空间几何体的结构及其三视图和直观图教学讲义
空间几何体的结构、三视图、直观图课件
正棱锥性质2 P
棱锥的高、斜高和斜高在 底面的射影组成一个直角 三角形。棱锥的高、侧棱 和侧棱在底面的射影组成 一个直角三角形
S 投 射 方 向
物体上某一点与其投影面上的投影点的连线是平行的,则为 平行投影,如果聚于一点,则为中心投影.
三视图的形成
物体向投影面投影所得到的图形称为视图。
如果物体向三个互相垂直的投影面分别投影,所得到 的三个图形摊平在一个平面上,则就是三视图。
• 三视图
• 正(主)视图——从正面看到的图
由由这这些些面面所所围围成成的的 几几何何体体叫叫做做棱棱锥锥。。
用一个平行于棱锥 底用面一的个平面行去于截棱棱锥 锥底,面底的面平与面截去面截之棱 间锥的,部底分面叫与作截棱面台之
间的部分叫作棱台
(1)上下两个底面 互(1相)上平下行两;个底面
(互2)相侧平棱行的;延长线 相(2交)侧于棱一的点延;长线
圆柱
圆锥
圆台
圆锥的结构特征
S 顶点
轴
母
线
侧
面
A
O
底面
B
以直角三角形的一条直角边所在直线为旋转轴, 其余两边旋转形成的曲面所围成的几何体叫做圆锥。
球的结构特征
以半圆的直径所在的直线为旋转轴,将半圆旋转所 形成的曲面叫作球面,球面所围成的几何体叫作球体, 简称球。
直径
O
球心
半径
球的基本属性: 球面可看作与定点(球心)的距离 等于定长(半径)的所有点的集合.
高考数学一轮复习: 专题8.1 空间几何体的结构及其三视图和直观图(讲)
第01节空间几何体的结构及其三视图和直观图【考纲解读】年考查三视图、几何体1与立体几何数学应用的【知识清单】1.空间几何体的结构特征一、多面体的结构特征二、旋转体的形成三、简单组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成,有多面体与多面体、多面体与旋转体、旋转体与旋转体的组合体.对点练习:有下列四个命题:①底面是矩形的平行六面体是长方体;②棱长相等的直四棱柱是正方体;③有两条侧棱都垂直于底面一边的平行六面体是直平行六面体;④对角线相等的平行六面体是直平行六面体.其中真命题的个数是()A.1 B.2C.3 D.4【答案】A2空间几何体的直观图简单几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.对点练习:一水平放置的平面图形,用斜二测画法画出了它的直观图,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()【答案】D3.空间几何体的三视图三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.对点练习:某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)B)C)D)2【答案】B【解析】【考点深度剖析】三视图是高考重点考查的内容,考查内容有三视图的识别;三视图与直观图的联系与转化;求与三视图对应的几何体的表面积与体积.命题形式为用客观题考查识读图形和面积体积计算,解答题往往以常见几何体为载体考查空间想象能力和推理运算能力,期间需要灵活应用几何体的结构特征.【重点难点突破】考点1:空间几何体的结构特征【1-1】如图几何体中是棱柱的有()A.1个B.2个C.3个D.4个【答案】C【1-2】下列命题中正确的有__________.①有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台;②存在一个四个侧面都是直角三角形的四棱锥;③如果棱柱有一个侧面是矩形,则其余各侧面也都是矩形;④圆台的任意两条母线所在直线必相交;【答案】②④【解析】①不正确,因为不能保证等腰梯形的各个腰延长后交与一点.②如右图的四棱锥,底面是矩形,一条侧棱垂直底面,那么它的四个侧面都是直角三角形,故②正确;③如图所示的棱柱有一个侧面是矩形,则其余各侧面不是矩形;故③错误④根据圆台的定义和性质可知,命题④正确.所以答案为②④【领悟技法】系或增加线、面等基本元素,然后再依据题意判定.三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重要的几何模型,有些问题可用上述几何体举特例解决.【触类旁通】【变式1】一个棱柱是正四棱柱的条件是().A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,具有一个顶点处的三条棱两两垂直D .每个侧面都是全等矩形的四棱柱 【答案】C【解析】A ,B 两选项中侧棱与底面不一定垂直,D 选项中底面四边形不一定为正方形,故选C.【变式2】已知长方体1111ABCD A BC D 的所有顶点在同一个球面上,若球心到过A 点的三__________.考点2空间几何体的直观图【2-1】利用斜二测画法得到的以下结论,正确的是________(写出所有正确的序号). ①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③正方形的直观图是正方形;④圆的直观图是椭圆;⑤菱形的直观图是菱形. 【答案】①②④【解析】①正确;由原图形中平行的线段在直观图中仍平行可知②正确;但是原图形中垂直的线段在直观图中一般不垂直,故③错;④正确;⑤中原图形中相等的线段在直观图中不一定相等,故错误.【2-2】在如图所示的直观图中,四边形O ′A ′B ′C ′为菱形且边长为2cm ,则在xOy 坐标系中,四边形ABCO 为________,面积为________cm 2.【答案】矩形8【领悟技法】按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系:S 直观图=4S 原图形,S 原图形=直观图. 【触类旁通】【变式1】如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()A .212 C.22+D .1【答案】A【解析】由题意画出斜二测直观图及还原后原图,由直观图中底角均为45°,腰和上底长度均为1,得下底长为1+1,12的直角梯形.