高考数学 5.2 等差数列及其前n项和练习
2013高考数学一轮同步训练(文科) 5.2等差数列及其前n项和
2013高考数学一轮强化训练 5.2等差数列及其前n 项和 文 新人教A版1.等差数列{n a }的前n 项为为n S ,且3164S a =,=,则公差d 等于( ) A.1 B.53C.2D.3答案:C解析:∵31336()2S a a ==+且31124a a d a =+,=,∴d=2.故选C.2.已知{n a }为等差数列,且743210a a a -=-,=,则公差d 等于( ) A.-2 B.12- C.12D.2答案:B解析:7433242()21a a a d a d d -=+-+==-,解得12d =-. 3.如果等差数列{n a }中34512a a a ,++=,那么1a + 2a +…+ 7a 等于( )A.14B.21C.28D.35答案:C解析:345443124a a a a a ++==,=,∴12a a ++…747()177282a a a a ++===. 4.设等差数列{n a }的前n 项和为n S ,若972S =,则2a +49a a += .答案:24解析:∵{n a }是等差数列,由972S =,得959S a =,5a =8, ∴24929456()()a a a a a a a a ++=++=++ 4a =5324a =. 5.在等差数列{n a }中35276a a a ,=,=+,则6a = . 答案:13解析:设等差数列{n a }的公差为d,则由已知得 1112746a d a d a d +=,⎧⎨+=++.⎩ 解得 132a d =,⎧⎨=.⎩ 所以61a a =+5d= 13.6.已知曲线C:xy-4x+4=0,数列{n a }的首项14a =, 且当 2n ≥时,点1()n n a a -,恒在曲线C 上,且n b =12an,-试判断数列{nb }是否是等差数列?并说明理由.解:∵当2n ≥时,点1()n n a a -,恒在曲线C 上,∴11440n n n a a a ---+=. 由12n b an=-得: 当2n ≥时111122422111a a n nb b n n a a a a a an n n n n n --,-=-=-----+--- 11142244222111a a a a n n n n a a a a a n n n n n ----===---+--+---.∴数列{n b }是公差为12-的等差数列.题组一 等差数列的基本运算1.在等差数列{n a }中,已知12411039n a a a a =,+=,=,则n 等于( ) A.19 B.20 C.21 D.22 答案:B解析:∵2411310a a a d a d +=+++=,∴d=2. 由1(1)n a a n d =+-=39,解得n=20.2.等差数列{n a }的公差不为零,首项121a a =,是1a 和5a 的等比中项,则数列的前10项和是( ) A.90 B.100 C.145 D.190 答案:B解析:设公差为d,则2(1)1(14)d d +=⋅+. 因为0d ≠,解得d=2,∴10100S =.3.等差数列{n a }的前n 项和为n S ,且53655S S -=,则4a = . 答案:13解析:∵513151033S a d S a d =+,=+,∴5311653060(1515)S S a d a d -=+-+= 115a + 144515(3)155d a d a =+==, ∴413a =.4.已知数列{n a }是等差数列3410118a a a ,=,+=,则首项1a = . 答案:-3解析:∵41033()(7)28a a a d a d d +=+++=+=18, ∴d=2.∴1323a a d =-=-.另解,∵7410218a a a =+=,∴79a =.∴公差137391223734a ad a a d --===,=-=--. 题组二 等差数列性质的应用5.等差数列{n a }的前n 项和为n S ,若2812a a +=,则9S 等于( ) A.54 B.45 C.36 D.27答案:A解析:99()9()19285422a a a a S ++===.6.已知等差数列{n a }的前n 项和为n S ,若4518a a =-,则8S 等于( )A.68B.72C.54D.90 答案:B解析:∵4518a a =-,∴4518a a +=.∴88()8()18457222a a a a S ++===.7.已知{n a }是等差数列67782028a a a a ,+=,+=,则该数列前13项和13S 等于( )A.156B.132C.110D.100 答案:A解析:由67782028a a a a +=,+=知7448a =,∴712a =,故13713156S a ==,选A. 8.已知{n a }是等差数列451555a S ,=,=,则过点34(3)(4)P a Q a ,,,的直线的斜率为( ) A.4B.14C.-4D.-14 答案:A解析:∵{n a }是等差数列451555a S ,=,=, ∴153********a a a a +=,=,=.∴43443PQ a ak -==,-选A. 9.若等差数列{n a }的前5项和525S =,且23a =,则7a 等于( )A.12B.13C.14D.15答案:B解析:535S a =,∴35a =,∴d=2. ∴773213a =+⨯=,故选B.10.设等差数列{n a }的前n 项和为n S ,若981S =,则 2a + 58a a += . 答案:27解析:∵99()9()19288122a a a a S ++===, ∴285218a a a +==.即2585327a a a a ++==.题组三 证明数列是等差数列11.已知数列{n a }和{n b }满足1121(1)1n n n n n a a a a b a +=,-=-,=-.求数列{n b }的通项公式.解:由1n n b a =-得1n n a b =+代入11(1)n n n a a a +-=-得1(1)n n n b b b +=+, 整理得11n n n n b b b b ++-=,∵0(n b ≠否则1n a =,与12a =矛盾),从而得1111b b n n-=,+ ∵1111b a =-=,∴数列{1nb }是首项为1,公差为1的等差数列.∴1n b n=,即1n b n=.12.已知{n a }是以a 为首项,q 为公比的等比数列n S ,为它的前n 项和. (1)当134S S S ,,成等差数列时,求q 的值;(2)当m n l S S S ,,成等差数列时,求证:对任意自然数m k n k l k k a a a +++,,,也成等差数列. 解:(1)由已知1n n a aq -,=,因此13(1S a S a =,=+ 2q q + 234)(1)S a q q q ,=+++. 当134S S S ,,成等差数列时1432S S S ,+=,可得32aq aq aq =+.化简得210q q --=.解得q =.(2)证明:若q=1,则{n a }的每项n a a =,此时m k a +、n k a +、l k a +显然成等差数列. 若1q ≠,由m n l S S S ,,成等差数列可得m S +l S =2n S ,即(1)(1)2(1)111m l n a q a q a q q q q ---+=---. 整理得2m l n q q q +=.因此11()22k m l n k m k l k n k a a aq q q aq a -+-+++,+=+==. 所以m k a +,、n k a +、l k a +也成等差数列.高考学习网-中国最大高考学习网站 | 我们负责传递知识!。
等差数列及其前n项和经典习题
第28讲 等差数列及其前n 项和一、基本概念1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.2.等差数列的通项公式若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .3.等差中项如果A =a +b2,那么A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).例1:等差数列147369{},39,27,{}9n n a a a a a a a a ++=++=中则数列前项的和9S 等于?(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4).如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5B .a 1a 8<a 4a 5C .a 1+a 8<a 4+a 5D .a 1a 8=a 4a 5B .解析:由a 1+a 8=a 4+a 5,∴排除C . 又a 1·a 8=a 1(a 1+7d )=a 12+7a 1d ,∴a 4·a 5=(a 1+3d )(a 1+4d )=a 12+7a 1d +12d 2>a 1·a 8.(5).已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列,则 |m -n |等于( ).A .1B .43 C .21 D .83 4.C 解析: 解法1:设a 1=41,a 2=41+d ,a 3=41+2d ,a 4=41+3d ,而方程x 2-2x +m =0中两根之和为2,x 2-2x +n =0中两根之和也为2,∴a 1+a 2+a 3+a 4=1+6d =4, ∴d =21,a 1=41,a 4=47是一个方程的两个根,a 1=43,a 3=45是另一个方程的两个根. ∴167,1615分别为m 或n , ∴|m -n |=21,故选C . 解法2:设方程的四个根为x 1,x 2,x 3,x 4,且x 1+x 2=x 3+x 4=2,x 1·x 2=m ,x 3·x 4=n . 由等差数列的性质:若γ+s =p +q ,则a γ+a s =a p +a q ,若设x 1为第一项,x 2必为第四项,则x 2=47,于是可得等差数列为41,43,45,47, ∴m =167,n =1615, ∴|m -n |=21. 5.等差数列的前n 项和公式若已知首项a 1和末项a n ,则S n =n (a 1+a n )2;若已知首项a 1和公差d ,则其前n 项和公式为S n =na 1+n (n -1)2d .例2:(2011·福建)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.性质(1)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.例3:在等差数列{}n a 中,若481,4S S ==,则17181920a a a a +++的值为?性质(2)S 2n -1=(2n -1)a n .例4:两个等差数列{}{},,n n a b 1212...72,...3n n a a a n b b b n ++++=++++则55ab =_ __。
高考数学(人教a版,理科)题库:等差数列及其前n项和(含答案)
第2讲等差数列及其前n项和一、选择题1. {a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( ) A.18 B.20C.22 D.24解析由S10=S11得a11=S11-S10=0,a1=a11+(1-11)d=0+(-10)×(-2)=20.答案 B2.设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n等于( ).A.6 B.7 C.8 D.9解析由a4+a6=a1+a9=-11+a9=-6,得a9=5,从而d=2,所以S n=-11n+n(n-1)=n2-12n=(n-6)2-36,因此当S n取得最小值时,n=6.答案 A3.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于().A.-1 B.1 C.3 D.7解析两式相减,可得3d=-6,d=-2.由已知可得3a3=105,a3=35,所以a20=a3+17d=35+17×(-2)=1.答案 B4.在等差数列{a n}中,S15>0,S16<0,则使a n>0成立的n的最大值为().A.6 B.7 C.8 D.9解析依题意得S15=15(a1+a15)2=15a8>0,即a8>0;S16=16(a1+a16)2=8(a1+a16)=8(a8+a9)<0,即a8+a9<0,a9<-a8<0.因此使a n>0成立的n的最大值是8,选C.答案 C5.设S n为等差数列{a n}的前n项和,若a1=1,公差d=2,S k+2-S k=24,则k =( ).A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n=7n +45n +3,则使得a nb n为整数的正整数的个数是( ). A .2 B .3 C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a nb n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________.解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -2×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________. 解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d 12-3a 1+3d 9=1,由此解得d =6,即公差为6.答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293. 答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________. 解析 设等差数列{a n }的项数为2n +1, S 奇=a 1+a 3+…+a 2n +1=(n +1)(a 1+a 2n +1)2=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n (a 2+a 2n )2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n . ∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列. 13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列, 且公差d =a 4-a 14-1=2-83=-2. ∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5)=-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎨⎧⎭⎬⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0, (ii)若a 2≠0,由③知a 2-a 1=1.④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. 综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2-2.(2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2), 从而b 1>b 2>…>b 7=lg 108>lg 1=0, 当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0, 故n =7时,T n 取得最大值,且T n 的最大值为7(b1+b7)2=7(1+1-3lg 2)2=7-212lg 2.T7=。
2023届高考数学-等差数列及其前n项和精选练习含答案
等差数列及其前n 项和(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A .31B .32C .33D .342.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .633.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .444.等差数列{a n }的前n 项和为S n ,若a 2+a 8+a 11=30,那么S 13的值是( )A .130B .65C .70D .以上都不对5.已知数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.16 C.13 D.12 二、填空题(每小题6分,共24分)6.(2020·辽宁)设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.8.设等差数列{a n }的前n 项和为S n ,若S 9=72,则a 2+a 4+a 9=________.9.等差数列{a n }的通项公式是a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项和为________.三、解答题(共41分)10.(13分)(1)在等差数列{a n }中,若a 3=50,a 5=30,求a 7;(2)在等差数列{a n }中,已知a 15=33,a 61=217,判断153是不是这个数列的项.如果是,是第几项?11.(14分)已知数列{a n }的通项公式a n =pn 2+qn (p 、q ∈R,且p 、q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列;(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.12.(14分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -n (n -1) (n =1,2,3,…).(1)求证:数列{a n }为等差数列,并写出a n 关于n 的表达式;(2)若数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n ,求满足T n >100209的最小正整数n .答案 1.B 2.C 3.C 4.A 5.A6.157.138.249.7510. 解 (1)∵d =a 5-a 35-3=30-502=-10, ∴a 7=a 3+(7-3)d =50+4×(-10)=10,∴a 7=10.(2)设等差数列{a n }的首项为a 1,公差为d .∵a 15=33,a 61=217,∴⎩⎪⎨⎪⎧ 33=a 1+(15-1)d ,217=a 1+(61-1)d ,解得a 1=-23,d =4.∴a n =-23+(n -1)×4=4n -27.令a n =153,即4n -27=153,得n =45∈N *,∴153是所给数列的第45项. 11. (1)解 a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q ,要使{a n }是等差数列,则2pn +p +q 应是一个与n 无关的常数,所以只有2p =0,即p =0.故当p =0,q ∈R 时,数列{a n }是等差数列.(2)证明 ∵a n +1-a n =2pn +p +q ,∴a n +2-a n +1=2p (n +1)+p +q ,∴(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数.∴{a n +1-a n }是等差数列.12. (1)证明 当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-2(n -1),得a n -a n -1=2 (n =2,3,4,…).所以数列{a n }是以a 1=1为首项,2为公差的等差数列.所以a n =2n -1.(2)解 T n =1a 1a 2+1a 2a 3+…+1a n -1a n +1a n a n +1=11×3+13×5+15×7+…+1(2n -1)(2n +1)=12[⎝ ⎛⎭⎪⎫11-13+⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n -1-12n +1]=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1, 由T n =n 2n +1>100209,得n >1009, 所以满足T n >100209的最小正整数n 为12.。
2020高三数学总复习等差数列及其前n项和强化训练试题 (19)
