2009第七届小学“希望杯”全国数学邀请赛五年级第2试

合集下载

2009年第七届希望杯五年级二试解析

2009年第七届希望杯五年级二试解析

2009年第7届希望杯5年级二试试题1.(2009年第7届希望杯5年级2试第1题,5分)四个数2008200720092008,,,2007200820082009其中最大的数是,最小的数是.2.(2009年第7届希望杯5年级2试第2题,5分)若0.24 2.814A=+,则循环小数A的每个循环节有___位数字,循环节的首位数字和末位数字分别是___和___.3.(2009年第7届希望杯5年级2试第3题,5分)100以内的自然数中.所有是3的倍数的数的平均数是.4.(2009年第7届希望杯5年级2试第4题,5分)一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍.5.(2009年第7届希望杯5年级2试第5题,5分)如图1,圆圈内分别填有1,2,……,7这7个数.如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是.6.(2009年第7届希望杯5年级2试第6题,5分)如图2所示,4盏霓虹灯安装在大正方形的4个小正方形框里,3秒后,上下的灯互换图案,又过了3秒,左右的等互换图案,……,重复这样的变化规律.请画出经过1分钟霓虹灯的排列图案.7.(2009年第7届希望杯5年级2试第7题,5分)五(1)班共有学生40人,其中,既会轮滑又会游泳的学生有8人,这两项运动都不会的学生有12人,只会轮滑与只会游泳的人数之比是3:2.那么,五(1)班会轮滑的而又人,会游泳的有人.8.(2009年第7届希望杯5年级2试第8题,5分)两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图3是其中的一种情况),可以得到不同的花环种.(通过旋转和翻转能重合的算同一种花环).9.(2009年第7届希望杯5年级2试第9题,5分)如图4,李明和王亮从同一跑道的起点同时同向出发,结果李明比王亮晚到终点0.5秒.则跑道长米.10.(2009年第7届希望杯5年级2试第10题,5分)用若干个棱长为1的小正方体铁框架焊接成的几何体,从正面、侧面、上面看到的视图均如图5所示.那么这个几何体至少是个小正方体铁框架焊接而成.11.(2009年第7届希望杯5年级2试第11题,5分)用{x}表示数x的小数部分,[x]表示x的整数部分.如{2.3}=0.3,[2.3]=2.若a+[b]=15.3,{a}+b=7.8,则a= ,b= .12.(2009年第7届希望杯5年级2试第12题,5分)通常,汽车经销商对所销售汽车的报价中已经计入了增值税,即报价等于纯车价与增值税之和.消费者在购买汽车后还需要缴纳购置税.增值税和购置税都是按照纯车价来计算的.根据以上信息完成下表.13.(2009年第7届希望杯5年级2试第13题,15分)图6,在一张方格纸上画若干个1×2的阴影方块,可留下一定数量的1×1的空方块□.要求:1×2的阴影方块的阴影部分不重叠,1×1的空方块不相连.请根据图(a)、图(b)的示例,在图(c)、图(d)、图(e)的方格纸上画一个或更多个1×2的阴影方块,使各图留下的1×1的空方块的数量最多.14.(2009年第7届希望杯5年级2试第14题,15分)甲、乙两车间生产同一种零件,若按4:1向甲乙车间分配生产任务,这两个车间能同时完成任务.实际生产时,乙车间每天生产15个零件,由于甲车间抽调一部分工人去完成另外的任务,实际每天生产50个零件.若干天后,乙车间完成了任务,甲车间还剩一部分未完成,这时,甲乙两车间合作,2天后全部完成.问:这批零件有多少个?15.(2009年第7届希望杯5年级2试第15题,15分)如图7,梯形ABCD与正方形DEFC拼在一起,AF与DE交于点G.已知BC=CD=4,三角形AGD的面积是三角形DGF面积的2倍.(1)求梯形ABCD的面积;(2)比较三角形GEF和三角形AGD的面积大小.16.(2009年第7届希望杯5年级2试第16题,15分)如图8,甲、乙两艘快船不断往返于A、B两港之间.若甲、乙同时从A港出发,它们能否同时到达下列地点?若能,请推出它们何时到达该地点;若不能,请说明理由:(1)A港口;(2)B港口;(3)在两港口之间且距离B港30千米的大桥.试题答案1. 【分析】20082007;200720082. 【分析】6;0;93. 【分析】100以内的自然数中是3的倍数的数有0,3,6,9,99 共33个,他们的和是()09934179916832+⨯=⨯=,则他们的平均数为1683÷34=49.5. 4. 【分析】令这个三位数为0a b ,则由题意可知,10067()a b a b +=+,可得2a b =,而调换个位和百位之后变为:0100102b a b a b =+=,而3a b b +=,则得到的新三位数是它的各位数字之和的102334b b ÷=倍.5. 【分析】26. 【分析】7. 【分析】20;168. 【分析】考虑月季花的数量有0、1、2、3、4、5、6共类情况,分类讨论:(1) 有0朵月季花,则有1种;(2) 有1朵月季花,则有1种;(3) 有2朵月季花,2朵月季花中间可包夹有0、1、2朵月季花,共有3种情况.(包夹3、4朵分与包夹1、0朵相同);(4) 有3朵月季花,3多月季花中间可包含有0、1、2朵月季花,共有3种情况.(包含 (5) 3朵月季花与包含0朵相同);(6) 有4朵月季花,同(3),有3种情况;(7) 有5朵月季花,有1种;(8) 有6朵月季花,有1种;所以共有1+1+3+3+3+1+1=13(种)9. 【分析】20810. 【分析】注意,此题是焊接而成,而不是堆砌,则中间可以空,所以用9个小正方体铁框架即可焊接而成.11. 【分析】8.3;7.512. 【分析】84000;420013. 【分析】图(c )、图(d )、图(e )分别最多留下0个、2个、6个11⨯的空房快,如下图所示.(画法不唯一,每个图6分.)14. 【分析】如果甲车间不抽调一部分工人去完成另外的任务,每天能生产零件 151460÷⨯=(个) (5分) 原计划完成任务所用的时间是()()50152605013+⨯÷-=(天) (10分) 这批零件有 ()60153975+⨯1=(个).(15分) 15. 【分析】(1)因为三角形AGD 的面积是三角形DGF 的面积的2倍,两个三角形有相同的底边DG ,所以三角形AGD 的高是三角形DGF 的高的2倍,则()42112AB =⨯+=.梯形ABCD 的面积是()4124232+⨯÷=.(2)正方形DEFC 的面积是4416⨯=,三角形AFB 的面积是()4412248+⨯÷=.又因为ABCD 的面积是32,而三角形DCF 的面积为8,所以三角形ADF 的面积为8,又三角形DEF 的面积为8,所以三角形GEF 的面积与三角形ADG 的面积相等.16. 【分析】(1)甲往返一次的时间是()18018013.5h 3010300+=+-1, 乙往返一次的时间是()180180.5h 5010500+=7+-1, 13.5和7.5的最小公倍数是67.5,所以,在甲、乙出发后的()67.51,2,a a = 小时,它们又同时回到A 港. (5分) (2)设甲、乙能同时到达B 港,此时,甲、乙各完成了,m n 次往返(,m n 是自然数),则有 18018013.57.530105010m n +=+++ 即 915m n +=.当m 的个位数是6或1时,有满足上式的自然数n .,最小的=1,最少需要4.5+13.5=18小时.则在甲、乙出发后18+67.5小时,它们同时到达港口.(10分) (3)设甲、乙能同时到达大桥,且分别完成了,m n 次往返(,m n 是自然数). ①若此时甲、乙向下游行驶,则15015013.57.530105010m n +=+++, 即 13512.575m n +=,没有满足上式的自然数,m n .②若此时甲、乙向上游行驶,则180301803013.57.53010301050105010m n ++=+++-+-, 即 13522.575m n +=,没有满足上式的自然数,m n .③若此时甲向上游行驶,乙向下游行驶,则1803015013.57.5301030105010m n ++=++-+ 即 27715m n +=没有满足上式的自然数,m n .④若此时甲向下游行驶,乙向上游行驶,则1501803013.57.5301050105010m n +=++++- 即 95m n =当m 的个位数是0或5时,有满足上式的自然数n ,所以在甲、乙出发后的 ()15013.55 3.7567.50,1,2,3010c c c +⨯=+=+ 小时,它们同时到达大桥.。