所以面积S =12(12故选A.【变式2】如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6cm ,O ′C ′=2cm ,则原图形是()A .正方形B .矩形C .菱形D .一般的平行四边形【答案】C【解析】将直观图还原得▱OABC ,如图, ∵O ′D ′=2O ′C ′=22(cm),OD =2O ′D ′=42(cm),C ′D ′=O ′C ′=2(cm),∴CD =2(cm), OC =CD 2+OD 2=22+422=6(cm),OA =O ′A ′=6(cm)=OC ,故原图形为菱形.综合点评:解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.考点3空间几何体的三视图【3-1】一几何体的直观图如右图,下列给出的四个俯视图中正确的是()【答案】B【3-2】【江西卷】将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为()【答案】(1)D(2)D【解析】(1)球、正方体的三视图形状都相同,大小均相等,首先排除选项A 和C.对于如图所示三棱锥OABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时,其三视图的形状都相同,大小均相等,故排除选项B.不论圆柱如何放置,其三视图的形状都不会完全相同,故答案选D.(2)如图所示,点D 1的投影为C 1,点D 的投影为C ,点A 的投影为B ,故选D.【3-3】如图,点,M N 分别是正方体1111ABCD A BC D 的棱1111,A B A D 的中点,用过点,,A M N 和点1,,D N C 的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为()A.①③④B.②④③C.①②③D.②③④ 【答案】D【领悟技法】三视图中的数据与原几何体中的数据不一定一一对应,识图要注意甄别.揭示空间几何体的结构特征,包括几何体的形状,平行垂直等结构特征,这些正是数据运算的依据.还原几何体的基本要素是“长对齐,高平直,宽相等”.简单几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线. 【触类旁通】【变式1】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如图所示,则该几何体的俯视图为()【答案】C【变式2】如图,多面体ABCD-EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如下,则其正视图和侧视图正确的是().【答案】D【变式3】【武汉市部分学校2019届高三调研】)一个简单几何体的正视图、侧视图如右图所示,则其俯视图不可能为()......①长方形;②正方形;③圆;④椭圆.中的A.①②B.②③C.③④D.①④【答案】B【解析】若俯视图为正方形,则正视图中的边长3不成立;若俯视图为圆,则正视图中的边长3也不成立.综合点评:三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.即“长对正,宽相等,高平齐”.【易错试题常警惕】易错典例:一个几何体的主视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.【错解】①②⑤【错因】忽视几何体的不同放置对三视图的影响,漏选③.【正解】①三棱锥的主视图是三角形;②当四棱锥的底面是四边形放置时,其主视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的主视图是三角形;④对于四棱柱,不论怎样放置,其主视图都不可能是三角形;⑤当圆锥的底面水平放置时,其主视图是三角形;⑥圆柱不论怎样放置,其主视图也不可能是三角形.故正确答案为①②③⑤.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想数形结合是一种重要的数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围.在解答三视图、直观图问题中,主要是通过图形的恰当转化,明确几何元素的数量关系,进行准确的计算.如:【典例】如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45 ,过圆柱的轴的平面截该几何体所得的四边形''AA将其侧面剪开,ABB A为矩形,若沿'其侧面展开图形状大致为()A. B. C.D.【答案】A。
第八篇 第1讲 空间几何体的结构、三视图和直观图(共25张PPT)
抓住3个考点
突破3个考向
揭秘3年高考
【训练2】 以下几何体各自的三视图中,有且仅有两个视图相同的是 ( ).
A.①②
B.①③
C.①④
D.②④
解析 正方体的三视图都是正方形,不合题意;圆锥的正视
图和侧视图都是等腰三角形,俯视图是圆,符合题意;三棱
台的正视图和侧视图、俯视图各不相同,不合题意;正四棱
锥的正视图和侧视图都是三角形,而俯视图是正方形,符合
突破3个考向
揭秘3年高考
(2)旋转体 ①圆锥可以由直角三角形绕其____任__一__直___角旋边转得到.
②圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转 得到,也可由平行于圆锥底面的平面截圆锥得到.
③球可以由半圆或圆绕直径旋转得到.
抓住3个考点
突破3个考向
揭秘3年高考
2.三视图
(1)三视图的名称 几何体的三视图包括___正__视__图、___侧__视__图、____俯__视_.图 (2)三视图的画法 ①画三视图时,重叠的线只画一条,挡住的线要画成虚线. ②三视图的正视图、侧视图、俯视图分别是从几何体的____正_前 方、__正__左_方、___正__上方观察几何体得到的正投影图. ③观察简单组合体是由哪几个简单几何体组成的,并注意它们 的组成方式,特别是它们的交线位置.
