第3章 导数与微分

合集下载

导数与微分的总结

导数与微分的总结

导数与微分的总结导数和微分是微积分学中的两个重要概念,也是研究函数变化的基础工具。

本文将从定义、性质、应用等方面对导数和微分进行总结。

一、导数的定义和性质导数是函数在某一点上的变化率,用极限表示形式可以定义为:若函数f(x)在点x0的某个邻域内有定义,当x→x0时,存在有限数L,使得lim (f(x) - f(x0)) / (x - x0) = Lx→x0这个极限L称为函数f(x)在点x0处的导数,记作f'(x0)或dy/dx|_(x=x0)。

导数具有以下性质:1. 导数的存在性:若函数f(x)在点x0的某个邻域内有定义,则f(x)在x0处可导当且仅当上述极限存在。

2. 导数的几何意义:导数表示了函数在某一点的切线斜率。

当函数在某一点可导时,这条切线的斜率就是导数的值。

3. 导函数:若函数f(x)在定义域内的每一点都可导,那么对应的导数函数就是f'(x),称为原函数f(x)的导函数。

4. 导数的四则运算:导数具有加法、减法、乘法、除法的运算法则,即d(u + v)/dx = du/dx + dv/dx,d(u - v)/dx = du/dx -dv/dx,d(uv)/dx = u(dv/dx) + v(du/dx),d(u/v)/dx = (v(du/dx) -u(dv/dx))/v²。

二、微分的定义和性质微分是描述函数变化的一种近似方法,它比导数更加具体。

对于函数f(x),在点x0处进行微分可以表示为:df(x) = f'(x0)dx其中,df(x)称为微分,dx称为自变量的增量。

微分具有以下性质:1. 微分的近似性:微分是函数f(x)在点x0处的变化的近似值,当dx趋近于0时,微分趋近于函数的实际变化值。

2. 微分的几何意义:微分可以理解为函数在某一点上的线性逼近,它是函数值在该点的变化量。

3. 微分与导数的关系:对于可导函数,微分与导数的关系可以表示为df(x) = f'(x0)dx。

第三章 导数与微分 习题及答案

第三章    导数与微分  习题及答案

第三章 导数与微分同步练习 一、填空 1、若[]1cos 1)0()(lim=--→xf x f x x ,则)0(f '= 。

2、设)100()3)(2)(1()(----=x x x x x x f ,则)0(f '= 。

3、若)(x e f y -=,且x x x f ln )(=',则1=x dxdy = 。

4、若)()(x f x f =-,且3)1(=-'f ,则)1(f '= 。

5、设某商品的需求函数是Q=10-0.2p ,则当价格p=10时,降价10%,需求量将 。

6、设某商品的需求函数为:Q=100-2p ,则当Q=50时,其边际收益为 。

7、已知x x y ln =,则)10(y = 。

8、已知2arcsin )(),2323(x x f x x f y ='+-=,则:0=x dxdy = 。

9、设1111ln22++-+=x x y ,则y '= 。

10、设方程y y x =确定y 是x 的函数,则dy = 。

11、已知()xke x f =',其中k 为常数,求()x f 的反函数的二阶导数=22dyxd 。

二、选择1、设f 可微,则=---→1)1()2(lim1x f x f x ( )A 、)1(-'-x fB 、)1(-'fC 、)1(f '-D 、)2(f ' 2、若2)(0-='x f ,则=--→)()2(lim000x f x x f xx ( )A 、41 B 、41- C 、1 D 、-1 3、设⎪⎩⎪⎨⎧=≠=0001arctan )(x x xx x f ,则)(x f 在0=x 处( )A 、不连续B 、极限不存在 C、连续且可导 D、连续但不可导 4、下列函数在[]1,1-上可微的有( ) A、x x y sin 32+= B、x x y sin =C、21x x y +=D、x x y cos += 5、设)(x f 为不恒等于零的奇函数,且)0(f '存在,则函数xx f x g )()(=( ) A、在0=x 处极限不存在 B、有跳跃间断点0=x C、在0=x 处右极限不存在 D、有可去间断点0=x6、设函数)(),(21x y x y 的弹性分别为)0(,≠b b a ,则函数)()(21x y x y y =的弹性为( ) A、b a - B、b aC、2112y by ay - D、以上都不对 7、已知)(x f e y =,则y ''=( )A、)(x f e B、)]()([)(x f x f e x f ''+' C、)()(x f e x f '' D、)}()]({[2)(x f x f e x f ''+'8、设函数⎩⎨⎧≤+>+=11)ln()(2x bx x x a x f 在1=x 处可导。

高二数学《导数与微分》知识点概述

高二数学《导数与微分》知识点概述

高二数学《导数与微分》知识点概述导数与微分是高二数学学科中的重要内容,对于学生来说,掌握这些知识点不仅能够帮助他们理解数学的基本概念,还能够为后续学习奠定坚实的基础。

第一部分:导数的概念及性质导数作为微积分的重要概念之一,其本质是函数在某点处的变化率。

导数的定义是通过极限的方法得到的,即函数在一点处的导数等于函数在该点附近变化最快的直线的斜率。

导数的性质主要有如下几个方面:1. 导数的存在性和唯一性:对于任意一个函数,只要它在某一点上可导,那么它在该点上的导数就是唯一确定的。

2. 导数的几何意义:导数可以理解为函数曲线在某一点处的切线斜率,因此导数的大小与斜率的大小成正比。

3. 导数与函数的关系:如果一个函数在某点处可导,则该函数在该点的导数可以作为函数的局部性质的判断标准,如函数的增减性、极值点等。

第二部分:导数的计算方法为了更好地应用导数的概念解决实际问题,在计算导数时,我们可以根据导数的定义以及一些基本的导数性质来进行计算。

下面是一些常见的导数计算方法:1. 常数函数的导数:常数函数的导数为0,即导数与自变量无关。

2. 幂函数的导数:对于幂函数$x^n$,它的导数为$nx^{n-1}$。

3. 反比例函数的导数:反比例函数$y=\frac{1}{x}$的导数为$y'=-\frac{1}{x^2}$。

4. 指数函数的导数:自然对数函数$y=e^x$的导数为$y'=e^x$。

5. 对数函数的导数:自然对数函数的逆函数$y=\ln x$的导数为$y'=\frac{1}{x}$。

第三部分:微分的概念及应用微分是导数的一个重要应用,它包含了更多的几何和物理背景。

微分的概念是函数在某点局部的线性近似,同时也可以理解为函数值的微小变化量。

微分的性质和计算方法与导数类似。

微分的应用广泛,尤其在物理学和工程学中有着重要的地位。

比如在速度和加速度的分析中,微分可以帮助我们计算物体在某一瞬间的速度和加速度。

微积分课件(导数与微分

微积分课件(导数与微分

第一节点导x0必数连的续。概念
19
另一方面,一个函数在某点连续却不一定
在该点可导。
y
y x
yx
例如, f ( x) | x |,
0
x
在 x 0处连续,但不可导.
第一节 导数的概念
20
第二节 函数和、差、积、商的求导法则
一、和、差、积、商的求导法则 三、复合函数的求导法则 四、基本求导法则与导数公式
x x0
x0
f ( x0 x) x
f ( x0 ) ;
函数 f ( x)在点x0 处可导 左导数 f ( x0 )和右 导数 f ( x0 )都存在且相等.
第一节 导数的概念
14
如果 f ( x)在开区间a, b内可导,且 f(a) 及
f(b)都存在,就说 f ( x)在闭区间a, b上可导.
第一节 导数的概念
5
f
(
x0
)或
dy dx

x x0
df ( x) dx
, x x0

f ( x0 )
y lim x0 x
lim
x0
f ( x0
x) x
f ( x0 )
其它形式
f
( x0 )
lim
h0
f (x0
h) h
f (x0 ) .
f ( x0 )
lim
x x0
f (x) x
f (x0 ) . x0
法线方程为
y
y0
f
1 (x ( x0 )
x0 ).
第一节 导数的概念
16
(2) 当f ( x0 ) 0时,
切线方程为 y y0
法线方程为 x x0

微积分第3章导数与微分

微积分第3章导数与微分

2021/4/21
9
三、左、右导数
定义 设函数 y = f(x) 在某U+(x0) (或 U-(x0))内有定义. 若
(或
)
存在,则称该极限值为 f 在点 x0 处的右 (左) 导数.
记作 f( x0 ) (或 f( x0 )) .
注:1. f 在x0可导 f 在 x0 的左, 右导数存在且相等.
f
(
x)
x
sin
1 x
,
x 0 与 f(x) = |x| 在 x = 0 处连续但不可导.
0, x 0
2021/4/21
11
例5. 求下列函数的导函数:
(1) c ( 常函数 ) ;
答案:0
记结论
(2) xn , ( n∈N+ ) ; (3) sin x ,
cos x ; (4) log ax ( a > 0, a≠1, x > 0 ) .
方法一:F(x, y) = 0 显化 y = f(x) 已有方法 求 y.
√ 方法二:F(x, y) = 0 两边同时求导 [F(x, y)] 0 求 y.
例6. 已知 y x ln y 确定了函数 y = f(x),求 y.
(答案:
y
y ln y y x

2021/4/21
第三章 导数与微分
22
要牢记!
(1) (c) 0 (c为常数);
(2) ( x ) x1 (为任意实数 );
(3) (a x ) a x ln a, (ex ) ex ;
(4)
(log a
x)
1, x ln a
(ln
x)
1; x
(5) (sin x) cos x,(cos x) sin x ;

《高等数学》教案第三章导数与微分

《高等数学》教案第三章导数与微分

《高等数学》教案第三章导数与微分教案之一:导数的定义和性质一、教学目标1.理解导数的概念和意义;2.学习导数的计算方法;3.掌握导数的基本性质;4.能够应用导数计算函数在其中一点的切线方程及函数的近似值。