§5.2 等差数列及其前n项和1.(2017课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=( )A. B. C.10 D.122.(2017浙江五校一联,2,5分)在等差数列{a n}中,a4=2-a3,则数列{a n}的前6项和为( )A.12B.3C.36D.63.(2018超级中学原创预测卷五,3,5分)已知等差数列{a n}的前n项和为S n,且S10=12,则a5+a6=( )A. B.12 C.6 D.4.(2018台州中学第三次月考文,2,5分)设S n为等差数列{a n}的前n项和,若a3=3,S9-S6=27,则该数列的首项a1等于( )A.-B.-C.D.5.(2017浙江宁波十校联考,3)已知等差数列{a n}的公差为2,项数为偶数,所有奇数项的和为15,所有偶数项的和为25,则这个数列的项数为( )A.10B.20C.30D.406.(2017浙江测试卷,2,5分)设等差数列{a n}的前n项和为S n.若公差d<0,且|a7|=|a8|,则使S n>0的最大正整数n是( )A.12B.13C.14D.157.(2017金华十校高三模拟文,4,5分)设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则使S n取得最大值的n为( )A.8B.9C.10D.118.(2017绍兴一中回头考,6,5分)设等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则,,…,中最大的项为( )A. B. C. D.9.(2017浙江杭州塘栖中学月考)已知S n为等差数列{a n}的前n项和,若S1=1,=4,则的值为( )A. B. C. D.410.(2017浙江,3,5分)已知{a n}是等差数列,公差d不为零,前n项和是S n.若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>011.(2018上海普陀调研测试,17,5分)设等差数列{a n}的前n项和为S n.在同一个坐标系中,a n=f(n)及S n=g(n)的部分图象如图所示(图中的三个点).根据图中所提供的信息,下列结论正确的是( )A.当n=3时,S n取得最大值B.当n=4时,S n取得最大值C.当n=3时,S n取得最小值D.当n=4时,S n取得最小值12.(2017安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.13.(2017浙江测试卷,10,6分)设等差数列{a n}的公差为6,且a4为a2和a3的等比中项.则a1= ,数列{a n}的前n项和S n= .14.(2017稽阳联考,10,6分)在等差数列{a n}中,若a4+a10=10,a6+a12=14,a k=13,则k= ;数列{a n}的前n项和S n= .15.(2017嘉兴一模,11,4分)已知等差数列{a n}的前n项和为S n,且a7=-2,S9=18,则S11= .16.(2017浙江萧山中学摸底测试)正项数列{a n}满足:a1=1,a2=2,2=+(n∈N*,n≥2),则a7= .17.(2017嘉兴测试一,12,6分)设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S9= ;·的最大值为.18.(2017浙江五校一联,15,4分)设a1,a2,…,a n,…是按先后顺序排列的一列向量,若a1=(-2019,13),且a n-a n-1=(1,1),则其中模最小的一个向量的序号n= .19.(2019浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.20.(2018台州中学第三次月考文,17,15分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=-4n-1,n∈N*,且a1=1.(1)求数列{a n}的通项公式;(2)证明:对一切正整数n,有++…+<.1.(2019课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C. D.2.(2018超级中学原创预测卷八,6,5分)已知等差数列{a n}的前n项和为S n,若a n+a n+1+a n+2=18,S2n+1=54,则n的值为( )A.2B.3C.4D.63.(2018温州高三联考,6,5分)等差数列{a n}的前n项和为S n,其中n∈N*,则下列命题错误的是( )A.若a n>0,则S n>0B.若S n>0,则a n>0C.若a n>0,则{S n}是单调递增数列D.若{S n}是单调递增数列,则a n>04.(2017浙江杭州学军中学第五次月考,7)设等差数列{a n}满足<-1,且其前n项的和S n有最大值,则当数列{S n}的前n项的和取得最大值时,正整数n的值是( )A.12B.11C.23D.225.(2017浙江名校(衢州二中)交流卷二,4)等差数列{a n}中,a1>0,3a8=5a13,则前n项的和S n中最大的是( )A.S10B.S11C.S20D.S216.(2017浙江温州十校期中,7)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n S n+1<0的正整数n的值为( )A.13B.12C.11D.107.(2017诸暨高中毕业班检测,5,5分)已知数列{a n}、{b n}都是公差为1的等差数列,b1是正整数,若a1+b1=10,则++…+=( )A.81B.99C.108D.1178.(2017杭州学军中学仿真考,11,6分)已知{a n}为等差数列,若a1+a5+a9=8π,则前9项的和S9= ,cos(a3+a7)的值为.9.(2017江苏淮安调研)在等差数列{a n}中,已知a2+a8=11,则3a3+a11的值为.10.(2017宁波高考模拟,12,6分)设S n为数列{a n}的前n项和,a1=1,a2=3,S k+2+S k-2S k+1=2对任意正整数k成立,则a n= ,S n= .11.(2017浙江镇海中学阶段测试,15,4分)已知数列{a n}满足:a1=,a n+1=1-,且a n≠0(n∈N*),则数列{a n}的通项为a n= .12.(2018宁波效实中学期中,11,6分)数列{a n}的前n项和S n=n2-6n,则a2= ,数列{|a n|}的前10项和|a1|+|a2|+…+|a10|= .13.(2017浙江名校(杭州二中)交流卷六,12)已知等差数列{a n}的前n项和为S n,等差数列{b n}的前n项和为T n,若=,则= ;若S n+T n=an2+2n,且a7+b7=15,则实数a= .14.已知正项等比数列{a n}的前n项和为S n,若-1,S5,S10成等差数列,则S10-2S5= ,S15-S10的最小值为.15.(2018台州中学第三次月考,13,4分)设等差数列{a n}的前n项和为S n,且满足S2019>0,S2017<0,对任意正整数n,都有|a n|≥|a k|,则k的值为.16.(2018安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是.17.(2019大纲全国,17,10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.18.(2017浙江丽水一模,17)已知等差数列{a n},首项a1和公差d均为整数,其前n项和为S n.(1)若a1=1,且a2,a4,a9成等比数列,求公差d;(2)当n≠5时,恒有S n<S5,求a1的最小值.19.(2017浙江杭州七校联考,19)已知数列{a n}满足a n=3a n-1+3n-1(n∈N*,n≥2)且a3=95. (1)求a1,a2的值;(2)是否存在一个实数t,使得b n=(a n+t)(n∈N*)且{b n}为等差数列?若存在,求出t的值;若不存在,请说明理由;(3)求数列{a n}的前n项和T n.1.B 由S8=4S4得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.2.D 由等差数列性质可知a3+a4=2=a1+a6,故S6==3(a1+a6)=6,故选D.3.A 由于S10==5(a5+a6)=12,所以a5+a6=,故选A.4.D S9-S6=a7+a8+a9=27,得a8=9,所以d==,a1=a3-2d=,故选D.5.A 设项数为2k,则由(a2+a4+…+a2k)-(a1+a3+…+a2k-1)=k×2=25-15,得k=5,故这个数列的项数为10.故选A.6.B 由d=a8-a7<0及|a7|=|a8|,得a8=-a7且a8<0,a7>0.则S13=×13=13a7>0,S15=×15=15a8<0,又S14=×14=7(a7+a8)=0,则使S n>0的最大正整数n是13.7.C 因为{a n}是等差数列,所以S19=19a10>0,S20=10(a10+a11)<0,则a10>0,a11<0,即(S n)max=S10,故选C.8.C 因为S15>0,故15a8>0,即a8>0.因为S16<0,故<0,即a9<0,故该等差数列中a1>a2>…>a8>0>a9>…,0<S1<S2<…<S8>S9>…>S15>0,故,,…,中,最大项为,故选C.9.A 由=4得=3,即S4-S2=3S2,S4=4S2,由等差数列的性质可知S2,S4-S2,S6-S4成等差数列,得S6-S4=5S2,所以S6=9S2,所以=.10.B 由=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,∴a1=-d,则a1d=-d2<0,又∵S4=4a1+6d=-d,∴dS4=-d2<0,故选B.11.B 不妨记A(7,0.7),B(7,-0.8),C(8,-0.4),a n=f(n)是关于n的一次函数;S n=g(n)是关于n的二次函数且常数项为0.若A,C或B,C为a n=f(n)的图象上两点,计算可知S n=g(n)的图象不过第三点.若S n=g(n)的图象过B,C两点也不满足题意.若S n=g(n)的图象过A,C两点,即S7=0.7,S8=-0.4,则计算可知a1=1,d=-0.3,a n=1.3-0.3n,a7=-0.8,符合题意,且a4>0,a5<0,故选B.12.答案27解析由题意得{a n}为等差数列,且公差d=,∵a1=1,∴S9=9×1+×=27.13.答案-14;3n2-17n解析依条件有(a 1+6)(a1+12)=,得a1=-14,则S n=-14n+n(n-1)×6=3n2-17n.14.答案15;解析因为a 4+a10=2a7=10,所以a7=5,同理得a9=7,所以a n=n-2,则a k=k-2=13,得k=15.a1=1-2=-1,所以S n===.15.答案0解析设等差数列的首项和公差分别为a 1,d,则有解得d=-2,a1=10,故S11=11×10+×(-2)=0.16.答案解析因为2=+(n∈N*,n≥2),所以数列{}是以=1为首项,d=-=4-1=3为公差的等差数列,所以=1+3(n-1)=3n-2,所以a n=,所以a7==. 17.答案72;64解析设等差数列的公差为d,则a 2+a4+a9=3a1+12d=24,即a1+4d=8,所以S9=9a1+36d=9×8=72.==a1+d=8-4d+d,则=8-4d+d=8-,=8-4d+d=8+,·= =64-≤64,当且仅当d=0时取等号,所以·的最大值为64.18.答案1001或1002解析因为故a n=(n-2017,n+12),故|a n|==.由二次函数性质可知当n==1001时,|a n|有最小值,又n∈N*,故n=1001或n=1002. 19.解析(1)由题意知(2a 1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而a n=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故所以20.解析(1)由a 1=1,a n>0,4S n=-4n-1,n∈N*,得a2=3.当n≥2时,4S n-1=-4(n-1)-1,则4a n=4S n-4S n-1=--4,=+4a n+4=(a n+2)2,∵a n>0,∴a n+1=a n+2,∴当n≥2时,{a n}是公差d=2的等差数列.∴{a n}是首项a1=1,公差d=2的等差数列.∴数列{a n}的通项公式为a n=2n-1.(2)证明:++…+=+++…+=·+++…+-=·<.1.A ∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2,∴S n=2n+=n(n+1),故选A.2.C 设{a n}的公差为d,由已知可得a1+(n-1)d+a1+nd+a1+(n+1)d=18,可得a1+nd=6,又S2n+1==54,即=54,得2n+1=9,故n=4,选C.3.D 易判断A、B、C均正确.D中,可取a1<0,公差d>0.4.D ∵等差数列{a n}前n项的和S n有最大值,∴{a n}的公差是负数.∵<-1,∴a12<0,∴a11>-a12,即a11+a12>0,∴S22==>0,S23==23a12<0.∴前22项的和最大.故选D.5.C 设{a n}的公差为d,3a8=5a13⇒3(a1+7d)=5(a1+12d)⇒d=-a1,又a1>0,所以d<0.所以{a n}是单调递减数列.由a n=a1+(n-1)=a1>0⇒n≤20.由此可得当n=20时,S n最大.故选C.6.B 由S6>S7>S5,得a7=S7-S6<0,a6=S6-S5>0,a6+a7=S7-S5>0.从而有S13=×13=13a7<0,S11=×11=11a6>0,S12=×12=6(a6+a7)>0,所以n≤12时,S n>0;n≥13时,S n<0,故S12S13<0,故选B.7.D 设{a n}的公差为d1,{b n}的公差为d2.因为a n=a1+(n-1)×d1=a1+n-1,b n=b1+(n-1)×d2=b1+n-1,所以-=a1+b n-1-(a1+b n-1-1)=b n-b n-1=1,所以{}是以a1+b1-1=9为首项,公差为1的等差数列,所以++…+=9×9+×1=117,故选D.8.答案24π;-解析因为{a n}是等差数列,所以a1+a5+a9=3a5=8π,所以a5=π,所以S9===9×π=24π,cos(a3+a7)=cos2a5=cosπ=cosπ=-.9.答案22解析由等差数列的性质知3a 3+a11=2a3+a3+a11=2a3+2a7=2(a2+a8)=22.10.答案2n-1;n2解析因为S k+2+S k-2S k+1=2,所以a k+2-a k+1=2,又a2-a1=2,故数列{a n}为等差数列.又a1=1,故a n=2n-1,故S n==n2.11.答案解析∵a n+1=1-=,且a n≠0,∴-=1,故数列是首项为4,公差为1的等差数列.则=4+(n-1)×1=n+3,即a n=.12.答案-3;58解析a 2=S2-S1=-3.由S n=n2-6n可得a n=2n-7,所以a1<a2<a3<0<a4<…<a10,所以|a1|+|a2|+…+|a10|=S10-2S3=58.13.答案;1解析====;a7+b7=S7+T7-(S6+T6)=72a+2×7-(62a+2×6)=13a+2=15⇒a=1. 14.答案1;4解析由题意知2S 5=-1+S10,所以S10-2S5=1,由{a n}为等比数列可知S5,S10-S5,S15-S10成等比数列,所以(S10-S5)2=S5(S15-S10),S15-S10===+S5+2≥4,当且仅当S5=1时,等号成立.15.答案1008解析因为S 2019>0,所以a1+a2019=a1007+a1008>0.因为S2017<0,所以a1+a2017=2a1008<0,因此d<0,且a1>a2>…>a1007>0>a1008>a1009>…,显然|a1009|>|a1008|,|a1007|>|a1008|,所以k=1008.16.答案a n=解析记△OA 1B1的面积为S,则△OA2B2的面积为4S.从而四边形A n B n B n+1A n+1的面积均为3S.可得△OA n B n的面积为S+3(n-1)S=(3n-2)S.∴=3n-2,即a n=.17.解析(1)证明:由a n+2=2a n+1-a n+2得,a n+2-a n+1=a n+1-a n+2,即b n+1=b n+2.又b1=a2-a1=1.所以{b n}是首项为1,公差为2的等差数列.(5分)(2)由(1)得b n=1+2(n-1),即a n+1-a n=2n-1.(8分)于是所以a n+1-a1=n2,即a n+1=n2+a1.又a1=1,所以{a n}的通项公式为a n=n2-2n+2.(10分)18.解析(1)由题意得=a2·a9,所以(1+3d)2=(1+d)·(1+8d),(4分)解得d=0或d=3.(6分)(2)∵当n≠5时,S n<S5恒成立,∴S5最大且d<0,由⇒∴⇒-4d<a1<-5d.(10分)又∵a1,d∈Z,d<0,∴当d=-1时,4<a1<5,此时a1不存在;(12分)当d=-2时,8<a1<10,则a1=9;当d=-3时,12<a1<15,则a1=13或a1=14;……易知当d≤-3时,a1>9.(14分)综上,a1的最小值为9.(15分)19.解析(1)当n=2时,a 2=3a1+8.当n=3时,a3=3a2+26=95,∴a2=23,∴23=3a1+8,∴a1=5.(2)存在.当n≥2时,b n-b n-1=(a n+t)-(a n-1+t)=(a n+t-3a n-1-3t)=(3n-1-2t)=1-.要使{b n}为等差数列,则必须使1+2t=0,解得t=-,∴存在t=-,使得{b n}为等差数列.(3)因为当t=-时,{b n}为等差数列,且b n-b n-1=1(n≥2),b1=, 所以b n=+(n-1)×1=n+,所以a n=·3n+=n·3n+×3n+,所以a1=1×3+×3+,a2=2×32+×32+,a3=3×33+×33+,……所以T n=+=.。
高一数学等差数列及其前n项和题组训练
等差数列及其前n 项和题组训练1.已知{a n }是等差数列,且a 2+a 5+a 8+a 11=48,则a 6+a 7等于( )A .12B .16C .20D .242.数列{a n }的前n 项和S n =n (2n -1),若k -l =4(k ,l ∈N *),则a k -a l 等于( )A .4B .8C .16D .323.已知数列{a n }满足a 1=1,a n +1=ra n +r (n ∈N *,r ∈R ,r ≠0),则“r =1”是“数列{a n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的一等人所得黄金比等级较低的九等人所得黄金( )A .多821斤 B .少821斤 C .多13斤 D .少13斤5.(多选)等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的有( )A .a 7B .a 8C .S 15D .S 166.(多选)已知{a n }为等差数列,其前n 项和为S n ,且2a 1+3a 3=S 6,则以下结论正确的是( )A .a 10=0B .S 10最小C .S 7=S 12D .S 19=07.若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________.8.已知等差数列{a n }的前n 项和为S n ,若a 1=1,S 3=a 5,a m =2 021,则m =________.9.已知数列{a n }的前n 项和S n 满足S n =S n -1+1(n ≥2,n ∈N *),且a 1=1,则a n =________.10.(2020·河北衡水中学模拟)已知在数列{a n }中,a 6=11,且na n -(n -1)a n +1=1,则a n =________;a 2n +143n的最小值为________.11.在数列{a n}中,a1=8,a4=2,且满足a n+2-2a n+1+a n=0(n∈N*).(1)求数列{a n}的通项公式;(2)设T n=|a1|+|a2|+…+|a n|,求T n.12.(2020·沈阳模拟)已知S n是等差数列{a n}的前n项和,S2=2,S3=-6.(1)求数列{a n}的通项公式及前n项和S n;(2)是否存在正整数n,使S n,S n+2+2n,S n+3成等差数列?若存在,求出n;若不存在,请说明理由.13.已知数列{a n}是等差数列,若a9+3a11<0,a10·a11<0,且数列{a n}的前n项和S n有最大值,那么S n取得最小正值时n等于()A.20 B.17 C.19 D.2114.已知数列{a n}满足a1=2,a2=3,且a n+2-a n=1+(-1)n,n∈N*,则该数列的前9项之和为________.15.(多选)设正项等差数列{a n}满足(a1+a10)2=2a2a9+20,则()A.a2a9的最大值为10 B.a2+a9的最大值为210C.1a22+1a29的最大值为15D.a42+a49的最小值为20016.在等差数列{a n}中,a3+a4=4,a5+a7=6.(1)求{a n}的通项公式;(2)设{b n}=[a n],求数列{b n}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2.等差数列及其前n 项和题组答案1.答案 D解析 由等差数列的性质可得a 2+a 5+a 8+a 11=2(a 6+a 7)=48,则a 6+a 7=24,故选D. 2答案 C解析 ∵S n =n (2n -1),∴数列{a n }是公差为4的等差数列,∵k -l =4,∴a k -a l =4×4=16.故选C.3.答案 A解析 当r =1时,a n +1=ra n +r ⇒a n +1=a n +1,∴数列{a n }为公差为1的等差数列,即充分性成立;∵a n +1=ra n +r ,a 1=1,∴a 2=2r ,a 3=2r 2+r ,∴若数列{a n }为等差数列,则4r =1+2r 2+r ,∴r =1或r =12, 即必要性不成立,综上,“r =1”是“数列{a n }为等差数列”的充分不必要条件,故选A. 4.答案 A解析 设十等人得金从高到低依次为a 1,a 2,…,a 10,则{a n }为等差数列,设公差为d ,则由题意可知⎩⎪⎨⎪⎧a 1+a 2+a 3=4,a 8+a 9+a 10=3,∴a 2=43,a 9=1,∴d =a 9-a 27=-121, ∴a 1-a 9=-8d =821. 即等级较高一等人所得黄金比等级较低的九等人所得黄金多821斤. 5.答案 BC解析 由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值,S 15=15()a 1+a 152=15a 8为定值,但S 16=16()a 1+a 162=8()a 8+a 9不是定值. 故选BC.6.答案 ACD解析 2a 1+3a 3=S 6,∴2a 1+3a 1+6d =6a 1+15d ,∴a 1+9d =0,即a 10=0,A 正确;当d <0时,S n 没有最小值,B 错误;S 12-S 7=a 8+a 9+a 10+a 11+a 12=5a 10=0,∴S 12=S 7,C 正确;S 19=(a 1+a 19)×192=19a 10=0,D 正确. 故选ACD.7.答案 44解析 S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,∴a 6=4,∴S 11=11(a 1+a 11)2=11a 6=44. 8.答案 1 011解析 ∵S 3=3a 1+3d ,∴3a 1+3d =a 1+4d ,即d =2,a m =a 1+(m -1)×2=2m -1=2 021,∴m =1 011.9.答案 2n -1解析 ∵S n -S n -1=1,∴{S n }为等差数列, 又S 1=a 1=1,∴S n =n ,即S n =n 2,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,又a 1=1满足上式,∴a n =2n -1.10.答案 2n -1 44解析 na n -(n -1)a n +1=1,所以(n +1)a n +1-na n +2=1,两式相减得na n -2na n +1+na n +2=0,所以a n +a n +2=2a n +1,所以数列{a n }为等差数列.当n =1时,由na n -(n -1)a n +1=1得a 1=1,由a 6=11,得公差d =2,所以a n =1+2(n -1)=2n -1,所以a 2n +143n =(2n -1)2+143n =4n +144n -4≥24n ·144n-4=44, 当且仅当4n =144n,即n =6时等号成立. 11解 (1)∵a n +2-2a n +1+a n =0,∴a n +2-a n +1=a n +1-a n ,∴数列{a n }是等差数列,设其公差为d ,∵a 1=8,a 4=2,∴d =a 4-a 14-1=-2, ∴a n =a 1+(n -1)d =10-2n ,n ∈N *.(2)设数列{a n }的前n 项和为S n ,则由(1)可得,S n =8n +n (n -1)2×(-2)=9n -n 2,n ∈N *. 由(1)知a n =10-2n ,令a n =0,得n =5,∴当n >5时,a n <0,则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n )=S 5-(S n -S 5)=2S 5-S n=2×(9×5-25)-(9n -n 2)=n 2-9n +40;当n ≤5时,a n ≥0,则T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =9n -n 2,∴T n =⎩⎪⎨⎪⎧9n -n 2,n ≤5,n ∈N *,n 2-9n +40,n ≥6,n ∈N *. 12.解 (1)∵S 2=2,S 3=-6,∴⎩⎪⎨⎪⎧ 2a 1+d =2,3a 1+3×22d =-6,解得⎩⎪⎨⎪⎧a 1=4,d =-6, ∴a n =4+(n -1)×(-6)=-6n +10,∴S n =4n +n (n -1)2×(-6)=-3n 2+7n . (2)假设存在n ,使S n ,S n +2+2n ,S n +3成等差数列,则2(S n +2+2n )=S n +S n +3,∴2[-3(n +2)2+7(n +2)+2n ]=-3n 2+7n +7(n +3)-3(n +3)2, 解得n =5.13.答案 C解析 因为a 9+3a 11<0,所以a 9+a 11+2a 11=a 9+a 11+a 10+a 12=2(a 11+a 10)<0 ,所以a 10+a 11<0.因为a 10·a 11<0,所以由等差数列的性质和求和公式可得a 10>0,a 11<0,又可得S 19=19a 10>0,而S 20=10(a 10+a 11)<0,进而可得S n 取得最小正值时n =19.故选C.14.答案 34解析 ∵a n +2-a n =1+(-1)n ,n ∈N *,∴当n 为奇数时,a 2n +1-a 2n -1=0,则数列{a 2n -1}是常数列,a 2n -1=a 1=2;当n 为偶数时,a 2n +2-a 2n =2,则数列{a 2n }是以a 2=3为首项,2为公差的等差数列,∴a 1+a 2+…+a 9=(a 1+a 3+…+a 9)+(a 2+a 4+…+a 8)=2×5+⎝⎛⎭⎫3×4+4×32×2=34.15.答案 ABD解析 因为正项等差数列{a n }满足(a 1+a 10)2=2a 2a 9+20,所以(a 2+a 9)2=2a 2a 9+20,即a 22+a 29=20.①a 2a 9≤a 22+a 292=202=10,当且仅当a 2=a 9=10时成立,故A 选项正确; ②由于⎝ ⎛⎭⎪⎫a 2+a 922≤a 22+a 292=10,所以a 2+a 92≤10,a 2+a 9≤210,当且仅当a 2=a 9=10时成立,故B 选项正确;③1a 22+1a 29=a 22+a 29a 22·a 29=20a 22·a 29≥20⎝ ⎛⎭⎪⎫a 22+a 2922=20102=15,当且仅当a 2=a 9=10时成立,所以1a 22+1a 29的最小值为15,故C 选项错误;④结合①的结论,有a 42+a 49=(a 22+a 29)2-2a 22·a 29=400-2a 22·a 29≥400-2×102=200,当且仅当a 2=a 9=10时成立,故D 选项正确.16.解 (1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3,解得a 1=1,d =25, 所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35, 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2<2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4<2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.。