抓住3个考点
突破3个考向
揭秘3年高考
【训练1】 给出以下四个命题: ①有两个侧面是矩形的棱柱是直棱柱; ②侧面都是等腰三角形的棱锥是正棱锥; ③侧面都是矩形的直四棱柱是长方体; ④假设有两个侧面垂直于底面,那么该四棱柱为直四棱柱. 其中不正确的命题的个数是________个. 解析 认识棱柱一般要从侧棱与底面的垂直与否和底面多边形 的形状两方面去分析,故①③都不准确,②中对等腰三角形的 腰是否为侧棱未作说明,故也不正确,④平行六面体的两个相 对侧面也可能与底面垂直且互相平行,故④也不正确.
课件3:空间几何体的结构特征及其直观图、三视图
侧视图,可以将 D 排除,故选 B.
[答案] (1)D (2)B
第七章 第1讲
第30页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
[奇思妙想] 已知某一几何体的正视图与侧视图均如图 2 所
示,则在下列图形中,可以是该几何体的俯视图的图形有
体都是圆锥;
第七章 第1讲
第23页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
④棱台的上、下底面可以不相似,但侧棱长一定相等.
其中正确命题的个数是( )
A. 0
B. 1
C. 2
D. 3
第七章 第1讲
第24页
高三一轮总复习 ·新课标 ·数学
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
考点 3 空间几何体的直观图
空间几何体的直观图常用 斜二测 画法来画,基本步骤是:
1.画几何体的底面
在已知图形中取互相垂直的 x 轴、y 轴,两轴相交于点 O,
画直观图时,把它们画成对应的 x′轴、y′轴,两轴相交于点 O′,且使∠x′O′y′= 45°(或 135°) ,已知图形中平行于 x 轴 的线段,在直观图中长度 不变 ,平行于 y 轴的线段,长度 减半.
第七章 第1讲
第3页
高三一轮总复习 ·新课标 ·数学
抓住3个必备考点 突破3个热点考向
破译5类高考密码
迎战2年高考模拟
限时规范特训
空间几何体的结构三视图和直观图课件-讲义
解析 命题①错,因为这条边若是直角三角形的斜边,则得不 到圆锥. 命题②错,因这腰必须是垂直于两底的腰.命题③对.
命题④错,必须用平行于圆锥底面的平面截圆锥才行.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
几何体的三视图
(3)圆台可以由直角梯形绕直角腰所在直线 或等腰梯形绕上下底中点的连线旋转得到,
也可由 平行于圆锥底面的平面截圆锥得到. (4)球可以由半圆或圆绕其 直径 旋转得到.
2.正棱锥:底面是正多 边形,顶点在底面的 射影是底面正多边形 的中心的棱锥叫作正 棱锥.特别地,各棱 均相等的正三棱锥叫 正四面体.反过来, 正棱锥的底面是正多 边形,且顶点在底面 的射影是底面正多边 形的中心.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
变式训练 1 以下命题:①以直角三角形的一边为轴旋转一周所
得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的
旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平
面截圆锥,得到一个圆锥和一个圆台.
其中正确命题的个数为
A.0
B.1
C.2
D.3
(B)
思维启迪 解析 答案 探究提高
利用有关几何体的概念判断所给 命题的真假.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
空间几何体的结构特征
【例 1】设有以下四个命题: ①底面是平行四边形的四棱柱 是平行六面体; ②底面是矩形的平行六面体是 长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交 于一点. 其中真命题的序号是_______.
第1讲空间几何体的结构三视图和直观图.ppt
视图分别如图所示,则该几何体的俯视图为
()
解析:正视图中小长方形在左上方,对应俯视图应该在左侧,排除B、D,侧视 图中小长方形在右上方,排除A. 答案:C
考基联动
考向导析
规范解答
限时规范训练
5.从如右图所示的圆柱中挖去一个以圆柱的上 底面为底面,下底面的圆心为顶点的圆锥得 到一个几何体,现用一个平面去截这个几何体, 若这个平面垂直于圆柱的底面所在的平面,那么 所截得的图形可能是下图中的________(把所有可 能的图形的序号都填上).
S′= 2S,能进行相关问题的计算. 4
迁移发散
3.如图,矩形 O′A′B′C′是水平放置的一个平面图形的
直观图,其中 O′A′=6 cm,O′C′=2 cm,则原图形
是
()
A.正方形
B.矩形
C.菱形
D.一般的平行四边形
解析:将直观图还原得▱OABC,则
∵O′D′= 2O′C′=2 2(cm),
OD=2O′D′=4 2(cm), C′D′=O′C′=2(cm),∴CD=2(cm),
2.旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台 和球分别是由哪一种平面图形旋转形成的,从而可掌握旋转体中各元素的关系, 也就掌握了它们各自的性质.
3.三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我 们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三 视图可以想象出空间几何体的形状,两者之间可以相互转化.
第1讲 空间几何体的结构、三视图和直观图
1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生 活中简单物体的结构.
