最小,即z 最小.故z min =3×1+3=6.故选C .解法二:根据线性约束条件得出可行域为△ABC 及其内部(如上图所示),其中A (3,1),B (1,3),C (5,3),经检验,知目标直线过点B (1,3)时,z 取最小值,即z min =3×1+3=6.解后反思:对于直线z =Ax +By ,若B >0,则当目标直线向上移动时,z 变大;若B <0,则当目标直线向下移动时,z 变大.24.(2020课标Ⅰ理,13,5分)若x ,y 满足约束条件2+−2≤0,−−1≥0,+1≥0,则z =x +7y 的最大值为.答案1审题指导:作出可行域移动直线x +7y =0过A (1,0)时有z max .解题思路:作出可行域如图,由z =x +7y 得y =-7+7,易知当直线y =-7+7经过点A (1,0)时,z 取得最大值,z max =1+7×0=1.方法总结:线性规划问题的最优解一般在可行域的边界或顶点处取得,所以可以通过平移目标函数所对应的直线判断最优解,还可以通过比较边界或顶点处的目标函数值进行判断.25.(2016江苏,12,5分)已知实数x,y 满足t2+4≥0,2+t2≥0,3tt3≤0,则x 2+y 2的取值范围是.答案,13解析画出不等式组t2+4≥0,2+t2≥0,3tt3≤0表示的可行域如图:由x-2y+4=0及3x-y-3=0得x 2+y 2表示可行域内的点(x,y)与点(0,0)的距离的平方可得22)max =22+32=13,(x 2+y 2)min =d 2=45,其中d 表示点(0,0)到直线2x+y-2=0的距离,所以x 2+y 2的取值范围,13.解后反思对于线性规划问题,要正确作出可行域,并理解目标函数的几何意义,分清常规的“距离型”“斜率型”与“截距型”是解题的关键.26.(2020课标Ⅱ文,15,5分)若x,y 满足约束条件+≥−1,t ≥−1,2t ≤1,则z=x+2y 的最大值是.答案8解析作出约束条件表示的可行域,如图所示.由图可知直线z=x+2y 过点A(2,3)时,z 取得最大值,最大值为2+2×3=8.27.(2019课标Ⅱ文,13,5分)若变量x,y 满足约束条件2+3t6≥0,+t3≤0,t2≤0,则z=3x-y 的最大值是.答案9解析本题考查简单的线性规划问题;以二元一次不等式组作为约束条件考查学生数形结合思想及运算求解能力;考查数学运算的核心素养.作出可行域(如图阴影部分所示).易得A(3,0),B(1,2),C(0,2).将z=3x-y 化为y=3x-z,由图知,当直线y=3x-z 经过点A(3,0)时,截距-z 取得最小值,从而z 取得最大值.z max =3×3=9.易错警示因为目标函数中y 的系数为负值,所以容易理解为在点C 处取得最大值,导致错误.28.(2018课标Ⅲ文,15,5分)若变量x,y 满足约束条件2++3≥0,t2+4≥0,t2≤0,则z=x+13y 的最大值是.答案3解析本题考查简单的线性规划.解法一:根据约束条件作出可行域,如图所示.z=x+13y 可化为y=-3x+3z.求z 的最大值可转化为求直线y=-3x+3z 纵截距的最大值,显然当直线y=-3x+3z 过A(2,3)时,纵截距最大,故z max =2+13×3=3.解法二:画出可行域(如上图),由图知可行域为三角形区域,易求得顶点坐标分别为(2,3),(2,-7),(-2,1),将三点坐标代入,可知z max =2+13×3=3.29.(2018浙江,12,6分)若x,y 满足约束条件t ≥0,2+≤6,+≥2,则z=x+3y 的最小值是,最大值是.答案-2;8解析本小题考查简单的线性规划.由约束条件得可行域是以A(1,1),B(2,2),C(4,-2)为顶点的三角形区域(含边界),如图.当直线y=-13x+3过点C(4,-2)时,z=x+3y 取得最小值-2,过点B(2,2)时,z=x+3y 取得最大值8.思路分析(1)作出可行域,并求出顶点坐标.(2)平移直线y=-13x,当在y 轴上的截距最小时,z=x+3y 取得最小值,当在y 轴上的截距最大时,z=x+3y 取得最大值.30.(2016课标Ⅲ,13,5分)设x,y 满足约束条件2t +1≥0,t2t1≤0,≤1,则z=2x+3y-5的最小值为.答案-10解析可行域如图所示(包括边界),直线2x-y+1=0与x-2y-1=0相交于点(-1,-1),当目标函数线过(-1,-1)时,z 取最小值,z min =-10.31.(2014安徽,13,5分)不等式组+t2≥0,+2t4≤0,+3t2≥0表示的平面区域的面积为.答案4解析不等式组表示的平面区域为如图所示的阴影部分.由+3t2=0,+2t4=0得=8,=−2.∴A(0,2),B(2,0),C(8,-2).直线x+2y-4=0与x 轴的交点D 的坐标为(4,0).