【精品】通用版2019年中考数学总复习:数与式综合复习--巩固练习(提高)
2019届成都市中考数学基础巩固专题复习(一)数与式
走进2019年中考初中数学基础巩固复习专题(一)数与式【知识要点】1.实数的有关概念 (1)实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。
解题中需考虑数的取值范围时,常常用到这种分类方法。
特别要注意0是自然数。
(2)数轴数轴的三要素:原点、正方向和单位长度。
实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。
在数轴上表示的两个数,右边的数总比左边的数大。
(3)绝对值 绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
(4)相反数、倒数相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。
“任意一对相反数的和是零”和“互为倒数的两个数的积是1”的特性常作为计算与变形的技巧。
(5)三种非负数||a a a a 、、()20≥形式的数都表示非负数。
“几个非负数的和(积)仍是非负数”与“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简求值。
(6)平方根、算术平方根、立方根的概念 2.实数的运算(1)实数的加、减、乘、除、乘方、开方运算,整数指数幂的运算。
(2)有理数的运算法则在实数范围仍然适用;实数的运算律、运算顺序。
(3)加法及乘法的运算律可用于实数运算的巧算。
(4)近似数的精确度、有效数字、科学记数法的形式为a a n⨯≤<10110(其中,||n 为整数)。
(5)实数大小的比较:两个实数比较大小,正数大于零和一切负数;两个正数,绝对值大的数较大;两个负数,绝对值大的数较小。
常用方法:①数轴图示法。
②作差法。
③平方法等。
【复习点拨】(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
中考总复习:数与式综合复习(提高)
中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程;(4)解——解出方程;(5)验——检验增根;(6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a、b、c三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a、b、c的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号.【答案与解析】由上图可得b<c<0<a,∴ a-b>0,a-c>0,b+c<0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a.【总结升华】由绝对值的定义我们知道:如果m>0,那么|m|=m;如果m<0,那么|m|=-m;如果m=0,那么|m|=0.要去掉绝对值符号,首先要弄清m的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB.当A、B两点中有一点在原点时,不妨设点A在原点,如图1-1,AB OB b a b===-;当A、B两点都不在原点时:(1)如图1-2,点A、B都在原点的右边,AB OB OA b a b a a b=-=-=-=-;(2)如图1-3,点A、B都在原点的左边,()AB OB OA b a b a a b a b=-=-=---=-=-;(3)如图1-4,点A、B在原点的两边,()AB OA OB a b a b a b a b=+=+=+-=-=-.O0 bB图1-2aAO(A)0 bB图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··2212 3.a b ab ab b a ab b a ∴=+=-=-=- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<,即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b 355315a a --22b a b aa b a b+++-的值. 【思路点拨】本题中根据b =355315a a --可以求出a ,b ,2b aa b++2b aa b+-开方数进行配方、化简. 【答案与解析】由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0,22()()222.b a b a a b a b a b a b ab ab a b b a ab ab ab ab a b b a ababab ab b+-+++-=+-=+-⎛=- ⎝= 当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b aa b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值; (3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数; 【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块, 黑色瓷砖(4n+6)块(均用含n 的代数式表示); (2)依题意得:n 2+5n+6=1056, 整理得:n 2+5n ﹣1050=0, 解得:n=﹣35(舍去),n=30, 答:此时n 的值为30; (3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元), 答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.中考总复习:数与式综合复习—巩固练习(提高)【巩固练习】一、选择题1. 把多项式1-x 2+2xy-y 2分解因式的结果是( )A.(1)(1)x y x y +--+B.(1)(1)x y x y --+-C.(1)(1)x y x y ---+D.(1)(1)x y x y +-++ 2.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是( ) A .145 B .140 C .146 D .1503.根据下表中的规律,从左到右的空格中应依次填写的数字是( )000110010111001111A .100,011B .011,100C .011,101D .101,1104.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是( ) A .m >n B .m <n C .m =n D .