2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图, 能识别上述三视图所表示的立体模型,会用斜二测法画出它们的直观图.
第七章第一节 空间几何体的结构特征及三视图与直观图 文 湘教版课件
2.已知正三角形ABC的边长为2,那么△ABC的直观图 △A′B′C′的面积为________. 解析:如图,图①、图②所示的分别是实际图形和直观图. 从图②可知,A′B′=AB=2,
O′C′=12OC= 23,C′D′=O′C′sin 45°= 23× 22= 46.所
以
S△A′B′C′12A′B′·C′D′=12×2×
()
解析:给几何体的各顶点标上字母,如图1.A,E在侧投影面上 的投影重合,C,G在侧投影面上的投影重合,几何体在侧投影 面上的投影及把侧投影面展平后的情形如图2所示,故正确选项 为B(而不是A). 答案:B
2.用一个平行于圆锥底面的平面截这个圆锥,截得圆台上、下 底面的面积之比为 1∶16,截去的圆锥的母线长是 3 cm,则 圆台的母线长为________ cm. 解析:抓住轴截面,利用相似比,由底面 积之比为 1∶16,设半径分别为 r,4r. 设圆台的母线长为 l,截得圆台的上、下底 面半径分别为 r、4r.根据相似三角形的性质 得3+3 l=4rr,解得 l=9. 所以,圆台的母线长为 9 cm. 答案:9
相对位置不改变.
3.按照斜二测画法得到的平面图形的直观图,其面积与原图
形的面积的关系
S
= 直观图
2 4S
原图形,S
原图形=2
2S 直观图.
4.转化与化归思想
利用转化与化归思想解决棱台、圆台的有关问题 由棱台和圆台的定义可知棱台和圆台是分别用平行于棱锥和
圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台
4.三视图 (1)几何体的三视图包括 正(主) 视图、 侧(左)视图、 俯 视 图,分别是从几何体的 正前 方、 正左 方、 正上 方观察几
何体画出的轮廓线. (2)三视图的画法 ①基本要求:长对正 ,高平齐 , 宽相等 . ②画法规则:正侧 一样高, 正俯 一样长, 侧俯 一样
第一讲空间几何和结构特征以及三视图和直观图讲解
各棱长都为2的正三棱锥的三视图如图所示:
2 2
3
3
2 2
2
2 3 体高h 2 3
三、斜二测画法:
平行于x轴长度不变平行于 x轴 平行于y轴长度减半平行于 y轴 平行于z轴长度不变平行于 z轴
是底面中心的棱锥.特别地,各条棱均相等的正三棱锥又叫
正四面体. (3)平行六面体:指的是底面为平行四边形的四棱柱.
平面内的一个四边形为平行四边形的充要条件有 多个,如两组对边分别平行,类似地,写出空间中的一个
四棱柱为平行六面体的两个充要条件:
充要条件① ;
充要条件②
(写出你认为正确的两个充要条件)
B.以三角形的一条边所在直线为旋转轴,其余两边旋转形 成的曲面所围成的几何体叫圆锥 C.棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能 是正六棱锥 D.圆锥的顶点与底面圆周上的任意一点的连线都是母线
解析:A错误.如图(1)所示,由两个结构相同的三棱锥叠放在
一起构成的几何体,各面都是三角形,但它不是棱锥.
解析:由三视图知,由4块木 块组成.
答案:4
5.如图,矩形O′A′B′C′是水平放置的一个平面图形的直 观图,其中O′A′=6 cm,O′C′=2 cm,则原图形的形 状是 .
解析:将直观图还原得▱OABC,
则∵O′D′=
OD=2O′D′=4 OC=
O ′ C′ = 2
cm,
cm,
C′D′=O′C′=2 cm,∴CD=2 cm, =2 cm, OA=O′A′=6 cm=OC,故原图形为菱形.
答案:菱形
第1讲空间几何体的结构、三视图和直观图(教师版).