五年级数学希望杯试题

五年级数学希望杯试题

五年级数学希望杯试题第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷=______。

2.对不为零的⾃然数a,b,c ,规定新运算“☆”:☆(a,b ,c)= ,则☆(1,2,3)=______。

3.判断:“⼩明同学把⼀张电影票夹在数学书的51页⾄52页之间”这句话是______的。

(填“正确”或“错误”)4.已知a,b,c是三个连续⾃然数,其中a是偶数。

则a+1,b+2,c+3的积是奇数还是偶数5.某个⾃然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最⼩是______。

6.当p和p3+5都是质数时,+5=______.7.下列四个图形是由四个简单图形A、B、C、D(线段和正⽅形)组合(记为*)⽽成。

则图中①~④中表⽰A*D的是______。

(填序号)8.下⾯四幅图形中不是轴对称图形的是______。

(填序号)9.⼩华⽤相同的若⼲个⼩正⽅形摆成⼀个⽴体(如图)。

从上⾯看这个⽴体,看到的图形是图①~③中的______。

(填序号)10.图中内部有阴影的正⽅形共有______个。

11.下图中的阴影部分BCGF是正⽅形,线段FH长18厘⽶,线段AC长24厘⽶,则长⽅形ADHE的周长是______厘⽶。

12.图中的熊猫图案的阴影部分的⾯积是______平⽅厘⽶。

(注:阴影部分均由半圆和正⽅形组成,图中⼀个⼩正⽅形的⾯积是1平⽅厘⽶,π取3.14) 13.⼩红看⼀本故事书,第⼀天看了这本书的⼀半⼜10页,第⼆天看了余下的⼀半⼜10页,第三天看了10页正好看完。