【金版教程】2021届高考数学大一轮总温习 5-2(2)等差数列及其前n项和限时标准训练 理(1)
05限时标准特训A 级 基础达标1.假设等差数列的第一、二、三项依次是1x +1、56x 、1x ,那么数列的公差d 是( ) A.112 B.16 C.14D.12解析:依题意得2×56x =1x +1+1x ,解得x =2,因此d =512-13=112.选A.答案:A2.在等差数列{a n }中,已知a 4=7,a 3+a 6=16,a n =31,那么n 为( ) A .13 B .14 C .15D .16解析:由已知可得a 4+a 5=7+a 5=a 3+a 6=16,得a 5=16-7=9,故公差d =a 5-a 4=9-7=2,同时解得a 1=1,由1+(n -1)×2=31,解得n =16,选D.答案:D3.[2021·安庆模拟]已知等差数列{a n }的前n 项和为S n ,假设2a 6=a 8+6,那么S 7=( ) A .49 B .42 C .35D .28解析:2a 6=a 8+6⇒a 1+3d =6⇒a 4=6,故S 7=7a 1+a 72=7a 4=42,应选B.答案:B4.[2021·湖南四市联考]数列{a n }中,a 2=2,a 6=0且数列{1a n +1}是等差数列,那么a 4=( )A.12B.13C.14D.16解析:设数列{1a n +1}的公差为d ,那么4d =1a 6+1-1a 2+1得d =16,∴1a 4+1=12+1+2×16,解得a 4=12. 答案:A5.[2021·金版]在各项均不为零的等差数列{a n }中,假设a 2n -a n +1=a n -1(n ≥2,n ∈N *),那么S 2021的值为( )A .2021B .2021C .4026D .4028解析:由a 2n -a n +1=a n -1(n ≥2,n ∈N *)可得a 2n =a n +1+a n -1=2a n ,因为a n ≠0,因此a n =2,故S 2021=2×2021=4028.选D.答案:D6.等差数列{a n }的前n 项和是S n ,且a 1=10,a 5=6,那么以下不等式中不成立的是( ) A .a 10+a 11>0 B .S 21<0C .a 11+a 12<0D .当n =10时,S n 最大解析:设等差数列{a n }的公差为d ,由a 1=10,a 5=6,得6=10+4d ,即d =-1,因此a n =11-n .a 10+a 11=1+0>0,A 成立;a 11+a 12=-1<0,C 成立;S n =-12n 2+212n =-12(n -212)2+4418,故当n =10时,S n 最大,D 成立;S 21=-12×212+21×212=0,故B 不成立. 答案:B7.[2021·漳州模拟]已知正项数列{a n }的前n 项和为S n ,且a 1=1,a n =S n +S n -1(n ≥2),那么数列{a n }的通项公式为a n =( )A .n -1B .nC .2n -1D .2n解析:由已知可得S n -S n -1=S n +S n -1(n ≥2),又S n +S n -1>0,故S n -S n -1=1,因此数列{S n }是等差数列,其公差为1,首项S 1=1,故S n =n ,即S n =n 2,当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,当n =1时也适合上式,故数列{a n }的通项公式为a n =2n -1,选C.答案:C8.[2021·黄山模拟]设等差数列{a n }的前n 项和为S n ,假设S 4=8,S 8=20,那么a 11+a 12+a 13+a 14=________.解析:由⎩⎪⎨⎪⎧S 44=2S 88=52,即⎩⎪⎨⎪⎧a 1+32d =2a 1+72d =52,解得d =14,a 1=138,∴a 11+a 12+a 13+a 14=4a 1+46d =18. 答案:189.[2021·天津模考]已知数列{a n }为等差数列,假设a 7a 6<-1,且它们的前n 项和S n 有最大值,那么使S n >0的n 的最大值为________.解析:∵a 7a 6<-1,且S n 有最大值,∴a 6>0,a 7<0且a 6+a 7<0,∴S 11=11a 1+a 112=11a 6>0,S 12=12a 1+a 122=6(a 6+a 7)<0,∴使S n >0的n 的最大值为11.答案:1110.[2021·衡水月考]已知数列{a n }的各项均为正数,前n 项和为S n ,且知足2S n =a 2n +n -4. (1)求证{a n }为等差数列; (2)求{a n }的通项公式. 解:(1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,那么a n +a n -1=1, 而a 1=3,因此a 2=-2,这与数列{a n }的各项均为正数相矛盾, 因此a n -1=a n -1,即a n -a n -1=1, 因此{a n }为等差数列.(2)由(1)知a 1=3,d =1,因此数列{a n }的通项公式a n =3+(n -1)=n +2,即a n =n +2. 11.[2021·河北统考]已知等差数列{a n }中,a 5=12,a 20=-18. (1)求数列{a n }的通项公式; (2)求数列{|a n |}的前n 项和S n . 解:(1)设数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧a 5=a 1+4d =12a 20=a 1+19d =-18,解得⎩⎪⎨⎪⎧a 1=20d =-2,∴a n =20+(n -1)×(-2)=-2n +22.(2)由(1)知|a n |=|-2n +22|=⎩⎪⎨⎪⎧-2n +22,n ≤112n -22,n >11,∴当n ≤11时,S n =20+18+…+(-2n +22)=n 20-2n +222=(21-n )n ; 当n >11时,S n =S 11+2+4+…+(2n -22)=110+n -112+2n -222=n 2-21n +220.综上所述,S n =⎩⎪⎨⎪⎧21-n n ,n ≤11n 2-21n +220,n >11.12.[2021·金华调研]已知等差数列{a n }的首项a 1=1,公差d >0,且第2项、第5项、第14项别离为等比数列{b n }的第2项、第3项、第4项.(1)求数列{a n },{b n }的通项公式; (2)设数列{c n }对n ∈N *,均有c 1b 1+c 2b 2+…+c nb n=a n +1成立,求c 1+c 2+c 3+…+c 2021的值.解:(1)∵a 2=1+d ,a 5=1+4d ,a 14=1+13d , ∴(1+4d )2=(1+d )(1+13d ),解得d =2(∵d >0). 则a n =1+(n -1)×2=2n -1. 又b 2=a 2=3,b 3=a 5=9, ∴等比数列{b n }的公比q =b 3b 2=93=3.∴b n =b 2q n -2=3×3n -2=3n -1. (2)由c 1b 1+c 2b 2+…+c nb n=a n +1得当n ≥2时,c 1b 1+c 2b 2+…+c n -1b n -1=a n ,两式相减,得c nb n=a n +1-a n =2,∴c n =2b n =2×3n -1(n ≥2). 而当n =1时,c 1b 1=a 2,∴c 1=3.∴c n =⎩⎪⎨⎪⎧3,n =1,2×3n -1,n ≥2.∴c 1+c 2+c 3+…+c 2021=3+2×31+2×32+…+2×32021 =3+6-6×320131-3=3-3+32021 =32021.B 级 知能提升1.已知数列{a n },{b n }都是公差为1的等差数列,其首项别离为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于( )A .55B .70C .85D .100解析:由题知a 1+b 1=5,a 1,b 1∈N *.设c n =ab n (n ∈N *),那么数列{c n }的前10项和等于ab 1+ab 2+…+ab 10=ab 1+ab 1+1+...+ab 1+9,ab 1=a 1+(b 1-1)=4,∴ab 1+ab 1+1+...+ab 1+9=4+5+6+ (13)85,选C.答案:C2.等差数列{a n }、{b n }的前n 项和别离为S n 、T n ,且S n T n=4n +7n,那么使得a nb n为整数的正整数n 的个数是( )A .2B .3C .4D .5解析:a n b n =2a n2b n =a 1+a 2n -1b 1+b 2n -1=a 1+a 2n -1×2n -12b 1+b 2n -1×2n -12=S 2n -1T 2n -1=4×2n -1+72n -1=4+72n -1,可得a 1b 1=11,a 4b 4=5,有2个正整数值,选A.答案:A3.[2021·云南师大附中模拟]已知数列{a n }中a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,那么S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),数列{a n }从第二项起组成等差数列,S 15=1+2+4+6+8+…+28=211.答案:2114.[2021·南昌模拟]在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值.解:(1)∵a n +1+a n =2n -44,a n +2+a n +1=2(n +1)-44,∴a n +2-a n =2.∴a 2+a 1=-42,a 1=-23,∴a 2=-19. 同理得a 3=-21,a 4=-17,故a 1,a 3,a 5,…是以a 1为首项、2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项、2为公差的等差数列,从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+(2×5-44)+…+[2×(n -1)-44]=2[1+3+…+(n -1)]-n 2·44=n 22-22n ,故当n =22时,S n 取得最小值-242.当n 为奇数时,S n =a 1+(a 2+a 3)+(a 4+a 5)+…+(a n -1+a n )=a 1+(2×2-44)+(2×4-44)+…+[2×(n -1)-44]=a 1+2[2+4+…+(n -1)]+n -12·(-44)=-23+n +1n -12-22(n -1)=n 22-22n -32,故当n =21或n =23时,S n 取得最小值-243. 综上所述,S n 的最小值为-243.。
2020高考数学 课后作业 5-2 等差数列 新人教A版
2020高考数学人教A 版课后作业1.(文)(2020·温州十校二模)若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为( )A .12B .18C .22D .44 [答案] C[解析] 根据等差数列的性质可知S 11=11a 1+a 112=11a 2+a 102=11×42=22,故选C.(理)(2020·北京海淀期中)已知数列{a n }为等差数列,S n 是它的前n 项和.若a 1=2,S 3=12,则S 4=( )A .10B .16C .20D .24 [答案] C[解析] S 3=3a 2,又S 3=12,∴a 2=4,∴d =a 2-a 1=2,∴a 4=a 1+3d =8,S 4=4a 1+a 42=20,故选C.2.(文)(2020·山东日照模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 为( )A .12B .8C .6D .4 [答案] B[解析] 由等差数列性质知,a 3+a 6+a 10+a 13=(a 3+a 13)+(a 6+a 10)=2a 8+2a 8=4a 8=32, ∴a 8=8. ∴m =8.故选B.(理)(2020·黄山质检)已知数列{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率是( )A .4 B.14 C .-4 D .-143[答案] A[解析] ∵{a n }是等差数列,a 4=15,S 5=55, ∴a 1+a 5=22,∴2a 3=22,∴a 3=11. ∴k PQ =a 4-a 34-3=4,故选A.3.(2020·山东东明县月考)在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于( )A .40B .42C .43D .45 [答案] B[解析] ∵⎩⎪⎨⎪⎧a 1=22a 1+3d =13,∴d =3.∴a 4+a 5+a 6=3a 1+12d =42,故选B.4.(文)(2020·西安五校一模)设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 3+a 7=-6,则当S n 取最小值时,n 等于( )A .8B .7C .6D .9 [答案] C[解析] 设等差数列{a n }的公差为d ,依题意得a 3+a 7=2a 5=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a n =-11+(n -1)×2=2n -13.令a n >0得n >6.5,即在数列{a n }中,前6项均为负数,自第7项起以后各项均为正数,因此当n =6时,S n 取最小值,选C.(理)(2020·江西八校联考)设数列{a n }为等差数列,其前n 项和为S n ,已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若对任意n ∈N *,都有S n ≤S k 成立,则k 的值为( )A .22B .21C .20D .19 [答案] C[解析] 设等差数列{a n }的公差为d ,则有3d =93-99=-6,∴d =-2;∴a 1+(a 1+3d )+(a 1+6d )=3a 1+9d =3a 1-18=99,∴a 1=39,∴a n =a 1+(n -1)d =39-2(n -1)=41-2n .令a n =41-2n >0得n <20.5,即在数列{a n }中,前20项均为正,自第21项起以后各项均为负,因此在其前n 项和中,S 20最大.依题意得知,满足题意的k 值是20,选C.5.(文)(2020·山东青岛质检)已知不等式x 2-2x -3<0的整数解构成等差数列{a n },则数列{a n }的第四项为( )A .3B .-1C .2D .3或-1 [答案] D[解析] 由x 2-2x -3<0及x ∈Z 得x =0,1,2. ∴a 4=3或-1.故选D.(理)已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为14的等差数列,则|m-n |=( )A .1 B.34 C.12 D.38[答案] C[解析] 设x 2-2x +m =0的根为x 1,x 2且x 1<x 2,x 2-2x +n =0的根为x 3,x 4且x 3<x 4,且x 1=14,又x 1+x 2=2,∴x 2=74,又x 3+x 4=2,且x 1,x 3,x 4,x 2成等差数列, ∴公差d =13(74-14)=12,∴x 3=34,x 4=54.∴|m -n |=|14×74-34×54|=12,故选C.6.设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 [答案] A[解析] ∵{a n }是等差数列,且a 1+a 2+a 3=15,∴a 2=5, 又∵a 1·a 2·a 3=105,∴a 1a 3=21,由⎩⎪⎨⎪⎧a 1a 3=21a 1+a 3=10及{a n }递减可求得a 1=7,d =-2,∴a n =9-2n ,由a n ≥0得n ≤4,∴选A.7.(2020·洛阳部分重点中学教学检测)已知a ,b ,c 是递减的等差数列,若将其中两个数的位置对换,得到一个等比数列,则a 2+c 2b2的值为________.[答案] 20[解析] 依题意得①⎩⎪⎨⎪⎧a +c =2bb 2=ac ,或②⎩⎪⎨⎪⎧a +c =2ba 2=bc ,或③⎩⎪⎨⎪⎧a +c =2bc 2=ab .由①得a =b=c ,这与“a ,b ,c 是递减的等差数列”矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,因此a =-2b ,c =4b ,a 2+c 2b 2=20;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,因此有c=-2b ,a =4b ,a 2+c 2b2=20.8.(文)已知函数f (x )=sin x +tan x .项数为27的等差数列{a n }满足a n ∈⎝ ⎛⎭⎪⎫-π2,π2,且公差d ≠0.若f (a 1)+f (a 2)+…+f (a 27)=0,则当k =________时,f (a k )=0.[答案] 14[解析] ∵f (x )=sin x +tan x 为奇函数,且在x =0处有定义,∴f (0)=0. ∵{a n }为等差数列且d ≠0,∴a n (1≤n ≤27,n ∈N *)对称分布在原点及原点两侧, ∵f (a 1)+f (a 2)+…+f (a 27)=0,∴f (a 14)=0.∴k =14.(理)(2020·南京一模)已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为________.[答案] 4[解析] 设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4,又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a n+2>19的最大正整数n 的值为4.1.(文)(2020·合肥一模)已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2 B .1- 2 C .3+2 2 D .3-2 2 [答案] C[解析] 设等比数列{a n }的公比为q (q >0),则由题意得a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q , ∵a 1>0,∴q 2-2q -1=0,∴q =1± 2. 又q >0,因此有q =1+2,∴a 9+a 10a 7+a 8=q 2a 7+a 8a 7+a 8=q 2=(1+2)2=3+22,选C. (理)设S n 是等差数列{a n }的前n 项和,若点O (0,0),A (l ,S l ),B (m ,S m ),C (p ,S p )(其中l <m <p ),且向量AB →与OC →共线,则l ,m ,p 之间的关系是( )A .m =p +lB .2m =p +lC .2p =m +lD .p =m +l [答案] D[解析] 依题意得AB →=(m -l ,S m -S l ),OC →=(p ,S p ),因为于AB →与OC →共线,所以有(m -l )S p=p (S m -S l ),再设等差数列{a n }的公差为d ,代入整理可得p =m +l ,故选D.[点评] 可取特殊等差数列验证求解,如取a n =n .2.(2020·江西九校联考)已知数列2,x ,y,3为等差数列,数列2,m ,n,3为等比数列,则x +y +mn 的值为( )A .16B .11C .-11D .±11 [答案] B[解析] 依题意得x +y =2+3=5,mn =2×3=6,x +y +mn =11,选B.3.(文)在函数y =f (x )的图象上有点列(x n ,y n ),若数列{x n }是等差数列,数列{y n }是等比数列,则函数y =f (x )的解析式可能为( )A .f (x )=2x +1B .f (x )=4x 2C .f (x )=log 3xD .f (x )=⎝ ⎛⎭⎪⎫34x[答案] D[解析] 对于函数f (x )=⎝ ⎛⎭⎪⎫34x 上的点列(x n ,y n ),有y n =⎝ ⎛⎭⎪⎫34x n ,由于{x n }是等差数列,所以x n +1-x n =d ,因此y n +1y n =⎝ ⎛⎭⎪⎫34xn +1⎝ ⎛⎭⎪⎫34x n =⎝ ⎛⎭⎪⎫34x n +1-x n =⎝ ⎛⎭⎪⎫34d,这是一个与n 无关的常数,故{y n }是等比数列.