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕的条数是 ( )A .2n -1B .2n +1C .2n -1D .2n+1 6.(2015秋•重庆校级月考)如图图案都是同样大小的小正方形按一定的规律组成的,其中第1个图形中有5个小正方形,第2个图形有13个小正方形,第3个图形有25个小正方形,…,按此规律,则第8个图形中小正方形的个数为( )A .181B .145C .100D .88二、填空题7.若非零实数a ,b 满足2244a b ab +=,则ba= . 8.已知分式)1)(2(12---x x x ,当x = 时,分式的值为0.9.在实数范围内分解因式4(1)x y -+-2(x+y)= . 10. (2015秋•平山区校级月考)化简: (1)当x≥0时,= ;(2)当a≤0时,= ;(3)当a≥0,b<0时,= .11.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行1 1第二行1212第三行131613第四行1411211214第五行1512013012015…………根据前五行的规律,可以知道第六行的数依次是:.12.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n1=5 ,计算n12+1得a1;第二步:算出a1的各位数字之和得n2,计算n22+1得a2;第三步:算出a2的各位数字之和得n3,再计算n23+1得a3;…………依此类推,则a2012=_______________.三、解答题13.(2015春•碑林区期中)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.14.阅读下列题目的计算过程:xx x +---12132=)1)(1()1(2)1)(1(3-+---+-x x x x x x (A )=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D )(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 . (2)错误的原因 .(3)本题目正确的结论为 .15.已知271xx x =-+,求2421x x x ++的值.16. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++设...S =S 的值 (用含n 的代数式表示,其中n 为正整数).【答案与解析】 一、选择题 1.【答案】A ;【解析】22222121(2)1()(1)(1)x xy y x xy y x y x y x y -+-=--+=--=+--+. 2.【答案】D ;【解析】每个分数的分子均为1,分母为21n +或21n -(当n 为奇数时加1,当n 为偶数时减1),7为奇数,因而其分母为27150+=.3.【答案】B ;【解析】通过观察,不难发现两个并排的短横表示0,而一条长横表示1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这011和100 .4.【答案】C ;【解析】设地球仪赤道半径为r ,则2(1)22m r r πππ=+-=;设地球赤道半径为R ,则2(1)22n R R πππ=+-=,所以相等.5.【答案】C ;【解析】除了第一次对折得到1条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍. 6.【答案】B ;【解析】∵第1个图案中小正方形的个数为3+1+1=5; 第2个图案中小正方形的个数为5+3+1+3+1=13; 第3个图案中小正方形的个数为7+5+3+1+5+3+1=25; …∴第n 个图形的小正方体的个数(n+1)2+n 2;∴第8个图形中小正方形的个数为92+(9﹣1)2=81+64=145个.故选:B .二、填空题 7.【答案】2;【解析】将原式改写为22440a ab b -+=,所以2(2)0a b -=,可求出b =2a .8.【答案】-1;【解析】由题意210x -=且(2)(1)0x x --≠,所以x =-1.9.【答案】2(x+y-2); 【解析】此题如果按一般方法去分解,须将2(x y)+展开,结果将问题复杂化了,其实原式可化为2(x y)4(x y)4+-++,将x y +看成一个整体,再用公式法分解因式. 2(x y)4(x y 1).+-+-22(x y)4(x y)4(x y 2)=+-++=+-10.【答案】3x ;﹣a ;﹣3ab【解析】解:(1)∵x≥0,∴=|3x|=﹣3x ,故答案为:3x . (2)∵a≤0,∴=|a|=﹣a ,故答案为:﹣a . (3)∵a≥0,b <0,∴=|3ab|=﹣3ab,故答案为:﹣3ab .11.【答案】16、130、160、160、130、16 ;【解析】每行中相邻两个数相加等于上一行中间的数值.12.【答案】65;【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,a 4=26;…; 这样就发现规律:每三个为一个循环,2012÷3=670……2;即a 2012= a 2=65.答案为65.三、解答题13.【答案与解析】解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2;故答案为:(m ﹣n )2;(2)(m+n )2﹣(m ﹣n )2=4mn ;故答案为:(m+n )2﹣(m ﹣n )2=4mn ;(3)(m+n )(2m+n )=2m 2+3mn+n 2; (4)答案不唯一:(5)(x ﹣y )2=(x+y )2﹣4xy=(﹣6)2﹣2.75×4=25, ∴x﹣y=±5.14.【答案与解析】 (1)B ;(2)去分母; (3)23211x x x---+ 32(1)(1)(1)(1)(1)x x x x x x --=-+-+-322(1)(1)x x x x --+=+-11(1)(1)1x x x x--==+--.15.【答案与解析】因为 271xx x =-+,所以, 所以 2117x x x -+=,即187x x +=, 所以 242222111151149x x x x x x x ++⎛⎫=++=+-= ⎪⎝⎭ 所以 24249.115x x x =++16.【答案与解析】22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++ =21[1](1)n n ++∴S=1(1)12+⨯+1(1)23+⨯+1(1)34+⨯+…+1(1)(1)n n ++1111111=1223341n n n +-+-+-++-+ 1=11n n +-+122++=n n n .(利用拆项111(1)1n n n n =-++即可求和).。