第1讲空间几何体的结构、三视图和直观图【高考会这样考】1.几何体的展开图、几何体的三视图仍是高考的热点.2.三视图和其他的知识点结合在一起命题是新教材中考查学生三视图及几何量计算的趋势.【复习指导】1.备考中,要重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.2•要熟悉一些典型的几何体模型,如三棱柱、长(正方体、三棱锥等几何体的三视图.基础梳理1.多面体的结构特征(1棱柱的侧棱都互相平行,上下底面是全等的多边形.(2棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.(3棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1圆柱可以由矩形绕一边所在直线旋转一周得到.(2圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子, 与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是: (1画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点0,画直观图时,把它们画成对应的X' 轴、y轴,两轴相交于点0',且使/ X' O'-y45°或135°已知图形中平行于x轴、y轴的线段,在直观图中平行于X轴、y轴•已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2画几何体的高在已知图形中过0点作z轴垂直于xOy平面,在直观图中对应的Z轴,也垂直于x’ O'平面, 已知图形中平行于Z轴的线段,在直观图中仍平行于Z轴且长度不变.一个规律三视图的长度特征:长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.两个概念(1正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱•反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥. 特别地,各棱均相等的正三棱锥叫正四面体•反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.双基自测1下列说法正确的是(A .有两个面平行,其余各面都是四边形的几何体叫棱柱B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱C.有一个面是多边形,其余各面都是三角形的几何体叫棱锥D .棱台各侧棱的延长线交于一点2•用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是A .圆柱B.圆锥C.球体D .圆柱、圆锥、球体的组合体3.若某几何体的三视图如图所示,则这个几何体的直观图可以是考向一 空间几何体的结构特征【例1】?如果四棱锥的四条侧棱都相等,就称它为等腰四棱锥”,四条侧棱称为它的腰,以下4个命题中,假命题是( . A .等腰四棱锥的腰与底面所成的角都相等B .等腰四棱锥的侧面与底面所成的二面角都相等或互补C .等腰四棱锥的底面四边形必存在外接圆D •等腰四棱锥的各顶点必在同一球面上 [审题视点]可借助几何图形进行判断.A \\解析如图,等腰四棱锥的侧棱均相等,其侧棱在底面的射影也相等,则其腰与底面所成角相 等,即A 正确;底面四边形必有一个外接圆,即C 正确;在高线上可以找到一个点点到四棱锥各个顶点的距离相等,这个点即为外接球的球心,即卩 面所成角不一定相等或互补 (若为正四棱锥则成立.故仅命题 答案 B 莖塑如一三棱柱、四棱柱、正方体、长方体、三棱锥、四棱锥是常见的空间几何体,也是重 要的几何模型,有些问题可用上述几何体举特例解决.【训练1】以下命题:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角 梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆; ④一个平面截圆锥,得到一个圆锥和一个圆台•其中正确命题的个数为 ( . A . 0 B . 1 C . 2 D . 3 解析 命题①错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题②错,因这条腰必 须是垂直于两底的腰•命题③对•命题④错,必须用平行于圆锥底面的平面截圆锥才行.答案 B考向二空间几何体的三视图【例2】若某几何体的三视图如图所示,则这个几何体的直观图可以是0,使得该 D 正确;但四棱锥的侧面与底 B 为假命题.选B.A.a2B.a2C.a2D.a2解析 如图①②所示的实际图形和直观图.由斜二测画法可知,=a ,在图②中作C D 丄A B ' 于D ,贝U C D A B ' • C D =冷冷=a2. 答案 D 方法fliSM 直接根据水平放置的平面图形的直观图的斜二测画法规则即可得到平面图形的面积 是其直观图面积的 2倍,这是一个较常用的重要结论.【训练3】 如图,矩形 O' A B '是水平放置的一个平面图形的直观图,其中O' A = 6 cm , O' C=2 cm ,则原图形是( . A .正方形B .矩形C .菱形D . —般的平行四边形将直观图还原得?OABC 贝U T O' D = O' C = 2 (cm , OD= 20' D = 4 (cm , C D = =2 (cm , CD= 2 (cm , 0C= = = 6 (cm , 0A= O A ' = 6 (cm = OC 故原图形为菱形.答案解析俯视图不对,故C 错,故选D.答案 D考向三空间几何体的直观图【例3】?已知正三角形( •ABC 的边长为 a ,那么 △ ABC 的平面直观图 △ A B'的面积为 [审题视点]画出正三角形△ ABC 的平面直观图△ A ‘ B ‘ C ' ,求△ A ‘ B ‘ C ‘的高即可.A 'B ' = AB = a , O'C ' = OC =O' C = a. .-S △ A B C '=解析 O C C 中侧视图,I.. BBu - JBI ・■■r - ,■«HC UKl阅卷报告一一忽视几何体的放置对三视图的影响致错【问题诊断】空间几何体的三视图是该几何体在两两垂直的三个平面上的正投影摆放的角度不同,其三视图可能不同,有的考生往往忽视这一点.【防范措施】应从多角度细心观察•【示例】?一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________ (填入所有可能的几何体前的编号.①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.错因忽视几何体的不同放置对三视图的影响,漏选③•实录①②⑤正解①三棱锥的正视图是三角形;②当四棱锥的底面是四边形放置时,其正视图是三角形;③把三棱柱某一侧面当作底面放置,其底面正对着我们的视线时,它的正视图是三角形;④对于四棱柱,不论怎样放置,其正视图都不可能是三角形;⑤当圆锥的底面水平放置时,其正视图是三角形;⑥圆柱不论怎样放置,其正视图也不可能是三角形.答案①②③⑤【试一试】右图是长和宽分别相等的两个矩形•给定下列三个命题:①存在三棱柱,其正视图、俯视图如右图;②存在四棱柱,其正(主视图、俯视图如右图;③存在圆柱,其正图,俯视图如右图.其中真命题的个数是(.[尝试解答]如图①②③的正(主视图和俯视图都与原题相同,故选 A.zO 口① ② ③•同一几何体(主(主视。
空间几何体的结构特征及三视图和直观图 经典课件(最新)
图 12
高中数学课件
【反思·升华】 三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、 正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反 映了物体的长度和宽度;左视图反映了物体的宽度和高度,由此得到:主俯长对正,主 左高平齐,俯左宽相等.