故选D.[点评] 根据指数与对数运算的性质知真数成等比(各项为正),其对数成等差,指数成等差时,幂成等比.(理)(2020·江南十校联考)已知直线(3m +1)x +(1-m )y -4=0所过定点的横、纵坐标分别是等差数列{a n }的第一项与第二项,若b n =1a n ·a n +1,数列{b n }的前n 项和为T n ,则T 10=( )A.921B.1021 C.1121 D.2021[答案] B[解析] 依题意,将(3m +1)x +(1-m )y -4=0化为(x +y -4)+m (3x -y )=0,令⎩⎪⎨⎪⎧x +y -4=03x -y =0,解得⎩⎪⎨⎪⎧x =1y =3,∴直线(3m +1)x +(1-m )y -4=0过定点(1,3), ∴a 1=1,a 2=3,公差d =2,a n =2n -1,∴b n =1a n ·a n +1=12(12n -1-12n +1),∴T 10=12×(11-13+13-15+…+120-1-120+1)=12×(1-121)=1021.故选B. 4.(2020·黄冈3月质检)设数列{a n }是以2为首项,1为公差的等差数列,b n 是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=( )A .1033B .2057C .1034D .2058 [答案] A[解析] 依题意得a n =2+(n -1)×1=n +1,b n =1×2n -1=2n -1,ab n =b n +1=2n -1+1,因此ab 1+ab 2+…+ab 10=(20+1)+(21+1)+…+(29+1)=1×210-12-1+10=210+9=1033,故选A.5.(文)将正偶数按下表排成5列:第1列 第2列第3列 第4列 第5列 第1行2 4 6 8 第2行 1614 12 10 第3行 18 20 22 24 …………2826那么[答案] 252,4[解析] 通项a n =2n ,故2020为第1005项,∵1005=4×251+1,又251为奇数,因此2020应排在第252行,且第252行从右向左排第一个数,即252行第4列.(理)已知a n =n 的各项排列成如图的三角形状:记A (m ,n )表示第m 行的第n 个数,则A (21,12)=________.a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9… … … … … … … … … …[答案] 412[解析] 由题意知第1行有1个数,第2行有3个数,……第n 行有2n -1个数,故前n行有S n =n [1+2n -1]2=n 2个数,因此前20行共有S 20=400个数,故第21行的第一个数为401,第12个数为412,即A (21,12)=412.6.(2020·重庆文,16)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .[解析] (1)设等比数列{a n }的公比为q ,由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍),∴q =2 ∴a n =a 1·qn -1=2·2n -1=2n(2)数列b n =1+2(n -1)=2n -1 ∴S n =2×1-2n1-2+[n ×1+n n -12×2]=2n +1+n 2-2.7.(文)在数列{a n }中,a 1=4,且对任意大于1的正整数n ,点(a n ,a n -1)在直线y =x -2上.(1)求数列{a n }的通项公式;(2)已知b 1+b 2+…+b n =a n ,试比较a n 与b n 的大小. [解析] (1)∵点(a n ,a n -1)在直线y =x -2上,∴a n =a n -1+2,即数列{a n }是以a 1=2为首项,公差d =2的等差数列.∴a n =2+2(n -1)=2n ,∴a n =4n 2.(2)∵b 1+b 2+…+b n =a n ,∴当n ≥2时,b n =a n -a n -1=4n 2-4(n -1)2=8n -4,当n =1时,b 1=a 1=4,满足上式.∴b n =8n -4,∴a n -b n =4n 2-(8n -4)=4(n -1)2≥0,∴a n ≥b n .[点评] 第(2)问可由b 1+b 2+…+b n =a n 得,a n -b n =a n -1=4(n -1)2≥0,∴a n ≥b n 简捷明了,注意观察分析常能起到事半功倍的效果.(理)(2020·浙江金华联考)已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式; (2)设T n 为数列{1a n a n +1}的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.[解析] 设公差为d .由已知得⎩⎪⎨⎪⎧4a 1+6d =14,a 1+2d 2=a 1a 1+6d ,联立解得d =1或d =0(舍去), ∴a 1=2,故a n =n +1. (2)1a n a n +1=1n +1n +2=1n +1-1n +2, ∴T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n2n +2. ∵T n ≤λa n +1,∴n 2n +2≤λ(n +2),∴λ≥n2n +22.又n2n +22=12n +4n+4≤124+4=116(当且仅当n =2时取等号). ∴λ的最小值为116.8.(理)已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{a n }和数列{b n }满足等式:a n =b 12+b 222+b 323+…+b n2n (n 为正整数),求数列{b n }的前n 项和S n .[解析] (1)解法一:设等差数列{a n }的公差为d , 则依题设d >0.由a 2+a 7=16,得2a 1+7d =16.① 由a 3·a 6=55,得(a 1+2d )(a 1+5d )=55.②由①得2a 1=16-7d ,将其代入②得(16-3d )(16+3d )=220,即256-9d 2=220, ∴d 2=4.又d >0,∴d =2.代入①得a 1=1. ∴a n =1+(n -1)·2=2n -1.解法二:由等差数列的性质得:a 2+a 7=a 3+a 6,∴⎩⎪⎨⎪⎧a 3a 6=55a 3+a 6=16,由韦达定理知,a 3,a 6是方程x 2-16x +55=0的根,解方程得x =5或x =11. 设公差为d ,则由a 6=a 3+3d ,得d =a 6-a 33.∵d >0,∴a 3=5,a 6=11,d =11-53=2,a 1=a 3-2d =5-4=1.故a n =2n -1.(2)解法一:当n =1时,a 1=b 12,∴b 1=2.当n ≥2时,a n =b 12+b 222+b 323+…+b n -12n -1+b n2n ,a n -1=b 12+b 222+b 323+…+b n -12n -1,两式相减得a n -a n -1=b n2n ,∴b n =2n +1,因此b n =⎩⎪⎨⎪⎧2 n =12n +1n ≥2当n =1时,S 1=b 1=2;当n ≥2时,S n =b 1+b 2+b 3+…+b n =2+b 21-2n -11-2=2n +2-6.∵当n =1时上式也成立, ∴当n 为正整数时都有S n =2n +2-6.解法二:令c n =b n2n ,则有a n =c 1+c 2+…+c n ,a n +1=c 1+c 2+…+c n +1,两式相减得a n +1-a n =c n +1. 由(1)得a 1=1,a n +1-a n =2.∴c n +1=2,c n =2(n ≥2),即当n ≥2时,b n =2n +1, 又当n =1时,b 1=2a 1=2,∴b n =⎩⎪⎨⎪⎧2 n =12n +1n ≥2 于是S n =b 1+b 2+b 3+…+b n =2+23+24+…+2n +1=2+22+23+24+…+2n +1-4=22n +1-12-1-4=2n +2-6,即S n =2n +2-6.1.(2020·温州中学)设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .43D .27 [答案] B[解析] 由等差数列的性质知,S 3,S 6-S 3,S 9-S 6成等差数列,∴2(S 6-S 3)=S 3+(S 9-S 6),∴a 7+a 8+a 9=S 9-S 6=2(S 6-S 3)-S 3=45.2.(2020·广东五校、启东模拟)在等差数列{a n }中,a 1=-2020,其前n 项的和为S n .若S 20092009-S 20072007=2,则S 2020=( ) A .-2020 B .-2020 C .2020 D .2020 [答案] A[解析] ∵S 20092009-S 20072007=2,∴(a 1+1004d )-(a 1+1003d )=2,∴d =2, ∴S 2020=2020a 1+2010×20092d =-2020.3.(2020·北京顺义一中)一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是( )A .i <4?B .i <5?C .i ≥5?D .i <6? [答案] D[解析] 由题意知S =11×2+12×3+…+1ii +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1i -1i +1=ii +1,故要输出S =56,i =5时再循环一次,故条件为i ≤5或i <6,故选D. 4.在等差数列{a n }中,a 1=25,S 17=S 9,则S n 的最大值为________. [答案] 169[分析] 利用前n 项和公式和二次函数性质求解.[解析] 方法1:由S 17=S 9,得 25×17+172(17-1)d =25×9+92(9-1)d , 解得d =-2,∴S n =25n +n 2(n -1)·(-2)=-(n -13)2+169, ∴由二次函数性质,当n =13时,S n 有最大值169. 方法2:先求出d =-2,∵a 1=25>0, 由⎩⎪⎨⎪⎧ a n =25-2n -1≥0a n +1=25-2n ≤0,得⎩⎪⎨⎪⎧ n ≤1312n ≥1212, ∴当n =13时,S n 有最大值169.方法3:由S 17=S 9得a 10+a 11+…+a 17=0, 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14,故a 13+a 14=0. ∵d =-2<0,a 1>0,∴a 13>0,a 14<0, 故n =13时,S n 有最大值.方法4:由d =-2得S n 的图象如图所示(图象上一些孤立点),由S 17=S 9知图象对称轴为n =9+172=13, ∴当n =13时,S n 取得最大值169.5.已知正项数列{a n },其前n 项和S n 满足10S n =a 2n +5a n +6,且a 1,a 3,a 15成等比数列,求数列{a n }的通项公式.[解析] ∵10S n =a 2n +5a n +6①∴10a 1=a 21+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a 2n -1+5a n -1+6(n ≥2),② 由①-②得10a n =(a 2n -a 2n -1)+5(a n -a n -1), 即(a n +a n -1)(a n -a n -1-5)=0.∵a n +a n -1>0,∴a n -a n -1=5(n ≥2). 当a 1=3时,a 3=13,a 15=73.a 1,a 3,a 15不成等比数列,∴a1≠3;当a1=2时,a3=12,a15=72,有a23=a1a15,∴a1=2,∴a n=5n-3.[点评] S n与a n的关系是高考中经常出现的.该问题较新颖,但新而不难.思维的选择性很有深意,值得回味.。
等差数列及其前n项和 测试题 练习题
等差数列及其前n 项和 测试题A 级 基础题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=________.2.若S n 是等差数列{a n }的前n 项和,a 2+a 10=4,则S 11的值为________.3.在等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n =________.4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9=________.5.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________.6.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=________.7.已知数列{a n }的前n 项和为S n =2n 2+pn ,a 7=11.若a k +a k +1>12,则正整数k 的最小值为________.8.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.9.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-⎝ ⎛⎭⎪⎫12n -1+2(n ≥2,n为正整数),a 1=12.(1)令b n =2n a n ,求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.10.已知数列{a n }满足a n =2a n -1+2n +1(n ∈N *,n ≥2),且a 3=27. (1)求a 1,a 2的值;(2)记b n =12n (a n +t )(n ∈N *),问是否存在一个实数t ,使数列{b n }是等差数列?若存在,求出实数t ;若不存在,请说明理由.B 级 创新题1.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为________.2.数列{a n }是等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n取得最小正值时,n =________.3.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=________.4.已知数列{a n }满足递推关系式a n +1=2a n +2n-1(n ∈N *),且⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ2n 为等差数列,则λ的值是________.5.已知数列{a n },{b n }满足a 1=1,a 2=2,b 1=2,且对任意的正整数i ,j ,k ,l ,当i +j =k +l 时,都有a i +b j =a k +b l ,则12 010∑i =12 010(a i +b i )的值是________.6.已知f(x)是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (x ·y )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2.则数列的通项公式a n =________.7.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式; (2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.8.在数列{a n }中,a 1=1,a n +1=1-14a n ,b n =22a n -1,其中n ∈N *.(1)求证:数列{b n }是等差数列;(2)设c n =(2)b n ,试问数列{c n }中是否存在三项,使它们可以构成等差数列?如果存在,求出这三项;如果不存在,说明理由.参考答案 A 组1. 解析 设公差为d .则d =a 3-a 2=2. ∴a 1=0,a n =2n -2∴a 10=2×10-2=18. 答案 182. 解析 S 11=11(a 1+a 11)2=11(a 2+a 10)2=11×42=22.答案 223. 解析 因为a 1>0,S 4=S 9,所以a 5+a 6+a 7+a 8+a 9=0,所以a 7=0,所以⎩⎨⎧a 6>0,a 8<0,从而当n =6或7时S n 取最大值. 答案 6或74. 解析 ∵a 1+a 4+a 7=39,a 3+a 6+a 9=27, ∴3a 4=39,3a 6=27, ∴a 4=13,a 6=9.∴a 6-a 4=2d =9-13=-4, ∴d =-2,∴a 5=a 4+d =13-2=11, ∴S 9=9(a 1+a 9)2=9a 5=99.答案 995. 解析 设a n =a 1+(n -1)d ,则由⎩⎨⎧ 1≤a 5≤4,2≤a 6≤3,解⎩⎨⎧1≤a 1+4d ≤4,2≤a 1+5d ≤3,所以S 6=6a 1+15d =15(a 1+4d )-9(a 1+5d )∈[-12,42]. 答案 [-12,42]6. 解析 由15=a 1+a 2+a 3=3a 2,得a 2=5.所以⎩⎨⎧a 1+a 3=10,a 1a 3=16.又公差d >0,所以⎩⎨⎧a 1=2,a 3=8.所以d =3.所以a 11+a 12+a 13=3a 12=3(a 1+11d )=3(2+33)=3×35=105. 答案 1057. 解析 因为a 7=S 7-S 6=2×72+7p -2×62-6p =26+p =11,所以p =-15,S n =2n 2-15n ,a n =S n -S n -1=4n -17(n ≥2),当n =1时也满足.于是由a k +a k +1=8k -30>12,得k >214>5.又k ∈N *,所以k ≥6,即k min =6.答案 68. 思路分析 第(1)问建立首项a 1与公差d 的方程组求解;第(2)问建立首项a 1与公差d 的方程,利用完全平方公式求范围. 解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8, 所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0,故(4a 1+9d )2=d 2-8,所以d 2≥8.故d 的取值范围为d ≤-22或d ≥2 2.9. (1)证明 由2S n =S n -1-⎝ ⎛⎪⎫12n -1+2,得2S n +1=S n -⎝ ⎛⎭⎪⎫12n +2,两式相减,得2a n +1=a n +⎝ ⎛⎭⎪⎫12n ,即2n +1a n +1=2n a n +1,即b n +1-b n =1,所以{b n }是公差为1的等差数列.又b 1=2a 1=1,所以b n =n,2n a n =n ,从而a n =n ·⎝ ⎛⎭⎪⎫12n . (2)解 由条件得S n +a n =2-⎝ ⎛⎭⎪⎫12n -1,所以S n =2-(n +2)· ⎝ ⎛⎭⎪⎫12n ,又S n +1-S n =n +12n +1>0,所以数列{S n }在n ∈N *单调递增,所以S n ≥S 1=12,又S n <2.故S n ∈⎣⎢⎡⎭⎪⎫12,2. 10. 解 (1)由a 3=27,得2a 2+23+1=27,所以a 2=9. 又由2a 1+22+1=9,得a 1=2.(2)假设存在实数t ,使得数列{b n }是等差数列,则2b n =b n -1+b n +1,即2×12n (a n +t )=12n -1a n -1+t )+12n +1(a n +1+t ),即4a n =4a n -1+a n +1+t ,所以4a n =4×a n -2n -12+2a n +2n +1+t +1,所以t =1.故存在t =1,使得数列{b n }是等差数列. B 组1. 解析 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.答案942. 解析 由题意,可知数列{a n }的前n 项和S n 有最大值,所以公差小于零,故a 11<a 10,又因为a 11a 10<-1,所以a 10>0,a 11<-a 10,由等差数列的性质有a 11+a 10=a 1+a 20<0,a 10+a 10=a 1+a 19>0,所以S n 取得最小正值时n =19. 答案 193. 解析 a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=2(a 11+a 12)2(b 11+b 12)=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案3154. 解析 由a n +1=2a n +2n -1,可得a n +12n +1=a n 2n +12-12n +1,则a n +1+λ2n +1-a n +λ2n =a n +12n +1-a n 2-λ2+=12-12+-λ2+=12-λ+12+,当λ的值是-1时,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n -12是公差为12的等差数列. 答案 -15. 解析 由题意得a 1+b 2 010=a 2+b 2 009=a 3+b 2 008=…=a 2 009+b 2=a 2 010+b 1. 所以∑i =12 010(a i +b i )=2 010(a 1+b 2 010)故12 010∑i =12 010(a i +b i )=12 010×2 010(a 1+b 2 010) =a 1+b 2 010. 下面求b 2 010.令i =1,j =n ,k =2,l =n -1,即a 1+b n =a 2+b n -1,则b n -b n -1=a 2-a 1=1,所以{a n }是以b 1=2为首项,以d =1为公差的等差数列, 所以b 2 010=2+(2 010-1)=2 011. 所以a 1+b 2 010=1+2 011=2 012. 答案 2 0126. 解析 由a n +1=f (2n +1)=2f (2n )+2n f (2)=2a n +2n +1,得a n +12n +1=a n2n +1,所以⎩⎨⎧⎭⎬⎫a n 2n 是首项为1,公差为1的等差数列,所以a n2n =n ,a n =n ·2n .答案 n ·2n7. 解 (1)由题设,知{a n }是等差数列,且公差d >0, 则由⎩⎨⎧ a 2a 3=45,a 1+a 5=18,得⎩⎨⎧(a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S n n +c =n (1+4n -3)2n +c =2n ⎝ ⎛⎭⎪⎫n -12n +c ,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.8. (1)证明 因为b n +1-b n =22a n +1-1-22a n -1=22⎝ ⎛⎭⎪⎫1-14a n -1-22a n -1=4a n2a n -1-22a n -1=2(n ∈N *),且b 1=22×1-1=2 所以,数列{b n }以2为首项,2为公差的是等差数列.(2)解 由(1)得c n =(2)b n =2n ,假设{c n }中存在三项c m ,c n ,c p (其中m <n <p ,m ,n ,p ∈N *)成等差数列,则2·2n =2m +2p ,所以2n +1=2m +2p,2n -m +1=1+2p -m.因为m <n <p ,m ,n ,p ∈N *,所以n -m +1,p -m ∈N *,从而2n-m +1为偶数,1+2p -m 为奇数,所以2n -m +1与1+2p -m 不可能相等, 所以数列{c n }中不存在可以构成等差数列的三项.。