因此S △ABC =S △ABD +S △BCD =12×2×2+12×2×2=4.故答案为4.32.(2013课标Ⅰ,14,5分,0.660)设x,y 满足约束条件1≤≤3,-1≤t ≤0,则z=2x-y 的最大值为.答案3解析可行域为如图所示的阴影部分,由z=2x-y,得y=2x-z.-z 的几何意义是直线y=2x-z 在y 轴上的截距,要使z 最大,则-z 最小,所以当直线y=2x-z 过点A(3,3)时,z 最大,最大值为2×3-3=3.33.(2012课标理,14,5分)设x,y满足约束条件t ≥−1,+≤3,≥0,≥0,则z=x-2y的取值范围为.答案[-3,3]解析由不等式组画出可行域(如图所示).当直线x-2y-z=0过点B(1,2)时,z min=-3;过点A(3,0)时,z max=3.∴z=x-2y的取值范围是[-3,3].评析本题考查了简单线性规划知识;考查了数形结合的思想方法.34.(2011课标文,14,5分)若变量x,y满足约束条件3≤2+≤9,6≤t≤9,则z=x+2y的最小值为.答案-6解析画出约束条件所表示的平面区域,如图阴影部分所示:当目标函数表示的直线经过点A(4,-5)时,z有最小值,z min=4+2×(-5)=-6.失分警示本题易将平面区域画错或者将目标函数表示的直线的斜率看成12而致错.评析本题考查线性规划问题,正确作图是得分的前提.。
2014届高三数学复习 简单线性规划20130908
域的公共部分.
2.线性规划
线性目标函数在线性约束条件下,最值问题的讨论.
基本概念 名 称 线性约束条件 目标函数 意 义 由x、y的一次不等式(或方程)组成的不等式组,是对x、y的 约束条件 关于x、y的解析式,如:z=2x+y,z=x2+y2等
Байду номын сангаас
线性目标函数
可行解
关于x、y的一次解析式
满足线性约束条件x、y的解(x,y)叫做可行解
第二课时 简单的线性规划
1.一元二次不等式表示平面区域 在直角坐标系中,Ax+By+C=0将平面分成三部分.直线上的点满足Ax+By+C=0 ,当B=0时,直接从坐标系上看出范围,当B≠0时,满足B(Ax+By+C)>0表示直线 上方的区域,满足B(Ax+By+C)<0表示直线下方的区域.口诀是:同号在上,异号
在下.或采用“以线定界,以点定域”的原则.
判别不等式Ax+By+C>0(或Ax+By+C<0)表示的平面区域时,只要在直线 Ax+By+C=0的一侧任取一点(x0,y0),将它的坐标代入不等式,如果该点的坐标满
足不等式,不等式就表示该点所在一侧的平面区域;如果不满足不等式,就表示
这个点所在区域的另一侧平面区域. 由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区
可行域
最优解 线性规划问题
所有可行解组成的集合叫做可行域
使目标函数达到最大值或最小值的可行解 求线性目标函数在线性约束条件下的最大值或最小值的问题
解线性规划的问题,一般用图解法,其步骤如下: (1)设出变量x、y; (2)找出约束条件,找出线性目标函数; (3)画出可行域; (4)利用线性目标函数作平行直线系; (5)求出最值,还原成实际问题的解.
简单的线性规划问题(附答案)
简单的线性规划问题[学习目标]1。
了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b〉0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b〈0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1已知变量x,y满足约束条件错误!则z=3x+y的最大值为()A.12 B.11C.3 D.-1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z经过点A时,z取得最大值.由错误!⇒错误!此时z=3x+y=11。
简单的线性规划问题(二)
3 .在△ ABC 中,三顶点坐标为 A (2,4) , B(-1,2),C(1,0),点P(x,y)在△ABC内部 及边界运动,则z=x-y的最大,最小值分 别是 ( ) A.3,1 B.-1,-3 C.1,-3 D.3,-1
解析:本题运用线性规划问题的图象解 法.只需画出约束条件对应的可行域,即 一个封闭的三角形区域(含边界),再平移直 线x-y=0使之经过可行域,观察图形,找 出动直线纵截距最大时和最小时经过的点, 然后计算可得答案. 答案:C
x-y=-1, 解方程组 x+y=5,
得 A(2,3),
所以 zmin=2×2-3×3=-5. 当直线经过点 B 时, 直线的纵截距最小, 此时 z 最大.