二、教学重点和难点1.导数的概念和计算方法;2.导数的性质;3.函数在其中一点的切线方程的计算。

三、教学内容和方法1.导数的概念和计算方法通过解释导数的概念,引出导数的计算方法,并通过示例进行演示和讲解。

方法:讲解、示例演示、问题解答。

2.导数的性质介绍导数的基本性质,如导数为0的函数、导数的四则运算和导数的符号性。

方法:讲解、示例演示、问题解答。

3.函数在其中一点的切线方程的计算通过解释切线的概念,推导出切线方程的计算公式,并通过示例进行演示和讲解。

方法:讲解、示例演示、问题解答。

四、教学过程1.导数的概念和计算方法a.引出导数的概念和意义;b.讲解导数的计算方法,包括使用函数的极限和差商的方法,以及导数的几何意义;c.通过示例演示导数的计算方法。

2.导数的性质a.介绍导数为0的函数及其性质;b.讲解导数的四则运算和导数的符号性;c.通过示例演示导数的性质。

3.函数在其中一点的切线方程的计算a.解释切线的概念和意义;b.推导出切线方程的计算公式,包括斜截式和点斜式;c.通过示例演示切线方程的计算方法。

五、教学反思本节课主要介绍了导数的定义和性质,通过讲解、示例演示和问题解答,帮助学生理解了导数的概念和计算方法,掌握了导数的基本性质,以及函数在其中一点的切线方程的计算方法。

在教学中,应重点讲解导数的几何意义和切线的概念,帮助学生理解导数及其应用。

同时,通过举例说明导数性质的应用,激发学生的学习兴趣和思考能力。

在教学过程中,要注意引导学生思考问题,提高其自主学习的能力。

希望通过本次教学,学生能够掌握导数的概念和性质,并能够应用导数计算函数在其中一点的切线方程及函数的近似值。

大学文科数学_张国楚_导数与微分

大学文科数学_张国楚_导数与微分

第三章变量变化速度与局部改变量估值问题——导数与微分学之之博,未若知之之要,知之之要,未若行之之实.——朱熹:《朱子语类辑略》在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了.——恩格斯本章简介数学中研究导数、微分及其应用的部分叫做微分学,研究不定积分、定积分及其应用的部分叫做积分学.微分学与积分学统称为微积分学.微积分学,或称数学分析,是高等数学最基本最重要的组成部分,是现代数学很多分支的基础.它是人们认识客观世界、探索宇宙奥妙乃至人类自身的典型数学模型之一.恩格斯(F.Engels,德,1820-1895)指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了.”微积分发展史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材.然而,微积分教学存在着遗憾,正如美国数学家、数学教育家R. 柯朗(R.Courant,1888-1972)所指出的那样:“微积分,或者数学分析,是人类思维的伟大成果之一.它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别的有效工具.遗憾的是,微积分的教学方法有时流于机械,不能体现出这门学科乃是一种撼人心灵的智力奋斗的结晶”.我们在微积分教学中,要努力发掘微积分震撼心灵的力量.积分的雏形可追溯到古希腊和我国魏晋时期,而微分概念却姗姗来迟,16世纪才应运萌生.至17世纪,由天才的英国数学家、物理学家牛顿与德国哲学家、数学家莱布尼茨,在不同的国家,几乎同时在总结先贤研究成果的基础上,各自独立地创建了划时代的微积分,为数学的迅猛发展,科学的长足进步,乃至人类文化的昌盛作出了无与伦比的卓越贡献.本章与下章介绍一元微分学,俟后两章介绍一元积分学.本章介绍导数、微分的概念及其运算法则.1函数的局部变化率——导数1.1抽象导数概念的两个原型问题提出我们在解决实际问题时,除了需要了解变量之间的函数关系以外,有时还需要研究变量变化快慢的程度.例如物体运动的速度,城市人口增长的速度,国民经济发展的速度等,而这些问题只有在引进导数概念之后,才能解决.学习过程原型Ⅰ求变速直线运动的速度设一质点从点开始作变速直线运动,经秒到达点,求该质点在时刻的瞬时速度.分析(1)以为原点,沿质点运动的方向建立数轴——轴(图3.1)用表示质点运动的路程,则有(2)质点作匀速直线运动时,路程、时间、速度之间的关系:速度=(3)想一想如何处理速度变与不变的矛盾?(4)分以下三步解决速度变与不变的矛盾①求增量给一个增量,则路程有了增量②求增量的比(局部以匀速代变速)③取极限(平均速度的极限值即为在时刻的瞬时速度)原型Ⅱ求曲线切线的斜率求曲线在点处的切线斜率分析如图3.2所示:(1)复习曲线在点处切线的概念曲线上两点和的连线是该曲线的一条割线,当点沿曲线无限趋近于点时,割线绕转动,其极限位置就是曲线在点处的切线.(2)复习过两点的直线斜率公式(3)提出问题如何以直代曲,实现曲与直矛盾的转化?(4)解决曲与直的矛盾即求曲线在点处的切线斜率的三个步骤.①求增量:给一个增量,则有②求增量比(局部以直代曲)③取极限(即割线斜率的极限就是切线的斜率)1.2导数概念问题提出从数学的角度考虑两个原型的共同点引入导数的概念(1)求一个变量相对于另一个相关变量的变化快慢程度,即变化率问题;(2)处理问题的思想方法相同;(3)数学结构相同.学习过程1、定义设函数在点的某一邻域内有定义,当自变量在点处有增量(点仍在该邻域内)时,相应的函数有增量如果与之比,当时的极限存在,则称这个极限值为在点处的导数,记作,即(3.1)亦可记作,注意(1)若极限(3.1)存在,则称函数在点处可导;(2)若极限(3.1)不存在,则称函数在点处不可导;(3)函数的平均变化率函数的平均变化速度称为函数的平均变化率.(4)函数f(x)在点x0处的瞬时变化率导数称为函数在点处的瞬时速度.(5)概括导数的概念导数是平均变化率的极限2、导数的力学意义导数的力学意义是变速直线运动的瞬时速度.3、导数的何意义导数的几何意义是曲线的切线斜率.4、求导数的步骤(1)给一个增量,求相应的函数增量;(2)求平均变化率;(3)求平均变化率的极限,即5、应用举例例1 求函数在点处的导数解(1)确定,即(2)求,即(3)求,即(4)取极限得6、函数在区间内可导如果函数y=f(x)在区间内的每一点处可导,则称函数在区间内可导.7、导函数若函数在区间内可导,则称为函数的导函数,记作,,或导函数的计算公式=(x) ==想一想与的区别与联系(1)区别是关于函数,是在点处的导数,是一个常数(2)联系是在点的函数值,即:8、应用举例例2 求函数在点处的导数解(注意利用与的关系)总结幂函数的导数例3 求常数函数的导数分析常函数的特点(当自变量从变到时,函数的增量为0即)解即常数函数的导数恒为零.例4 求的导数解任取,给一个增量,得,∴做一做求的导数1.3 求导过程中的哲学分析提出问题求函数在点处的导数的思想方法中主要体现了哪些辩证法?学习过程引导学生分析归纳出(1)体现了事物运动变化的观点和量变质变规律;(2)体现了事物相互联系的观点和矛盾转化的思想;(3)体现了否定之否定的规律.想一想求导过程中蕴涵的数学思想方法是什么?1.4 函数的连续性与可导性之间的关系提出问题函数的连续性与可导性有什么关系呢?学习过程定理2 如果函数在点处可导,那么在点处连续.注意(1)可导则连续;(2)连续不一定可导:例如在点处连续但不可导.做一做举例说明可导和连续的关系1.5高阶导数的概念提出问题在直线运动中,速度是位移关于时间的变化率,而加速度则是速度关于时间的变化率.对“变化率的变化率”的讨论,就引入了高阶导数的概念.学习过程1、二阶导数如果函数的导数可导,则称的导数叫做函数的二阶导数,记作即注意还可记作想一想二阶导数的物理意义是什么?2、阶导数设函数存在阶导数,并且阶导数可导,那么的导数,叫做函数的阶导数,记作.二阶和二阶以上的导数称为高阶导数做一做求的三阶导数小结(1)导数的定义;(2)导数的几何意义;(3)可导与连续的关系.作业必作题习题三 1选作题习题三 2思考题函数可导是否为连续的充要条件?求导数的方法——法则与公式2.1求导法则问题提出求变量的变化率—导数,是在理论研究和实践应用中经常遇到的一个普遍问题,但根据定义求导数往往很繁难,有时甚至不可行,那么能否找到求导数的一般法则或公式呢?学习过程1、函数和、差、积、商的求导法则定理设u=u(x),v=v(x)是x的可导函数,则(1)(υ±ν)′=υ′±ν′(2)(Cυ)′=Cυ′(C是常数)(3)(4)注意(1)有限个函数代数和的导数等于各个函数导数的代数和;(2)应用举例例1已知,求解=例2 已知,求.解(注意对求导法则熟悉之后可以简化步骤)例3已知,求解例4已知,求解2、复合函数的求导法则设y=f〔(x)〕是由函数y=f(u)及u=(x)复合而成的函数,并设函数u=(x)在点x处可导,y=f(u)在对应点u=(x)处也可导,则有复合函数y=f〔(x)〕的求导法则:或=或=(u)(x)注意其中表示y对x的导数,,(u)表示y对中间变量u的导数,、(x)表示中间变量u对x的导数.例5,求y′解(1)分解复合函数即令(2)据复合函数求导法则得想一想求复合函数的关键是什么?注意熟练之后可省略中间变量,从外向量,逐层求导例6,求解例7y=ln|x|,求分析函数中含有绝对值,所以首先应去掉绝对值符号,用分段函数表示函数解当x>0时,当x<0时,〔〕′3、用复合函数求导法则求隐函数的导数隐函数若方程F(x,y)=0确定了y是x的函数,那么,这样的函数叫做隐函数.隐函数的求导方法例8 方程x2-y+lny=0确定了y是x的隐函数,求y′.分析(1)y是x的函数;(2)lny是x的复合函数解方程两端对x求导得解出y′,得例9例9 求圆x2+y2=4上一点M o(-,)处的切线方程分析解题步骤(1)求出曲线在点M o处的切线斜率(即求),(2)根据直线的点斜式方程求出切线方程解方程两端对x求导得2x+2yy′=0即亦即∴所求圆的切线方程做一做求的导数2.2基本初等函数的求导公式问题提出在第一节中我们学习了几个基本初等函数的求导公式如:那么其它初等函数的求导公式又如何呢?学习过程1、任意指数的幂函数y=xα(α∈R)的导数证明(xα)′=α xα-1证明在y=xα两边取自然对数得lny=αlnx (lny是x的复合函数)两边对x求导得∴想一想是如何证明的?(引入取对数求导法)取对数求导法(1)先对等式两端取自然对数;(2)利用复合函数求导法则求隐函数的导数;(3)求y对x的导数y′.2、指数函数y=a x(a>0且a≠1)的导数利用对数求导法有lny=xlna两边对x求导得∴y′=ylna=a x lna即(a x)′=a x lna注意(e x)′=e x(性质良好,应用广泛)3、反三角函数的导数(1)求y=arcsinx,x∈(-1,1),的导数y′解由y=arcsinx得x=siny在x=siny两端对x求导得1=cosy·y′(2)公式(注意以上导数的求导法则及基本初等函数的求导公式为求初等函数的导数提供了方便)例10质量为m0的放射性物质,经过时间t以后,所剩的质量m与时间t的关系为m=m0e-kt(k为正数,是该物质的衰减系数),求该物质的衰减率.解物质的衰减率就是质量m对时间t的导数,即该式表明放射性物质的衰减率与质量成正比,而负号表示质量m随时间增大而减小。