2020届高考数学(文)总复习试题:第五章 第二节 等差数列及其前n项和
课时规范练A 组 基础对点练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4 解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A 5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5.答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1, ∴b n +1=1a n +1=1a n 2a n +1=2a n +1a n, ∴b n +1-b n =2a n +1a n -1a n=2. 又∵b 1=1a 1=1,∴数列{b n }是以1为首项,2为公差的等差数列. (2)由(1)知数列{b n }的通项公式为b n =1+(n -1)×2=2n -1,又b n =1a n,∴a n =1b n =12n -1.∴数列{a n }的通项公式为a n =12n -1. B 组 能力提升练11.(2019·唐山统考)已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( )A .18B .12C .9D .6解析:设等差数列{a n }的公差为d ,由题意得S 11=11(a 1+a 11)2=11(2a 1+10d )2=22,即a 1+5d =2,所以a 3+a 7+a 8=a 1+2d +a 1+6d +a 1+7d =3(a 1+5d )=6,故选D.答案:D12.已知数列{a n }是等差数列,数列{b n }是等比数列,公比为q ,数列{c n }中,c n=a n b n ,S n 是数列{c n }的前n 项和.若S m =11,S 2m =7,S 3m =-201(m 为正偶数),则S 4m 的值为( )A .-1 601B .-1 801C .-2 001D .-2 201解析:令A =S m =11,B =S 2m -S m =-4,C =S 3m -S 2m =-208, 则q m ·A =(a 1b 1+a 2b 2+…+a m b m )q m =a 1b m +1+…+a m b 2m .故B -q m ·A =(a m +1-a 1)b m +1+…+(a 2m -a m )b 2m =md (b m +1+…+b 2m ),其中,d 是数列{a n }的公差,q 是数列{b n }的公比.同理C -q m ·B =md (b 2m +1+…+b 3m )=md (b m +1+…+b 2m )·q m ,故C -q m ·B =q m (B -q m ·A ).代入已知条件,可得11(q m )2+8q m -208=0,解得q m =4或q m =-5211(因m 为正偶数,舍去).又S 4m -S 3m =(a 1b 1+a 2b 2+…+a m b m )q 3m +3md (b m +1+…+b 2m )q 2m =11×43+3(B -q m ·A )×42=11×43-3×12×43=-1 600.故S 4m =S 3m -1 600=-1 801.答案:B13.(2019·长春质检)设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( )A .9B .10C .11D .12解析:由题意,不妨设a 6=9t ,a 5=11t ,则公差d =-2t ,其中t >0,因此a 10=t ,a 11=-t ,即当n =10时,S n 取得最大值,故选B.答案:B14.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n=2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列,所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6, 因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941. 所以a 6b 6=1941. 答案:194115.(2019·银川模拟)在等差数列{a n }中,已知a 3=7,a 6=16,依次将等差数列的各项排成如图所示的三角形数阵,则此数阵中,第10行从左到右的第5个数是________.解析:由题知公差d =a 6-a 36-3=16-73=3,所以a n =7+(n -3)d =3n -2,第10行从左到右的第5个数是原等差数列中第1+2+…+9+5=50项,即为 a 50=3×50-2=148.答案:14816.(2019·太原模拟)设等差数列{a n }的前n 项和为S n ,若a 1<0,S 2 015=0.(1)求S n 的最小值及此时n 的值.(2)求n 的取值集合,使其满足a n ≥S n .解析:(1)设公差为d ,则由S 2 015=a 1+2 015×2 0142d =a 1+1 007d =0,d =-11 007a 1,a 1+a n =2 015-n 1 007a 1,所以S n =n 2(a 1+a n )=n 2·20 15-n 1 007a 1=a 12 014(2 015n -n 2 ).因为a 1<0,n ∈N *,所以当n =1 007或1 008时,S n 取最小值504a 1.(2)a n =1 008-n 1 007a 1,S n ≤a n a 12 014(2 015n -n 2)≤1 008-n 1 007a 1.因为a 1<0,所以n 2-2 017n +2 016≤0, 即(n -1)(n -2 016)≤0,解得1≤n ≤2 016.故所求n 的取值集合为{n |1≤n ≤2 016,n ∈N *}.。
2015届高考数学总复习 第五章 第二节等差数列及其前n项和课时精练试题 文(含解析)
1.(2012·福建卷)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 ( ) A .1 B .2 C .3 D .4解析:由等差中项的性质知a 3=a 1+a 52=5,又∵a 4=7,∴d =a 4-a 3=2.故选B.答案:B2.(2012·九江模拟)记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =( )A .2B .3C .6D .7解析:S 4-S 2-S 2=4d =12⇒d =3.故选B. 答案:B3.(2013·深圳一模)等差数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2则a 4的值为A .18 B .15 C .12 D .20解析:由题意可得 a 1=3,a 2=8,a 3=13,故此等差数列的公差为5,故a 4=a 3+d =18,故选A.答案:A4.(2013·揭阳一模)已知等差数列{a n }满足,a 1>0,5a 8=8a 13,则前n 项和S n 取最大值时,n 的值为( )A .20B .21C .22D .23解析:设数列的公差为d ,由5a 8=8a 13得5(a 1+7d )=8(a 1+12d ),解得d =-361a 1,由a n =a 1+(n -1)d =a 1+(n -1)⎝ ⎛⎭⎪⎫-361a 1≥0,可得n ≤643=2113, 所以数列{a n }前21项都是正数,以后各项都是负数, 故S n 取最大值时,n 的值为21,故选B. 答案:B5.(2013·韶关三模)已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的斜率是( )A .4B .3C .2D .1解析:由题意知⎩⎪⎨⎪⎧2a 1+d =10,a 1+4d2=55,解得a 1=3,d =4.∴直线的斜率为a n +2-a nn +2-n=4,故答案选A.答案:A6.(2012·青岛期末)等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )A .7B .6C .5D .8解析:a n =a 1+(n -1)d =0,∴d =6n -1.又d ∈N *,∴ n (n ≥3)的最大值为7.故选A.答案:A7.(2013·揭阳二模)在等差数列{a n }中,首项a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A .37B .36C .20D .19解析:因为{a n }为等差数列,首项a 1=0,a m =a 1+a 2+…+a 9,所以0+(m -1)d =9a 5=36d ,又公差d ≠0,所以m =37,故选A.答案:A8.(2013·辽宁卷)下列是关于公差d >0的等差数列{a n }的四个命题:①数列{a n }是递增数列;②数列{na n }是递增数列;③数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;④数列{a n+3nd }是递增数列.其中的真命题为( )A .①②B .③④C .②③D .①④解析:a n =a 1+(n -1)d ,d >0, ∴a n -a n -1=d >0,命题①正确.na n =na 1+n (n -1)d ,∴na n -(n -1)a n -1=a 1+2(n -1)d 与0的大小和a 1的取值情况有关.故数列{na n }不一定递增,命题②不正确.对于③:a n n =a 1n +n -1n d ,∴a n n -a n -1n -1=-a 1+dn n -,当d -a 1>0,即d >a 1时,数列⎩⎨⎧⎭⎬⎫a n n 递增,但d >a 1不一定成立,则③不正确.对于④:设b n =a n +3nd ,则b n +1-b n =a n +1-a n +3d =4d >0.∴数列{a n +3nd }是递增数列,④正确. 综上,正确的命题为①④. 答案:D9.(2013·广东卷)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________.解析:依题意2a 1+9d =10,所以3a 5+a 7=3(a 1+4d )+a 1+6d =4a 1+18d =20或3a 5+a 7=2(a 3+a 8)=20.答案:20 10.(2013·北京海淀区上学期期末) 数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=____________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0,所以S 5a 5=5a 1+5×42da 1+4d=5a 1+10d a 1+4d =155=3. 答案:311.(2013·洛阳统考)在等差数列{a n }中,其前n 项和为S n ,且S 2 011=2 011,a 1 007=-3,则S 2 012=________.解析:∵S 2 011=2 011,∴a 1+a 2 0112=2 011.得a 1+a 2 011=2.又∵a 1+a 2 011=2a 1 006,∴a 1 006=1. 又∵a 1 007=-3,∴S 2 012=a 1+a 2 012×2 0122=a 1 006+a 1 007×2 0122=1-3×2 0122=-2 012.答案:-2 01212.将正奇数排列如下表,其中第i 行第j 个数表示a ij (i ∈N *,j ∈N *),例如a 32=9,若a ij =2 009,则i +j =________________.1 3 5 7 9 11 13 15 17 19 …解析:由2n -1=2 009,求得n =1 005,由此可知将正奇数按从小到大的顺序排列,2 009位于第1 005个,而数表自上而下,每行所放的奇数个数,恰好与行数相等,设2 009位于第i 行,则1+2+3+…+i ≥1 005,且1+2+3+…+(i -1)≤1 005,于是得i +i2≥1 005且i i -2≤1 005⇒i (1+i )≥2 010,i (i -1)≤2 010,并注意到i ∈N *,所以i=45,而j =1 005-+2=1 005-22×45=1 005-990=15,故i +j =45+15=60.答案:6013.(2013·北京西城区二模)已知等比数列{a n }的各项均为正数,a 2=8,a 3+a 4=48. (1)求数列{a n }的通项公式;(2)设b n =log 4a n .证明:{b n }为等差数列,并求{b n }的前n 项和S n .(1)解析:设等比数列{a n }的公比为q ,依题意q >0.因为a 2=8,a 3+a 4=48,所以a 1q =8,a 1q 2+a 1q 3=48.两式相除得q 2+q -6=0,解得q =2(舍去q =-3). 所以a 1=a 2q=4.所以数列{a n }的通项公式为a n =a 1q n -1=2n +1(n ∈N *). (2)证明:由(1)得b n =log 4a n =n +12,因为b n +1-b n =n +22-n +12=12, 所以数列{b n }是首项为1,公差为d =12的等差数列.所以S n =nb 1+n n -2d =n 2+3n 4(n ∈N *).14.(2013·梅州二模)f (x )对任意x ∈R 都有f (x )+f (1-x )=12.(1)求f ⎝ ⎛⎭⎪⎫12和f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n (n ∈N )的值;(2)数列{a n }满足:a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1),数列{a n}是等差数列吗?请给予证明;(3)令b n =44a n -1,T n =b 21+b 22+b 23+…+b 2n ,S n =32-16n.试比较T n 与S n 的大小.解析:(1)因为f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫1-12=12,所以f ⎝ ⎛⎭⎪⎫12=14.令x =1n ,得f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫1-1n =12,即f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n =12. (2)a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫2n +…+f ⎝ ⎛⎭⎪⎫n -1n +f (1),又a n =f (1)+f ⎝ ⎛⎭⎪⎫n -1n +…f ⎝ ⎛⎭⎪⎫1n +f (0),两式相加2a n =[f (0)+f (1)]+f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=n +12,所以a n =n +14,n ∈N *.又a n +1-a n =n +1+14-n +14=14.故数列{a n }是等差数列.(3)b n =44a n -1=4n,T n =b 21+b 22+…+b 2n =16⎝ ⎛⎭⎪⎫1+122+132+…+1n 2≤16⎣⎢⎡⎦⎥⎤1+11×2+12×3+…+1n n -=16⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =16⎝ ⎛⎭⎪⎫2-1n =32-16n=S n .所以T n ≤S n .。
等差数列及其前n项和 练习题
等差数列及其前n项和练习题1.已知公差不为0的等差数列{a n}中,a2+a4=a6,a9=a26,则a10=()A.52B.5C.10D.40答案A解析设公差为d,由已知得1+d+a1+3d=a1+5d,1+8d=(a1+5d)2,由于d≠0,故a1=d=14,所以a10=14+14×9=52.2.(多选)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则下列选项正确的是()A.a2+a3=0B.a n=2n-5C.S n=n(n-4)D.d=-2答案ABC解析S4=4×(a1+a4)2=0,∴a1+a4=a2+a3=0,A正确;a5=a1+4d=5,①a1+a4=a1+a1+3d=0,②联立①②=2,1=-3,∴a n=-3+(n-1)×2=2n-5,B正确,D错误;S n=-3n+n(n-1)2×2=n2-4n,C正确,故选ABC.3.已知数列{a n}满足5a n+1=25·5a n,且a2+a4+a6=9,则log13(a5+a7+a9)=()A.-3B.3C.-13D.1 3答案A解析数列{a n}满足5a n+1=25·5a n,∴a n+1=a n+2,即a n+1-a n=2,∴数列{a n }是等差数列,公差为2.∵a 2+a 4+a 6=9,∴3a 4=9,a 4=3.∴a 1+3×2=3,解得a 1=-3.∴a 5+a 7+a 9=3a 7=3×(-3+6×2)=27,则log 13(a 5+a 7+a 9)=log 1333=-3.故选A.4.(2021·深圳一模)在数列{a n }中,a 1=3,a m +n =a m +a n (m ,n ∈N *),若a 1+a 2+a 3+…+a k =135,则k =()A.10B.9C.8D.7答案B 解析令m =1,由a m +n =a m +a n 可得a n +1=a 1+a n ,所以a n +1-a n =3,所以{a n }是首项为a 1=3,公差为3的等差数列,a n =3+3(n -1)=3n ,所以a 1+a 2+a 3+…+a k =k (a 1+a k )2=k (3+3k )2=135.整理可得k 2+k -90=0,解得k =9或k =-10(舍).5.(多选)(2022·衡阳联考)设数列{a n }的前n 项和为S n ,若S 2n S 4n为常数,则称数列{a n }为“吉祥数列”,则下列数列{b n }为“吉祥数列”的是()A.b n =nB.b n =(-1)n (n +1)C.b n =4n -2D.b n =2n 答案BC 解析若{b n }是等差数列,则根据等差数列求和公式知需b 1+b n =kn ,k ∈R ,则{b n }为“吉祥数列”,检验A ,C 可知C 符合题意;{b n }是摆动数列,由并项求和法知S 2n =n ,S 4n =2n ,S 2n S 4n =n 2n =12,故B 符合题意;根据等比数列求和公式知D 不符合题意.故选BC.6.设S n 为等差数列{a n }的前n 项和,若S 6=1,S 12=4,则S 18=________.答案9解析在等差数列中,S 6,S 12-S 6,S 18-S 12成等差数列,∵S 6=1,S 12=4,∴1,3,S 18-4成公差为2的等差数列,即S 18-4=5,∴S 18=9.7.等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于________.答案3727解析a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.8.(2021·长春一模)设S n 为等差数列{a n }的前n 项和,a 6+a 7=1,则S 12=________,若a 7<0,则使得不等式S n <0成立的最小整数n =________.答案613解析根据{a n }为等差数列,且a 6+a 7=1,得S 12=(a 1+a 12)×122=6(a 6+a 7)=6;若a 7<0,则S 13=(a 1+a 13)×132=13a 7<0,又S 12>0,所以使不等式S n <0成立的最小整数n =13.9.已知数列{a n }的前n 项和为S n ,满足a 1=32,a 2=2,2(S n +2+S n )=4S n +1+1,则数列{a n }的前16项和S 16=________.答案84解析将2(S n +2+S n )=4S n +1+1变形为(S n +2-S n +1)-(S n +1-S n )=12,即a n +2-a n +1=12,又a 1=32,a 2=2,∴a 2-a 1=12符合上式,∴{a n }是首项a 1=32,公差d =12的等差数列,∴S 16=16×32+16×152×12=84.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k=ka1+k(k-1)2·d=2k+k(k-1)2×2=k2+k,由S k=110,得k2+k-110=0,解得k=10或k=-11(舍去),故a=2,k=10.(2)证明由(1)得S n=n(2+2n)2=n(n+1),则b n=S nn=n+1,故b n+1-b n=(n+2)-(n+1)=1,即数列{b n}是首项为2,公差为1的等差数列,所以T n=n(2+n+1)2=n(n+3)2.11.已知公差大于零的等差数列{a n}的前n项和为S n,且满足a2a4=65,a1+a5=18.(1)求数列{a n}的通项公式;(2)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)设公差为d.∵{a n}为等差数列,∴a1+a5=a2+a4=18,又a2a4=65,∴a2,a4是方程x2-18x+65=0的两个根,又公差d>0,∴a2<a4,∴a2=5,a4=13.1+d=5,1+3d=13,1=1,=4,∴a n=4n-3.(2)由(1)知,S n=n+n(n-1)2×4=2n2-n,假设存在常数k,使数列{S n+kn}为等差数列.由S1+k+S3+3k=2S2+2k,得1+k+15+3k=26+2k,解得k=1.∴S n+kn=2n2=2n,当n≥2时,2n-2(n-1)=2,为常数,∴数列{S n+kn}为等差数列.故存在常数k=1,使得数列{S n+kn}为等差数列.12.(多选)(2021·南通海门一中期末)在悠久灿烂的中国古代文化中,数学文化是其中一朵绚丽的奇葩.《张丘建算经》是我国古代有标志性的内容丰富的众多数学名著之一,大约创作于公元5世纪.书中有如下问题:“今有女善织,日益功疾,初日织五尺,今一月织九匹三丈,问日益几何?”.其大意为:“有一女子擅长织布,织布的速度一天比一天快,从第二天起,每天比前一天多织相同数量的布,第一天织5尺,一个月共织了九匹三丈,问从第二天起,每天比前一天多织多少尺布?”.已知1匹=4丈,1丈=10尺,若这一个月有30天,记该女子这一个月中第n天所织布的尺数为a n,b n=2a n,对于数列{a n}、{b n},下列选项中正确的为()A.b10=8b5B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=209193答案BD解析由题意可知,数列{a n}为等差数列,设数列{a n}的公差为d,由题意可得a1=5,30a1+30×29d2=390,解得d=1629,∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n=2a n+12a n=2a n+1-a n=2d(非零常数),则数列{b n}是等比数列,B正确;∵5d=5×1629=8029≠3,b10b5=(2d)5=25d≠23,∴b10≠8b5,A错误;a30=a1+29d=5+16=21,∴a1b30=5×221>105,C错误;a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,所以a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D正确.故选BD.13.(2022·衡水模拟)已知在数列{a n}中,a6=11,且na n-(n-1)a n+1=1,则a n=________;a2n+143n的最小值为________.答案2n-144解析na n-(n-1)a n+1=1,∴(n+1)a n+1-na n+2=1,两式相减得na n-2na n+1+na n+2=0,∴a n+a n+2=2a n+1,∴数列{a n}为等差数列.当n=1时,由na n-(n-1)a n+1=1得a1=1,由a6=11,得公差d=2,∴a n=1+2(n-1)=2n-1,∴a2n+143n=(2n-1)2+143n=4n+144n-4≥24n·144n-4=44,当且仅当4n=144n,即n=6时等号成立.14.等差数列{a n}中,公差d<0,a2+a6=-8,a3a5=7.(1)求{a n}的通项公式;(2)记T n为数列{b n}前n项的和,其中b n=|a n|,n∈N*,若T n≥1464,求n的最小值.解(1)∵等差数列{a n}中,公差d<0,a2+a6=-8,∴a2+a6=a3+a5=-8,又∵a3a5=7,∴a3,a5是一元二次方程x2+8x+7=0的两个根,且a3>a5,解方程x2+8x+7=0,得a3=-1,a5=-7,1+2d=-1,1+4d=-7,解得a1=5,d=-3.∴a n=5+(n-1)×(-3)=-3n+8.(2)由(1)知{a n}的前n项和S n=5n+n(n-1)2×(-3)=-32n2+132n.∵b n=|a n|,∴b1=5,b2=2,b3=|-1|=1,b4=|-4|=4,当n≥3时,b n=|a n|=3n-8.当n<3时,T1=5,T2=7;当n≥3时,T n=-S n+2S2=3n22-13n2+14.∵T n≥1464,∴T n=3n22-13n2+14≥1464,即(3n-100)(n+29)≥0,解得n≥100 3,∴n的最小值为34.。