2019华东师大初中数学中考总复习:数与式综合复习--知识讲解(提高)
中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小.(3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:(1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法:①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解.要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号.分式值为负⇔分子、分母异号. (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数;(3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a ,∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时:(1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.O 0b B 图1-2a AO (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式.(1)﹣18x 2y 2+9x 4﹣6x 3y .(2)1﹣m 2﹣n 2+2mn .(3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy );(2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n );(3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组,B baA 图1-3O 0baA 图1-4O 0B本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1).【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例6】 【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x xx x x x x ⎡⎤+-=--⎢⎥---⎣⎦22221(2)(2)(2)4(2)4x x x xx x x x x x x +-=-------22444x x x x x --=---22(4)()4x x x x ---=- 414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到.【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··22124 3.a b ab ab ba b a ab b a b a∴+=+=-=-=--- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间B. 7到8之间C. 8到9之间D. 9到10之间 【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<, 即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值. 【思路点拨】本题中根据b =355315a a -+-+可以求出a ,b ,再对2b a a b ++-2b a a b +-的被开方数进行配方、化简.【答案与解析】 由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0,22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab abab ab b+-++-+-=-+-=-+-⎛⎫=- ⎪⎝⎭= 当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例7】【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n 个图形的白瓷砖的每行有(n+1)个,每列有n 个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n ;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n ,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n 个图中,共有瓷砖(n 2+5n+6)块,其中白色瓷砖(n 2+n )块,黑色瓷砖(4n+6)块(均用含n 的代数式表示);(2)依题意得:n 2+5n+6=1056,整理得:n 2+5n ﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n 的值为30;(3)当n=30时4(4n+6)+3(n 2+n )=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.。
通用版2019年中考数学总复习:函数综合--巩固练习(基础)
中考总复习:函数综合—巩固练习(基础)【巩固练习】 一、选择题1.(2015•武汉模拟)二次函数y=kx 2﹣6x+3的图象与x 轴有交点,则k 的取值范围是( ) A .k <3B . k <3且k ≠0C . k ≤3D . k ≤3且k ≠02.如图,直线l 和双曲线ky x=(k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 面积是S 1、△BOD 面积是S 2、△POE 面积是S 3、则( )A. S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1=S 2>S 3 D .S 1=S 2<S 33.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