高等数学第三章导数与微分

高等数学第三章导数与微分

第一节 导数的概念
图3-1-2
第一节 导数的概念
四、 可导与连续的关系
定理2
如果函数y=f(x)在点x0处可导,则f(x)在点x0处连续, 其逆不真。
第一节 导数的概念
例6 求函数y=f(x)=|x|在x=0处的导数。 解 很明显,该函数在x=0处是连续的。又
当Δx<0时, =-1
当Δx>0时, =1
这说明,当Δx→0时,极限 数f(x)在x=0处不可导。
不存在,即函
第一节 导数的概念
五、 求导数举例
例7 求函数f(x)=sinx的导数.。 解 f′(x) =
=
=
= =cosx•1 =cosx
第二节 函数的求导法则
一、 函数的和、差、积、商的求导法则
定理1
设函数u(x),v(x)在点x处可导,则它们的和、差、积、 商(除分母为零的点外)都在点x具有导数,且有以下法则:
导数的概念
函数的求导法则 函数的高阶导数
隐函数及由参数方程所确定的函数 的导数
偏导数 函数的微分及应用
第一节 导数的概念
一、 引例
1. 变速直线运动的瞬时速度
设做变速直线运动的质点在t时刻所经过的路程为s,即路程 s是时间t的函数 s=f(t) 。
则当时间由t0改变到t时,动点在Δt=t-t0这段时间内经过的 路程为Δs=f(t)-f(t0)。动点在Δt=t-t0这段时间内的平均速 度为
第二节 函数的求导法则
例4 求函数y=lnsinx的导数。

y′=(lnsinx)′
1
= sin x (sinx)′
= cos x
sin x
=cotx
第二节 函数的求导法则

高等数学武大社课件第三章导数与微分

高等数学武大社课件第三章导数与微分
ห้องสมุดไป่ตู้
定义2 设函数y=f(x)在点x0的某左(右)邻域内有定义,若
存在,则称y=f(x)在点x0的左(右)导数存在,记作f′-(x0)(f′+(x0)). 函数的左(右)导数,又称函数的单侧导数.
显然,当函数y=f(x)在点x0处导数存在时,有结论:
f′(x0)
f′-(x0)和右导数f′+(x0)存在并且相等.
第一节 导数的概念
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抛开这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.
一、导数概念的两个引例 为了说明微分学的基本概念——导数,我们先讨论以下两 个问题:速度问题和切线问题. 1. 变速直线运动的瞬时速度 我们知道在物理学中,物体做匀速直线运动时,它在任何 时刻的速度可由公式
v=s/t
第一节 导数的概念
来计算,其中s为物体经过的路程,t为时间.如果物体作非匀 速运动,它的运动规律是s=s(t),那么在某一段时间[t0,t1 ]内,物体的位移(即位置增量)s(t1)-s(t0)与所经历的时间(即 时间增量)t1-t0的比,就是这段时间内物体运动的平均速度.我 们把位移增量s(t1)-s(t0)记作Δs,时间增量t1-t0记作Δt,平均 速度记作v,得
高等数学
directories


第三章 导数与微分
• 第一节 导数的概念 • 第二节 函数的求导法则 • 第三节 高阶导数 • 第四节 相关变化率 • 第五节 函数的微分

微积分讲义_第三章-一元函数的导数和微分

微积分讲义_第三章-一元函数的导数和微分

3.6 导数和微分在经济学中的简单应用,由于知识体系的关联性,我们把本节放到第四章后面讲。
例11.求
的导数
【答疑编号11030311:针对该题提问】
例12.求
的导数
【答疑编号11030312:针对该题提问】
例13.求
的导数
【答疑编号11030313:针对该题提问】
例14.求
的导数
【答疑编号11030314:针对该题提问】
例15.(教材习题3.2,8题)已知 【答疑编号11030315:针对该题提问】
切线方程为 法线方程为
例8、求双曲线
处的切线的斜率,并写出在该点处的切线方程和法线方程。
【答疑编号11030108:针对该题提问】
解 由导数的几何意义, 得切线斜率为
所求切线方程为
法线方程为
六、可导与连续的关系 1.定理 凡可导函数都是连续函数. 注意:该定理的逆定理不成立,即:连续函数不一定可导。 我们有:不连续一定不可导 极限存在、连续、可导之间的关系。
2.连续函数不存在导数举例
例9、讨论函数
在x=0处的连续性与可导性。
【答疑编号11030109:针对该题提问】
解:
例10、 P115第10题

,α在什么条件下可使f(x)在点x=0处。
(1)连续;(2)可导。 【答疑编号11030110:针对该题提问】 解:(1)
(2)
七、小结 1.导数的实质:增量比的极限; 2.导数的几何意义:切线的斜率; 3.函数可导一定连续,但连续不一定可导;
第三章 一元函数的导数和 微分
一、问题的提出 1.切线问题 割线的极限位置——切线位置
3.1 导数概念
如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即

《经济数学》课件 第三章 导数与微分

《经济数学》课件 第三章  导数与微分

定 义
在曲线L上点 P0附近,再取一点P,作割线P0 P ,当点P沿曲 线L移动而趋向于P0 时,割线P0 P 的极限位置P0 T 就定义为曲线L
在点 P0处的切线.
3.1
切线的斜率为
k tan lim tan lim y lim f (x0 x) f (x0 )
x x0
x0
x
LOGO 正文.第三章
f(0)
lim
x0
y x
lim
x0
|x| x
lim
x0
x x
1
f(0)
lim
x0
y x
lim
x0
|x| x
lim
x0
x x
1
左、右导数不相等,故函数在该点不可导.由此可见,函数连续是
可导的必要条件而不是充分条件.
目录页
第 15 页
第二节 函数的求导法则和基本求导公式
• 一、 函数求导的四则运算法则 • 二、 复合函数的求导法则 • 三、 基本初等函数的求导公式
dx du dx
设 y f (u) ,u (v) ,v (x) ,则复合函数 y f {[ (x)]}
对 的导数是
yx yu uv vx
以上复合函数求导公式又称为链式法则,可以推广到更
多层的复合函数.
第 19 页
LOGO 正文.第三章
第 20 页
求第
导二
公节
式 函
数复
的合
求函
导 法 则

∣△t ∣很小时, v可作为物体在 t0时刻瞬时速度.即

概 念
v(t0 )
lim v
t 0
lim
t 0

导数与微分

导数与微分
(4)隐函数的求导法则
若是由方程确定的可导函数,则其导数()yfx=(,)0Fxy=()fx′可由方程(,())0dFxfxdx=
求得.即隐函数求导法则是:把方程两边对x求导,注意y是x的函数,然后从求导后得到的等式中解出.
(5)对数求导法则
若,分别可导,则幂指函数可两边取对数化成隐函数求导数. ()ux()vx()()vxyux=
解 (1)因为441(13)(13)yxx?==??
所以45[(13)]4(13)(13)yxx??′′=?=????
551212(13)(13)xx?=?=?
(2)11222221()(1)1[(1)]1(1)(1)2fxxxxxx?′′′′=+?=+?=+???
12221(1)11xxxx?=+?=+?
(5)理解高阶导数的概念,会求简单函数的n阶导数.
(6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分.
二、内容提要
1.导数概念
导数是由变速直线运动的瞬时速度的曲线的切线斜率等具体的变化率总是抽象而产生的,是极限概念的具体应用.
(1) 定义:设函数在点()yfx=0x和某个邻域内有定义,当自变量在0x处取得改变量时,函数(0)xΔ≠()fx取得相应的改变量00()( yfxxfxΔ=+Δ?,如果当0xΔ→时,yxΔΔ的极限存在,即0000()(limlimxx fxxfxyxxΔ→Δ→+Δ?Δ=ΔΔ
a.求函数增量的近似公式
()ydyfxx′Δ≈=Δ
b.求函数在某点附近的函数值的近似公式
00()()()() fxfxfxxx′≈+?