第02讲 等差数列及其前n项和 (练)(含答案解析)
第02讲等差数列及其前n 项和(练)-2023年高考数学一轮复习讲练测(新教材新高考)第02讲等差数列及其前n 项和(精练)A 夯实基础一、单选题(2022·四川省南充市白塔中学高一阶段练习(文))1.在等差数列{}n a 中,已知3412a a +=,则数列{}n a 的前6项之和为()A .12B .32C .36D .37(2022·天津天津·高二期末)2.某中学的“希望工程”募捐小组暑假期间走上街头进行了一次募捐活动,共收到捐款1200元.他们第1天只得到10元,之后采取了积极措施,从第2天起,每一天收到的捐款都比前一天多10元.这次募捐活动一共进行的天数为()A .13B .14C .15D .16(2022·北京市第十二中学高二阶段练习)3.设等差数列{}n a 的公差为d ,若数列{}1n a a 为递减数列,则()A .0d <B .0d >C .10a d >D .10a d <(2022·黑龙江双鸭山·高二期末)4.等差数列{}n a 中,已知70a >,2100a a +<,则{}n a 的前n 项和n S 的最小值为()A .5S B .6S C .7S D .8S (2022·山东师范大学附中模拟预测)5.如图,在杨辉三角形中,斜线l 的上方,从1开始箭头所示的数组成一个锯齿形数列:1,3,3,4,6,5,10,…,记其前n 项和为n S ,则22S =()(2022·湖北·安陆第一高中高二阶段练习)6.已知数列{}n a 的前n 项和225n S n n =-,若1015k a <<,则k =()A .5B .6C .7D .8(2022·全国·模拟预测)7.设等差数列{}n a 与等差数列{}n b 的前n 项和分别为n S ,n T .若对于任意的正整数n 都有2131n n S n T n +=-,则89a b =()A .3552B .3150C .3148D .3546(2022·全国·高二专题练习)8.等差数列{}n a 的首项为正数,其前n 项和为n S .现有下列命题,其中是假命题的有()A .若n S 有最大值,则数列{}n a 的公差小于0B .若6130a a +=,则使0n S >的最大的n 为18C .若90a >,9100a a +<,则{}n S 中9S 最大D .若90a >,9100a a +<,则数列{}n a 中的最小项是第9项二、多选题(2022·黑龙江·鹤岗一中高二期中)9.已知等差数列{an }的公差为d ,前n 项和为Sn ,且91011S S S =<,则()A .d <0B .a 10=0C .S 18<0D .S 8<S 9(2022·浙江温州·高二期末)10.某“最强大脑”大赛吸引了全球10000人参加,赞助商提供了2009枚智慧币作为比赛奖金.比赛结束后根据名次(没有并列名次的选手)进行奖励,要求第k 名比第1k +名多2枚智慧币,每人得到的智慧币必须是正整数,且所有智慧币必须都分给参赛者,按此规则主办方可能给第一名分配()智慧币.A .300B .293C .93D .89三、填空题(2022·全国·高二课时练习)11.已知等差数列{}n a 的前n 项和为n S ,且20202019120202019S S -=,则数列{}n a 的公差为_______.(2022·江苏·高二)12.首项为正数的等差数列,前n 项和为n S ,且38S S =,当n =________时,n S 取到最大值.四、解答题(2022·山东·高二阶段练习)13.在等差数列{}n a 中,2745,6a a a ==+.(1)求{}n a 的通项公式;(2)设n S 为{}n a 的前n 项和,若99m S =,求m 的值.(2022·全国·高三专题练习(文))14.已知数列{}n a 的前n 项和为2230n S n n =-.(1)求出{}n a 的通项公式;(2)求数列n S n ⎧⎫⎨⎩⎭前n 项和最小时n 的取值B 能力提升一、单选题(2022·四川省绵阳南山中学高一期中)15.设等差数列{}n a 的公差为d ,其前n 项和为n S ,且513S S =,6140a a +<,则使得0n S <的正整数n 的最小值为()A .18B .19C .20D .21(2022·全国·高三专题练习)16.已知公差非零的等差数列{}n a 满足38a a =,则下列结论正确的是()A .110S =B .*11()110N n n S S n n -=≤≤∈,C .当110S >时,5n S S ≥D .当110S <时,5n S S ≥(2022·全国·高三专题练习)17.等差数列{}n a 的前n 项和为n S ,已知100S =,1525S =,则n n S +的最小值为______.(2022·辽宁辽阳·二模)18.“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题,已知问题中,一个数被3除余2,被5除余3,被7除余2,则在不超过4200的正整数中,所有满足条件的数的和为______.(2022·山西吕梁·二模(理))19.已知n S 是等差数列{}n a 的前n 项和,151416>>S S S ,则满足10n n S S +⋅<的正整数n 是________.(2022·湖南衡阳·三模)20.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足()*12n n n a a S n N+=∈,则24666a a a a +++⋅⋅⋅+=__________.C 综合素养(2022·山东济南·三模)21.如图1,洛书是一种关于天地空间变化脉络的图案,2014年正式入选国家级非物质文化遗产名录,其数字结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,形成图2中的九宫格,将自然数1,2,3,…,2n 放置在n 行n 列()3n ≥的正方形图表中,使其每行、每列、每条对角线上的数字之和(简称“幻和”)均相等,具有这种性质的图表称为“n 阶幻方”.洛书就是一个3阶幻方,其“幻和”为15.则7阶幻方的“幻和”为()图1图2A .91B .169C .175D .180(2022·新疆克拉玛依·三模(文))22.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般的等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次成等差数列.如数列1,3,6,10,前后两项之差组成新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.现有二阶等差数列,其前7项分别为2,3,5,8,12,17,23,则该数列的第31项为()A .636B .601C .483D .467(2022·陕西·宝鸡中学模拟预测)23.“中国剩余定理”是关于整除的问题.现有这样一个问题“将1~2030这2030个自然数中,能被3整除余1且能被4整除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则该数列共有()A .170项B .171项C .168项D .169项(2022·浙江·模拟预测)24.毕达哥拉斯学派是古希腊哲学家毕达哥拉斯及其信徒组成的学派,他们把美学视为自然科学的一个组成部分.美表现在数量比例上的对称与和谐,和谐起于差异的对立,美的本质在于和谐.他们常把数描绘成沙滩上的沙粒或小石子,并由它们排列而成的形状对自然数进行研究.如图所示,图形的点数分别为1,5,12,22, ,总结规律并以此类推下去,第8个图形对应的点数为________,若这些数构成一个数列,记为数列{}n a ,则322112321a a aa ++++= ________.(2022·辽宁·东北育才双语学校模拟预测)25.“物不知数”是中国古代著名算题,原载于《孙子算经》卷下第二十六题:“今有物不知其数,三三数之剩二;五五数之剩三;七七数之剩二.问物几何?”它的系统解法是秦九韶在《数书九章》大衍求一术中给出的.大衍求一术(也称作“中国剩余定理”)是中国古算中最有独创性的成就之一,属现代数论中的一次同余式组问题.已知问题中,一个数被3除余2,被5除余3,被7除余2,则在不超过2022的正整数中,所有满足条件的数的和为___________.参考答案:1.C【分析】直接按照等差数列项数的性质求解即可.【详解】数列{}n a 的前6项之和为()12345634336a a a a a a a a +++++=+=.故选:C.2.C【分析】由题意可得募捐构成了一个以10元为首项,以10元为公差的等差数列,设共募捐了n 天,然后建立关于n 的方程,求出n 即可.【详解】由题意可得,第一天募捐10元,第二天募捐20元,募捐构成了一个以10元为首项,以10元为公差的等差数列,根据题意,设共募捐了n 天,则(1)120010102n n n -=+⨯,解得15n =或16-(舍去),所以15n =,故选:C .3.D【分析】根据数列{}1n a a 为递减数列列不等式,化简后判断出正确选项.【详解】依题意,数列{}n a 是公差为d 的等差数列,数列{}1n a a 为递减数列,所以111n n a a a a +>,()11n n a a a a d >+,1111,0n n a a a a a d a d >+<.故选:D 4.B【分析】由等差数列的性质将2100a a +<转化为60a <,而70a >,可知数列是递增数,从而可求得结果【详解】∵等差数列{}n a 中,2100a a +<,∴210620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S .故选:B 5.B【分析】将数列的前22项写出来,再进行求和即可.【详解】根据杨辉三角的特征可以将数列继续写出到第22项:1,3,3,4,6,5,10,6,15,7,21,8,28,9,36,10,45,11,55,12,66,13,所以()()221361015212836455566345678910111213S =+++++++++++++++++++++()313112863742+⨯=+=故选:B 6.A【分析】由n a 与n S 的关系先求出n a ,再结合已知条件可求出答案.【详解】由()()22125215147(1)n n n a S S n n n n n n -⎡⎤=-=-----=->⎣⎦,得47,1n a n n =-=也适合,又由104715k <-<得171142k <<,又k *∈N ,∴5k =,故选:A .7.B【分析】先设()21n S n nt =+,()31n T n nt =-,由887a S S =-,998b T T =-直接计算89a b 即可.【详解】设()21n S n nt =+,()31n T n nt =-,0t ≠.则88713610531a S S t t t =-=-=,99823418450b T T t t t =-=-=,所以893150a b =.故选:B.8.B【分析】由n S 有最大值可判断A ;由6139100a a a a +=+=,可得90a >,100a <,利用91018182+=⨯a a S 可判断BC ;90a >,9100a a +<得90a >,991010a a a a =<-=,可判断D.【详解】对于选项A ,∵n S 有最大值,∴等差数列{}n a 一定有负数项,∴等差数列{}n a 为递减数列,故公差小于0,故选项A 正确;对于选项B ,∵6139100a a a a +=+=,且10a >,∴90a >,100a <,∴179=170S a >,910181802a a S +=⨯=,则使0n S >的最大的n 为17,故选项B 错误;对于选项C ,∵90a >,9100a a +<,∴90a >,100a <,故{}n S 中9S 最大,故选项C 正确;对于选项D ,∵90a >,9100a a +<,∴90a >,991010a a a a =<-=,故数列{}n a 中的最小项是第9项,故选项D 正确.故选:B.9.BC【分析】由91011S S S =<,得100,0d a >=,判断出A,B 选项,再结合90a <,11818118910918()9()9()92a a S a a a a a +==+=+=判断C 选项,再根据等式性质判断D 选项【详解】910S S = ,101090a S S ∴=-=,所以B 正确又1011S S <,111110100a S S a d ∴=-=+>,0d ∴>,所以A 错误1090,0,0a d a =>∴< 11818118910918()9()9()902a a S a a a a a +==+=+=<,故C 正确9989890,,a S S a S S <=+∴> ,故D 错误故选:BC 10.BD【分析】设第一名分配m 个智慧币,且总共有x 名参赛选手获奖,根据等差数列知识可得20091m x x=+-,分类讨论可得结果.【详解】设第一名分配m 个智慧币,且总共有x 名参赛选手获奖,则智慧币分配如下:()()()2122212009m m m m x +-⨯+-⨯++--=⎡⎤⎣⎦ ,即()21212009xm x -+++-=⎡⎤⎣⎦ ,又()()()211112122x x x x x +--⎡⎤-⎣⎦+++-==,∴22009xm x x +-=,即20091m x x=+-,∵x ,m 都为正整数,且20097741=⨯⨯,∴7x =,2009712937m =+-=,41x =,20094118941m =+-=,49x =,20094918949m =+-=,287x =,20092871293287m =+-=,∴第一名分配89或293个智慧币.故选:BD 11.2【分析】由题意列出关于公差d 的方程,解方程即可.【详解】设数列{}n a 的公差为d ,则由20202019120202019S S -=可得:1120202019201920182020201922120202019a d a d ⨯⨯++-=,化简可得()112019100912a d a d +-+=,解得2d =,故答案为:2.12.5或6##6或5【分析】结合已知条件和等差数列的性质,求出数列{}n a 是单调递减数列,进而求解.【详解】由题意,设等差数列为{}n a 且10a >,公差为d ,因为38S S =,所以8345678650S S a a a a a a -=++++==,即60a =,因为10a >,所以61150a a d a -==-<,即0d <,所以{}n a 为单调递减的等差数列,即125670a a a a a >>>>=> 故当5n =或6时,n S 最大.故答案为:5或6.13.(1)21n a n =+(2)9m =【分析】(1)根据题意得到1115636a d a d a d +=⎧⎨+=++⎩,再解方程组即可.(2)根据前n 项和公式求解即可.【详解】(1)设等差数列{}n a 的公差为d ,由题意可得1115636a d a d a d +=⎧⎨+=++⎩,解得132a d =⎧⎨=⎩.故()1121n a a n d n =+-=+.(2)由等差数列的前n 项和公式可得()1222n n a a nS n n +==+.因为99m S =,所以2299m m +=,即()()9110m m -+=,解得9m =(11m =-舍去).14.(1)432n a n =-;(2)当14n =或15n =时,数列n S n ⎧⎫⎨⎩⎭前n 项和取得最小值.【分析】(1)根据2230n S n n =-,分别讨论1n =,2n ≥两种情况,根据n S 与n a 的关系即可求出结果;(2)根据等差数列前n 项和的函数特征,即可得出结果.【详解】(1)因为2230n S n n =-,所以当1n =时,2112130128a S ==⨯-⨯=-;当2n ≥时,221=230)2(1)30(1)432n n n a S S n n n n n -⎡⎤=------=-⎣⎦(;显然1n =是,也满足432n a n =-,所以432n a n =-;(2)因为2230230n S n n n n n-==-,所以数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,其前n 项和()()2228230298412929224n n n T n n n n n -+-⎛⎫==-=-=-- ⎪⎝⎭又*n ∈N ,所以当14n =或15n =时,n T 取得最小值.15.B【分析】由513S S =可得9100a a +=,由6140a a +<可得100a <,结合求和公式可得180S >,190S <,结合选项即可求解.【详解】由513S S =可得6712130a a a a ++++=L ,又613712811910a a a a a a a a +=+=+=+,可得9100a a +=,由6141020a a a +=<,可得100a <,则90,0a d ><,()()()11818118910189902a a S a a a a +==+=+>,()1191910191902a a S a +==<,故使得0n S <的正整数n 的最小值为19.故选:B.16.C【分析】根据给定条件,推理可得380a a +=,再结合等差数列性质逐项分析各个选项,判断作答.【详解】因公差非零的等差数列{an }满足38a a =,则有380a a +=,有35680a a a a +=+=,56,a a 异号且均不为0,对于A ,11111611()1102a a S a +=≠=,A 不正确;对于B ,110561010()5()=02a a a S a +=+=,而110S a =≠,此时,11n n S S -≠,B 不正确;对于C ,由选项A 知,116110S a =>,即60a >,则50a <,于是得10,0a d <>,数列{}n a 是递增数列,即()5min n S S =,5n S S ≥,C 正确;对于D ,由110S <得60a <,则50a >,于是得10,0a d ><,数列{}n a 是递减数列,即()5max n S S =,5n S S ≤,D 不正确.故选:C17.4-【分析】由条件得到1323a d =-⎧⎪⎨=⎪⎩,再由求和公式得()21103n S n n -=,从而得21749324n n S n ⎡⎤⎛⎫+=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】由()112n n n d S na -=+,100S =,1525S =得11104501510525a d a d +=⎧⎨+=⎩,解得:1323a d =-⎧⎪⎨=⎪⎩,则()()2121310233n n n S n n n -=-+⋅-=.故()221174973324n n S n n n ⎡⎤⎛⎫+=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.由于N n *∈,故当3n =或4时,()min 4n n S +=-.故答案为:4-18.82820【分析】找出满足条件的最小整数值为23,可知满足条件的数形成以23为首项,以105为公差的等差数列,确定该数列的项数,利用等差数列的求和公式可求得结果.【详解】由题可知满足被3除余2,被5除余3.被7除余2的最小的数为23,满足该条件的数从小到大构成以23为首项,357⨯⨯为公差的等差数列,其通项公式为10582n a n =-,令4200n a ≤,解得8240105n ≤,则所有满足条件的数的和为40392340105828202⨯⨯+⨯=.故答案为:82820.19.29【分析】推导出150a >,160a <,16150+<a a ,利用等差数列的求和公式可得出290S >,300S <,即可得解.【详解】由15140->S S ,得150a >,由16150-<S S ,得160a <,由16140-<S S ,得16150+<a a ,所以()129152929292022+⨯==>a a a S ,()()1301516303030022++==<a a a a S ,所以满足10n n S S +⋅<的正整数n 是29.故答案为:29.20.1122【分析】根据题意可知0n a >,当1n =时,由1122S a a =可求出22a =;当2n ≥时,可证出{}2n a 为一个以2为首项,2为公差的等差数列,最后利用等差数列的前n 项和,即可求出结果.【详解】由于数列{}n a 的各项均为正数,即0n a >,当1n =时,1122S a a =,即1122a a a =,∴22a =,当2n ≥时,由12n n n S a a +=,可得112n n n S a a --=,两式相减得()112n n n n a a a a +-=-,又∵0n a ≠,∴112n n a a +--=,∴{}2n a 为一个以2为首项,2为公差的等差数列,∴()()246212212n n n a a a a n n n -⨯++++=+=+L .故2466633341122a a a a +++⋅⋅⋅+=⨯=故答案为:112221.C【分析】根据“幻和”的定义,将自然数1至2n 累加除以n 即可得结果.【详解】由题意,7阶幻方各行列和,即“幻和”为12 (491757)+++=.故选:C22.D【分析】根据题意,设该数列为{}n a ,分析可得{}n a 满足12a =,11(2)n n a a n n --=- ,利用累加法计算可得.【详解】解:根据题意,设该数列为{}n a ,数列的前7项为2,3,5,8,12,17,23,则{}n a 满足12a =,11(2)n n a a n n --=- ,则3131303029211(301)30()()()30291224672a a a a a a a a +⨯=-+-++-+=++++=+= ,故选:D .23.A 【分析】由题意可得{}n a 为能被12整除余1的数,进而求得数列{}n a 的通项公式再分析1~2030中满足条件的数即可【详解】能被3整除余1且能被4整除余1的数即被12整除余1的数,故121,n n a n N =+∈,由题意,1212030n n a =+≤,故116912n ≤,故当0,1,2...169n =时成立,共170项.故选:A24.92336【分析】记第n 个图形的点数为n a ,由图形,归纳推理可得113(1)n n a a n --=+-,再根据累加得可得(31)2n n a n =-,进而求出8a .由于(31)2n n a n =-可得312n a n n -=,根据等差数列的前n 项和即可求出322112321a a a a ++++ 的结果.【详解】记第n 个图形的点数为n a ,由题意知11a =,214131a a -==+⨯,32132a a -=+⨯,43133a a -=+⨯,…,113(1)n n a a n --=+-,累加得147[13(1)](31)2n n a a n n -=++++-=- ,即(31)2n n a n =-,所以892a =.又312n a n n -=,所以3221111262(25862)213362321222a a a a +++++=++++=⨯⨯= .25.20410【分析】找出满足条件的最小整数值为23,可知满足条件的数形成以23为首项,以105为公差的等差数列,确定该数列的项数,利用等差数列的求和公式可求得结果.【详解】由题意可知,一个数被3除余2,被5除余3,被7除余2,则这个正整数的最小值为23,因为3、5、7的最小公倍数为105,由题意可知,满足条件的数形成以23为首项,以105为公差的等差数列,设该数列为{}n a ,则()23105110582n a n n =+-=-,由105822022n a n =-≤,可得2104105n ≤,所以,n 的最大值为20,所以,满足条件的这些整数之和为20191052023204102⨯⨯⨯+=.故答案为:20410.。