这本故事书共有______页。

14.有⼀副扑克牌中(去掉⼤、⼩王),最少取______张牌就可以保证其中3张牌的点数相同。

15.如图,摩托车⾥程表显⽰的数字表⽰摩托车已经⾏驶了24944千⽶,经过两⼩时后,⾥程表上显⽰的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千⽶,则摩托车在这两⼩时内的平均速度是______千⽶/时。

希望杯第1-8届五年级数学试题及答案(WORD版)

希望杯第1-8届五年级数学试题及答案(WORD版)

第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。

10.六位自然数1082□□能被12整除,末两位数有种情况。

11.右边的除法算式中,商数是。

12.比大,比小的分数有无穷多个,请写出三个:。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。

警察由此判断该车牌号可能是。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

每人扔100次,得分高的可能性最大。

17.从1,2,3,4,5,6,7,8,9。

第七届小学希望杯全国数学邀请赛五年级第2试(含答案)

第七届小学希望杯全国数学邀请赛五年级第2试(含答案)

2009第七届小学“希望杯”全国数学邀请赛五年级第2试一、填空题(每小题5分,共60分)1.四个数其中最大的数是,最小的数是。

2.若,则循环小数A的每个循环节有位数字,循环节的首位数字和末位数字分别是和。

3.100以内的自然数中。

所有是3的倍数的数的平均数是。

4.一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的倍。

5.如图1,圆圈内分别填有1,2,……,7这7个数。

如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是。

6.如图2所示,4盏霓虹灯安装在大正方形的4个小正方形框里,3秒后,上下的灯互换图案,又过了3秒,左右的等互换图案,……,重复这样的变化规律。

请画出经过1分钟霓虹灯的排列图案。

7. 五(1)班共有学生40人,其中,既会轮滑又会游泳的学生有8人,这两项运动都不会的学生有12人,只会轮滑与只会游泳的人数之比是3:2。

那么,五(1)班会轮滑的而又人,会游泳的有人。

8. 两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图3是其中的一种情况),可以得到不同的花环种。

(通过旋转和翻转能重合的算同一种花环)9. 如图4,李明和王亮从同一跑道的起点同时同向出发,结果李明比王亮晚到终点0.5秒。

则跑道长米。

10.用若干个棱长为1的小正方体铁框架焊接成的几何体,从正面、侧面、上面看到的视图均如图5所示。

那么这个几何体至少是个小正方体铁框架焊接而成。

11.用{x}表示数x的小数部分,[x]表示x的整数部分。

如{2.3}=0.3,[2.3]=2。

若a+[b]=15.3,{a}+b=7.8,则a=,b=。

12.通常,汽车经销商对所销售汽车的报价中已经计入了增值税,即报价等于纯车价与增值税之和。

消费者在购买汽车后还需要缴纳购置税。

增值税和购置税都是按照纯车价来计算的。

根据以上信息完成下表。

二、解答题(每小题15分,共60分)每题都要写出推算过程。

第9-11届希望杯数学竞赛五年级二试试题含答案

第9-11届希望杯数学竞赛五年级二试试题含答案

第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。

2、 15+115+1115+……+1111111115=____________。

3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。

若用这个自然数除以 6,得余数____________。

4、数一数,图 1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在 1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。

7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。

8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。

9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。

这 24 块长方体木块的表面积的和是_____________平方米。

(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]

“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]

“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。

(每题6分,共72分。

) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。

2.8+88+888+…+88…8的和的个位上的数字是____________。

3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。

4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。

最后橘子分完了,苹果还剩下12个。

那么一共分给了____________名小朋友。

5.有这样一种算式:三个不同的自然数相乘,积是100。

这样的算式有____________种。

(交换因数位置的算同一种。

)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。

7.一天,小慧和刘老师一起谈心。

小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。

”刘老师今年的年龄是____________岁。

8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。

他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。

9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。

已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。

那么前3名同学的总分比后3名同学的总分多____________分。

10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

2009年第七届小学希望杯全国数学邀请赛六年级第1试及答案 2

2009年第七届小学希望杯全国数学邀请赛六年级第1试及答案 2

1.计算:2.009×13+20.09×2.9+200.9×0.28= 。

2.规定:如果A 大于B ,则|A-B|= A-B ;如果A 等于B ,则|A-B|=0;如果A 小于B ,则|A-B|=B-A 。

根据上述规律计算:|4.2-1.3|+|2.3-5.6|+|3.2-3.2|= 。

3.图1中的扇形图分别表示小羽在寒假的前两周阅读《漫话数学》一书的页数占全书总页数的比例。

由图1可知,这本书共有 页。

4.根据图2的信息回答,剩下的糖果是原来糖果重量的 。

图25.本届“希望杯”全国数学邀请赛第1试于3月15日举行。

观察下面一列数:112123123412345121321432154321,,,,,,,,,,,,,,,…… 根据发现的规律,从左往右数,315是第 个分数。

6.将小数0.987654321改为循环小数。

如果小数点后的第20位上的数字是5,那么表示循环节的两个点应分别加在数字 和 的上面。

7.如果现在时刻是8点55分,那么,第一次到10点整时,秒针旋转了 周。

8.将一个分数的分子减少10%,分母增加50%,变化后,得到的新分数比原分数减少( )%。

9.春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是厘米。

10.甲乙两校参加数学竞赛的人数之比是7:8,获奖人数之比是2:3,两校各有320人未获奖,那么两校参赛的学生共有人。

11.某项目的成本包括:人力成本、差旅费、活动费、会议费、办公费、招待费以及其他营运费用,它们所占比例如图4所示,其中的活动费是10320元,则该项目的成本是元。