x-y=3, 解方程组 x+y=1,
得 B(2,-1),
所以 zmax=2×2-3×(-1)=7. 所以 2x-3y 的取值范围是[-5,7]
[点评] 对于线性规划中的最优整数解的问 题,当解方程组得到的解不是整数解时, 可用下面的方法求解: ①平移直线法:先在可行域内打网格,再 描整点,平移直线 l ,最先经过或最后经过 的整点坐标是整点最优解. ②检查优值法:当可行域内整点个数较少 时,也可将整点坐标逐一代入目标函数求 值,经比较得出最优解. ③调整优值法:先求非整点最优解及最优 值,再借助不定方程知识调整最优值,最
[解] 设隔出大房间 x 间,小房间 y 间,获得收 益为 z 元,则
18x+15y≤180, 1000x+600y≤8000, x≥0,y≥0,且x,y∈N, 6x+5y≤60,① 即5x+3y≤40,② x≥0,y≥0,且x,y∈N.
目标函数为 z=200x+150y, 画出可行域如右图 8 所示.
人教A版数学高三简单的线性规划问题精选试卷练习(含答案)1
30.已知
x,
y
满足约束条件
1 x 1
y 2x
3, y
2.则 x2 y2 的最大值为___________.
试卷第 4页,总 7页
31.设函数
f
(x)
x 2, x ex , x 1
1
,D
是由
x
轴和曲线
y
f
x 及该曲线在 x
0处
的切线所围成的封闭区域,则 z x 2 y 在 D 上的最大值为________.
煤 t
电 kW h
A
3
9
4
B
10
4
5
已知生产1t A 产品的利润是 7 万元,生产1t B 产品的利润是12 万元.现因条件限制,企 业仅有劳动力 300 个,煤 360t ,并且供电局只能供电 200kW h ,则企业生产 A 、B 两
种产品各多少吨,才能获得最大利润?
50.已知关于 x 的一元二次函数 f (x) ax2 4bx 1.
y2
的最大值是_______
y 3
x 2y 1
35.设实数
x,y
满足
x
y
0
,则 z x 4 y 的最小值为______.
y 5
2x y 2 0
36.设 x, y 满足约束条件 8x y 4 0 x 0, y 0
,
则
3y 2x
9 1
的取值范围为____________.
2x 1
,则目标函数
z
4x
3y
的最小值为_____.
y
1
x
4
2
2x y 3
40.已知实数
x,
简单的线性规划典型例题
简单的线性规划典型例题篇一:典型例题:简单的线性规划问题典型例题【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?参考答案例1:【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.【解】|x-1|+|y-1|≤2可化为或其平面区域如图:或或∴面积S=×4×4=8【点拨】画平面区域时作图要尽量准确,要注意边界.例2:【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么z=252x+160y,作出不等式组所表示的平面区域,即可行域,如图作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.此时,z=252x+160y取得最小值,即x=2,y=5时,zmin=252×2+160×5=1304.答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.篇二:不等式线性规划知识点梳理及经典例题及解析线性规划讲义【考纲说明】(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.【知识梳理】简单的线性规划问题一、知识点1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验. 3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一.1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B0时,Ax0+By0+C0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反,即:1.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的同侧,则有(Ax1+By1+C)( Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)①二元一次不等式Ax+By+C>0(或②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法: 方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地, 当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
简单的线性规划典型例题