等差等比数列及其前n项和作业及答案
等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。
三年高考两年模拟(浙江版)高考数学一轮复习第五章数列5.2等差数列及其前n项和知能训练
§5.2等差数列及其前n项和A组基础题组1.(2015课标Ⅰ,7,5分)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=( )A. B. C.10 D.122.(2015浙江五校一联,2,5分)在等差数列{a n}中,a4=2-a3,则数列{a n}的前6项和为( )A.12B.3C.36D.63.(2016超级中学原创预测卷五,3,5分)已知等差数列{a n}的前n项和为S n,且S10=12,则a5+a6=( )A. B.12 C.6 D.5.(2015浙江宁波十校联考,3)已知等差数列{a n}的公差为2,项数为偶数,所有奇数项的和为15,所有偶数项的和为25,则这个数列的项数为( )A.10B.20C.30D.406.(2015浙江测试卷,2,5分)设等差数列{a n}的前n项和为S n.若公差d<0,且|a7|=|a8|,则使S n>0的最大正整数n是( )A.12B.13C.14D.157.(2015金华十校高三模拟文,4,5分)设等差数列{a n}的前n项和为S n,且满足S19>0,S20<0,则使S n取得最大值的n为( )A.8B.9C.10D.118.(2015绍兴一中回头考,6,5分)设等差数列{a n}的前n项和为S n,且满足S15>0,S16<0,则,,…,中最大的项为( )A. B. C. D.9.(2015浙江杭州塘栖中学月考)已知S n为等差数列{a n}的前n项和,若S1=1,=4,则的值为( )A. B. C. D.410.(2015浙江,3,5分)已知{a n}是等差数列,公差d不为零,前n项和是S n.若a3,a4,a8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>011.(2016上海普陀调研测试,17,5分)设等差数列{a n}的前n项和为S n.在同一个坐标系中,a n=f(n)及S n=g(n)的部分图象如图所示(图中的三个点).根据图中所提供的信息,下列结论正确的是( )A.当n=3时,S n取得最大值B.当n=4时,S n取得最大值C.当n=3时,S n取得最小值D.当n=4时,S n取得最小值12.(2015安徽,13,5分)已知数列{a n}中,a1=1,a n=a n-1+(n≥2),则数列{a n}的前9项和等于.13.(2015浙江测试卷,10,6分)设等差数列{a n}的公差为6,且a4为a2和a3的等比中项.则a1= ,数列{a n}的前n项和S n= .14.(2015稽阳联考,10,6分)在等差数列{a n}中,若a4+a10=10,a6+a12=14,a k=13,则k= ;数列{a n}的前n项和S n= .15.(2015嘉兴一模,11,4分)已知等差数列{a n}的前n项和为S n,且a7=-2,S9=18,则S11= .16.(2015浙江萧山中学摸底测试)正项数列{a n}满足:a1=1,a2=2,2=+(n∈N*,n≥2),则a7= .17.(2015嘉兴测试一,12,6分)设等差数列{a n}的前n项和为S n,若a2+a4+a9=24,则S9= ;·的最大值为.18.(2015浙江五校一联,15,4分)设a1,a2,…,a n,…是按先后顺序排列的一列向量,若a1=(-2014,13),且a n-a n-1=(1,1),则其中模最小的一个向量的序号n= .19.(2014浙江,19,14分)已知等差数列{a n}的公差d>0.设{a n}的前n项和为S n,a1=1,S2·S3=36.(1)求d及S n;(2)求m,k(m,k∈N*)的值,使得a m+a m+1+a m+2+…+a m+k=65.20.(2016台州中学第三次月考文,17,15分)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=-4n-1,n∈N*,且a1=1.(1)求数列{a n}的通项公式;(2)证明:对一切正整数n,有++…+<.B组提升题组1.(2014课标Ⅱ,5,5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=( )A.n(n+1)B.n(n-1)C. D.2.(2016超级中学原创预测卷八,6,5分)已知等差数列{a n}的前n项和为S n,若a n+a n+1+a n+2=18,S2n+1=54,则n的值为( )A.2B.3C.4D.63.(2016温州高三联考,6,5分)等差数列{a n}的前n项和为S n,其中n∈N*,则下列命题错误的是( )A.若a n>0,则S n>0B.若S n>0,则a n>0C.若a n>0,则{S n}是单调递增数列D.若{S n}是单调递增数列,则a n>04.(2015浙江杭州学军中学第五次月考,7)设等差数列{a n}满足<-1,且其前n项的和S n有最大值,则当数列{S n}的前n项的和取得最大值时,正整数n的值是( )A.12B.11C.23D.225.(2015浙江名校(衢州二中)交流卷二,4)等差数列{a n}中,a1>0,3a8=5a13,则前n项的和S n中最大的是( )A.S10B.S11C.S20D.S216.(2015浙江温州十校期中,7)设等差数列{a n}的前n项和为S n,若S6>S7>S5,则满足S n S n+1<0的正整数n的值为( )A.13B.12C.11D.107.(2015诸暨高中毕业班检测,5,5分)已知数列{a n}、{b n}都是公差为1的等差数列,b1是正整数,若a1+b1=10,则++…+=( )A.81B.99C.108D.1178.(2015杭州学军中学仿真考,11,6分)已知{a n}为等差数列,若a1+a5+a9=8π,则前9项的和S9= ,cos(a3+a7)的值为.9.(2015江苏淮安调研)在等差数列{a n}中,已知a2+a8=11,则3a3+a11的值为.10.(2015宁波高考模拟,12,6分)设S n为数列{a n}的前n项和,a1=1,a2=3,S k+2+S k-2S k+1=2对任意正整数k成立,则a n= ,S n= .11.(2015浙江镇海中学阶段测试,15,4分)已知数列{a n}满足:a1=,a n+1=1-,且a n≠0(n∈N*),则数列{a n}的通项为a n= .12.(2016宁波效实中学期中,11,6分)数列{a n}的前n项和S n=n2-6n,则a2= ,数列{|a n|}的前10项和|a1|+|a2|+…+|a10|= .13.(2015浙江名校(杭州二中)交流卷六,12)已知等差数列{a n}的前n项和为S n,等差数列{b n}的前n项和为T n,若=,则= ;若S n+T n=an2+2n,且a7+b7=15,则实数a= .14.已知正项等比数列{a n}的前n项和为S n,若-1,S5,S10成等差数列,则S10-2S5= ,S15-S10的最小值为.15.(2016台州中学第三次月考,13,4分)设等差数列{a n}的前n项和为S n,且满足S2014>0,S2015<0,对任意正整数n,都有|a n|≥|a k|,则k的值为.16.(2013安徽,14,5分)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n=a n.若a1=1,a2=2,则数列{a n}的通项公式是.17.(2014大纲全国,17,10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1-a n+2.(1)设b n=a n+1-a n,证明{b n}是等差数列;(2)求{a n}的通项公式.18.(2015浙江丽水一模,17)已知等差数列{a n},首项a1和公差d均为整数,其前n项和为S n.(1)若a1=1,且a2,a4,a9成等比数列,求公差d;(2)当n≠5时,恒有S n<S5,求a1的最小值.19.(2015浙江杭州七校联考,19)已知数列{a n}满足a n=3a n-1+3n-1(n∈N*,n≥2)且a3=95.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=(a n+t)(n∈N*)且{b n}为等差数列?若存在,求出t的值;若不存在,请说明理由;(3)求数列{a n}的前n项和T n.A组基础题组1.B 由S8=4S4得8a1+×1=4×,解得a1=,∴a10=a1+9d=,故选B.2.D 由等差数列性质可知a3+a4=2=a1+a6,故S6==3(a1+a6)=6,故选D.3.A 由于S10==5(a5+a6)=12,所以a5+a6=,故选A.4.D S9-S6=a7+a8+a9=27,得a8=9,所以d==,a1=a3-2d=,故选D.5.A 设项数为2k,则由(a2+a4+…+a2k)-(a1+a3+…+a2k-1)=k×2=25-15,得k=5,故这个数列的项数为10.故选A.6.B 由d=a8-a7<0及|a7|=|a8|,得a8=-a7且a8<0,a7>0.则S13=×13=13a7>0,S15=×15=15a8<0,又S14=×14=7(a7+a8)=0,则使S n>0的最大正整数n是13.7.C 因为{a n}是等差数列,所以S19=19a10>0,S20=10(a10+a11)<0,则a10>0,a11<0,即(S n)max=S10,故选C.8.C因为S15>0,故15a8>0,即a8>0.因为S16<0,故<0,即a9<0,故该等差数列中a1>a2>…>a8>0>a9>…,0<S1<S2<…<S8>S9>…>S15>0,故,,…,中,最大项为,故选C.9.A 由=4得=3,即S4-S2=3S2,S4=4S2,由等差数列的性质可知S2,S4-S2,S6-S4成等差数列,得S6-S4=5S2,所以S6=9S2,所以=.10.B由=a3a8,得(a1+2d)(a1+7d)=(a1+3d)2,整理得d(5d+3a1)=0,又d≠0,∴a1=-d,则a1d=-d2<0,又∵S4=4a1+6d=-d,∴dS4=-d2<0,故选B.11.B 不妨记A(7,0.7),B(7,-0.8),C(8,-0.4),a n=f(n)是关于n的一次函数;S n=g(n)是关于n的二次函数且常数项为0.若A,C或B,C为a n=f(n)的图象上两点,计算可知S n=g(n)的图象不过第三点.若S n=g(n)的图象过B,C两点也不满足题意.若S n=g(n)的图象过A,C两点,即S7=0.7,S8=-0.4,则计算可知a1=1,d=-0.3,a n=1.3-0.3n,a7=-0.8,符合题意,且a4>0,a5<0,故选B.12.答案27解析由题意得{an}为等差数列,且公差d=,∵a1=1,∴S9=9×1+×=27.13.答案-14;3n2-17n解析依条件有(a1+6)(a1+12)=,得a1=-14,则S n=-14n+n(n-1)×6=3n2-17n.14.答案15;解析因为a4+a10=2a7=10,所以a7=5,同理得a9=7,所以a n=n-2,则a k=k-2=13,得k=15.a1=1-2=-1,所以S n===.15.答案0解析设等差数列的首项和公差分别为a1,d,则有解得d=-2,a1=10,故S11=11×10+×(-2)=0.16.答案解析因为2=+(n∈N*,n≥2),所以数列{}是以=1为首项,d=-=4-1=3为公差的等差数列,所以=1+3(n-1)=3n-2,所以a n=,所以a7==.17.答案72;64解析设等差数列的公差为d,则a2+a4+a9=3a1+12d=24,即a1+4d=8,所以S9=9a1+36d=9×8=72.==a1+d=8-4d+d,则=8-4d+d=8-,=8-4d+d=8+,·==64-≤64,当且仅当d=0时取等号,所以·的最大值为64.18.答案1001或1002解析因为故a n=(n-2015,n+12),故|a n|==.由二次函数性质可知当n==1001时,|a n|有最小值,又n∈N*,故n=1001或n=1002.19.解析(1)由题意知(2a 1+d)(3a1+3d)=36,将a1=1代入上式解得d=2或d=-5.因为d>0,所以d=2.从而a n=2n-1,S n=n2(n∈N*).(2)由(1)得a m+a m+1+a m+2+…+a m+k=(2m+k-1)(k+1),所以(2m+k-1)(k+1)=65.由m,k∈N*知2m+k-1≥k+1>1,故所以20.解析(1)由a1=1,a n>0,4S n=-4n-1,n∈N *,得a2=3.当n≥2时,4S n-1=-4(n-1)-1,则4a n=4S n-4S n-1=--4,=+4a n+4=(a n+2)2,∵a n>0,∴a n+1=a n+2,∴当n≥2时,{a n}是公差d=2的等差数列. ∴{a n}是首项a1=1,公差d=2的等差数列.∴数列{a n}的通项公式为a n=2n-1.(2)证明:++…+=+++…+=·+++…+-=·<.B组提升题组1.A ∵a2,a4,a8成等比数列,∴=a2·a8,即(a1+3d)2=(a1+d)(a1+7d),将d=2代入上式,解得a1=2,∴S n=2n+=n(n+1),故选A.2.C设{a n}的公差为d,由已知可得a1+(n-1)d+a1+nd+a1+(n+1)d=18,可得a1+nd=6,又S2n+1==54,即=54,得2n+1=9,故n=4,选C.3.D 易判断A、B、C均正确.D中,可取a1<0,公差d>0.4.D ∵等差数列{a n}前n项的和S n有最大值,∴{a n}的公差是负数.∵<-1,∴a12<0,∴a11>-a12,即a11+a12>0,∴S22==>0,S23==23a12<0.∴前22项的和最大.故选D.5.C 设{a n}的公差为d,3a8=5a13⇒3(a1+7d)=5(a1+12d)⇒d=-a1,又a1>0,所以d<0.所以{a n}是单调递减数列.由a n=a1+(n-1)= a1>0⇒n≤20.由此可得当n=20时,S n最大.故选C.6.B 由S6>S7>S5,得a7=S7-S6<0,a6=S6-S5>0,a6+a7=S7-S5>0.从而有S13=×13=13a7<0,S11=×11=11a6>0,S12=×12=6(a6+a7)>0,所以n≤12时,S n>0;n≥13时,S n<0,故S12S13<0,故选B.7.D设{a n}的公差为d1,{b n}的公差为d2.因为a n=a1+(n-1)×d1=a1+n-1,b n=b1+(n-1)×d2=b1+n-1,所以-=a1+b n-1-(a1+b n-1-1)=b n-b n-1=1,所以{}是以a1+b1-1=9为首项,公差为1的等差数列,所以++…+=9×9+×1=117,故选D.8.答案24π;-解析因为{an}是等差数列,所以a1+a5+a9=3a5=8π,所以a5=π,所以S9===9×π=24π,cos(a3+a7)=cos2a5=cosπ=cosπ=-.9.答案22解析由等差数列的性质知3a3+a11=2a3+a3+a11=2a3+2a7=2(a2+a8)=22.10.答案2n-1;n2解析因为Sk+2+S k-2S k+1=2,所以a k+2-a k+1=2,又a2-a1=2,故数列{a n}为等差数列.又a1=1,故a n=2n-1,故S n==n2.11.答案解析∵an+1=1-=,且a n≠0,∴-=1,故数列是首项为4,公差为1的等差数列.则=4+(n-1)×1=n+3,即a n=.12.答案-3;58解析 a2=S 2-S 1=-3.由S n =n 2-6n 可得a n =2n-7,所以a 1<a 2<a 3<0<a 4<…<a 10,所以|a 1|+|a 2|+…+|a 10|=S 10-2S 3=58. 13.答案 ;1解析 ====;a7+b 7=S 7+T 7-(S 6+T 6)=72a+2×7-(62a+2×6)=13a+2=15⇒a=1. 14.答案 1;4解析 由题意知2S5=-1+S 10,所以S 10-2S 5=1,由{a n }为等比数列可知S 5,S 10-S 5,S 15-S 10成等比数列,所以(S 10-S 5)2=S 5(S 15-S 10),S 15-S 10===+S 5+2≥4,当且仅当S 5=1时,等号成立. 15.答案 1008解析 因为S2014>0,所以a 1+a 2014=a 1007+a 1008>0.因为S 2015<0,所以a 1+a 2015=2a 1008<0,因此d<0,且a 1>a 2>…>a 1007>0>a 1008>a 1009>…,显然|a 1009|>|a 1008|,|a 1007|>|a 1008|,所以k=1008. 16.答案 a n =解析 记△OA1B 1的面积为S,则△OA 2B 2的面积为4S. 从而四边形A n B n B n+1A n+1的面积均为3S. 可得△OA n B n 的面积为S+3(n-1)S=(3n-2)S. ∴=3n-2,即a n =.17.解析 (1)证明:由a n+2=2a n+1-a n +2得, a n+2-a n+1=a n+1-a n +2,即b n+1=b n +2. 又b 1=a 2-a 1=1.所以{b n }是首项为1,公差为2的等差数列.(5分) (2)由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.(8分) 于是所以a n+1-a 1=n 2,即a n+1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n+2.(10分) 18.解析 (1)由题意得=a 2·a 9, 所以(1+3d)2=(1+d)·(1+8d),(4分) 解得d=0或d=3.(6分) (2)∵当n ≠5时,S n <S 5恒成立, ∴S 5最大且d<0,由⇒ ∴⇒-4d<a 1<-5d.(10分) 又∵a 1,d ∈Z,d<0,∴当d=-1时,4<a 1<5,此时a 1不存在;(12分) 当d=-2时,8<a 1<10,则a 1=9;当d=-3时,12<a 1<15,则a 1=13或a 1=14; ……易知当d ≤-3时,a 1>9.(14分) 综上,a 1的最小值为9.(15分) 19.解析 (1)当n=2时,a 2=3a 1+8. 当n=3时,a 3=3a 2+26=95, ∴a 2=23,∴23=3a 1+8,∴a 1=5.(2)存在.当n≥2时,b n-b n-1=(a n+t)-(a n-1+t)=(a n+t-3a n-1-3t)=(3n-1-2t)=1-.要使{b n}为等差数列,则必须使1+2t=0,解得t=-,∴存在t=-,使得{b n}为等差数列.(3)因为当t=-时,{b n}为等差数列,且b n-b n-1=1(n≥2),b1=, 所以b n=+(n-1)×1=n+,所以a n=·3n+=n·3n+×3n+,所以a1=1×3+×3+,a2=2×32+×32+,a3=3×33+×33+,……所以T n=+=.。
专题5.2 等差数列及其前n项和-2021届高考数学一轮复习学霸提分秘籍(解析版)
2
A.-3 【答案】 D
B.-5 2
C.-2
D.-4
【解析】 设等差数列{an}的首项为 a1,公差为 d,
a1+d=1,
因为
a2=1, 所以
S5=-15,
5a1+5×4d=-15, 2
解得 d=-4.
6.(2019·苏北四市联考)在等差数列{an}中,已知 a3+a8>0,且 S9<0,则 S1,S2,…,S9 中最小的是______. 【答案】 S5 【解析】 在等差数列{an}中, ∵a3+a8>0,S9<0, ∴a5+a6=a3+a8>0,S9=9(a1+a9)=9a5<0,
S3=9A+3B=6, 由 S3=6,S4=12 可得
S4=16A+4B=12,
A=1,
解得
即 Sn=n2-n,则 S6=36-6=30.
B=-1,
考点二 等差数列的判定与证明
【例 2】 (经典母题)若数列{an}的前 n 项和为 Sn,且满足 an+2SnSn-1=0(n≥2),a1=12.
4
1 (1)求证: Sn 成等差数列; (2)求数列{an}的通项公式.
所以 an+1=
-1
,又 an+1-an=
-1
-
-1
=-1
1-1 n+1 n-1
=
1
.
2n(n+1)
2n(n+1) 2n(n-1) 2n
பைடு நூலகம்
n(n-1)(n+1)
5
所以当 n≥2 时,an+1-an 的值不是一个与 n 无关的常数,故数列{an}不是一个等差数列. 【迁移探究 2】 本例中,若将条件变为 a1=35,nan+1=(n+1)an+n(n+1),试求数列{an}的通项公式.