(1)由几何体的直观图画三视图需注意的事项:①注意正视图、侧视图和俯视图对应 的观察方向;②注意能看到的线用实线画,被挡住的线用虚线画;③画出的三视图要符 合“长对正、高平齐、宽相等”的基本特征;
高中数学课件
空间几何体的结构特征及三视图和直观图 课件
高中数学课件
1.空间几何体
【最新考纲】
(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生
活中简单物体的结构.
Hale Waihona Puke (2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,
能识别上述三视图所表示的立体模型,会用斜二侧画法画出它们的直观图.
高中数学课件
(3)旋转体的展开图 ①圆柱的侧面展开图是矩形,矩形的长(或宽)是底面圆周长,宽(或长)是圆柱的母线 长; ②圆锥的侧面展开图是扇形,扇形的半径长是圆锥的母线长,弧长是圆锥的底面周 长; ③圆台的侧面展开图是扇环,扇环的上、下弧长分别为圆台的上、下底面周长.
注:圆锥和圆台的侧面积公式 S 圆锥侧=21cl 和 S 圆台侧=21(c′+c)l 与三角形和梯形的面积 公式在形式上相同,可将二者联系起来记忆.
答案:D
高中数学课件
高频考点 2 空间几何体的三视图 【例 2.1】 (2018 年高考·课标全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构 件的凸出部分叫榫头,凹进部分叫卯眼,图 8 中木构件右边的小长方体是榫头.若如图 摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图 可以是( )
空间几何体的结构、三视图和直观图讲义
空间几何体的结构、三视图和直观图讲义一、知识讲义1.多面体的结构特征2.旋转体的形成几何体旋转图形旋转轴圆柱矩形任一边所在的直线圆锥直角三角形任一直角边所在的直线圆台直角梯形垂直于底边的腰所在的直线球半圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图.(2)三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度变为原来的一半.注意:1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)水平放置的圆锥的正视图和侧视图均为全等的等腰三角形.(3)水平放置的圆台的正视图和侧视图均为全等的等腰梯形.(4)水平放置的圆柱的正视图和侧视图均为全等的矩形.2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧ 坐标轴的夹角改变与y 轴平行的线段的长度变为原来的一半图形改变“三不变”⎩⎪⎨⎪⎧ 平行性不改变与x ,z 轴平行的线段的长度不改变相对位置不改变二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( )(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体一定是棱台.( )(4)正方体、球、圆锥各自的三视图中,三视图均相同.( )(5)用两平行平面截圆柱,夹在两平行平面间的部分仍是圆柱.( )(6)菱形的直观图仍是菱形.( )题组二:教材改编2.下列说法正确的是( )A .相等的角在直观图中仍然相等B .相等的线段在直观图中仍然相等C .正方形的直观图是正方形D .若两条线段平行,则在直观图中对应的两条线段仍然平行3.[P8T1]在如图所示的几何体中,是棱柱的为________.(填写所有正确的序号)题组三:易错自纠4.某空间几何体的正视图是三角形,则该几何体不可能是( )A .圆柱B .圆锥C .四面体D .三棱柱5.将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为( )6.正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.三、典型例题题型一:空间几何体的结构特征1.给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.32.以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0 B.1 C.2 D.3思维升华:(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.题型二:简单几何体的三视图命题点1:已知几何体,识别三视图典例(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤命题点2:已知三视图,判断几何体的形状典例某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16命题点3已知三视图中的两个视图,判断第三个视图典例一个锥体的正视图和侧视图如图所示,下列选项中,不可能是该锥体的俯视图的是()思维升华:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.跟踪训练(1)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90π B.63π C.42π D.36π(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是()题型三空间几何体的直观图典例已知等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.思维升华:斜二测画法画直观图的技巧在原图形中与x轴或y轴平行的线段在直观图中与x′轴或y′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出.跟踪训练有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.四、反馈练习1.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱2.如图为几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥B.三棱锥C.三棱柱D.三棱台3.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是()A.a,b B.a,c C.c,b D.b,d4.如图,在长方体ABCD-A1B1C1D1中,点P是棱CD上一点,则三棱锥P-A1B1A的侧视图是()5.一个四面体的顶点在空间直角坐标系Oxyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为()6.一个正方体截去两个角后所得几何体的正视图、俯视图如图所示,则其侧视图为()7.如图所示,在三棱锥D—ABC中,已知AC=BC=CD=2,CD⊥平面ABC,∠ACB=90°.若其正视图、俯视图如图所示,则其侧视图的面积为()A. 6 B.2C. 3D.28.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是()9.一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC的面积为________.10.如图,在正四棱柱ABCD—A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P—BCD的正视图与侧视图的面积之比为________.11.如图,点O为正方体ABCD—A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的射影可能是________.(填出所有可能的序号)12.某四面体的三视图如图所示,则该四面体的六条棱的长度中,最大的是________.13.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A.8 B.7C.6 D.5。