12.联欢会上有一则数字谜语,谜底是一个八位数。

现已猜出:□54□7□39,主持人提示:“这个无重复数字的八位数中,最小的数是2。

”要猜出这个谜语,最多还要猜次。

13.如图5,正方形ABCD的边长是5厘米,点E、F分别是AB和BC的中点,EC与DF交于点G,则四边形BEGF的面积等于平方厘米。

全国小学五年级“希望杯”奥数试题解析(邀请赛第二试)

全国小学五年级“希望杯”奥数试题解析(邀请赛第二试)

希望杯5年级2试一、填空题(每题5分,共计60分)(2010年第8届希望杯5年级2试第1题,5分)计算:587÷26.8×19×2.68÷58.7×1.9=( )。

【分析】58726.819 2.6858.7 1.9÷⨯⨯÷⨯58719 2.68 1.926.858.719 1.936.1⨯⨯⨯=⨯=⨯=(2010年第8届希望杯5年级2试第2题)在下面两个小数的小数部分数字的上方加上表示循环节的一个或两个点,使不等式成立。

0.285〈27〈0.285 【分析】由于20.2857147=,因此有两种答案:20.2850.2857<<或20.2850.2857<<(2010年第8届希望杯5年级2试第3题)3、如图,在长500米、宽300米的长方形广场的外围,每隔2.5米摆放一盆花,现要改为每隔2米摆放一盆花,并且广场的4个顶点处的花盆不动,则需增加___盆花;在重新摆放花盆时,共有___盆花不用挪动。

【分析】封闭图形上的植树问题,棵树与间隔数相等。

由于周长为(500300)21600+⨯=米,从而原先的摆了1600 2.5640÷=盆,后来摆了16002800÷= 盆, 需要增加800640160-=盆。

2与2.5的最小公倍数为10,因此不需要移动的有160010160÷=盆。

(2010年第8届希望杯5年级2试第4题)4、一只蚂蚁站在1号位置上,它第1次跳1步,到达2号位置;第2次跳2步,到达4号位置;第3次跳3步,到达1号位置…..第n 次跳n 步,当蚂蚱沿着顺时针跳了100次时,到达___号位置。

654321分析:共跳了123...1005050++++=次,每6次跳回原地,50506841...4÷=,因此相当于跳了4次 从1开始跳4次到达5号位置。

(2010年第8届希望杯5年级2试第5题)5、5年级的平均身高是149厘米,女生的平均身高是144厘米,全班同学的平均身高是147厘米,则五年级的男生人数是女生人数的__倍。

希望杯复赛数论题大合集(涵括历年数论题及详细解析)

希望杯复赛数论题大合集(涵括历年数论题及详细解析)

奇数与偶数质数与合数约数与倍数1.(2006年希望杯第四届四年级二试第7题,4分)一群猴子分桃,桃子共有56个,每只猴子可以分到同样多的桃子。

但在它们正要分桃时,又来了4只猴子,于是重新分配这些桃子,结果每只猴子分到的桃子数量相同,那么最后每只猴子分到个桃子。

解答:56的因数有1,2,4,7,8,14,28,56,其中只有4和8相差4,所以最后有猴子8只,每只猴子分到56÷8=7个桃子。

2.(2007年希望杯第五届四年级二试第4题,5分)在224⨯=,6636⨯=,……等这些算是⨯=,5525⨯=,339⨯=,4416中,4,9,16,25,36,……叫做完全平方数。

那么,不超过2007的最大的完全平方数是_________。

解:45×45=2025;44×44=1936,所以最大的是1936.整除3.(2008年希望杯第六届四年级二试第15题)连续写出从1开始的自然数,写到2008时停止,得到一个多位数:1234567891011……20072008,请说明:这个多位数除以3,得到的余数是几?为什么?【分析】因为连续3个自然数可以被3整除,而且最后一个自然数都是3的倍数,因为2007是3的倍数,所以12345678910112007是3的倍数,又因为12345678910112007200812345678910112007000020071=++,所以123456789101120072008除以3,得到的余数是1。

余数4. (2004年希望杯第二届四年级二试第15题,6分)小朋友们做游戏,若3人分成一组,则最后余下2人;若4人分成一组,则最后余下3人;若5人分成一组,则最后余下4人。

那么一起做游戏的小朋友至少有 人。

【答案】这个数除以3余2,除以4余3,除以5余4,那么加上一个人这些小朋友的数量能整除3、4、5,3×4×5=60,那么小朋友至少59人5. (2008年希望杯第六届四年级二试第3题)一个三位数除以36,得余数8,这样的三位数中,最大的是__________。