高数)第3章:微分中值定理与导数的应用共91页

高数)第3章:微分中值定理与导数的应用共91页
的一个零点。
在(2, 3)内至少存在一点 2,使f (2)0,2也是f (x)
的一个零点。 f (x) 是二次多项式,只能有两个零点,分别在区间
(1, 2)及(2, 3)内。
可导函数的两个零点之间必有其导数的零点。
9
3.将拉罗 格尔 朗日定(L理ag条 ran件 gfe(中 )a中)去 值f(定b掉 )理,得到
第一节 微分中值定理
微分中值定理的核心是拉格朗日(Lagrange) 中值定理,费马定理是它的预备定理,罗尔定理 是它的特例,柯西定理是它的推广。
1. 预备定理——费马(Fermat)定理
若函f数 (x)在(a,b)内一x0取 点得 最值 且f(x)在x点 0可 导 , f(x则 0)0.
费马(Fermat,1601-1665),法国人,与笛卡尔共 同创立解析几何。因提出费马大、小定理而著名于世。
1
2
y
几何解释:
曲线在最高点和最低点 显然有水平切线,其斜
率为 0,当切线沿曲线连 o
续滑动时,就必然经过 位于水平位置的那一点 .
yf(x)
1
2
x
3
证明: 只就f (x)在x0达到最大值证明。
由f于 (x)在 x0达到最大值x, 0所 x在 (以 a,b)内 只 , 要
就f有 (x0x)f(x0), 即 f(x 0 x ) f(x 0 ) 0 ,
从f(而 x 0 x )f(x 0)0 ,当 x0 时 ; x
f(x0 x)f(x0)0,当 x0时 ; x
这 f(x 样 0 0 ) lx 0 im f(x 0 x x ) f(x 0 ) 0 f(x 0 0 ) lx i0 m f(x 0 x x )f(x 0) 0 .

3.1 导数的概念

3.1 导数的概念
四、函数的可导性与连续性的关系
五、单侧导数
2
一、 引例
1. 变速直线运动的速度
设描述质点运动位置的函数为
则 到 的平均速度为
f (t ) f (t 0 ) v t t0
自由落体运动
s 1 gt 2
2
而在 时刻的瞬时速度为
f (t ) f (t 0 ) v lim t t0 t t0
在 t 0 时刻的瞬时速度
f ( t 0 )
o
f (t0 )
f (t )
t0
t
s
曲线 C : y f ( x ) 在 M 点处的切线斜率
y
y f (x )
N
f ( x0 )
C
M
x0
T
说明: 在经济学中, 边际成本率,
o
x x
边际劳动生产率和边际税率等从数学角度看就是导数.
7
y f ( x) f ( x0 ) x x x0

f ( x ) f ( 0) sin x sin 0 f (0) lim lim x 0 x 0 x0 x0

sin x lim 1 x 0 x

f (0) 1
函数f ( x )在x 0处可导。
17
内容小结
1. 导数的实质: 增量比的极限; f ( x0 ) f ( x0 ) a 2. f ( x0 ) a
9

例如, (
1 x ) ( x 2 ) 1 2
1 x 2

1 2 x

1 1 1 1 1 ( x ) x 2 x x
3 ) ( x 4 )

第三章 导数与微分 《经济数学》PPT课件

第三章 导数与微分 《经济数学》PPT课件
CHAPTER
03
第3章 导数与 微分
PART
03
3.1
导数
导数是数学中的一个分支——微积分的两个基本概念之一,它
表示一个函数的因变量相对于自变量的变化的快慢程度,即因变 量关于自变量的变化率.事物总是在不断地运动和变化的,而描述 这种运动和变化离不开变化率,导数就是对现实生活中各种各样 的变化率的一种统一的数学抽象.导数是微积分以及实际生活中 应用极其广泛的概念,其应用范围包括函数性态的描述、曲线的 描绘、最优化问题的讨论以及变化率的分析等.
,
即函数在点x=0处的右导数不存在,所以函数f(x)在点x=0处的导
数不存在.
3. 1. 5
高阶导数
在本小节中,我们将讨论一个量的变化率的变化率.这样的变化率 有很多种,例如,汽车的加速度是它的速度关于时间的变化率,而 速度本身又是路程关于时间的变化率.如果路程的单位是千米,时 间的单位是小时,那么速度(路程关于时间的变化率)的单位是千 米/小时,而加速度(速度的变化率)的单位则是千米/小时2.
上述有关变化率的变化率的问题,在经济上是常用的.例如,在通 货膨胀时期,你可以听到经济部门的报告指出,“尽管通货膨胀率 在增长,但其增长速度在减缓”,就是指物价在上涨,但已经不比 以前那样增长得快了.
3. 1. 5
高阶导数
1) 高阶导数的概念 ➢ 设函数y=f(x)关于x的变化率由其导函数f '(x)给出.类似地,函数f
3.2 1 微分的定义
关于微分定义的几点说明: ➢ (1)函数的微分dy是Δx的一次函数,它不仅与Δx有关,而且与x也
有关.函数的微分dy与Δy只差一个比Δx高阶的无穷小,它是Δy的 主要部分,所以也称微分dy是函数改变量Δy的线性主部. ➢ (2)若函数y=f(x)在x处的改变量Δy可以表示成Δx的线性函数 k(x)Δx与一个比Δx高阶的无穷小之和Δy=k(x)Δx+o(Δx),则称 函数y=f(x)在点x处可微. ➢ (3)由于自变量x的微分dx=(x)'Δx=Δx,故dx可理解为自变量x的 改变量Δx.于是dy=f '(x)Δx=f '(x)dx,即函数的微分等于函数的 导数乘上自变量的微分.