下面能反映当天小华的爷爷离家的距离y 与时间x 的函数关系的大致图象是( )4.已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( )A .a >1B .a <1C .a >0D .a <05.下列函数中,当x >0时,y 值随x 值增大而减小的是( )A .y =x 2B .y =x -1C .y =34x D .y =1x6.在平面直角坐标系中,将抛物线y =x 2+2x +3绕着它与y 轴的交点旋转180°,所得抛物线的解析式是( )A .y =-(x +1)2+2 B .y =-(x -1)2+4 C .y =-(x -1)2+2 D .y =-(x +1)2+4二、填空题7.(2016•贵阳模拟)如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 .8.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是________米. 9.已知近视眼镜的度数y(度)与镜片焦距x(m)成反比例关系,已知400度近视眼镜镜片的焦距为0.25 m ,则y 与x 的函数关系式为____ ____. 10.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B ,C ,D 分别是A 关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是________.第8题 第10题 第11题11.如图,直线3y x =,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再经过A 2作x 轴的垂线交直线于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴于点A 3,…,按此做法进行下去,点A 5的坐标为(________,________).12.已知二次函数2(2)(1)y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”,下图分别是当a =-1,a =0,a =1,a =2时二次函数的图象,它们的顶点在一条直线上,这条直线的解析式是y =___ ____.三、解答题13.直线l交反比例函数3yx的图象于点A,交x轴于点B,点A,B与坐标原点O构成等边三角形,求直线l的函数解析式.14.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.15.已知如图所示,在平面直角坐标系中,点A在第一象限,点B的坐标为(3,0),OA=2,∠AOB=60°.(1)求点A的坐标;(2)若直线AB交y轴于点C,求△AOC的面积.16.如图所示,等腰三角形ABC以2米/秒的速度沿直线l向正方形移动,直到AB与CD重合.设x秒时,三角形与正方形重叠部分的面积为y平方米.(1)写出y与x的关系式;(2)当x=2,3.5时,y分别是多少?(3)当重叠部分的面积是正方形面积的一半时,三角形移动了多长时间?【答案与解析】一、选择题1.【答案】D;【解析】∵二次函数y=kx2﹣6x+3的图象与x轴有交点,∴方程kx2﹣6x+3=0(k≠0)有实数根,即△=36﹣12k≥0,k≤3,由于是二次函数,故k≠0,则k的取值范围是k≤3且k≠0.故选D.2.【答案】D;【解析】S1=S△AOC=12k,S2=S△BOD=12k,S3=S△POE>12k.所以S1=S2<S3.3.【答案】C;【解析】散步时用时较长,而跑步用时较短,打一会太极拳说明这一时间段离家的距离不变,因而只有C 选项符合.4.【答案】A;【解析】由图象可知k>0,即a-1>0,所以a>1.5.【答案】D;【解析】y=1x分布第一、三象限,当x>0时,y随x的增大而减小.6.【答案】B;【解析】抛物线y=x2+2x+3的顶点为(-1,2),与y轴交于点(0,3),开口向上;旋转后其顶点为(1,4),开口向下. 所以y=-(x-1)2+4.二、填空题7.【答案】3;【解析】设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B 在反比例函数y=的图象上, ∴当y=b ,x=, 即B 点坐标为(,b ), ∴AB=﹣(﹣)=,∴S △ABC =•AB •OP=••b=3.故答案为:3. 8.【答案】0.5;【解析】首先求出反比例函数的表达式,可由图中点的坐标(5,1)求出函数式中的待定系数k ,然后利用反比例函数表达式即可得解.9.【答案】100(0)y x x=>; 【解析】由于y 与x 成反比例,则ky x=,当y =400时,x =0.25,所以k =400×0.25=100, 焦距不能为负值.故100(0)y x x=>. 10.【答案】4;【解析】由题意得AD =2|x|,AB =2x-,四边形ABCD 是矩形, ∴2||ABCD S ADAB x ==矩形24x-=. 11.【答案】(16,0);【解析】当x =1时,3y =,所以B 1(1,3),OB 1=221(3)2+=,所以A 2(2,0),当x =2时,y =23,所以B 2(2,23,OB 2=4, 所以A 3(4,0),依次类推A 4(8,0),A 5(16,0).12.【答案】 112y x =-. 【解析】当a =0时,抛物线2(2)(1)y x a a =-+-的顶点坐标是(0,-1),当a =1时,它的顶点坐标是(2,0),设该直线解析式为y =kx+b .则1,20.b k b =-⎧⎨+=⎩ ∴1,1.2b k =-⎧⎪⎨=⎪⎩∴这条直线的解析式是112y x =-. 三、解答题 13.【答案与解析】由题意可知直线与反比例函数3y x=的图象相切 设A 点的横坐标为m,则由等边三角形△OAB 得,纵坐标为3m ,即A (m, 3m ), 因为点A 在反比例函数3y x=的图象上,所以m ×3m =3,1m =±,A (1, 3)或(-1, -3),则OB=OA=2m,所以B (2,0)、或B (-2,0),直线过A (1, 3)、B (2,0)的解析式为323y x =-+; 直线过A (-1,- 3)、B (-2,0)的解析式为323y x =--.14.【答案与解析】解:(1)由题意可得:﹣(﹣1)2+2×(﹣1)+c=0, 解得:c=3, ∴y=﹣x 2+2x+3,∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴顶点M (1,4);(2)∵A (﹣1,0),抛物线的对称轴为直线x=1, ∴点B (3,0),∴EM=1,BN=2,∵EM∥BN,∴△EMF∽△BNF,∴=()2=()2=.15.【答案与解析】解;(1)如图所示,过点A作AD⊥x轴,垂足为D.则OD=OA cos 60°=2×12=1,(2)设直线AB的解析式为33322y x=-+.令x=0,得332y=,∴332OC=.∴11333312224 AOCS OC OD=⨯⨯=⨯⨯=△.16.【答案与解析】解:(1)如图所示,设当△ABC移动x秒时,到达如图位置,则△ECM的面积为y.CE=2x,ME=2x,所以y=2x2(x≥0).(2)当x=2时,y=2×4=8,当x=3.5时,y=2×(3.5)2=24.5.(3)正方形面积为100,当y=50时,2x2=50,x=5.即三角形移动5秒时,重叠部分面积等于正方形面积的一半.。