简单的线性规划典型例题「_x +y _2 兰0,例1画出不等式组」x+y—4兰0,表示的平面区域.x -3y 3 _ 0.分析:采用“图解法”确定不等式组每一不等式所表示的平面区域,然后求其公共部分.解:把x=0 , y=0 代入-x y-2中得-00-2:::0二不等式-x * y-2乞0表示直线-X,y-2=0下方的区域(包括边界),即位于原点的一侧,同理可画出其他两部分,不等式组所表示的区域如图所示.说明:“图解法”是判别二元一次不等式所表示的区域行之有效的一种方法.例2画出2x-3:m表示的区域,并求所有的正整数解(x,y).分析:原不等式等价于'而求正整数解则意味着x , y "3. '上>0, y >0,x € z y w z有限制条件,即求;y J .j y〉2x-3,yg解:依照二元一次不等式表示的平面区域,知2x-3:::八3表示的区域如下图:x>0, y >0,对于2x-3曲空3的正整数解,先画出不等式组.X Z ,r Z,所表示y>2x-3,八3.的平面区域,如图所示.容易求得,在其区域内的整数解为(1,1)、(1,2)、(1,3)、(2,2)、(2,3). 说明:这类题可以将平面直角坐标系用网络线画出来,然后在不等式组所表示的平面区域内找出符合题设要求的整数点来.y 环+1 _1例3求不等式组< ''所表示的平面区域的面积.“兰-x+1分析:本题的关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论.解:不等式y A|x+1| -1 可化为y X x(x 兰-1)或y 二-x~2(x v -1);不等式y _ _x 1 可化为y - -x 1(x 一0)或y 1(x :: 0).在平面直角坐标系内作出四条射线AB: y =x(x _ -1),AC : y - -x-2(x :: -1)DE : y = —x 1(x 亠0),DF : y = x 1(x :: 0)则不等式组所表示的平面区域如图由于AB与AC、DE与DF互相垂直,所以平面区域是一个矩形.根据两条平行线之间的距离公式可得矩形的两条边的长度分别为2和注.2 2所以其面积为3.2‘2x + y -12 喳0,例4 若x、y满足条件』3x-2y+10^0,求z = x+ 2y的最大值和最小值.x -4y +10 兰0.分析:画出可行域,平移直线找最优解.解:作出约束条件所表示的平面区域,即可行域,如图所示. 作直线I:x2y = z,即y = -1x -z,它表示斜率为一丄,纵截距2 2 2为2的平行直线系,当它在可行域内滑动时,由图可知,直线l过点时,Z取得最大值,当I过点B时,z取得最小值.二Z max = 2 28 = 18二Z min _ -2 22 =2说明:解决线性规划问题,首先应明确可行域,再将线性目标函数作平移取得最值.例5用不等式表示以A(1,4) , B(-3,0) , C(-2,-2)为顶点的三角形内部的平面区域.分析:首先要将三点中的任意两点所确定的直线方程写出来,然后结合图形考虑三角形内部区域应怎样表示。
高三数学一轮同步测试简单的线性规划(一) Word版含答案
. 简单的线性规划(一)
.已知,满足求:
()=+的最大值;()=-的最小值;
()=+的取值范围;()=-的取值范围.
.已知,满足约束条件求目标函数=+的最小值..已知,满足约束条件求=+的最小值.
.一个化肥厂生产甲、乙两种混合肥料,生产车皮甲种肥料需要的主要原料是磷酸盐吨、硝酸盐吨,产生的利润为元;生产车皮乙种肥料需要的主要原料是磷酸盐吨、硝酸盐吨,产生的利润为元。
现有库存磷酸盐吨、硝酸盐吨,在此基础上进行生产。
问如何安排生产才能使得该厂获得的利润最大?
.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为﹪和﹪,可能的最大亏损率分别为﹪和﹪. 投资人计划投资金额不超过万元,要求确保可能的资金亏损不超过万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?。
14高三必修同步数学练习题简单的线性规划
14高三必修同步数学练习题简单的线性规划
14高三必修同步数学练习题简单的线性规划高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了14高三必修同步数学练习题,希望对大家有帮助。
1.在等差数列{an}中,a1=21,a7=18,则公差d=()
A.12
B.13
C.-12
D.-13
解析:选C.∵a7=a1+(7-1)d=21+6d=18,d=-12.
2.在等差数列{an}中,a2=5,a6=17,则a14=()
A.45
B.41
C.39
D.37
解析:选B.a6=a2+(6-2)d=5+4d=17,解得d=3.所以
a14=a2+(14-2)d=5+123=41.
3.已知数列{an}对任意的nN*,点Pn(n,an)都在直线y=2x+1上,则{an}为()
A.公差为2的等差数列
B.公差为1的等差数列
C.公差为-2的等差数列
D.非等差数列
解析:选A.an=2n+1,an+1-an=2,应选A.
4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()
A.2
B.3
C.6
D.9。
人教版高中数学必修第二册简单的线性规划 同步练习