2020年高考理科数学新课标第一轮总复习练习:5_2等差数列及其前n项和
课时规范练(授课提示:对应学生用书第269页)A 组 基础对点练1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( B ) A .-1 B .0 C .1D .62.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( B ) A .18 B .20 C .22D .243.(2018·湖南期末)在等差数列{a n }中,a 3,a 8是函数f (x )=x 2-3x -18的两个零点,则{a n }的前10项和等于( B ) A .-15 B .15 C .30D .-30解析:a 3,a 8是函数f (x )=x 2-3x -18的两个零点, 由韦达定理可知a 3+a 8=3,∴a 1+a 10=a 3+a 8=3, ∴S 10=12×10(a 1+a 10)=15.4.(2018·和县期末)《九章算术》卷第六《均输》中有“金箠”问题,意思是:有一个金箠(金杖)长五尺,截成五段,每段一尺,从本到末各段质量依次成等差数列.现知第一段重4斤,第五段重2斤,则第三段重为( C ) A .1斤 B .2.5斤 C .3斤D .3.5斤解析:由题意可知⎩⎪⎨⎪⎧a 1=4,a 5=a 1+4d =2,解得d =-12,∴第三段重为a 3=a 1+2d =4+2×⎝ ⎛⎭⎪⎫-12=3.5.已知等差数列{a n }的前n 项和为S n ,若S 11=22,则a 3+a 7+a 8=( D ) A .18B .12C .9D .66.设等差数列{a n }的前n 项和为S n ,a 1>0且a 6a 5=911,则当S n 取最大值时,n 的值为( B ) A .9 B .10 C .11D .127.(2018·永定区校级月考)若等差数列{a n }满足a 1+a 8+a 9>0,a 3+a 10<0,则当{a n }的前n 项和最大时,n 的值为( A ) A .6 B .7 C .8D .9解析:∵等差数列{a n }满足a 1+a 8+a 9>0,a 3+a 10<0,∴3a 6>0,a 6+a 7<0,∴a 6>0,a 7<0.则当n =6时,{a n }的前n 项和最大.8.(2017·宜春期末)设数列{a n }是等差数列,S n 是其前n 项和,且S 6=S 7>S 8,则下列结论中错误的是( D ) A .d <0 B .a 7=0 C .S 9>S 5D .S 6和S 7均为S n 的最大值解析:∵数列{a n }是等差数列,S n 是其前n 项和,且S 6=S 7>S 8,∴d <0,故A 正确;a 7=S 7-S 6=0,故B 正确;S 9-S 5=⎝ ⎛⎭⎪⎫9a 1+9×82d -⎝ ⎛⎭⎪⎫5a 1+5×42d =4⎝ ⎛⎭⎪⎫a 1+132d <4a 7=0,∴S 9<S 5,故C 错误;S 6和S 7均为S n 的最大值,故D 正确. 9.(2016·高考北京卷)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6= 6 .解析:设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.10.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为 5 .解析:设数列首项为a 1,则a 1+2 0152=1 010.故a 1=5.11.(2016·高考江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 20 .解析:设等差数列{a n }的公差为d ,则a 1+a 22=a 1+(a 1+d )2=-3,S 5=5a 1+10d=10,解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20.12.已知S n 是等差数列{a n }的前n 项和,若S 5=5a 4-10,则数列{a n }的公差为 2 .解析:由S 5=5a 4-10,得5a 3=5a 4-10,则公差d =2.13.(2016·高考全国卷Ⅱ)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6. (1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解析:(1)设数列{a n }的公差为d ,由题意有2a 1+5d =4,a 1+5d =3. 解得a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2;当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4.所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.14.已知等差数列{a n }的前n 项和为S n ,n ∈N *,且点(2,a 2),(a 7,S 3)均在直线x -y +1=0上.(1)求数列{a n }的通项公式a n 及前n 项和S n ; (2)设b n =12(S n -n ),求数列{b n }的前n 项和T n .解析:(1)设等差数列{a n }的公差为d .由点(2,a 2),(a 7,S 3)均在直线x -y +1=0上得⎩⎪⎨⎪⎧a 2=3,a 7-S 3+1=0,又S 3=a 1+a 2+a 3=3a 2,解得⎩⎪⎨⎪⎧a 2=3,a 7=8,∴⎩⎪⎨⎪⎧ a 1+d =3,a 1+6d =8,解得⎩⎪⎨⎪⎧a 1=2,d =1, ∴a n =n +1,S n =n (n +3)2. (2)b n =12(S n -n )=1n (n +1)=1n -1n +1.∵T n =b 1+b 2+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1. ∴T n =nn +1.B 组 能力提升练1.(2018·赤峰期末)《张丘建算经》卷上有“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布6尺,30天共织布540尺,则该女子织布每天增加( C ) A.12尺 B .1631尺 C.2429尺D .1629尺解析:织布的数据构成等差数列,设公差为d ,第一天织的数据为a 1,第30天织的数据为a 30,则540=30(6+a 30)2,解得a 30=30,则a 30=a 1+(30-1)d ,解得d =2429.2.已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=( B ) A .7 B .8 C .9D .103.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( C ) A .n (3n -1) B .n (n +3)2C .n (n +1)D .n (3n +1)24.(2018·萍乡期末)等差数列{a n }中,a 2=4,它的前n 项和S n =n 2+kn ,则1S 1+1S 2+…+1S 100=( A )A.100101 B .1101 C.101100D .99100解析:∵等差数列{a n }中,a 2=4,它的前n 项和S n =n 2+kn , ∴a 1=S 1=1+k ,a 2=S 2-S 1=4+2k -1-k =3+k =4,解得k =1,∴a 1=1+1=2,d =a 2-a 1=4-2=2, ∴S n =2n +n (n -1)2×2=n (n +1), ∴1S n =1n (n +1)=1n -1n +1, 1S 1+1S 2+…+1S 100=11-12+12-13+…+1100-1101=100101.5.(2018·南平期末)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:今有五人分六钱,令前三人所得与后二人等,各人所得均增,问各得几何?其意思是:已知A ,B ,C ,D ,E 五个人分重量为6钱(“钱”是古代的一种重量单位)的物品,A ,B ,C 三人所得钱数之和与D ,E 二人所得钱数之和相同,且A ,B ,C ,D ,E 每人所得钱数依次成递增等差数列,问五人各分得多少钱的物品?在这个问题中,C 分得物品的钱数是( C ) A.25钱 B .45钱 C.65钱D .75钱解析:设A ,B ,C ,D ,E 五个人所得钱数依次为a 1,a 2,a 3,a 4,a 5,由题意得⎩⎪⎨⎪⎧a 1+a 2+a 3=a 4+a 5,d >0,5a 1+5×42d =6,解得a 1=45,d =15,∴C 分得物品的钱数是a 3=45+2×15=65(钱).6.(2016·高考浙江卷)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( A )A .{S n }是等差数列B .{S 2n }是等差数列C .{d }是等差数列D .{d 2n }是等差数列7.(2018·上杭县校级月考)已知数列{a n }中,a 1=1,a n =a n -1+3(n ≥2),则数列{a n }的前6项和等于 51 .8.设等差数列{a n }的前n 项和为S n ,若S 8=32,则a 2+2a 5+a 6= 16 . 解析:∵S 8=32,∴8(a 1+a 8)2=32,可得a 4+a 5=a 1+a 8=8.则a 2+2a 5+a 6=2(a 4+a 5)=2×8=16.9.已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,若S n +1+S n -1=2(S n +S 1),n ≥2,则S 15= 211 .解析:由题意得S n +1-S n =S n -S n -1+2,即a n +1=a n +2(n ≥2),故{a n }从第二项起是公差为2的等差数列,则S 15=1+14×2+14×132×2=211.10.等差数列{a n }前n 项和为S n .已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m = 10 .解析:因为a m -1+a m +1-a 2m =0,数列{a n }是等差数列,所以2a m -a 2m =0,解得a m =0或a m =2.又S 2m -1=38,所以a m =0不符合题意,所以a m =2.所以S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38,解得m =10.11.(2017·菏泽期末)已知S n 为等差数列{a n }的前n 项和,S 2=2,S 3=-6. (1)求数列{a n }的通项公式和前n 项和S n ;(2)是否存在n ,使S n ,S n +2+2n ,S n +3成等差数列,若存在,求出n ,若不存在,请说明理由.解析:(1)设等差数列{a n }的公差为d ,∵S 2=2,S 3=-6.∴2a 1+d =2,3a 1+3d =-6,联立解得a 1=4,d =-6. ∴a n =4-6(n -1)=10-6n , S n =n (4+10-6n )2=7n -3n 2.(2)假设存在n ,使S n ,S n +2+2n ,S n +3成等差数列, 则2(S n +2+2n )=S n +S n +3,∴2[7(n +2)-3(n +2)2+2n ]=7n -3n 2+7(n +3)-3(n +3)2,解得n =5. 因此存在n =5,使S n ,S n +2+2n ,S n +3成等差数列. 12.在数列{a n }中,a n +1+a n =2n -44(n ∈N *),a 1=-23. (1)求a n ;(2)设S n 为{a n }的前n 项和,求S n 的最小值. 解析:(1)当n =1时,a 2+a 1=-42,a 1=-23, ∴a 2=-19.同理得,a 3=-21,a 4=-17.故a 1,a 3,a 5,…是以a 1为首项,2为公差的等差数列,a 2,a 4,a 6,…是以a 2为首项,2为公差的等差数列. 从而a n =⎩⎪⎨⎪⎧n -24,n 为奇数,n -21,n 为偶数.(2)当n 为偶数时,S n =(a 1+a 2)+(a 3+a 4)+…+(a n -1+a n )=(2×1-44)+(2×3-44)+…+[2·(n -1)-44]=2[1+3+…+(n-1)]-n2·44=n22-22n,故当n=22时,S n取得最小值为-242.当n为奇数时,S n=a1+(a2+a3)+(a4+a5)+…+(a n-1+a n) =a1+(2×2-44)+…+[2×(n-1)-44]=a1+2[2+4+…+(n-1)]+n-1 2·(-44)=-23+(n+1)(n-1)2-22(n-1)=n 22-22n-32.故当n=21或n=23时,S n取得最小值-243.综上所述:当n为偶数时,S n取得最小值为-242;当n为奇数时,S n取最小值为-243.。
【红对勾】高考新课标数学(文)大一轮复习课时练:5-2等差数列及其前n项和(含答案解析)
课时作业29 等差数列及其前n 项和一、选择题1.(2016·陕西八校联考)在等差数列{a n }中,a 1=0,公差d≠0,若a m =a 1+a 2+…+a 9,则m 的值为( )A .37B .36C .20D .19解析:a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A.答案:A2.已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,且S 17<0,则当S n 最大时n 的值为( )A .16B .8C .9D .10解析:∵S 16=16 a 1+a 162=8(a 8+a 9)>0,S 17=17 a 1+a 172=17a 9<0,∴a 8>0,a 9<0,且d<0,∴S 8最大. 答案:B3.(2016·广东湛江模拟)在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17解析:设公差为d ,∵a 4+a 6+a 8+a 10+a 12=120,∴5a 8=120,a 8=24,∴a 9-13a 11=(a 8+d)-13(a 8+3d)=23a 8=16.答案:C4.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10解析:因为a 1+a 2+a 3=34,a n -2+a n -1+a n =146, 所以a 1+a 2+a 3+a n -2+a n -1+a n =34+146=180.又因为a 1+a n =a 2+a n -1=a 3+a n -2, 所以3(a 1+a n )=180,从而a 1+a n =60. 所以S n =n a 1+a n2=n·602=390,即n =13.答案:A5.(2016·黑龙江佳木斯月考)若数列{a n }满足a 1=15,且3a n +1=3a n -2,则使a k ·a k +1<0的k 值为( )A .22B .21C .24D .23解析:因为3a n +1=3a n -2,所以a n +1-a n =-23,所以数列{a n }是首项为15,公差为-23的等差数列,所以a n =15-23·(n -1)=-23n +473,令a n =-23n +473>0,得n<23.5,所以使a k ·a k+1<0的k 值为23. 答案:D6.(2016·湖南箴言中学调研)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为( )A .12B .18C .22D .44解析:∵数列{a n }是等差数列,且S 8-S 3=10,∴S 8-S 3=a 4+a 5+a 6+a 7+a 8=10,∴5a 6=10,a 6=2,∴S 11=a 1+a 112×11=11a 6=22.答案:C7.(2016·北京海淀模拟)已知正项数列{a n }中,a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n≥2),则a 6等于( )A .16B .8C .2 2D .4解析:由2a 2n =a 2n +1+a 2n -1(n≥2)可知数列{a 2n }是等差数列,且首项为a 21=1,公差d =a 22-a 21=4-1=3,所以数列{a 2n }的通项公式为a 2n =1+3(n -1)=3n -2,所以a 26=3×6-2=16,又因为a 6>0,所以a 6=4.选D.答案:D8.(2016·高考调研原创题)已知函数f(x)=cosx ,x ∈(0,2π)有两个不同的零点x 1,x 2,且方程f(x)=m 有两个不同的实根x 3,x 4,若把这四个数按从小到大排列构成等差数列,则实数m =( )A.12 B .-12C.32D .-32解析:若m>0,则公差d =3π2-π2=π,显然不成立,所以m<0,则公差d =3π2-π23=π3.所以m =cos(π2+π3)=-32,故选D.答案:D9.(2016·吉林长春质量监测)设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则a n =( )A.n2n -1 B.n +12n -1+1 C.2n -12n -1D.n +12n +1 解析:设b n =nS n +(n +2)a n ,则b 1=4,b 2=8,{b n }为等差数列,所以b n =4n ,即nS n +(n +2)a n =4n ,S n +⎝⎛⎭⎫1+2n a n =4. 当n≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝⎛⎭⎫1+2n -1a n -1=0,所以2 n +1 n a n =n +1n -1a n -1,即2·a nn =a n -1n -1,又因为a 11=1,所以⎩⎨⎧⎭⎬⎫a n n 是首项为1,公比为12的等比数列,所以a n n =⎝⎛⎭⎫12n -1(n ∈N *),a n =n2n -1(n ∈N*),故选A.答案:A10.已知S n 是等差数列{a n }的前n 项和,若a 1=-2 014,S 2 0142 014-S 2 0082 008=6,则S 2 013等于( )A .2 013B .-2 013C .-4 026D .4 026解析:由等差数列的性质可得{S nn }也为等差数列,又∵S 2 0142 014-S 2 0082 008=6d =6,∴d =1.故S 2 0132 013=S 11+2 012d =-2 014+2 012=-2. ∴S 2 013=-2×2 013=-4 026. 答案:C 二、填空题11.(2016·江苏无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n>1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)(n≥2)得(S n +1-S n )-(S n -S n -1)=2S 1=2(n≥2),即a n +1-a n =2(n≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211.答案:21112.已知在数列{a n }中,a 3=2,a 5=1,若⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于________.解析:记b n =11+a n,则b 3=13,b 5=12,数列{b n }的公差为12×(12-13)=112,b 1=16,∴b n=n +112,即11+a n =n +112.∴a n =11-n n +1,故a 11=0. 答案:013.已知A n ={x|2n <x<2n+1且x =7m +1,m ,n ∈N},则A 6中各元素的和为________.解析:∵A 6={x|26<x<27且x =7m +1,m ∈N},∴A 6的元素x =.组成一首项为71,公差为7的等差数列. ∴71+78+…+127=71×9+9×82×7=891. 答案:89114.已知S n 是等差数列{a n }的前n 项和,且a 4=15,S 5=55,则过点P(3,a 3),Q(4,a 4)的直线的斜率是________.解析:设数列{a n }的公差为d ,则依题意,得⎩⎪⎨⎪⎧a 4=a 1+3d =15,S 5=5a 1+10d =55,得⎩⎪⎨⎪⎧a 1=3,d =4.故直线PQ 的斜率为a 4-a 34-3=d1=4.答案:4 三、解答题15.(2016·辽宁协作体模拟)已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. 解:(1)证明:1a n +1-1-1a n -1=a n -a n +1 a n +1-1 a n -1 =13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.16.(2016·河南商丘一模)已知正项等差数列{a n }的前n 项和为S n ,且满足a 1+a 5=27a 23,S 7=63.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1=a 1,b n +1-b n =a n +1,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和T n .解:(1)方法1:设正项等差数列{a n }的公差为d , 则由题意得⎩⎪⎨⎪⎧a 1+a 1+4d =27 a 1+2d 2,7a 1+21d =63,即⎩⎪⎨⎪⎧a 1+2d =17 a 1+2d 2,a 1+3d =9,又∵a n >0,∴a 3=a 1+2d>0,∴⎩⎪⎨⎪⎧a 1+2d =7,a 1+3d =9, ∴⎩⎪⎨⎪⎧a 1=3,d =2, ∴a n =3+(n -1)×2=2n +1(n ∈N *).方法2:设正项等差数列{a n }的公差为d. ∵{a n }是等差数列,且a 1+a 5=27a 23,∴2a 3=27a 23,又a n >0,∴a 3=7.∵S 7=7 a 1+a 7 2=7a 4=63,∴a 4=9.∴d =a 4-a 3=2,∴a n =a 3+(n -3)d =2n +1(n ∈N *). (2)∵b n +1-b n =a n +1,且a n =2n +1, ∴b n +1-b n =2n +3.当n≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =(2n +1)+(2n -1)+…+5+3=n(n +2), 又当n =1时,b 1=3满足上式, ∴b n =n(n +2)(n ∈N *). ∴1b n =1n n +2 =12⎝⎛⎭⎫1n -1n +2. ∴T n =1b 1+1b 2+…+1b n -1+1b n=12⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎦⎤⎝⎛⎭⎫1n -1n +2=12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-2n +32 n 2+3n +2 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【师说 高中全程复习构想】(新课标)2015届高考数学 5.2 等差
数列及其前n 项和练习
一、选择题
1.如果等差数列{an}中,a3+a4+a5=12,那么a1+a2+…+a7=( )
A .14
B .21
C .28
D .35
解析:由等差数列的性质知,a3+a4+a5=3a4=12⇒a4=4,所以a1+a2+a3+…+a7=(a1+a7)+(a2+a6)+(a3+a5)+a4=7a4=28.
答案:C
2.已知{an}是等差数列,a1=-9,S3=S7,那么使其前n 项和Sn 最小的n 是( )
A .4
B .5
C .6
D .7
解析:由S3=S7得a4+a5+a6+a7=0,即a5+a6=0,
∴9d =-2a1=18,d =2.
∴Sn =-9n +12n(n -1)×2=n2-10n. ∴当n =--102×1
=5时,Sn 最小. 答案:B
3.已知{an}为等差数列,其公差为-2,且a7是a3与a9的等比中项,Sn 为{an}的前n 项和,n ∈N*,则S10的值为( )
A .-110
B .-90
C .90
D .110
解析:因为a7是a3与a9的等比中项,所以a27=a3a9,又因为公差为-2,所以(a1-12)2=(a1-4)(a1-16),解得a1=20,通项公式为
an =20+(n -1)(-2)=22-2n ,所以S10=10a1+a102
=5(20+2)=110,故选择D. 答案:D
4.数列{an}的首项为3,{bn}为等差数列且bn =an +1-an(n ∈N*).若b3=-2,b10=12,则a8=( )
A .0
B .3
C .8
D .11
解析:因为{bn}是等差数列,且b3=-2,b10=12,故公差d =12--210-3
=2.于是b1=-6,且bn =2n -8(n ∈N*),即an +1-an =2n -8,所以a8=a7+6=a6+4+6=a5+2+4+6=…=a1+(-6)+(-4)+(-2)+0+2+4+6=3.
答案:B
5.等差数列{an}中,Sn 是其前n 项和,a 1=-2011,S2*******-S2*******
=2,则S2011的值为( ) A .-2010 B .2010
C .-2011
D .2011
解析:Sn n =na1+n n -12d n =a1+(n -1)d 2
, ∴{Sn n }为以a1为首项,以d 2
为公差的等差数列. ∴S2*******-S2*******=2×d 2
=2.∴d =2. ∴S2011=2011×(-2011)+2011×20102
×2=-2011. 答案:C
6.已知在等差数列{an}中,对任意n ∈N*,都有an >an +1,且a2,a8是方程x2-12x +m =0的两根,且前15项的和S15=m ,则数列{an}的公差是( )
A .-2或-3
B .2或3
C .-2
D .-3
解析:由2a5=a2+a8=12,得a5=6,由S15=m 得a8=m 15
.又因为a8是方程x2-12x +m =0的根,解之得m =0,或m =-45,则a8=0,或a8=-3.由3d =a8-a5得d =-2,或d =-3.
答案:A
二、填空题
7.设Sn 是等差数列{an}(n ∈N*)的前n 项和,且a1=1,a4=7,则S5=__________.
解析:设数列的公差为d ,则3d =a4-a1=6,得d =2,所以S5=5×1+5×42
×2=25. 答案:25
8.已知{an}是等差数列,Sn 为其前n 项和,n ∈N*,若a3=16,S20=20,则S10的值为__________.
解析:设{an}的首项,公差分别是a1,d ,则
⎩
⎪⎨⎪⎧ a1+2d =1620a1+20×20-12×d=20,
解得a1=20,d =-2,
∴S10=10×20+10×92
×(-2)=110. 答案:110
9.Sn 为等差数列{an}的前n 项和,S2=S6,a4=1,则a5=__________.
解析:根据已知条件,得a3+a4+a5+a6=0,而由等差数列性质得,a3+a6=a4+a5,所以,a4+a5=0,又a4=1,所以a5=-1.
答案:-1
三、解答题
10.已知等差数列{an}中,a1=1,a3=-3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k 项和Sk =-35,求k 的值.
解析:(1)设等差数列{an}的公差为d ,则an =a1+(n -1)d.
由a1=1,a3=-3可得1+2d =-3.
解得d =-2.
从而,an =1+(n -1)×(-2)=3-2n.
(2)由(1)可知an =3-2n.
所以Sn =n[1+3-2n ]2=2n -n2. 进而由Sk =-35可得2k -k2=-35,
即k2-2k -35=0,解得k =7或k =-5.
又k ∈N*,故k =7为所求结果.
11.设等差数列{an}的前n 项和为Sn.
(1)若a4=-15,公差d =3,求Sn 的最小值;
(2)若a2=9,S4=40,且数列{Sn +c}成等差数列,求实数c 的值.
解析:(1)由已知,得a1+3d =-15,
∵d =3,∴a1=-24,
∴an =a1+(n -1)d =3n -27.令an≤0,得n≤9,且a9=0,
∴该数列前8项或前9项的和最小,最小值为
8×(-24)+8×72
×3=-108. (2)由a2=9,S4=40得⎩
⎪⎨⎪⎧ a1+d =9,4a1+4×32d =40, ∴⎩⎪⎨⎪⎧ a1=7,d =2.
∴Sn =na1+12
n(n -1)d =n2+6n , ∴Sn +c =n2+6n +c =n +32+c -9.
当c =9时,Sn +c =n +3是等差数列.
12.已知数列{an}中,a1=35,an =2-1an -1(n≥2,n ∈N*),数列{bn}满足bn =1an -1
(n ∈N*).
(1)求证数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由.
解析:(1)证明:因为an =2-1an -1(n≥2,n ∈N*),bn =1an -1
, 所以当n≥2时,bn -bn -1=1an -1-1an -1-1=12-1an -1
-1-1an -1-1=an -1an -1-1-1an -1-1
=1. 又b1=1a1-1=-52
,
所以数列{bn}是以-52为首项,以1为公差的等差数列.
(2)解:由(1)知,bn =n -7
2,
则an =1+1
bn =1+2
2n -7.
设函数f(x)=1+22x -7,易知f(x)在区间(-∞,72)和(7
2,+∞)内均为减函数.
所以当n =3时,an 取得最小值-1; 当n =4时,an 取得最大值3.。