中考数学复习《数与式》考点及测试题(含答案)
中考数学复习《数与式》考点及测试题(含答案)【专题分析】本专题的主要考点有实数的有关概念,科学记数法,非负数的性质,实数的运算;幂的运算,整式的运算,因式分解;分式的概念,分式的加减,分式的混合运算;二次根式的有关概念,二次根式的性质,二次根式的运算等.中考中数与式的考查一般以客观张题为主,但分式的化简求值经常有开放型题目.数与式的考查常见题型以选择题或填空题为主,整式和分式的化简求值一般以解答题的形式进行考查.数与式在中考中所占比重约为20%~25%. 【解题方法】解决数与式问题的常用方法有数形结合法,特殊值法,分类讨论法,整体代入法,设参数法,逆向思维法等. 【知识结构】【典例精选】:计算:2-1-3tan 60°+(π-2 015)0+⎪⎪⎪⎪⎪⎪-12.【思路点拨】根据负整数指数幂、特殊角的三角函数、零次幂以及绝对值的概念计算即可.【自主解答】解:原式=12-3×3+1+12=-1.把x 2y -2y 2x +y 3分解因式正确的是( )A.y(x2-2xy+y2) B.x2y-y2(2x-y)C.y(x-y)2 D.y(x+y)2【思路点拨】首先提取公因式y,再利用完全平方公式进行二次分解即可.答案:C规律方法:利用两种方法结合的分解因式题目,提公因式后不要忘记利用公式法二次分解,分解因式要在规定的范围内分解彻底.先化简,再求值:(x+3)(x-3)+2(x2+4),其中x= 2.【思路点拨】原式第一项利用平方差公式展开,第二项去括号,合并同类项得到最简结果,将x的值代入计算即可求出代数式的值.【自主解答】解:原式=x2-9+2x2+8=3x2-1.当x=2时,原式=3×(2)2-1=5.规律方法:整式的计算,要根据算式的特点选择合适的方法,可先选择乘法公式展开,然后合并;或先因式分解,然后计算.先化简,再求值:m-33m2-6m÷⎝⎛⎭⎪⎫m+2-5m-2,其中m是方程x2+3x+1=0的根.【思路点拨】在化简时要先算括号里面的,再把除法变为乘法,然后分解因式并约分,最后相乘.【自主解答】解:原式=m-33m m-2÷m2-9m-2=m-33m m-2×m-2m+3m-3=13m m+3.∵m是方程x2+3x+1=0的根,∴m2+3m+1=0,∴m2+3m=-1,即m(m+3)=-1,∴原式=13×-1=-13.规律方法:1.本题采用了整体代入法求解,这是求代数式的值常用的方法,体现了整体思路的应用.2.分式的化简求值是先化简,再求值;化简时一定要化到最简,结果是最简分式或整式.【能力评估检测】一、选择题1.已知空气的单位体积质量是0.001 239 g/cm 3,则用科学记数法表示该数为( A )A .1.239×10-3g/cm 3B .1.239×10-2 g/cm 3C .0.123 9×10-2 g/cm 3D .12.39×10-4 g/cm 3 2.下列运算错误的是( B )A. ⎝ ⎛⎭⎪⎫120=1 B .x 2+x 2=2x 4C .|a |=|-a | D. ⎝ ⎛⎭⎪⎫b a 23=b3a63.下列运算错误的是( D )A.a -b 2b -a2=1 B.-a -ba +b=-1 C. 0.5a +b 0.2a -0.3b =5a +10b 2a -3b D. a -b a +b =b -a b +a4.下列二次根式中,不能与2合并的是( C ) A.12B. 8C. 12D.18 5.若m =22×(-2),则有( C )A .0<m <1B .-1<m <0C .-2<m <-1D .-3<m <-26.(2015·绍兴鲁迅中学模拟)下列三个分式12x 2,5x -14m -n ,3x的最简公分母是( D )A .4(m -n )xB .2(m -n )x 2C. 14x2m -nD .4(m -n )x 27.已知x -1x =3,则4-12x 2+32x 的值为( D )A .1 B. 32 C. 52 D. 72【解析】把x -1x =3两边同乘x ,得x 2-1=3x ,即x 2-3x =1,所以4-12x 2+32x =4-12(x 2-3x )=4-12×1=72. 8.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为( )A .135B .170C .209D .252【解析】观察前四个表格中的数字,第1个表格中 9=2×4+1,第2个表格中20=3×6+2,第3个表格中35=4×8+3,第4个表格中54=5×10+4,且每个表格中左下角的数字是右上角数字的一半,左上角的数字比左下角数字小1,所以b =12×20=10,a =b -1=9,x =20×10+9=209.故选C.答案: C9.实数a ,b 在数轴上对应的点的位置如图所示,计算|a -b |的结果为( C )A .a +bB .a -bC .b -aD .-a -b【解析】由图可知,a <0,b >0,所以a -b <0,所以 |a -b |=-(a -b ),C 正确.10.如图,在边长为2a 的正方形中央剪去一边长为 (a +2)的小正方形(a >2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( C )第1个 第2个 第3个 第4个 … … …A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2【解析】平行四边形的面积为(2a )2-(a +2)2=4a 2-(a 2+4a +4)=4a 2-a 2-4a -4=3a 2-4a -4.故选C.11.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x +1x(x >0)的最小值是2”,其推导方法如下:在面积是1的矩形中设矩形的一边长为x ,则另一边的长为1x,矩形的周长为2⎝ ⎛⎭⎪⎫x +1x ;当矩形成为正方形时,就有x =1x (x >0),解得x =1.这时矩形的周长2⎝ ⎛⎭⎪⎫x +1x =4最小, 因此x +1x (x >0)的最小值是2.模仿张华的推导,你求得式子x 2+9x(x >0)的最小值是( )A .2B .4C .6D .10【解析】∵x >0,∴在原式中分母分子同除以x ,即x 2+9x =x +9x ,在面积是9的矩形中设矩形的一边长为x ,则另一边长为9x ,矩形的周长为2⎝⎛⎭⎪⎫x +9x ;当矩形成为正方形时,就有x =9x (x >0),解得x =3.这时矩形的周长2⎝⎛⎭⎪⎫x +9x =12最小,因此x +9x(x >0)的最小值是6.故选C.答案: C 二、填空题12.分解因式:9x 3-18x 2+9x =9x (x -1)2 . 13.若式子2-xx有意义,则实数x 的取值范围是x ≤2且x ≠0 .14.