简单的线性规划 同步练习1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品? 甲原料(吨) 乙原料(吨) 费用限额成本 1000 1500 6000运费 500 400 2000产品 90 100⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥200040050060001500100000y x y x y xz=90x+100y作出以上不等式组所表示的平面区域,即可行域:由⎪⎪⎩⎪⎪⎨⎧==⎩⎨⎧=+=+72071220451232y x y x y x 得 令90x+100y=t ,作直线:90x+100y=0即9x+10y=0的平行线90x+100y=t ,当90x+100y=t 过点M (720,712)时,直线90x+100y=t 中的截距最大,由此得出t 的值也最大,最大值zmax=90×720100712⨯+=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大? 解:设每天生产A 型桌子x 张,B 型桌子y 张.则⎪⎩⎪⎨⎧≥≥≤+≤+0,09382y x y x y x目标函数为:z=2x+3y作出可行域:把直线l :2x+3y=0向右上方平移至l ′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z=2x+3y 取最大值.解方程⎩⎨⎧=+=+9382y x y x得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润.评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.。
(完整word版)高中数学高考总复习简单的线性规划习题及详解
高中数学高考总复习简单的线性规划习题及详解一、选择题1. (文)(2010北京东城区)在平面直角坐标系中,若点(—2, t)在直线x—2y + 4= 0的上方,贝y t的取值范围是(A.(―汽1)B. (1 ,+s )C. ( —1 ,+s )D. (0,1)[答案]B[解析]•••点0(0,0)使x—2y+ 4>0成立,且点O在直线下方,故点(—2, t)在直线x —2y+ 4= 0 的上方? —2—2t+ 4<0,••• t>1.[点评]可用B值判断法来求解,令 d = B(Ax0+ By°+ C),贝U d>0?点P(x0, y°)在直线Ax+ By+ C = 0的上方;d<0?点P在直线下方.由题意一2(— 2 —2t+ 4)>0 ,• t>1.(理)(2010惠州市模拟)若2m+ 2n<4,则点(m, n)必在()A .直线x+ y—2= 0的左下方B .直线x+ y—2 = 0的右上方C.直线x+ 2y—2 = 0的右上方D .直线x+ 2y —2 = 0的左下方[答案]A[解析]•/ 2m+ 2n> 2 2m+n,由条件2m+ 2n<4 知,2 .2m+ n<4,「. m+ n<2,即m+ n —2<0,故选A.x> 02. (文)(09安徽)不等式组x+ 3y>4 所表示的平面区域的面积等于()3x+ y w 4A.3B.f43C. D. -34[答C案]x+ 3y= 4[解平面区域如图•解3x + y=44B(0,4), C 0, 3,4 8|BC=4— 3 = 3. -4•••S AABC=卜3x 1= 4.x+ y> 2(理)(2010重庆市南开中学)不等式组2x—y w 4 所围成的平面区域的面积为()x—y> 0A . 3 ,'2 B. 6 ,'2C. 6D. 3[答案]D[解析]不等式组表示的平面区域为图中Rt△ ABC,易求B(4,4), A(1,1), C(2,0)二S A ABC= S\ OBC—S A AOC=2X 4 —1X 2X 1 = 3.2 2y< x3. (文)(2010西安中学)设变量x, y满足约束条件x+ y> 2 ,则目标函数z= 2x+ y的最小值为()y > 3x—6A. 2B.3C. 5D. 7[答案]By< x[解析]在坐标系中画出约束条件x+ y> 2所表示的可行域为图中厶ABC,其中y> 3x—6A(2,0), B(1,1), C(3,3),则目标函数z= 2x+ y在点B(1,1)处取得最小值,最小值为3.(理)(2010哈师大附中模考)已知A(2,4) , B( —1,2), C(1,0),点P(x, 丫)在厶ABC内部及边界运动,则z= x—y的最大值及最小值分别是()A . —1,—3 B. 1,—3C. 3, —1D. 3,1[答案]B[解析]当直线y= x —z经过点C(1,0)时,Z max= 1,当直线y= x—z经过点B(- 1,2)时, Z min = — 3.4.(2010四川广元市质检)在直角坐标系xOy 中,已知△ AOB 的三边所在直线的方程分别为x = 0 ,y = 0,2x + 3y = 30,则厶AOB 内部和边上整点(即坐标均为整数的点)的总数为()B . 91D . 75[答案]By = 7 时, y = 9 时, •••共有 16+ 14+ 13+ 11+ 10+ 8+ 7 + 5 + 4+ 2+ 1 = 91 个.5. (2010山师大附中模考)某企业生产甲、乙两种产品,已知生产每吨甲产品要用 料3吨,B 原料2吨;生产每吨乙产品要用 A 原料1吨,B 原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗过13吨,B 原料不超过18吨.那么该企业可获得最大利润是( )[答案]D3x + y W 13 2x + 3y W 18由题意得,x > 0获利润3= 5x + 3y , 画出可行域如图,C . 88 y = 1 时, y = 3 时,y = 5 时, 0W x W 7; y = 6 时,0W x W 6;0W x W 4; y = 8 时,0W x W 3; 0W x W 1, y = 10 时,x = 0.A . 12万元B .20万元C . 25万元D . 27万元 A 原料不超[解析]设生产甲、乙两种产品分别为x 吨,y 吨,[解0< x W 10; y = 4 时,O W x W 9;3x+ y = 13由,解得A(3,4).2x+ 3y= 185 2T—3<—-< —3,.