高等数学第三章微分中值定理与导数的应用讲义

高等数学第三章微分中值定理与导数的应用讲义

第三章 微分中值定理与导数的应用讲义【考试要求】1.掌握罗尔中值定理、拉格朗日中值定理并了解它们的几何意义. 2.熟练掌握洛必达法则求“0/0”、“/∞∞”、“0⋅∞”、“∞-∞”、“1∞”、“00”和“0∞”型未定式极限的方法.3.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式.4.理解函数极值的概念,掌握求函数的极值和最值(最大值和最小值)的方法,并且会解简单的应用问题.5.会判定曲线的凹凸性,会求曲线的拐点. 6.会求曲线的水平渐近线与垂直渐近线.【考试内容】一、微分中值定理1.罗尔定理如果函数()yf x =满足下述的三个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)在区间端点处的函数值相等,即()()f a f b =,那么在(,)a b 内至少有一点ξ(ab ξ<<),使得()0f ξ'=.说明:通常称导数等于零的点为函数的驻点(或稳定点,临界点),即若0()0f x '=,则称点0x 为函数()f x 的驻点.2.拉格朗日中值定理如果函数()yf x =满足下述的两个条件:(1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导, 那么在(,)a b 内至少有一点ξ(ab ξ<<),使得下式(拉格朗日中值公式)成立: ()()()()f b f a f b a ξ'-=-.说明:当()()f b f a =时,上式的左端为零,右端式()b a -不为零,则只能()0f ξ'=,这就说明罗尔定理是拉格朗日中值定理的特殊情形.此外,由于拉格朗日中值定理在微分学中占有重要的地位,因此有时也称这定理为微分中值定理.3.两个重要推论(1)如果函数()f x 在区间I 上的导数恒为零,那么()f x 在区间I 上是一个常数.证:在区间I 上任取两点1x 、2x (假定12x x <,12x x >同样可证),应用拉格朗日中值公式可得2121()()()()f x f x f x x ξ'-=- (12x x ξ<<). 由假定,()0f ξ'=,所以 21()()0f x f x -=,即 21()()f x f x =.因为1x 、2x 是I 上任意两点,所以上式表明()f x 在区间I 上的函数值总是相等的,即()f x 在区间I 上是一个常数.(2)如果函数()f x 与()g x 在区间(,)a b 内的导数恒有()()f x g x ''=,则这两个函数在(,)a b 内至多相差一个常数,即()()f x g x C -=(C 为常数). 证:设()()()F x f x g x =-,则()[()()]()()0F x f x g x f x g x ''''=-=-=,根据上面的推论(1)可得,()F x C =,即()()f x g x C -=,故()()f x g x C -=.二、洛必达法则1.x a →时“0”型未定式的洛必达法则如果函数()f x 及()F x 满足下述的三个条件:(1)当x a →时,函数()f x 及()F x 都趋于零;(2)在点a 的某个去心邻域内()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x a f x F x →''存在(或为无穷大),那么()()limlim()()x ax a f x f x F x F x →→'='. 说明:这就是说,当()lim ()x a f x F x →''存在时,()lim ()x a f x F x →也存在且等于()lim ()x a f x F x →'';当()lim()x af x F x →''为无穷大时,()lim ()x a f x F x →也是无穷大.2.x →∞时“”型未定式的洛必达法则 如果函数()f x 及()F x 满足下述的三个条件:(1)当x →∞时,函数()f x 及()F x 都趋于零;(2)当x X >时()f x '及()F x '都存在且()0F x '≠;(3)()lim ()x f x F x →∞''存在(或为无穷大),那么 ()()lim lim()()x x f x f x F x F x →∞→∞'='. 说明:我们指出,对于xa →或x →∞时的未定式“∞∞”,也有相应的洛必达法则. 3.使用洛必达法则求“00”型或“∞∞”型极限时的注意事项(1)使用洛必达法则之前要先判断所求极限是不是“00”型或“∞∞”型,如果不是则不能使用洛必达法则.例如:2sin lim x xx π→就不能运用洛必达法则,直接代入求极限即可,故2sinsin 22lim 2x x x ππππ→==.(2)洛必达法则可多次连续使用,也就是说,如果使用一次洛必达法则后算式仍然是“00”型或“∞∞”型,则可再次使用洛必达法则,依此类推.(3)洛必达法则是求“00”型或“∞∞”型未定式极限的一种有效方法,但最好能与其他求极限的方法结合使用,例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简便.例如:求20tan lim tan x x xx x→-时,可先用~tan x x进行无穷小的等价替换,然后再用洛必达法则,故2223220000tan tan sec 1tan 1lim lim lim lim tan 333x x x x x x x x x x x x x x x →→→→---====. (4)如果求极限的式子中含有非零因子,则可以对该非零因子单独求极限(即可以先求出这部分的极限),然后再利用洛必达法则,以便简化运算.例如:求0lnsin 2limlnsin3x xx+→时,0000lnsin 2sin3cos 222sin323lim lim lim lim 1lnsin3sin 2cos333sin 232x x x x x x x x x x x x x x++++→→→→⋅⋅⋅====⋅⋅⋅,从第二步到第三步的过程中,分子上的因子cos2x 和分母上的因子cos3x 当0x +→时极限均为1,故可先求出这两部分的极限以便化简运算.(5)当洛必达法则的条件不满足时,所求极限不一定不存在,也即是说,当()lim ()f x F x ''不存在时(等于无穷大的情况除外),()lim ()f x F x 仍可能存在.例如:极限sin lim x x xx→∞+,(sin )1cos lim lim lim(1cos )1x x x x x xx x →∞→∞→∞'++==+' 极限是不存在的,但是原极限是存在的,sin sin sin limlim(1)1lim 101x x x x x x xx x x→∞→∞→∞+=+=+=+=.4.其他类型的未定式除了“00”型或“∞∞”型未定式之外,还有其他类型的未定式,如“0⋅∞”、“∞-∞”、“1∞”、“00”及“0∞”型等.对于“0⋅∞”和“∞-∞”型的未定式,处理方法为将它们直接转化成“00”或“∞∞”型;对于“1∞”、“00”及“0∞”型的未定式,处理方法为先取对数将它们转化成“0⋅∞”型,然后再转化成“00”型或“∞∞”型未定式. 三、函数单调性的判定法1.单调性判定法设函数()yf x =在[,]a b 上连续,在(,)a b 内可导,(1)如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; (2)如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.说明:① 如果把这个判定法中的闭区间改为其他各种区间(包括无穷区间),结论也成立; ② 若判定法中()f x '在(,)a b 内只有有限个点上()0f x '=,而在其余点上恒有()0f x '>(或()0f x '<),则函数()f x 在区间[,]a b 上仍然是单调增加(或单调减少)的.2.单调区间的求法设函数()f x 在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,则求函数()f x 的单调性的步骤如下:(1)求出函数()f x 的定义域;(2)求出函数()f x 的导数()f x ',并令()0f x '=求出函数的驻点;此外,再找出导数不存在的点(一般是使得()f x '分母为零的点); (3)用函数()f x 的所有驻点和导数不存在的点来划分函数的定义区间,然后用单调性判定定理逐个判定各个部分区间的单调性.3.用单调性证明不等式函数()f x 的单调性还可以用来证明不等式,步骤如下:(1)将不等式的一边变为零,不等于零的一边设为()f x ,根据要证明的式子找出不等式成立的x 的范围I ; (2)求()f x 的导数()f x ',判断()f x '在上述I 范围内的符号(即正负); (3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.例如:试证明当1x>时,13x>-. 证明:原不等式即为13x -+,故令1()3f x x=-+,0x >,则2211()(1)f x xx '=-=- ,()f x 在[1,)+∞上连续,在(1,)+∞内()0f x '>,因此在[1,)+∞上()f x 单调增加,从而当1x >时,()(1)f x f >,又由于(1)0f =,故()0f x >,即130x -+>,亦即13x>-.四、函数的凹凸性与拐点1.函数凹凸性的定义设函数()f x 在区间I 上连续,如果对I 上任意两点1x 、2x ,恒有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凹的(或凹弧);如果恒有1212()()22x x f x f x f ++⎛⎫>⎪⎝⎭,那么称()f x 在I 上的图形是(向上)凸的(或凸弧).如果函数()f x 在I 内具有二阶导数,那么可以利用二阶导数的符号来判定曲线的凹凸性,如下所示.2.函数凹凸性的判定法设函数()f x 在区间[,]a b 上连续,在(,)a b 内具有一阶和二阶导数,那么(1)若在(,)a b 内()0f x ''>,则()f x 在[,]a b 上的图形是凹的; (2)若在(,)a b 内()0f x ''<,则()f x 在[,]a b 上的图形是凸的.说明:若在(,)a b 内除有限个点上()0f x ''=外,其它点上均有()0f x ''>(或()0f x ''<),则同样可以判定曲线()y f x =在[,]a b 上为凹曲线(或凸曲线). 3.曲线的拐点的求法一般地,设()y f x =在区间I 上连续,0x 是I 的内点(除端点外I 内的点).如果曲线()y f x =在经过点00(,())x f x 时,曲线的凹凸性改变了,那么就称点00(,())x f x 为这曲线的拐点.我们可以按照下述步骤求区间I 上的连续函数()y f x =的拐点:(1)求()f x ''; (2)令()0f x ''=,解出这方程在区间I 内的实根,并求出在区间I 内()f x ''不存在的点;(3)对于(2)中求出的每一个实根或二阶导数不存在的点0x ,检查()f x ''在0x 左、右两侧邻近的符号,当两侧的符号相反时,点00(,())x f x 是拐点,当两侧的符号相同时,点00(,())x f x 不是拐点.在[,]a b 上单3.基本初等函数的微分公式说明:若要求函数()y f x =的凹凸区间,则用(2)中求出的每一个实根或二阶导数不存在的点把区间I分成若干部分区间,然后在这些部分区间上判定()f x ''的符号,若()0f x ''>,则该部分区间为凹区间,若()0f x ''<,则该部分区间为凸区间.五、函数的极值与最值1.函数极值的定义设函数()f x 在点0x 的某邻域0()U x 内有定义,如果对于去心邻域0()U x 内任一x ,有0()()f x f x <(或0()()f x f x >),那么就称0()f x 是函数()f x 的一个极大值(或极小值).函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点. 说明:函数的极大值与极小值概念是局部性的,如果0()f x 是函数()f x 的一个极大值,那只是就0x 附近的一个局部范围来说,0()f x 是()f x 的一个最大值,如果就()f x 的整个定义域来说,0()f x 不见得是最大值.关于极小值也类似.2.函数取得极值的必要条件设函数()f x 在0x 处可导,且在0x 处取得极值,那么0()0f x '=.说明:这也就是说,可导函数()f x 的极值点必定是它的驻点.但反过来,函数的驻点却不一定是极值点.