2009年第七届小学“希望杯”全国数学邀请赛(五年级第1试)

2009年第七届小学“希望杯”全国数学邀请赛(五年级第1试)

第七届小学“希望杯”全国数学邀请赛五年级第1试2009年3月15日上午8:30至10:00 得分______ 以下每题6分,共120分。

1. 计算:...0.30.030.003=--______。

(结果写成分数形式)2. 计算:54100 1.231=615÷⨯÷⨯_____。

3. 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有______种不同的走法。

4. 三个数:23,51,72,各除以大于1的同一个自然数,得到同一个余数,则这个除数是______。

5. 有2克,5克,20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出______种不同的质量。

6. 下表是某商品的销售计划,请在空格内填入恰当的数字。

7. 中心对称图形是:绕某一点旋转180°后能和原来的图形重合的图形。

轴对称图形是:沿着一条直线对折后两部分完全重合的图形,如图的4个图形中,既是中心对称图形又是轴对称图形的有______个。

8. 如图,小明做减法时看错了减数,这个减数应当是______。

9. 已知111111112345678A=+++++++,则A的整数部分是______。

10. 小羽和小曼分别住在一座山两侧的山脚下,一天,小羽在上午9:00从家里出发到小曼家做客,小羽在小曼家玩了2个半小时后回家,到家时是下午14:00,若小羽上山每小时走2里地,下山每小时走3里地,则小羽家和小曼家之间的山路长______里。

11. 今年,小军和小勇的年龄比是3:5,两年后,两人的年龄比是2:3,那么,小军今年______岁,小勇今年______岁。

12. 一只蚂蚁“侦察兵”在洞外发现了食物,它立刻回到蚁穴通知同伴,假设一只蚂蚁在1分钟内可以把消息传达给4个同伴,那么,不超过______分钟,蚁穴里的全部2000只蚂蚁都知道了这个消息。

(结果取整数)13. 如图,李明和王亮以不同的方式赛跑,最终获胜的是______。

希望杯五年级第7--11届2试试题

希望杯五年级第7--11届2试试题

第十一届小学“希望杯”全国数学邀请赛五年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 请在横线上方填入一个数,使等式成立:()⨯+=。

540.82. 两个自然数的和与差的积是37,则这两个自然数的积是。

3. 180的因数共有个。

4. 数字1至9的排列如图所示,沿着图中的连接线将全部的数字各取一遍(每个数字只能经过一次)组成一个九位数,例如123654789。

按此取法取得的数中,最小的是。

最大的是。

5. 若32只兔子可换4只羊,9只羊可换3头猪,8头猪可换2头牛。

那么,5头牛可换只兔子。

6. 包含数字0的四位自然数共有个。

7. 养殖场将一批鸡蛋装入包装盒,每盒装30枚,恰好全部装完。

后来重新包装,使每个包装盒中装入36枚鸡蛋,最后也恰好全部装完,并节约了24个包装盒。

这批鸡蛋有枚。

8. 一只蜘蛛有8条腿,一只蜻蜓有6条腿。

如果蜘蛛、蜻蜓共有450条,蜘蛛的只数是蜻蜓只数的3倍,那么蜘蛛有只。

9. 甲、乙两个桶中共装有26升水。

先将乙桶中一半倒入甲桶,再将甲桶中的一半水倒入乙桶,然后从乙桶取5升水倒入甲桶。

整个过程中无水溢出。

这时,甲桶中的水比乙桶中的水多2升。

最初甲桶中有水升。

10. 如图,若ABC∆的面积是。

∆的面积是24,D、E、F分别是BC、AD、AB的中点,则BEF11. 数一数贝壳的个数。

若4个4个的数,则剩下1个;若5个5个的数,则剩下2个;若6个6个的数,则剩下3个。

由以上情况可推知,这堆贝壳至少有个。

12. 一个长方体形状的玻璃缸,不计玻璃的厚度,量得长54厘米,宽24厘米、高20厘米,缸内水深12厘米。

将一块正方体形状的石块放入玻璃缸中,水面升高至16厘米。

石块的体积是立方厘米。

二、解答题13. 小明绕操场跑一周用5分钟,妈妈绕操场跑一周用3分钟。

(1)如果小明和妈妈从同一起点同时同向出发,多少分钟后两人再次同时到达起点?此时妈妈和小明各跑了几圈?(2)如果小明和妈妈同一起点同时同向出发,多少分钟后妈妈第一次追上小明?(3)如果小明和妈妈同一起点同时反向出发,多少分钟后两人第四次相遇?14. 有一批货物,用28辆货车一次运走,货车有载量8吨和载量5吨的两种。