•当直线5x+ 3y = 3 经过A 点时,3max= 27.3 3x—y+ 6 > 06.(文)(2010山东省实验中学)已知实数x, y满足x+ y> 0 ,若z= ax+ y的最大x w 3值为3a + 9,最小值为3a —3,则实数a的取值范围为()B. a w —1[答案]C[解析]作出可行域如图中阴影部分所示,则z在点A处取得最大值,在点C处取得最小值.又k Bc=—1, k AB = 1,.••一1 w —a w 1,即一1 w a w 1.1a ° 3 ;(理)(2010寿光现代中学)已知变量x, y满足约束条件x+ 4y—13> 02y —x+ 1> 0 ,且有无穷多个x+ y—4 w 0点(x, y)使目标函数z= x+ my取得最小值,则m=(B.—1C. 1D. 4[答案]C[解析]由题意可知,不等式组表示的可行域是由及其内部部分.当z= x + my与x+ y— 4 = 0重合时满足题意,故m= 1.A(1,3), B(3,1), C(5,2)组成的三角形7. (2010 •东五校)当点M (x , y )在如图所示的三角形[解析]由目标函数z = kx + y 得y =— kx + z ,结合图形,要使直线的截距 z 最大的一个最优解为(1,2),贝V 0< — k w k Ac w 1 或 0> — k > k Bc = — 1, A k € [ — 1,1].y > x& (文)(2010厦门一中)已知x 、y 满足不等式组 x + y w 2 ,且z = 2x + y 的最大值是最x > a小值的3倍,则a =()1 A. 0 B.32 C.2 D . 1[答案]B[解析]依题意可知a<1.作出可行域如图所示,z = 2x + y 在A 点和B 点处分别取得最小 值和最大值.x a由 得 A(a , a), y = x x + y = 2 由 得 B(1,1), x = y标函数z = kx + y 取得最大值的一个最优解为 (1,2),则实数k 的取值范围是(A . ( — g,— -1] U [1, + g )B . [ — 1,1]C . (—g,— -1)U (1, + g ) D . (— 1,1)[答案]B)ABC 区域内(含边界)运动时,目1--z max = 3, Z min = 3a.二 a = 3.y > 0(理)已知实数x , y 满足y w 2x — 1x + y w m等于(B .C . [答案]B[解析]画出x , y 满足条件的可行域如图所示,可知在直线y = 2x — 1与直线x + y = m的交点A 处,目标函数z = x — y 取得最小值.y = 2x — 1 由,x + y = mm + 1 x= 3解得, 2m — 1y=^二、填空题x — y > 09. 设变量x, y 满足约束条件 x + y w 1 ,则目标函数z = 2x + y 的最大值为 __________ . x + 2y > 1[答案]2[解析]可行域为图中阴影部分厶 ABC ,显然当直线2x + y = z 经过可行域内的点 A(1,0) 时,z 取最大值,Z max = 2.,如果目标函数z = x — y 的最小值为—1,贝U 实数mD .即点A 的坐标为卬于2m — 1 3将点A 的坐标代入x — y =— 1,得中2 rm 1—3— =— 1,即卩 m = 5•故选 B. 310. (2010四川广元市质检)毕业庆典活动中,某班团支部决定组织班里48名同学去水上公园坐船观赏风景,支部先派一人去了解船只的租金情况,看到的租金价格如下表,那么他们合理设计租船方案后,所付租金最少为___________ 元•x> 1, y> 111. (文)(2010淮南一中)已知M、N是不等式组x —y+ 1>0 所表示的平面区域内的x + y w 6不同两点,贝U |MN|的最大值是 _______ .[答案].17[解析]不等式组所表示的平面区域如图中阴影部分(包括边界)所示,由图形易知,点D(5,1)与点B(1,2)的距离最大,所以|MN|的最大值为.17.y \x=\x-y+l=O眄/Z A ・ -厶1K*萝=6(理)如果直线y= kx+ 1与圆x2+ y2+ kx+ my —4= 0相交于M、N两点,且M、N关于kx -y + 1 > 0 b + 1直线x + y = 0对称,点P(a , b)为平面区域 kx -my < 0 内任意一点,贝U 的取值范围a — 1y > 0是 ________ .1[答案]—1,— 2[解析]T 直线y = kx + 1与圆x 2 + y 2 + kx + my — 4= 0相交于M 、N 两点,且 M 、N 关 k于x + y = 0对称,二y = kx + 1与x + y = 0垂直,二k = 1,而圆心在直线 x + y = 0上,••• — 2+斜率,1•••所求取值范围为—1, — 2 .x < my + n12. 若由不等式组 x — .;3y > 0 (n >0)确定的平面区域的边界为三角形,且它的外接圆y > 0的圆心在x 轴上,则实数m =[答案]—宁[解析]根据题意,三角形的外接圆圆心在 x 轴上, • OA 为外接圆的直径,•直线 x = my + n 与x — . 3y = 0垂直,—m = 0, •m =—1,•作出可行域如图所示,而岂表示点P(a , b)与点(1,-"连线的0 + 1 —1— 1;=1,即m= —三、解答题2x+ y—12W 013. (2010 •宁锦州)若x、y满足条件3x—2y+ 10> 0,求z= x+ 2y的最小值,并求x—4y+ 10< 0出相应的x、y值.