例如,3()f x x =的导数2()3f x x '=,(0)0f '=,因此0x =是这函数的驻点,但0x=却不是这函数的极值点,所以,函数的驻点只是可能的极值点.此外,函数在它的导数不存在的点处也可能取得极值.例如,函数()f x x =在点0x =处不可导,但函数在该点取得极小值.3.判定极值的第一充分条件设函数()f x 在0x 处连续,且在0x 的某去心邻域0()U x 内可导.(1)若00(,)x x x δ∈-时,()0f x '>,而00(,)x x x δ∈+时,()0f x '<,则()f x 在0x 处取得极大值;(2)若00(,)x x x δ∈-时,()0f x '<,而00(,)x x x δ∈+时,()0f x '>,则()f x 在0x 处取得极小值;(3)若0(,)x U x δ∈时,()f x '的符号保持不变,则()f x 在0x 处没有极值.4.用第一充分条件求极值点和极值的步骤设函数()f x 在所讨论的区间内连续,除个别点外处处可导,则用第一充分条件求极值点和相应的极值的步骤如下: (1)求出导数()f x ';(2)求出()f x 的全部驻点与不可导点;(3)考查()f x '的符号在每个驻点或不可导点的左右邻近的情形,以确定该点是否为极值点;如果是极值点,进一步确定是极大值点还是极小值点; (4)求出各极值点的函数值,就得函数()f x 的全部极值.5.判定极值的第二充分条件设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,那么(1)当0()0f x ''<时,函数()f x 在0x 处取得极大值; (2)当0()0f x ''>时,函数()f x 在0x 处取得极小值.说明:该极值判定条件表明,如果函数()f x 在驻点0x 处的二阶导数0()0f x ''≠,那么该驻点0x 一定是极值点,并且可按二阶导数0()f x ''的符号来判定0()f x 是极大值还是极小值.但如果0()0f x ''=,则该判定条件失效.事实上,当0()0f x '=,0()0f x ''=时,()fx 在0x 处可能有极大值,可能有极小值,也可能没有极值.例如,41()f x x =-,42()f x x =,33()f x x =这三个函数在0x =处就分别属于上述三种情况.因此,如果函数在驻点处的二阶导数为零,那么还得用一阶导数在驻点左右邻近的符号来判定.6.求()f x 在区间[,]a b 上的最值的步骤设函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内除有限个点外可导,且至多有有限个驻点,则求()f x 在闭区间[,]a b 上的最值的步骤如下:(1)求出()f x 在(,)a b 内的驻点1x ,2x ,,m x 及不可导点1x ',2x ',,n x ';(2)计算()i f x (1,2,,i m =),()j f x '(1,2,,j n =)及 ()f a ,()f b ;(3)比较(2)中诸值的大小,其中最大的便是()f x 在[,]a b 上的最大值,最小的便是()f x 在[,]a b 上的最小值.说明:在实际问题中,往往根据问题的性质就可以断定可导函数()f x 确有最大值或最小值,而且一定在定义区间内部取得.这时如果()f x 在定义区间内部只有一个驻点0x ,那么不必讨论0()f x 是不是极值,就可以断定0()f x 是最大值或最小值.六、函数的渐近线的求法1.水平渐近线若lim()x f x a →∞=(包括lim ()x f x a →-∞=或lim ()x f x a →+∞=),则直线y a =就是函数()f x 的水平渐近线.2.垂直渐近线(或称铅直渐近线)若0lim()x x f x →=∞(包括0lim ()x x f x -→=∞或0lim ()x x f x +→=∞),则直线0x x =就是函数()f x 的垂直(铅直)渐近线.【典型例题】 【例3-1】验证罗尔定理对函数()lnsin f x x =在区间5[,]66ππ上的正确性.解:显然函数()lnsin f x x =在闭区间5[,]66ππ上连续,在开区间5(,)66ππ上可导,1()(lnsin )cos cot sin f x x x x x ''==⋅=,且5()()l n266f f ππ==-,故满足罗尔定理的条件,由定理可得至少存在一点5(,)66ππξ∈,使得()0f ξ'=,即cot 0ξ=,2πξ=即为满足条件的点.【例3-2】验证拉格朗日中值定理对函数2()482f x x x =--在区间[0,1]上的正确性.解:显然函数2()482f x x x =--在闭区间[0,1]上连续,在开区间(0,1)内可导,()88f x x '=-,根据拉格朗日中值定理可得至少存在一点(0,1)ξ∈,使得(1)(0)()(10)f f f ξ'-=-,即6(2)88ξ---=-,可得1(0,1)2ξ=∈,12ξ=即为满足条件的点.【例3-3】不求导数,判断函数()(1)(2)(3)(4)f x x x x x =----的导数有几个零点,这些零点分别在什么范围. 解:显然()f x 是连续可导的函数,且(1)(2)(3)(4)0f f f f ====,故()f x 在区间[1,2],[2,3],[3,4]上满足罗尔定理的条件,所以在区间(1,2)内至少存在一点1ξ,使得1()0f ξ'=,即1ξ是()f x '的一个零点;在区间(2,3)内至少存在一点2ξ,使得2()0f ξ'=,即2ξ是()f x '的一个零点;又在区间(3,4)内至少存在一点3ξ,使得3()0f ξ'=,即3ξ也是()f x '的一个零点.又因为()f x '是三次多项式,最多只能有三个零点,故()f x '恰好有三个零点,分别在区间(1,2),(2,3)和(3,4)内.【例3-4】证明arcsin arccos 2x x π+=,其中11x -≤≤.证明:设()arcsin arccos f x x x =+,[1,1]x ∈-, 因为()(0f x '=+=,所以()f x C =,[1,1]x ∈-.又因为(0)a r c s i n 0a r c c o s 0022f ππ=+=+=,即 2C π=,故arcsin arccos 2x xπ+=.说明:同理可证,arctan arccot 2x x π+=,(,)x ∈-∞+∞.【例3-5】求下列函数的极限.1.求 332132lim 1x x x x x x →-+--+.解:该极限为1x →时的“”型未定式,由洛必达法则可得 原式22113363lim lim 321622x x x x x x x →→-===---.2.求arctan 2lim 1x x xπ→+∞-.解:本题为x →+∞时的“00”型未定式,由洛必达法则可得原式222211lim lim 111x x x x x x→+∞→+∞-+===+-.3.求0lnsin 2lim lnsin3x xx+→. 解:该极限为0x+→时的“∞∞”型未定式,由洛必达法则可得原式0001cos 222sin 323sin 2lim lim lim 113sin 232cos33sin 3x x x x x x x x xx x+++→→→⋅⋅⋅====⋅⋅⋅.4.求 2tan lim tan 3x xx π→.解:本题为2x π→时的“∞∞”型未定式,由洛必达法则可得原式2222222sec cos 32cos3(sin 3)3lim lim lim 3sec 33cos 6cos (sin )x x x x x x x x x x x πππ→→→⋅-⋅===⋅- 22cos33sin3lim lim 3cos sin x x x x x x ππ→→-===-.5.求2tan limtan x x xx x→-. 解:该极限为0x →时的“00”型未定式,结合等价无穷小的替换,运用洛必达法则可得原式22320000tan sec 12sec tan 21lim lim lim lim 3663x x x x x x x x x x x x x x →→→→--⋅=====. 说明:此题也可这样求解(运用公式22sec1tan x x =+和等价无穷小替换来简化运算): 原式22232220000tan sec 1tan 1lim lim lim lim 3333x x x x x x x x x x x x x →→→→--=====. 6.求11lim()sin x x x→-. 解:该极限为0x →时的“∞-∞”型未定式,解决方法为先化为“1100-”型,然后通分化为“”型,故 原式20000sin sin 1cos sin lim lim lim lim 0sin 22x x x x x x x x x xx x x x →→→→---=====.7.求lim x x x +→. 解:该极限为0x +→时的“00”型未定式,解决方法为取对数化为“0ln0⋅”型,进而化为“”型,故 原式020001lim ln 1lim ln limlim ()ln 00lim 1x x x x xx x xx x x xx x e ee e e e +→+++→→→+--→=======.8.求cos limx x xx→∞+.解:原式1sin lim lim(1sin )1x x x x →∞→∞-==-,最后的极限不存在,不满足洛必达法则的条件,实际上,原式cos cos lim(1)1lim 101x x x xx x→∞→∞=+=+=+=.【例3-6】求下列函数的单调区间. 1.32()29123f x x x x =-+-.解:因2()618126(1)(2)f x x x x x '=-+=--,令()0f x '=,得11x =,22x =.用1x ,2x 将函数的定义域(,)-∞+∞分成三个区间(,1)-∞,(1,2),(2,)+∞,其讨论结果如下表所示:由上表可得,函数的单调递增区间为(,1]-∞和[2,)+∞,单调递减区间为[1,2].2.()f x = .解:函数的定义域为(,)-∞+∞,()f x '=(0x ≠),当0x =时导数不存在.将函数定义域分成两个区间(,0)-∞和(0,)+∞,讨论结果如下表所示:所以函数的单调递增区间为[0,)+∞,单调递减区间为(,0]-∞. 【例3-7】利用函数的单调性证明不等式. 1.试证当0x>时,ln(1)x x >+成立.证明:设()ln(1)f x x x =-+,则1()111xf x x x'=-=++, 因()f x 在区间[0,)+∞上连续,在(0,)+∞内可导,且 ()0f x '>, 故()f x 在区间[0,)+∞上单调增加,又因为(0)0f =,所以当0x >时,()0f x >,即ln(1)0x x -+>,也即 ln(1)x x >+成立.2.试证当1x >时,13x>-.证明:令1()(3)f x x =--,则2211()(1)f x xx '=-=-, 因()f x 在区间[1,)+∞上连续,在(1,)+∞内可导且()0f x '>, 故()f x 在区间[1,)+∞上单调增加,又因为(1)0f =,所以当1x >时,()0f x >,即1(3)0x -->,也即13x>- 成立.【例3-8】证明方程510x x ++=在区间(1,0)-内有且仅有一个实根.证明:令5()1f x x x =++,因为()f x 在闭区间[1,0]-上连续,且(1)10f -=-<,(0)10f =>,根据零点定理,()f x 在区间(0,1)内至少有一个零点.另一方面,对于任意实数x ,有4()510f x x '=+>,所以()f x 在(,)-∞+∞内单调增加,因此曲线5()1f x x x =++与x 轴至多有一个交点.综上所述,方程510xx ++=在区间(1,0)-内有且仅有一个实根.【例3-9】求下列函数的极值. 1.32()395f x x x x =--+.解:函数的定义域为(,)-∞+∞,且有2()3693(1)(3)f x x x x x '=--=+-,令()0f x '=,得驻点11x =-,23x =,列表讨论如下:由上表可得,函数的极大值为(1)10f -=,极小值为(3)22f =-.2.233()2f x x x =-.(,1]-∞-解:函数的定义域为(,)-∞+∞,且有13()1f x x-'=-=, 令()0f x '=,得驻点1x =,当0x =时()f x '不存在,驻点1x =以及不可导点0x =将定义域分成三个区间,列表讨论如下:由上表可得,函数的极大值为(0)0f =,极小值为1(1)2f =-.【例3-10】求函数32()231214f x x x x =+-+在区间[3,4]-上的最值.解:因为2()66126(2)(1)f x x x x x '=+-=+-,令()0f x '=,得 12x =-,21x =,计算(3)23f -=,(2)34f -=,(1)7f =,(4)142f =,比较上述结果可知,最大值为(4)142f =,最小值为(1)7f =.