五年级“希望杯”全国数学邀请赛参考答案及评分标准

五年级“希望杯”全国数学邀请赛参考答案及评分标准

第十二届小学 希望杯 全国数学邀请赛参考答案及评分标准五年级㊀㊀第2试一㊁填空题(每小题5分㊂其中第4题,每空2.5分㊂)题号123456789101112答案12619102014;40266808.251569.7517284813㊀㊀二㊁解答题13.(1)最初,圆周上有3个数㊂第1次操作后,圆周上有3+3=6(个)数;第2次操作后,圆周上有6+6=12(个)数;第3次操作后,圆周上有12+12=24(个)数㊂(8分)(2)每次操作,新增的数是原来相邻的两个数的和,而原来的数各被加了2次,则新增的数的和是原来的数的和的2倍,即操作后圆周上的数的和是原来的3倍㊂最初,圆周上的3个数的和是1ˑ3=3㊂第1次操作后,圆周上的数的和是3ˑ3=9;第2次操作后,圆周上的数的和是3ˑ9=27;第3次操作后,圆周上的数的和是3ˑ27=81㊂(15分)14.(1)甲走一圈用360ː30=12(分),丙走一圈用㊀360ː90=4(分)㊂12和4的最小公倍数是12,所以,12分钟后,甲㊁丙第一次同时回到出发点㊂(5分)(2)丙走一圈用360ː50=7.2(分)㊂被12,7.2,4除,商都是大于零的整数,满足此条件的被除数最小是36㊂所以,36分钟后,三人第一次同时回到出发点㊂(10分)(3)当三人第一次同时到达同一地点时,他们各自走过的路程除以360所得的余数相同㊂设三人走了x 分钟,根据同余性质,有360∣(50x -30x ),18∣x ;360∣(90x -50x ),9∣x ;360∣(90x -30x ),6∣x ㊂18,9,6的最小公倍数是18㊂所以,18分钟后三人第一次同时到达同一地点㊂(15分)15.解法1㊀因为胜者加分,负者减同样的分,所以两队积分的和不变㊂(5分)若甲队胜,则甲队的积分是乙队的3倍,可知两队的积分和是4的倍数;若乙队胜,则甲队的积分是乙队的2倍,可知两队的积分和也是3的倍数㊂所以,两队的积分和是3ˑ4=12的倍数,即可能是12,24,36,48分㊂讨论如下:(10分)(1)两队的积分和是12分在甲队胜的情况下,甲队的积分是12ː4ˑ3=9(分);在乙队胜的情况下,甲队的积分是12ː3ˑ2=8(分),那么,本场比赛加分或减分的分值是(9-8)ː2=0.5(分),不符合题意㊂(2)两队的积分和是24分在甲队胜的情况下,甲队的积分是24ː4ˑ3=18(分);在乙队胜的情况下,甲队的积分是24ː3ˑ2=16(分),那么,本场比赛加分或减分的分值是(18-16)ː2=1(分),赛前甲队的积分是18-1=17(分),乙队的积分是24-17=7(分)㊂(3)两队的积分和是36分在甲队胜的情况下,甲队的积分是36ː4ˑ3=27(分),在乙队胜的情况下,甲队的积分是36ː3ˑ2=24(分),那么,本场比赛加分或减分的分值是(27-24)ː2=1.5(分),不符合题意㊂(4)两队的积分和是48分在乙队胜的情况下,甲队的积分是48ː3ˑ2=32(分),甲队赛前积分大于32分,不符合题意㊂综上可知,赛前甲队㊁乙队的积分分别是17分和7分㊂(15分)解法2㊀设甲队赛前积分为x分,乙队赛前积分为y分,本场比赛加分或减分的分值为n分(x,y,n都是整数)㊂根据题设条件,得x+n=3(y-n),①x-n=2(y+n),②(8分)①-②,得2n=3y-3n-2y-2n,解得y=7n,x=17n㊂(10分)因为赛前两队的积分都少于25分,所以n 只能取1㊂即赛前甲队积分为17分,乙队积分为7分㊂(15分)16.甲每秒游100ː200=0.5(米),乙每秒游100ː160=0.625(米),乙每秒比甲多游0.625-0.5=0.125(米),乙第1次追上甲,用40ː0.125=320(秒),(5分)在这个时间内,甲游了320ˑ0.5=160(米),还剩1000-160-40=800(米);乙第2次追上甲(距离差是100米),用100ː0.125=800(秒),(10分)在这个时间内,甲游了800ˑ0.5=400(米),此时,甲还剩800-400=400(米),到此,可知乙还可再追上甲1次㊂综上可知,甲被乙追上3次㊂(15分)。

小学五年级“希望杯”第1-12届试题及详解(第一试

小学五年级“希望杯”第1-12届试题及详解(第一试

第一届小学―希望杯‖全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。

2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。

3.在纸上画5条直线,最多可有_______ 个交点。

4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。

5.,各表示一个两位数,若+=139,则=_______ 。

6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。

7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。

8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。

9.正方形的一条对角线长13厘米,这个正方形的面积是______平方厘米。

10.六位自然数1082□□能被12整除,末两位数有_____种情况。

11.右边的除法算式中,商数是______。

12.比大,比小的分数有无穷多个,请写出三个:__________。

13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了______场。

14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是_________。

15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2‖。

警察由此判断该车牌号可能是________。

16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。

小光,小亮二人随意往桌上扔放这个木块。

规定:当小光扔时,如果朝上的一面写的是偶数,得1分。

当小亮扔时,如果朝上的一面写的是奇数,得1分。

第4-11届希望杯数学竞赛五年级二试试题及答案

第4-11届希望杯数学竞赛五年级二试试题及答案

第四届希望杯数学竞赛五年级二试试题及答案2010-12-25 10:32:13| 分类:希望杯真题题库 | 标签:null |举报|字号订阅第四届小学"希望杯''全国数学邀请赛五年级第2试2006年4月16日上午8:30至10:00 得分_________一、填空题(每小题4分,共60分。