[解析]根据条件作出可行域如图所示,x+ 4y—10 = 0解方程组,得A(—2,2).3x —2y+ 10= 0再作直线I: x+ 2y= 0,把直线I向上平移至过点A(—2, 2)时,z取得最小值2,此时x =—2, y= 2.14. (2010茂名模考)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1) 分别求甲、乙产品为一等品的概率P甲,P乙;(2) 已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x, y分别表示生产甲、乙产品的数量,在⑴的条件下,求x, y为何值时,z=xP甲+ yP乙最大,最大值是多少?\jsill工人(名)资金(万兀)甲420乙85P甲一卩乙=0.25[解析]⑴依题意得1 —卩甲=卩乙—0.05P 甲=0.65解得P 乙=0.4故甲产品为一等品的概率P甲=0.65,乙产品为一等品的概率P乙=04(2)依题意得x、y应满足的约束条件为j+2y=K 4x+ 8y W 3220x+ 5y W 55 ,且z= 0.65x+ 0.4y.x> 0y> 0作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线b: 0.65x+ 0.4y= 0即13x+ 8y= 0,把直线I向上方平移到l i的位置时,直线经过可行域内的点M,且l i与原点的距离最大,此时z取最大值.x+ 2y= 8解方程组,得x= 2, y= 3.4x + y= 11故M的坐标为(2,3),所以z的最大值为Z max= 0.65 X 2+ 0.4 X 3= 2.5。
高考数学 简单的线性规划 专题
高考数学 简单的线性规划 专题时间:45分钟 分值:100分一、选择题(每小题5分,共30分)1.若实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则yx 的取值范围是( )A .(0,1)B .(0,1]C .(1,+∞)D . D .(-2,4) 解析:可行域为△ABC ,如图3当a =0时,显然成立.当a >0时,直线ax +2y -z =0的斜率k =-a2>k AC =-1,a <2.当a <0时,k =-a2<k AB =2,∴a >-4.综合得-4<a <2,故选B. 答案:B4.(2009·安徽高考)若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4 所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34图4解析:由图4可知,线性规划区域为△ABC 边界及内部,y =kx +43恰过A ⎝⎛⎭⎫0,43,y =kx +43将区域平均分成面积相等两部分,故过BC 的中点D ⎝⎛⎭⎫12,52,52=k ×12+43,k =73,故选A. 答案:A5.(2009·山东高考)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为( )A.256 B.83 C.113D .4图5解析:作可行域如图5可知,目标函数在(4,6)处取得最大值12,∴2a +3b =6,从而有2a +3b=16⎝⎛⎭⎫2a +3b (2a +3b ) =16⎝⎛⎭⎫6ba+4+9+6a b =136+16⎝⎛⎭⎫6b a +6a b =136+⎝⎛⎭⎫b a +a b ≥136+2b a ·a b =256.故选A. 答案:A 6.(2009·湖北高考)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为 ( )A .2000元B .2200元C .2400元D .2800元解析:设需使用甲型货车x 辆,乙型货车y 辆,运输费用z 元,根据题意得线性约束条件⎩⎪⎨⎪⎧20x +10y ≥100,0≤x ≤4,0≤y ≤8,求线性目标函数z =400x +300y 的最小值.解得当⎩⎪⎨⎪⎧x =4y =2时,z min =2200,故选B.答案:B二、填空题(每小题5分,共20分)7.已知点P (x 1,y 1)不在直线l :Ax +By +C =0(B ≠0)上,则P 在直线l 上方的充要条件是__________,P 在直线l 下方的充要条件是__________.解析:直线l :Ax +By +C =0(B ≠0)上点M ,其横坐标x =x 1时,纵坐标y =-Ax 1+CB,点P 在直线l 的上方等价于点P 在点M 的上方,即y 1>-Ax 1+C B ,∴Ax 1+By 1+CB>0,亦即B (Ax 1+By 1+C )>0.所以P 在直线l 上方的充要条件是B (Ax 1+By 1+C )>0,同理P 在直线l 下方的充要条件是B (Ax 1+By 1+C )<0.答案:B (Ax 1+By 1+C )>0 B (Ax 1+By 1+C )<08.(2009·浙江高考)若实数x 、y 满足不等式组⎩⎪⎨⎪⎧x +y ≥2,2x -y ≤4,x -y ≥0,则2x +3y 的最小值是________.图6解析:依题意作出可行性区域如图6,目标函数z =2x +3y 在边界点(2,0)处取到最小值z =2×2+3×0=4. 答案:49.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0y ≥0x +y ≤1时,恒有ax +by ≤1,则以a 、b 为坐标的点P (a ,b )所形成的平面区域的面积等于__________.