计算:-36+214+327=-32. 15.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为12.【解析】由题意知,∵(a +6)2≥0,b 2-2b -3≥0.而(a +6)2+b 2-2b -3=0,∴(a +6)2=0且b 2-2b -3=0.整理,得a =-6,b 2-2b =3,∴2b 2-4b -a =2(b 2-2b )-a =2×3-(-6)=12.三、解答题16.计算:||-3-12+2sin 60°+⎝ ⎛⎭⎪⎫13-1.解:原式=3-23+2×32+3=3. 17.先化简,再求值:(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =33. 解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2. 当x =-1,y =33时,原式=-1+1=0. 18.先化简,再求值:⎝⎛⎭⎪⎫1-1x +2÷x 2+2x +1x +2,其中x =3-1. 解:原式=x +1x +2÷x +12x +2=x +1x +2·x +2x +12=1x +1. 当x =3-1时,原式=13-1+1=13=33.19.探究下面的问题:(1)在图甲中,阴影部分的面积和为a 2-b 2(写成两数平方差的形式); (2)将图甲中的第①块割下来重新与第②块拼成如图乙所示的一个长方形,那么这个长方形的长是a +b ,宽是 a -b ,它的面积是(a +b )(a -b )(写成两个多项式的形式);(3)由这两个图可以得到的乘法公式是(a +b )(a -b )=a 2-b 2(用式子表示);(4)运用这个公式计算:(x -2y +3z )(x +2y -3z ).(x -2y +3z )(x +2y -3z )=[x -(2y -3z )]·[x +(2y -3z )]=x 2-(2y -3z )2=x 2-4y 2+12yz -9z 2.20.如果10b =n ,那么b 为n 的劳格数,记为b =d (n ),由定义可知:10b=n 与b =d (n )所表示的b ,n 两个量之间的同一关系.(1)根据劳格数的定义,填空:d (10)=1,d (10-2)=-2; (2)劳格数有如下运算性质:若m ,n 为正数,则d (mn )=d (m )+d (n ),d ⎝ ⎛⎭⎪⎫m n =d (m )-d (n ).根据运算性质,填空:d a 3d a=3(a 为正数),若d (2)=0.301 0,则d (4)=0.602 0,d (5)=0.6990,d (0.08)=-1.097.(3)如表中与数x 对应的劳格数d (x )有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27 d (x ) 3a -b +c 2a -ba +c1+a -b -c3-3a -3c4a -2b3-b -2c6a -3b解:(1)1 -2(2)d a 3d a =3d a d a=3.由运算性质可得,d (4)=0.602 0,d (5)=d (10)-d (2)= 1-0.301 0=0.699 0,d (0.08)=-1.097.(3)若d (3)≠2a -b ,则d (9)=2d (3)≠4a -2b ,d (27)=3d (3)≠6a -3b ,从而表中有三个劳格数是错误的,与题设矛盾,∴d (3)=2a -b ;若d (5)≠a +c ,则d (2)=1-d (5)≠1-a -c , ∴d (8)=3d (2)≠3-3a -3c ,d (6)=d (3)+d (2)≠1+a -b -c ,表中也有三个劳格数是错误的,与题设矛盾.∴d(5)=a+c.∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:d(1.5)=d(3)+d(5)-1=3a-b+c-1,d(12)=d(3)+2d(2)=2-b-2c.。
通用版2019年中考数学总复习:数与式综合复习--知识讲解(基础)
中考总复习:数与式综合复习—知识讲解(基础)责编:常春芳【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数.有理数和无理数统称实数.2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系.要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础.3.相反数实数a和-a叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等.要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a和b互为相反数,那么a+b=0;反过来,如果a+b=0,那么a和b互为相反数.4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那么|a|=0.要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数.5.实数大小的比较在数轴上表示两个数的点,右边的点所表示的数较大.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念及性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式: (1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式. 常用的二次根式的有理化因式: (1)a a 与互为有理化因式;(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算 (1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变.要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法: ①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解.②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简. (2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++. (3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式; ②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念 形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A M B B M÷=÷.