【例3-11】求下列曲线的凹凸区间和拐点. 1.43()341f x x x =-+.解:函数的定义域为(,)-∞+∞,且有32()1212f x x x '=-,2()36()3f x x x ''=-,令()0f x ''=,得10x =,223x =, 列表讨论如下:(,1]-∞-由上表可得,曲线()f x 的凹区间为(,0]-∞和2[,)3+∞,凸区间为2[0,]3,拐点为(0,1)和211(,)327.2.()f x =解:函数的定义域为(,)-∞+∞,当0x ≠时有231()3f x x -'=,532()9f x x -''=-,当0x =时,()f x '和()f x ''均不存在,但在区间(,0)-∞内,()0f x ''>,故曲线在(,0]-∞上是凹的;在区间(0,)+∞内,()0f x ''<,故曲线在[0,)+∞上是凸的.所以曲线的凹区间为(,0]-∞,凸区间为[0,)+∞,拐点为(0,0).【历年真题】 一、选择题1.(2009年,1分)若函数()y f x =满足0()0f x '=,则0x x =必为()f x 的(A )极大值点 (B )极小值点 (C )驻点 (D )拐点 解:若0()0f x '=,则0x x =必为()f x 的驻点,选(C ).2.(2009年,1分)当0x >时,曲线1sin y x x=(A )没有水平渐近线 (B )仅有水平渐近线23 x ()f x 2(,)3+∞ 0 (,0)-∞2(0,)3+-+对应拐点对应拐点凹凸凹()f x ''(C )仅有铅直渐近线 (D )既有水平渐近线,又有铅直渐近线解:由1sin1lim sin lim11x x x x x x→∞→∞==可知,1y =为曲线的水平渐近线;01lim sin 0x x x+→=,故曲线无铅直渐近线.选项(B )正确. 3.(2008年,3分)函数()ln f x x =在区间[1,2]上满足拉格朗日公式中的ξ等于(A )ln 2 (B )ln1 (C )ln e (D )1ln 2解:对函数()ln f x x =在区间[1,2]上应用拉格朗日中值定理,(2)(1)()(21)f f f ξ'-=-,即 1ln 20ξ-=,故 1ln 2ξ=.选(D ). 4.(2007年,3分)曲线33yx x =-上切线平行于x 轴的点为(A )(1,4)-- (B )(2,2) (C )(0,0)(D )(1,2)- 解:切线平行于x 轴的点即为一阶导数等于零的点.由2330y x'=-=可得,1x =±;1x =时,2y =-,1x =-时,2y =,故曲线33y x x =-上切线平行于x 轴的点为(1,2)-和(1,2)-.选项(D )正确. 5.(2007年,3分)若在区间(,)a b 内,导数()0f x '>,二阶导数()0f x ''<,则函数()f x 在该区间内(A )单调增加,曲线为凸的 (B )单调增加,曲线为凹的 (C )单调减少,曲线为凸的 (D )单调减少,曲线为凹的 解:()0f x '>可得()f x 单调增加,()0f x ''<可得曲线为凸的,故选(A ).二、填空题1.(2010年,2分)函数32()2912f x x x x =-+的单调减区间是.解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =;当1x <时,()0f x '>,当12x <<时,()0f x '<,当2x >时,()0f x '>,故函数的单调递减区间为[1,2].2.(2009年,2分)当62x ππ≤≤时,sin ()xf x x=是函数(填“单调递增”、“单调递减”).解:当6x π=时,sin36()66f ππππ==;当2x π=时,sin22()22f ππππ==;故当62x ππ≤≤时,sin ()xf x x=是单调递减函数. 3.(2009年,2分)函数32()29121f x x x x =-++在区间[0,2]上的最大值点是.解:令2()618126(1)(2)0f x x x x x '=-+=--=,得驻点1x =和2x =.比较函数值(1)6f =,(2)5f =,(0)1f =,可知,函数的最大值为(1)6f =,故函数的最大值点为1x =.4.(2007年,4分)曲线24x t y t⎧=⎨=⎩在1t =处的切线方程为.解:将1t =代入参数方程可得切点为(1,4),切线斜率11422t t t t y k tx =='===',故切线方程为42(1)y x -=-,即 22y x =+.5.(2005年,3分)x y xe -=的凸区间是.解:()(1)x x x x y xe e xe x e ----''==-=-,(1)(2)x x x y e x e x e ---''=---=-. 令 (2)0x y x e -''=-=可得,2x =,且当2x >时,0y ''>,当2x <时,0y ''<,故函数x y xe -=的凸区间是(,2]-∞.6.(2005年,3分)曲线x y x =通过(1,1)点的切线方程为.解:因ln ln ()()(ln 1)(ln 1)x x x x x x y x e e x x x '''===⋅+=+,故切线斜率1[(ln 1)]1x x k x x ==+=,所以切线方程为11(1)y x -=⋅-,即 y x =.三、应用题或综合题1.(2010年,10分)现有边长为96厘米的正方形纸板,将其四角各剪去一个大小相同的小正方形,折做成无盖纸箱,问剪区的小正方形边长为多少时做成的无盖纸箱容积最大? 解:设剪区的小正方形边长为x ,则纸盒的容积2(962)yx x =-,048x <<.2(962)2(962)(2)(962)(966)y x x x x x '=-+⋅--=--,令0y '=,可得 16x =(48x =舍去).因只有唯一的驻点,且原题中容积最大的无盖纸箱一定存在,故当剪区的小正方形边长为16厘米时,做成的无盖纸箱容积最大. 2.(2010年,10分)设函数()f x 在[0,1]上连续,并且对于[0,1]上的任意x 所对应的函数值()f x 均为0()1f x ≤≤,证明:在[0,1]上至少存在一点ξ,使得()f ξξ=.解:令()()F x f x x =-,由于()f x 在[0,1]上连续,故()F x 在[0,1]上也连续.(0)(0)0(0)F f f =-=,(1)(1)1F f =-.而对[0,1]x ∀∈,0()1f x ≤≤,故(0)0F ≥,(1)0F ≤. 若(0)0F =,即(0)00f -=,(0)0f =,则0ξ=; 若(1)0F =,即(1)10f -=,(1)1f =,则1ξ=;当(0)0F ≠,(1)0F ≠时,(0)(1)0F F ⋅<,而()F x 在[0,1]上连续,故根据零点定理可得,至少存在一点(0,1)ξ∈,使得()0F ξ=,即()0f ξξ-=,()f ξξ=.综上,在[0,1]上至少存在一点ξ,使得()f ξξ=.3.(2009年,10分)某工厂需要围建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁.问堆料场的长和宽各为多少时,才能使砌墙所用的材 料最省?解:设堆料场的宽为xm ,则长为512x m ,设砌墙周长为y ,则5122y x x=+, 令251220y x'=-=,得 2256x =,16x =(16x =-舍去).因只有一个驻点,且原题中最值一定存在,故当16x =时,函数有最小值.即当宽为16m ,长为32m 时,才能使砌墙所用的材料最省. 4.(2009年,10分)当0x >,01a <<时,1a x ax a -≤-.解:原不等式即为 10a x ax a -+-≤.设()1a f x x ax a =-+-,则(1)当1x=时,()110f x a a =-+-=,即10a x ax a -+-=成立; (2)当01x <<时,111()(1)0a a f x axa a x--'=-=->,故()f x 单调增加,可得()(1)0f x f <=,即10a x ax a -+-<成立;(3)当1x>时,111()(1)0a af x ax a a x--'=-=-<,故()f x 单调减少,可得()(1)0f x f <=,即10a x ax a -+-<成立.综上,当0x>,01a <<时,不等式10a x ax a -+-≤成立,即1ax ax a -≤-. 5.(2008年,8分)求函数233y x x =-的单调区间、极值、凹凸区间与拐点.解:函数的定义域为(,)-∞+∞. 先求单调区间和极值.令2633(2)0y x xx x '=-=-=,得驻点0x =,2x =,用驻点将整个定义域分为三个区间(,0)-∞,(0,2),(2,)+∞.当(,0)x ∈-∞时,0y '<,函数单调减少;当(0,2)x ∈时,0y '>,函数单调增加;当(2,)x ∈+∞时,0y '<,函数单调减少.故函数的单调增加区间为[0,2],单调减少区间为(,0]-∞和[2,)+∞;极小值(0)0f =,极大值(2)4f =.再求凹凸区间和拐点.令660y x ''=-=,得1x =.当(,1)x ∈-∞时,0y ''>,函数为凹的;当(1,)x ∈+∞时,0y ''<,函数为凸的,且当1x =时,2y =,故函数的凹区间为(,1]-∞,凸区间为[1,)+∞,拐点为(1,2).6.(2007年,8分)求函数11y x x =++的单调区间、极值、凹凸区间和拐点. 解:函数的定义域为(,1)(1,)-∞--+∞.先求单调区间和极值.令221(2)10(1)(1)x x y x x +'=-==++,得驻点2x =-,0x =,用驻点将整个定义域分为三个区间(,2)-∞-,(2,1)--,(1,0)-,(0,)+∞.当(,2)x ∈-∞-时,0y '>,函数单调增加;当(2,1)x ∈--时,0y '<,函数单调减少;当(1,0)x ∈-时,0y '<,函数单调减少;当(0,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为(,2]-∞-和[0,)+∞,单调减少区间为[2,1)--和(1,0]-;极大值(2)3f -=-,极小值(0)1f =.再求凹凸区间和拐点.因432(1)2(1)(1)x y x x -+''=-=++,故当(,1)x ∈-∞-时,0y ''<,函数为凸的;当(1,)x ∈-+∞时,0y ''>,函数为凹的,故函数的凸区间为(,1)-∞-,凹区间为(1,)-+∞.凹凸性改变的点为1x =-,不在定义域内,故函数没有拐点.7.(2007年,8分)在周长为定值l 的所有扇形中,当扇形的半径取何值时所得扇形的面积最大?解:设扇形的半径为x ,则弧长为2lx -,设扇形的面积为y ,则由题意211(2)22y l x x x lx =-=-+.令202l y x '=-+=得,4l x =.唯一的极值点即为最大值点.故当扇形的半径为4l时,扇形的面积最大.8.(2006年,10分)求函数321y x x x =--+的单调区间、极值及凹凸区间、拐点.解:函数的定义域为(,)-∞+∞.先求单调区间和极值.令2321(31)(1)0y x x x x '=--=+-=,得驻点13x =-,1x =,用驻点将整个定义域分为三个区间1(,)3-∞-,1(,1)3-,(1,)+∞.当1(,)3x ∈-∞-时,0y '>,函数单调增加;当1(,1)3x ∈-时,0y '<,函数单调减少;当(1,)x ∈+∞时,0y '>,函数单调增加.故函数的单调增加区间为1(,]3-∞-和[1,)+∞,单调减少区间为1[,1]3-;极大值132()327f -=,极小值(1)0f =. 再求凹凸区间和拐点.令620y x ''=-=,得13x=.当1(,)3x ∈-∞时,0y ''<,函数为凸的;当1(,)3x ∈+∞时,0y ''>,函数为凹的,且当13x =时,1627y =,故函数的凸区间为1(,]3-∞,凹区间为1[,)3+∞,拐点为116(,)327.9.(2006年,10分)设函数()f x 在[0,1]上连续,且()0f x >.证明方程11()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.证明:先证存在性.设011()()()x xF x f t dt dt f t =+⎰⎰,[0,1]x ∈.因()f x 在[0,1]上连续,故()F x 在[0,1]上也连续,且011011(0)00()()F dt dt f t f t =+=-<⎰⎰,11(1)()0()0F f t dt f t dt =+=>⎰⎰,故由零点定理可得,至少存在一点(0,1)ξ∈使得()0F ξ=,即在(0,1)内方程至少存在一个根.