解析:令z =ax +by , ∵ax +by ≤1恒成立,即函数z =ax +by 在可行域要求的条件下,z max =1恒成立.当直线ax +by -z =0过点(1,0)或点(0,1)时,0≤a ≤1,0≤b ≤1.点P (a ,b )形成的图形是边长为1的正方形.∴所求的面积S =12=1. 答案:110.若A 为不等式组⎩⎪⎨⎪⎧x ≤0y ≥0y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为__________.图7解析:根据题意作图如图7:图中阴影部分为所求的区域,设其面积为S ,S =S △AOD -S △ABC =12·2·2-12·1·12=74.答案:74三、解答题(共50分)11.(15分)求不等式|x |+|y |≤2表示的平面区域的面积. 解:|x |+|y |≤2可化为:图8⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2.或⎩⎪⎨⎪⎧x ≥0,y ≤0,x -y ≤2.或⎩⎪⎨⎪⎧ x ≤0,y ≥0,-x +y ≤2.或⎩⎪⎨⎪⎧x ≤0,y ≤0,-x -y ≤2.其平面区域如图8所示.∴面积S =12×4×4=8.12.(15分)某厂拟生产甲、乙两种试销产品,每件销售收入分别为3千元、2千元.甲、乙产品都需要在A 、B 两种设备上加工,在每台A 、B 上加工一件甲所需工时分别为1工时、2工时,加工一件乙所需工时分别为2工时、1工时,A 、B 两种设备每月有效使用台时数为a (400≤a ≤500).求生产收入最大值的范围.解:设甲、乙两种产品月产量分别为x 、y 件,约束条件是⎩⎪⎨⎪⎧x +2y ≤a ,2x +y ≤a ,x ≥0,y ≥0.目标函数是z =3x +2y ,由约束条件画出可行域,如图9.图9将z =3x +2y 变形为y =-32x +z2,这是斜率为-32,随z 变化的一簇直线.z 2是直线在y 轴上的截距,当z2最大时z 最大,当然直线要与可行域相交,即在满足约束条件时目标函数取得最大值.由⎩⎪⎨⎪⎧x +2y =a ,2x +y =a ,解得⎩⎨⎧x =a 3,y =a 3.在这个问题中,使z =3x +2y 取得最大值的(x ,y )是两直线2x +y =a 与x +2y =a 的交点(a 3,a3).∴z =3·a 3+2·a 3=53a .又∵400≤a ≤500,∴20003≤z ≤25003.故月生产收入最大值的范围是[20003,25003].13.(20分)(2009·全国卷Ⅰ)设函数f (x )=x 3+3bx 2+3cx 有两个极值点x 1、x 2,且x 1∈,x 2∈. (1)求b 、c 满足的约束条件,并在下面的坐标平面内,画出满足这些条件的点(b ,c )的区域;图10(2)证明:-10≤f (x 2)≤-12.解:(1)f ′(x )=3x 2+6bx +3c ,依题意知,方程f ′(x )=0有两个根x 1、x 2,且x 1∈,x 2∈等价于f ′(-1)≥0,f ′(0)≤0,f ′(1)≤0,f ′(2)≥0.由此得b 、c 满足的约束条件为⎩⎪⎨⎪⎧c ≥2b -1,c ≤0,c ≤-2b -1,c ≥-4b -4.满足这些条件的点(b ,c )的区域为图11中阴影部分.图11 (2)由题设知f ′(x 2)=3x 22+6bx 2+3c =0,故bx 2=-12x 22-12c ,于是f (x 2)=x 32+3bx 22+3cx 2=-12x 32+3c 2x 2. 由于x 2∈,而由(1)知c ≤0,故-4+3c ≤f (x 2)≤-12+32c .又由(1)知-2≤c ≤0,所以-10≤f (x 2)≤-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,小编为大家整理了14高三必修同步数学练习题,希望对大家有帮助。
1.在等差数列{an}中,a1=21,a7=18,则公差d=()A.12 B.13C.-12 D.-13解析:选C.∵a7=a1+(7-1)d=21+6d=18,d=-12.2.在等差数列{an}中,a2=5,a6=17,则a14=()A.45 B.41C.39 D.37解析:选B.a6=a2+(6-2)d=5+4d=17,解得d=3.所以a14=a2+(14-2)d=5+123=41.3.已知数列{an}对任意的nN*,点Pn(n,an)都在直线y=2x+1上,则{an}为()A.公差为2的等差数列 B.公差为1的等差数列C.公差为-2的等差数列 D.非等差数列解析:选A.an=2n+1,an+1-an=2,应选A.4.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3C.6 D.9解析:选B.由题意得m+2n=82m+n=10,m+n=6,m、n的等差中项为3.5.下面数列中,是等差数列的有()①4,5,6,7,8,②3,0,-3,0,-6,③0,0,0,0,④110,210,310,410,A.1个 B.2个C.3个 D.4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{an}是首项为2,公差为3的等差数列,数列{bn}是首项为-2,公差为4的等差数列.若an=bn,则n的值为()A.4 B.5C.6 D.7解析:选B.an=2+(n-1)3=3n-1,bn=-2+(n-1)4=4n-6,令an=bn得3n-1=4n-6,n=5.。