(其中M 是不等于零的整式) (3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:a c acbd bd=. ③除法:a c a d adb d bc bc÷==.④乘方:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的有关概念及运算1.实数2-,0.3,17,2,π-中,无理数的个数是( ) A .2 B .3 C .4 D .5【思路点拨】常见的无理数有以下几种形式:(1)字母型:如π是无理数,24ππ、等都是无理数,而不是分数; (2)构造型:如2.10100100010000…(每两个1之间依次多一个0)就是一个无限不循环的小数;(3)根式型:3256、、,…都是一些开方开不尽的数; (4)三角函数型:sin35°、tan27°、cos29°等. 【答案】A ;【解析】本题主要考查无理数的概念.无理数是指无限不循环小数,2,π-都是无限不循环小数,故共有2个无理数.【总结升华】无理数通常有以下几类:①开方开不尽的数;②含π的数;③看似循环但实际不循环的小数;④三角函数型:sin35°、tan27°、cos29°等.抓住这几类无理数特征,则可以轻松解决有关无理数的相关试题.举一反三:【高清课程名称:数与式综合复习 高清ID 号: 402392 关联的位置名称(播放点名称):例1—2】 【变式】如图,数轴上A 、B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ).A .32--B .-31-C .32+-D .31+【答案】A.2.计算:(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦; (2)85(2)25-⨯ .【思路点拨】注意在第(1)题中,32-与3(2)-的不同运算顺序和4499÷⨯的运算顺序. 【答案与解析】(1)23220.2549403⎡⎤⎛⎫-⨯-÷-⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦480.2549409⎛⎫=-⨯-÷⨯- ⎪⎝⎭9249402(8140)4⎛⎫=--⨯⨯-=--- ⎪⎝⎭24143=--=-.(2)85(2)25-⨯444442525(425)25100252500000000=⨯⨯=⨯⨯=⨯=.【总结升华】在进行有理数运算时,要注意运算的顺序,要有灵活运用运算律、运算法则和相反数、倒数、0、1的运算特性的意识,寻求简捷的运算途径.举一反三: 【变式】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭; 【答案】2517( 2.4)58612⎛⎫-+-+⨯- ⎪⎝⎭2 1.50.4 1.4 1.5 1.4 2.95=--+-=--=- .3. 若x-3+x-y+1=0,计算322x y+xy +4y .【思路点拨】几个非负数相加和为0,则这几个非负数必定同时为0,进而求出x 、y 的值. 【答案与解析】依题意得30,10,x x y -=⎧⎨-+=⎩解得3,4,x y =⎧⎨=⎩∴3222224x y+xy +y(x +xy+)y(x+)(x+)(3)410.44222y y y y y ====+⨯=【总结升华】2a ,(a 0)a a ≥,这三个非负数中任意几个相加得0,则每一个都得0.举一反三:【变式】已知|1|80a b ++-=,则a b -= .【答案】本题考查绝对值与算数平方根的非负性,两个非负数的和为0,所以这两数都为0.因为|1|80a b ++-=,所以a=-1,b=8. a b -=﹣9.类型二、分式的有关运算4.对于分式211x x -+,当x 取何值时,(1)分式有意义? (2)分式的值等于零?【思路点拨】当分母等于零时,分式没有意义,此外,分式都有意义;当分子等于零,并且分母不等于零时,分式的值等于零. 【答案与解析】(1)由分母x+1=0,得x =-1.∴ 当x ≠-1时,分式211x x -+有意义.(2)由分子210x -=,得1x =或1x =-. 而当x =-1时,分母x+1=0; 当x =1时,分母10x +=.∴ 当x =l 时,分式211x x -+的值等于零.【总结升华】讨论分式有无意义时,一定要对原分式进行讨论,而不能讨论化简后的分式.类型三、二次根式的运算5.(2014春•平泉县校级期中)已知a=,求﹣的值.【思路点拨】先利用因式分解原式进行化简,再进行约分和利用二次根式的性质计算,由于a==4﹣2,则a ﹣4<0,所以原式可化简为a ﹣3+,然后把a 的值代入计算即可. 【答案与解析】 解:原式=﹣=a ﹣3﹣, ∵a==4﹣2,∴a ﹣4<0, ∴原式=a ﹣3+=a ﹣3+, =4﹣2﹣3+=2﹣.【总结升华】本题考查了二次根式的化简求值:一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.也考查了分式的混合运算.举一反三:【变式】计算:2(1848)(212)(23)+---;【答案】2(1848)(212)(23)+---(3243)(223)(2263)=+---+646662452623=+---+=-.6.当x 为何值时,下列式子有意义?(1)32x --; (2)125xx -+. 【思路点拨】第(1)题中,根号外的负号与根号是否有意义无关;第(2)题中,因为与分式有关,因此要综合考虑x 的取值范围. 【答案与解析】(1)320x -≥,即32x ≤. ∴ 当32x ≤时,32x --有意义. (2)120x -≥,且x+5≠0, ∴ 当12x ≤,且x ≠-5时,125x x -+有意义. 【总结升华】要使偶次根式有意义,被开方数为非负数;分式有意义分母不为0.举一反三:【高清课程名称:数与式综合复习 高清ID 号:402392 关联的位置名称(播放点名称):例1—2】 【变式】下列说法中,正确的是( )A .3的平方根是3B .5的算术平方根是5C .-7的平方根是7-±D .a 的算术平方根是a【答案】B.类型四、数与式的综合运用7.(2014秋•崂山区校级期末)用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地面:(1)观察图形,填写下表: 图形(1) (2) (3) … 黑色瓷砖的块数 4 7 … 黑白两种瓷砖的总块数1525…(2)依上推测,第n 个图形中黑色瓷砖的块数为 ;黑白两种瓷砖的总块数为 (都用含n 的代数式表示)(3)白色瓷砖的块数可能比黑色瓷砖的块数多2015块吗?若能,求出是第几个图形;若不能,请说明理由.