)1.8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.3=___________________。

2.一个数的等于的6倍,则这个数是____________________。

3.循环小数0.123456789的小数点后第2006位上的数字是__________________。

4."△"是一种新运算,规定:a△b=a×c+b×d(其中c,d为常数),如:5△7=5×c+7×d。

如果1△2=5,1△3=7,那么6△1000的计算结果是________________。

5.设a=,b=,c=,d=,则a,b,c,d这四个数中,最大的是___________,最小的是_________________。

6.一筐萝卜连筐共重20千克,卖了四分之一的萝卜后,连筐重15.6千克,则这个筐重____________千克。

7.从2,3,5,7,11这五个数中,任取两个不同的数分别当作一个分数的分子与分母,这样的分数有_______________个,其中的真分数有________________个。

8.如果a,b均为质数,且3a+7b=41,则a+b=________________。

9.数一数,图1中有_________________个三角形。

10.如图2,三个图形的周长相等,则a:b:c=____________________-。

11.如图3,点D、E、F在线段CG上,已知CD=2厘米,DE=8厘米,EF=20厘米,FG=4厘米,AB将整个图形分成上下两部分,下边部分面积是67平方厘米,上边部分面积是166平方厘米,则三角形ADG的面积是__________________平方厘米。

11-15年五年级数学希望杯第二试试题(复赛)

11-15年五年级数学希望杯第二试试题(复赛)

第九届小学“希望杯”全国数学邀请赛五年级第2试2011 年4 月10 日上午9:00至11:00 得分_____________一、填空题(每小题5 分,共60 分)1、计算:0.15÷2.1×56=___________。

2、15+115+1115+……+1111111115=____________。

3、一个自然数除以3,得余数2,用所得的商除以4,得余数3。

若用这个自然数除以6,得余数____________。

4、数一数,图1 中共有____________个长方形。

5、有一些自然数(0 除外)既是平方数,又是立方数(注:平方数可以写成两个相同的自然数的乘积,立方数可以写成三个相同的自然数的乘积)。

如:1=1×1=1×1×1,64=8×8=4×4×4。

那么在1000 以内的自然数中,这样的数有________个。

6、有一个自然数,它的最小的两个约数的差是4,最大的两个约数的差是308,则这个自然数是___________。

7、如图2,先将4 黑1 白共5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5个棋子拿掉。

如此不断操作下去,圆圈上的 5 个棋子中最多有____________个白子。

8、甲、乙两人分别从A、B 两地同时相向而行,甲的速度是乙的速度的3 倍,经过60 分钟,两人相遇。

然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。

那么,当甲到达B地后,再经过___________分钟,乙到达A 地。

9、如图3,将一个棱长为1 米的正方体木块分别沿长、宽、高三个方向锯开1,2,3 次,得到24 个长方体木块。

这24 块长方体木块的表面积的和是_____________平方米。

10.如图4,小丽和小明的桶中原来各装有3 千克和5 千克水。

根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。

2009年第七届五年级

2009年第七届五年级

2009年第七届五年级“希望杯”培训试题发布者:yangpengyu|发布时间:2010-4-20 17:05|查看数:798|评论数:01.将 eq \f(2008,2007) , eq \f(2007,2008) , eq \f(2009,2008) , eq \f(2008,2009) 这四个数从小到大排列是:。

2.计算:1.0 +2.1 +3.2 +4.3 +5.4 +…+9.8 = 3.计算:1×2+2×4+3×6+…+1005×2001= 4 ...1.将 eq \f(2008,2007) , eq \f(2007,2008) , eq \f(2009,2008) , eq \f(2008,2009) 这四个数从小到大排列是:。