再证唯一性,即证()F x 的单调性.1()()0()F x f x f x '=+>,故()F x 单调增加,所以结合上面根的存在性可知,方程011()0()xxf t dt dt f t +=⎰⎰在(0,1)内有且仅有一个根.10.(2005年,8分)已知()y f x =与2arctan 0xt y e dt -=⎰在(0,0)处切线相同,写出该切线方程并求2lim ()n nfn→∞. 解:切线斜率()22arctan arctan 02011x xtx x e k e dtx --==⎛⎫'===⎪ ⎪+⎝⎭⎰,故切线方程为01(0)y x -=⋅-,即 y x =.因()y f x =过点(0,0),故(0)0f =,且(0)1f '=,故 222()()()2lim ()lim lim 2(0)211()n n n f f n n n nf f n n n→∞→∞→∞'''===='.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章 导数与微分3.1 导数的概念3.1.1 实例1.变速直线运动的速度已知变速直线运动的路程函数)(t s s =,当时间从0t 变到t t ∆+0时,物体所经过的路程为)()(00t s t t s s -∆+=∆,于是物体在这一段时间内的平均速度是tt s t t s t s ∆-∆+=∆∆)()(00. 运动是变速的,但在一段很短的时间t ∆内,速度变化不大,即当t ∆很小时,平均速度可作为物体在0t 时刻的瞬时速度的近似值;t ∆无限小时,平均速度就无限接近于0t 时刻的瞬时速度)(0t v ,即tt s t t s t s t v t t ∆-∆+=∆∆=→∆→∆)()(lim lim )(00000. 这就是说,物体在0t 时刻的瞬时速度是平均速度当0→∆t 时的极限值,0t 时刻路程对时间的变化率是0→∆t 时路程增量和时间增量之比的极限.2.总产量的变化率设某产品在时间段[]t ,0内的总产量Q 是时间t 的函数)(t Q Q =,当时间由0t 变到t t ∆+0时,总产量的改变量是)()(00t Q t t Q Q -∆+=∆,它在这段时间内的平均产量(即平均变化率)是tt Q t t Q t Q ∆-∆+=∆∆)()(00. 如果极限t t Q t t Q t Q t t ∆-∆+=∆∆→∆→∆)()(lim lim0000 存在,则称此极限是0t 时刻的总产量的变化率,又称生产率.3.曲线的切线斜率如图4-1所示,割线M M 0的斜率是xx f x x f x y ∆-∆+=∆∆)()(00. 因为当点M 沿着曲线无限趋于点0M 时,割线M M 0的极限位置T M 0称为曲线)(x f y =在0M 点的切线,所以0→∆x 时割线M M 0斜率的极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000 就是曲线)(x f y =在0M 点的切线斜率.3.1.2 导数的定义定义 设函数)(x f y =在点0x 及其左右近旁有定义,当自变量x 从0x 变化到x x ∆+0时,函数有相应的改变量)()(00x f x x f y -∆+=∆.若当0→∆x 时,y x ∆∆与之比的极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并称这个极限值为函数)(x f y =在点0x 处的导数,记为000d (),d x x x x y f x y x =='',或d ()d x x f x x =,即 =)(0/x f xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000. 若极限不存在,则称函数)(x f y =在点0x 处不可导.若函数)(x f y =在区间),(b a 内每一点都可导,则称函数在区间),(b a 内可导.这时对任意给定的值),(b a x ∈,都有一个确定的导数值与之对应,从而确定了一个新的函数,称此函数为函数)(x f y =的导函数(简称导数),记为d d (),(),d d y f x y f x x x''或, 即 xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim )(00. 显然,函数)(x f y =在点0x 处的导数值等于导函数)(/x f 在0x 处的函数值,即00()()x x f x f x =''=. 通常,xx f x x f x y ∆-∆+=∆∆)()(00表示函数在区间[]x x x ∆+00,上的平均变化率,导数xx f x x f x ∆-∆+→∆)()(lim 000(平均变化率的极限)叫做函数)(x f y =在点0x 处的瞬时变化率(简称变化率).函数的瞬时变化率即函数的导数在实际问题中有着非常广泛的应用,一些经济量可利用导数描述.例如,若生产某产品的总成本函数()q C C =,则在产量为q 时总成本对产量的变化率为()()()qq C q q C q C dq dC MC q ∆-∆+='==→∆0lim , 也叫产量为q 时的边际成本,表示在产量为q 时每增加(或减少)单位产品所需增加(或减少)的成本;根据导数的定义,前述三个实例可重述为:(1)变速直线运动的物体在0t 时刻的速度,就是路程函数)(t s s =在0t 处对时间t 的导数,即()000)(t s dt ds t v t t '===. (2)某产品在0t 时刻的总产量的变化率,就是该产品的总产量函数)(t Q Q =在0t 处对时间t 的导数,即()00t Q dt dQ t t '==. (3)曲线)(x f y =在点()()00,x f x 处切线的斜率是函数)(x f y =在0x 点处的导数,即()0x f k '=.例1 已知函数2)(x x f y ==,求()f x ',()1-'f .α是实数).例2 求曲线2)(x x f y ==在点(-1,1)处的切线的方程.3.1.3 高阶导数既然导函数本身也是函数,所以可以计算它的导数.对于函数)(x f y =,如果其导数()y f x ''=仍可导,则称)(/x f 的导数为)(x f 的二阶导数,记为()x f ''或y ''或22dx y d . 类似地,二阶导数的导数叫做三阶导数,……,一般地,1n -导数的导数叫做n 阶导数,记为()n y 或n n dx y d ,并把二阶及二阶以上的导数统称为高阶导数. 例如,如果()4x x f =,则由公式1()x x ααα-'=知()34x x f =',()212x x f ='',()x x f 24=''',()()244=x f .3.2 导数的计算3.2.1 基本初等函数的导数公式(1)0)(='C (C 为常量) (2)1)(-='αααx x (α为实数)(3)a a a x x ln )(='(1,0≠>a a ) (4)x x e e =')((5)a x x a ln 1)(log ='(1,0≠>a a ) (6)xx 1)(ln =' (7)x x cos )(sin =' (8)x x sin )(cos -='(9)x x 2sec )(tan =' (10)x x 2csc )(cot -='(11)x x x sec tan )(sec =' (12)x x x csc cot )(csc -='(13)211)(arcsin x x -=' (14)211)(arccos x x --='(15)211)(arctan x x +=' (16)211)cot (x x arc +-=' 3.2.2 导数的四则运算法则定理 设函数()()u x v x ,在点x 处可导,则()()u x v x ±,()()u x v x , ()()u x v x 在点x 处也可导,且有:(1)()()()()u x v x u x v x '''±=±⎡⎤⎣⎦;(2)()()()()()()'u x v x u x v x u x v x ''=+⎡⎤⎣⎦; 特别地,()()Cu x Cu x ''=⎡⎤⎣⎦(C 为常量)(3)()()()()()()()2u x u x v x u x v x v x v x '⎡⎤''-=⎢⎥⎣⎦. 例1 求函数23ln 5sin 2e x x x y +-+=的导数. 例2 求函数x x y cos 35=的导数.例3 求函数2xe y x=的导数. 例4 求函数332++=x x y 在点3=x 处的导数. 例5 已知函数435328y x x x =+-+,求22dx y d .3.2.3复合函数的求导法则定理 设函数)]([x f y ϕ=由)(u f y =与)(x u ϕ=复合而成,若函数)(x u ϕ=在点x 处可导,函数)(u f y =在对应点u 处可导,则复合函数)]([x f y ϕ=在点x 处也可导,且)()(x u f dxdu du dy dx dy ϕ'⋅'=⋅= 简记作 x u x u y y '⋅'='即:复合函数的导数,等于复合函数对中间变量的导数乘以中间变量对自变量的导数.此法则可以推广到多次复合的情形.例如,若)(),(),(x v v u u f y ψϕ===,且它们都可导,则 )()()(x v u f v u y y x v u x ψϕ'⋅'⋅'='⋅'⋅'='.例6 求函数5)12(+=x y 的导数.例7 求函数22sin 3x y ⎛⎫= ⎪⎝⎭的导数. 例8 求函数ln(1)y x =+的二阶导数.3.2.4偏导数在生产中,产量Q 与投入的劳动力L 和资金K 之间有关系式βαK AL Q =其中A 、α、β都是正常数,叫做柯布-道格拉斯生产函数,描述了产量Q (因变量)与投入的两种生产要素K (资金)和L (劳动力)之间的确定关系,这是一个以K 和L 为自变量的二元函数.假设资金K 保持不变,则产量Q 可以看作是劳动力L 的一元函数,βααK AL Q L1-='表示在一定技术条件下,劳动力的微小变动所引起的总产量的变动;类似地,假设劳动力L 保持不变,则产量Q 可以看作是资金K 的一元函数,1-='βαβK AL Q K表示在一定技术条件下,资金的微小变动所引起的总产量的变动.这种由一个变量变化、其余变量保持不变所得到的导数,称为多元函数的偏导数. 二元函数()y x f z ,=有两个自变量,若把其中的自变量y 视为常量,只把自变量x 作为变量,对x 求导数,则是二元函数()y x f z ,=对x 求偏导数,记为x z '或x z ∂∂,xf ∂∂,()y x f x ,'. 若把其中的自变量x 视为常量,只把自变量y 作为变量,对y 求导数,则是二元函数()y x f z ,=对y 求偏导数,记为y z '或y z ∂∂,yf ∂∂,()y x f y ,'. 因此,求二元函数的偏导数时,只需将一个自变量暂时看作常量,直接利用一元函数的求导方法,对另一个自变量进行求导即可.求某点处的偏导数值时,可先求偏导函数,然后代入点坐标即得.例9 求函数3232y xy x z +-=的偏导数x z ∂∂和yz ∂∂. 例10 已知函数()22ln y x e z y x ++=+,求()0,1x z∂∂.一般地,函数()y x f z ,=的偏导数还是x 和y 的函数,仍可继续求x 或y 的偏导数,这些偏导数(如果存在)则称为函数()y x f z ,=的二阶偏导数,分别记为22x z ∂∂,x y z ∂∂∂2,y x z ∂∂∂2,22y z ∂∂. 类似地,有更高阶的偏导数.3.3 微分定义 设函数)(x f y =在x 可导,则称x x f ∆')(为函数)(x f y =在点x 处的微分,记为dy 或()x df ,即x x f dy ∆'=)(.此时,称函数)(x f y =在点x 处可微. 当()0≠'x f 且x ∆很小时,有dy y ≈∆,即x x f x f x x f ∆≈-∆+)(')()(.这表明函数)(x f y =当自变量在点x 处取得微小改变量时,y ∆可以用dy 近似代替. 由于函数x y =的微分是dx x '=x x ∆=∆,所以有dx x f dy )('=.由此可知,函数)(x f y =的导数()dy f x dx'=可看成函数()y f x =的微分与自变量的微分的商(导数也叫微商),()y f x =的微分dy 等于()y f x =的导数()f x '与dx 的乘积,可微与可导是等价的.例1 求函数2x y =在2=x ,001.0=∆x 时的改变量及微分.例2 求下列函数的微分:(1)cos x y e =; (2)2ln 2y x x x =-.例3 一个外直径为10cm 的球壳厚度为0.125cm ,试求球壳体积的近似值.。

相关文档
最新文档