高三数学复习《空间几何体的结构及其三视图和直观图》讲义
空间几何体的结构及其三视图和直观图自主梳理1.多面体的结构特征(1)棱柱的上下底面____平行____,侧棱都___平行_____且___长度相等______,上底面和下底面是___全等_____的多边形.(2)棱锥的底面是任意多边形,侧面是有一个__公共顶点____的三角形.(3)棱台可由____平行于棱锥底面___的平面截棱锥得到,其上下底面的两个多边形___相似_____.①正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.②正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.③正棱锥问题常归结到它的高、侧棱、斜高、底面正多边形内切圆半径或外接圆半径、底面边长的一半构成的直角三角形中解决.④台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.旋转体的结构特征(1)圆柱可以由矩形绕其__一边所在直线____旋转得到.(2)圆锥可以由直角三角形绕其_____一条直角边所在直线____旋转得到.(3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由___平行于圆锥底面____的平面截圆锥得到.(4)球可以由半圆或圆绕其__直径______旋转得到.3.空间几何体的三视图的概念及画法主页3.________得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是_____完全相同___的,三视图包括____正视图____、____侧视图___、___俯视图___. 画空间几何体的三视图的两个步骤第一步,确定三个视图的形状;在绘制三视图时,若相邻两物体的表面相交,表面的交线是它们的分界线.分界线和可见轮廓线都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.第二步,将这三个视图摆放在平面上. 三视图的安排规则是:正视图与侧视图分别在左右两边,俯视图画在正视图的下方 三视图与空间几何体中的几何量的关系空间几何体的数量关系体现在三视图中,正视图和侧视图的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.其中,正视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度,侧视图、俯视图中的宽就是空间几何体的最大宽度.空间几何体的三视图是该几何体在两两垂直的三个平面上的正投影.同一几何体摆放的角度主页例2.常见的几何体的三视图4.空间几何体的直观图的概念及斜二测画法画空间几何体的直观图常用_____斜二测___画法,基本步骤是:(1)画几何体的底面①在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=_45°(或135°)_________.③已知图形中平行于x轴的线段,在直观图中长度__保持不变__________,平行于y轴的线段,长度变为__原来的一半______.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度___不变___.在斜二测画法中,要确定关键点及关键线段.“平行于x轴的线段平行性不变,长度不变;平行于y轴的线段平行性不变,长度减半.”用斜二测画法画出的平面图形的直观图的面积S′与原平面图形的面积S之间的关系是S′=24S5.中心投影与平行投影我们把光由一点向外散射形成的投影称为中心投影。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的结构及其三视图和直观图ZHI SHI SHU LI知识梳理)1.空间几何体的结构特征(1)多面体的结构特征①棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形.②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.③棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.(2)旋转体的结构特征①圆柱可以由矩形绕其任一边旋转得到.②圆锥可以由直角三角形绕其任一直角边旋转得到.③圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.④球可以由半圆面或圆面绕直径旋转得到.2.空间几何体的三视图空间几何体的三视图是用正投影得到的,这种投影下,与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括正(主)视图、侧(左)视图、俯视图. 3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.ZHONG YAO JIE LUN重要结论)1.三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线,主视图反映了物体的长度和高度;俯视图反映了物体的长度和宽度;左视图反映了物体的宽度和高度;由此得到:主俯长对正,主左高平齐,俯左宽相等.2.一个平面图形在斜二测画法下的直观图与原图形相比,有“三变、三不变”.三变:坐标轴的夹角改变,与y轴平行线段的长度改变(减半),图形改变.三不变:平行性不变,与x轴平行的线段长度不变,相对位置不变.SHUANG JI ZI CE双基自测)1.以下关于几何体的三视图的论述中,正确的是(A)A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆[解析]几何体的三视图要考虑视角,只有球无论选择怎样的视角,其三视图总是三个全等的圆.故选A.2.下列几何体各自的三视图中,有且仅有两个视图相同的是(D)A.①②B.①③C.①④D.②④[解析]正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D.3.如图所示是水平放置三角形的直观图,D是△ABC的BC边中点,AB,BC分别与y′轴、x′轴平行,则原三角形中三条线段AB,AD,AC中(B)A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AC,最短的是AD[解析]由条件知,原平面图形中AB⊥BC,从而AB<AD<AC,选B项.4.