2.计算:1.0 +2.1 +3.2 +4.3 +5.4+…+9.8 =3.计算:1×2+2×4+3×6+…+1005×2001=4.计算:2009×0.23+34×20.09+4.3×200.9=5.计算:1×(2×3)÷(3×4)×(4×5)÷(5×6)×……×(2008×2009)÷(2009×2010)=6.计算:(12345+23451+34512+45123+51234)÷(1+2+3+4+5)= 7.计算:1—2—3+4+5—6—7+8+9—……+2004+2005—2006—2007+4017= 8.计算:29292929×88888888÷10101010×11111111=9.计算:2008×200920092009—2009×200820082008=10.计算: eq\f(2÷3÷7+4÷6÷14+14÷21÷49,4÷7÷9+8÷14÷18+28÷49÷63)=11.以m表示个位及十位数字均为偶数的两位数的个数,以n表示个位十位数字均为奇数的两位数的个数,则m与n之间的大小关系是12.在两位数中,个位数字与十位数字奇偶性不同的数共有个13.在三位数中,百位数字是十位数字的2倍,十位数字是个位数字的2倍的数有个14.在1,2,3,……,100这100个自然数中,能被2,3,5都整除的数的和等于15.一个两位数,它的个位数字比十位数字大5,且这个两位数是它的数字和的3倍,则这个两位数等于16.对整数a和b,规定“☆”的含义是:a☆b=3a+4b,则使等式(4☆3)☆a=172成立的a的值为17.二进制数10111.0011表示成十进制数为18.观察下面的三角形数阵:那么,由上而下的第22行中由左向右的第21个数是,2010是第行第个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009第七届小学“希望杯”全国数学邀请赛
五年级 第2试
一、填空题(每小题5分,共60分)
1.四个数20082007 ,20072008 ,20092008 ,2008
2009 ,其中最大的数是 ,最小的数是 。

2.若A=∙
∙42.0+∙
∙418.2,则循环小数A 的每个循环节有 位数字,循环节的首位数字和末位数字分别是 和 。

3.100以内的自然数中。

所有是3的倍数的数的平均数是 。

4.一个十位数字是0的三位数,等于它的各位数字之和的67倍,交换这个三位数的个位数字和百位数字,得到的新三位数是它的各位数字之和的 倍。

5.如图1,圆圈内分别填有1,2,……,7这7个数。

如果6个三角形的顶点处圆圈内的数字的和是64,那么,中间圆圈内填入的数是 。

图1
6.如图2所示,4盏霓虹灯安装在大正方形的4个小正方形框里,3秒后,上下的灯互换图案,又过了3秒,左右的等互换图案,……,重复这样的变化规律。

请画出经过1分钟霓虹灯的排列图案。

01:00
00:0600:0300:00
图2
7. 五(1)班共有学生40人,其中,既会轮滑又会游泳的学生有8人,这两项运动都不会的学生有12人,只会轮滑与只会游泳的人数之比是3:2。

那么,五(1)班会轮滑的而又 人,会游泳的有 人。

8. 两个篮子中分别装有很多同样的牵牛花和月季花,从中选出6朵串成花环(图3是其中的一种情况),可以得到不同的花环 种。

(通过旋转和翻转能重合的算同一种花环)
9. 如图4,李明和王亮从同一跑道的起点同时同向出发,结果李明比王亮晚到终点0.5秒。

则跑道长 米。

图4
10.用若干个棱长为1的小正方体铁框架焊接成的几何体,从正面、侧面、上面看到的视图均如图5所示。

那么这个几何体至少是 个小正方体铁框架焊接而成。

11.用{x}表示数x 的小数部分,[x]表示x 的整数部分。

如{2.3}=0.3,[2.3]=2。

若a+[b]=15.3,{a}+b=7.8,则a= ,b= 。

12.通常,汽车经销商对所销售汽车的报价中已经计入了增值税,即报价等于纯车价与增值税之和。

消费者在购买汽车后还需要缴纳购置税。

增值税和购置税都是按照纯车价来计算的。

根据以上信息完成下表。

二、解答题(每小题15分,共60分)每题都要写出推算过程。

13.如图6
,在一张方格纸上画若干个1×2的阴影方块
,可留下一定数量的1×1的空方块□。

要求:1×2的阴影方块的阴影部分不重叠,1 请根据图(a )、图(b )的示例,在图(c
)、图(d )、图(e )的方格纸上画一个或更多个1×2的阴影方块,使各图留下的1×1的空方块的数量最多。

(b )
(a )
示例:最多立留下2个1×1的空方块
示例:最多立留下2个1×1的空方块
(e )
(d )
(c )
最多立留下____个1×1的空方块
最多立留下____个1×1的空方块
最多立留下____个1×1的空方块
图6
图5
14.甲、乙两车间生产同一种零件,若按4:1向甲乙车间分配生产任务,这两个车间能同时完成任务。

实际生产时,乙车间每天生产15个零件,由于甲车间抽调一部分工人去完成另外的任务,实际每天生产50个零件。

若干天后,乙车间完成了任务,甲车间还剩一部分未完成,这时,甲乙两车间合作,2天后全部完成。

问:这批零件有多少个?
15.如图7,梯形ABCD 与正方形DEFC 拼在一起,AF 与DE 交于点G 。

已知BC=CD=4,三角形AGD 的面积是三角形DGF 面积的2倍。

(1)求梯形ABCD 的面积;
(2)比较三角形GEF 和三角形AGD 的面积大小。

G
F
E
D
C
B
A
图7
16.如图8,甲、乙两艘快艇不断往返于A 、B 两港之间。

若甲、乙同时从A 港出发,它们能否同时到达下列地点?若能,请推算它们何时到达该地点;若不能,请说明理由。

(1)A 港; (2)B 港;
(3)在两港之间且距离B 港30千米的大桥。

相关文档
最新文档