(2019·江西南昌模拟)如图,在正四棱柱ABCD-A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P-BCD的正视图与侧视图的面积之比为(A)A.1︰1B.2︰1C.2︰3D.3︰2[解析]根据题意,三棱锥P-BCD的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P-BCD的正视图与侧视图的面积之比为1︰1.5.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是(D)[解析]D选项的正视图应为如图所示的图形.故选D.6.(2019·贵州模拟)若某几何体的三视图如图所示,则这个几何体的直观图可以是(D)[解析]选项A的正视图、俯视图不符合要求,选项B的正视图不符合要求,选项C的俯视图不符合要求,通过观察,选项D满足要求,故选D.考点1空间几何体的结构特征——自主练透例1(1)给出下列四个命题:①有两个侧面是矩形的棱柱是直棱柱;②侧面都是等腰三角形的棱锥是正棱锥;③侧面都是矩形的直四棱柱是长方体;④若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中所有错误命题....的序号是(D)A.②③④B.①②③C.①②④D.①②③④(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是⑤.[解析](1)认识棱柱一般要从侧棱与底面的垂直与否和底面多边形的形状两方面去分析,故①③错误,对等腰三角形的腰是否为侧棱未作说明,故②错误,平行六面体的两个相对侧面也可能与底面垂直且互相平行,故④错误,故选D.(2)①中这条边若是直角三角形的斜边,则得不到圆锥,①错;②中这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面,③错误;④中如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.名师点拨☞解决与空间几何体结构特征有关问题的技巧(1)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可.考点2空间几何体的三视图——多维探究角度1由几何体的直观图识别三视图例2(2018·课标Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(A)[解析]两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图.可以为A.故选A.角度2由空间几何体的三视图还原直观图例3(2018·北京高考)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(C)A.1B.2C.3D.4[解析]由该四棱锥的三视图,得其直观图如图,由正视图和侧视图都是等腰直角三角形,知PD⊥平面ABCD,所以侧面P AD和PDC都是直角三角形,由俯视图为直角梯形,易知DC⊥平面P AD.又AB∥DC,所以AB⊥平面P AD,所以AB⊥P A,所以侧面P AB也是直角三角形.易知PC=22,BC=5,PB=3,从而△PBC不是直角三角形,故选C.角度3由三视图的两个视图推测另一视图例4已知一三棱锥的俯视图与左视图如图所示,俯视图是边长为2的正三角形,左视图是有一条直角边为2的直角三角形,则该三棱锥的主视图可能为(C)[解析]由已知条件得直观图如图所示.主视图是直角三角形,中间的线是看不见的线P A形成的投影,应为虚线.故选C.名师点拨☞1.由几何体的直观图求三视图.注意主视图、左视图和俯视图的观察方向,注意看到的部分用实线表示,看不到的部分用虚线表示.2.由几何体的三视图还原几何体的形状,要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.3.由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,再找其剩下部分三视图的可能形式,当然作为选择题,也可将选项逐项检验,看看给出的部分三视图是否符合.〔变式训练1〕(1)(角度1)(文)(2019·河北衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为(D)(角度1)(理)(2019·东北四市联考)如图,在正方体ABCD-A1B1C1D1中,P是线段CD的中点,则三棱锥P-A1B1A的侧视图为(D)(2)(角度2)(2018·温州模拟)若某几何体的三视图如图所示,则此几何体的直观图是(A)(3)(角度3)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是(C)[解析] (1)(文)易知侧视图的投影面为矩形,又AF 的投影线为虚线,即为左下角到右上角的对角线,所以该几何体的侧视图为选项D 中图.(理)画出原正方体的侧视图,显然对于三棱锥P -A 1B 1A ,B (C )点均消失了,其余各点均在,从而其侧视图为D .(2)利用排除法求解.B 的侧视图不对.C 图的俯视图不对,D 的正视图不对,排除B ,C ,D ,A 正确,故选A .(3)若俯视图为选项C ,侧视图的宽应为俯视图中三角形的高32,所以俯视图不可能是选项C .考点3 空间几何体的直观图——师生共研例5 已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( D ) A .34a 2B .38a 2C .68a 2D .616a 2 [解析] 如图①、②所示的实际图形和直观图.由②可知,A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图②中作C ′D ′⊥A ′B ′于D ′,则C ′D ′=22O ′C ′=68a . ∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.[引申]本例改为“已知△ABC 的平面直观图△A 1B 1C 1是边长为a 的正三角形,求原△ABC 的面积”,该如何作答? [解析]在△A 1D 1C 1中,由正弦定理a sin45°=x sin120°,得x =62a , ∴S △ABC =12×a ×6a =62a 2.名师点拨 ☞1.在斜二测画法中,要确定关键点及关键线段的位置,注意“三变”与“三不变”;平面图形的直观图,其面积与原图形的面积的关系是S 直观图=24S 原图形.2.在原图形中与x 轴或y 轴平行的线段,在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连接而画出. 〔变式训练2〕(1)如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,O ′C ′=2 cm ,则原图形是( C )A .正方形B .矩形C .菱形D .一般的平行四边形(2)用斜二测画法画出的某平面图形的直观图如图,边AB 平行于y 轴,BC 、AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形的面积为8_cm 2.[解析] (1)将直观图还原得▱OABC ,则O ′D ′=2O ′C ′=22(cm),OD =2O ′D ′=42(cm),C′D′=O′C′=2(cm),∴CD=2(cm),OC=CD2+OD2=22+(42)2=6(cm),OA=O′A′=6(cm)=OC,故原图形为菱形.(2)依题意可知∠BAD=45°,则原平面图形为直角梯形,上下底面的长与BC、AD相等,高为梯形ABCD的高的22倍,所以原平面图形的面积为8 cm2.。