【思路点拨】找规律题至少要推算出三个式子的值,再去寻求规律,考察了认真观察、分析、归纳、由特殊到一般,由具体到抽象的能力. 【答案与解析】解:(1)填表如下: 图形(1) (2) (3) … 黑色瓷砖的块数 4 7 10 … 黑白两种瓷砖的总块数152535…(2)第n 个图形中黑色瓷砖的块数为3n+1;黑白两种瓷砖的总块数为10n+5; (3)能,理由如下:10n+5﹣(3n+1)﹣(3n+1)=2015, 解得:n=503 答:第503个图形.【总结升华】本题考查数形结合、整理信息,将图形转化为数据,猜想规律、探求结论.抓住其中的黑色瓷砖数目的变化规律,结合图形,观察其变化规律.举一反三:【变式】如图所示的是一块长、宽、高分别为7cm ,5cm 和3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面爬到和顶点A 相对的顶点B 处吃食物,那么它要爬行的最短路径的长是多少?22(57)3153++=(cm).【答案】路径①的长为路径②的长为22(37)5125++=(cm). 路径③的长为22(35)7113++=(cm).所以它要爬行的最短路径长为113cm.。
通用版2019年中考数学总复习:数与式综合复习--巩固练习(基础)
中考总复习:数与式综合复习—巩固练习(基础)【巩固练习】一、选择题1.下列运算中,计算结果正确的是( )A.632x x x =⋅B.222+-=÷n n n x x xC. 9234)2(x x =D.633x x x =+ 2. ()1-22⎛⎫⨯ ⎪⎝⎭20112012=( )A .1B .-1C .2D .-23.已知,4a b m ab +==-,化简(2)(2)a b --的结果是( )A .6B .2m -8C .2mD .-2m4.当x <1时,的结果为 ( )A. x -1B. -x -1C. 1-xD. x +15.计算44()()xy xy x y x y x y x y -++--+的正确结果是 ( ) A .22y x - B .22x y - C .224x y - D .224y x -6.(2015春•重庆校级期中)用同样大小的黑色的小三角形按如图所示的规律摆放,则第100个图形有( )个黑色的小三角形.A .300B .303C .306D .309二、填空题7.若单项式22x a 与313x a --是同类项,则x= .8.(2015春•萧山区校级期中)化简的结果是 .已知x+|x ﹣1|=1,则化简的结果是 .9.已知两个分式:A =442-x ,B =x x -++2121,其中x ≠±2.下面有三个结论: ①A =B ; ②A 、B 互为倒数; ③A 、B 互为相反数.正确的是 .(填序号)10.已知a 的值为 .11.在实数范围内因式分解44-x = _____ _____.12.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.三、解答题13.(2015春•扬中市校级月考)计算(1);(2).14.观察下列各式及其验证过程验证验证:=验证 =(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证; (2)针对上述各式反映的规律,写出用n(n 为任意自然数,且n ≥2)表示的等式,并给出证明.15.(2014秋•泾川县校级月考)分解因式:(1)﹣4x 2yz ﹣12xy 2z+4xyz ;(2)ax 2﹣4ax+4a ;(3)x 2﹣5x+6;(4)(b ﹣a )2﹣2a+2b ;(5)(a 2+b 2)2﹣4a 2b 2.16. A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原速度的2倍,结果甲、乙两车同时到达A 地,求甲车原的速度和乙车的速度.【答案与解析】一、选择题1.【答案】B ;【解析】同底数幂的乘法法则是底数,不变指数相加,而除法可能转化为乘法进行,幂的乘方是底数不变,指数相乘.A 项结果应等于5x ,C 项结果应等于64x ,而D 项无法运算.2.【答案】C ;【解析】原式=11==22⨯⨯201120112011()22(2)22. 3.【答案】选D ;【解析】原式按多项式乘法运算后为2()4ab a b -++,再将,4a b m ab +==-代入,可得-2m .4.【答案】C ;【解析】开方的结果必须为非负数.5.【答案】B ;【解析】将括号内的式子分别通分.6.【答案】B ;【解析】(1)第一个图需三角形6个,第二个图需三角形9,第三个图需三角形12,第四个图需三角形15,第五个图需三角形18,…第n 个图需三角形3(n+1)枚.∴第100个图形有3(100+1)=303个黑色的小三角形.故选:B . 二、填空题7.【答案】1;【解析】 ∵ 22x a 与313x a --是同类项,∴ 231x x =-,解得x =1. 8.【答案】6;﹣2x+3.【解析】=6;∵x+|x ﹣1|=1,∴|x ﹣1|=﹣(x ﹣1),∴x ﹣1≤0,∴x ≤1,∴原式=|x ﹣1|+|2﹣x|=﹣(x ﹣1)+2﹣x=﹣x+1+2﹣x=﹣2x+3.故答案为:6;﹣2x+3.9.【答案】③;【解析】因为:B=xx -++2121 =424222-+---x x x x =442--x =-A 故选③.10.【答案】【解析】∵02≥-a ,∴2a ≤0,而2a ≥0,∴a =0, ∴原式=282-=-11.【答案】)2)(2)(2(2-++x x x ;【解析】观察多项式44-x ,发现其有平方差公式特点,所以可以使用平方差公式进行因式分解.需要注意要将因式分解在实数范围内进行到底,且不可半途而废.12.【答案】3张;【解析】本题考查的相关知识有整式的乘法,乘法公式,数形结合思想.解答思路:可由面积相等入手,图形拼合前后面积不变,所以(a +2b) (a +b)=a 2+3ab+2b 2.三、解答题13.【答案与解析】解:(1)原式=÷ = •=;(2)原式=•(﹣)•3•==.14.【答案与解析】.验证(2)由题设及(1)的验证结果,•可猜想对任意自然数n(n≥2)都有.证明:∵n,∴15.【答案与解析】解:(1)﹣4x2yz﹣12xy2z+4xyz=﹣4xyz(x+3y﹣1);(2)ax2﹣4ax+4a=a(x2﹣4x+4)=a(x﹣2)2;(3)x2﹣5x+6=(x﹣2)(x﹣3);(4)(b﹣a)2﹣2a+2b=(b﹣a)2﹣2(a﹣b)=(a﹣b)(a﹣b﹣2);(5)(a2+b2)2﹣4a2b2=(a2+b2﹣2ab)(a2+b2+2ab)=(a﹣b)2(a+b)2.16.【答案与解析】设甲车原的速度为千米/时,乙车的速度为千米/时,据题意得:解得经检验为方程组的解,并且符合题意.答:甲车原的速度为45千米/时,乙车的速度为30千米/时.。
中考总复习:数与式综合复习--巩固练习(提高)
中考总复习:数与式综合复习—巩固练习(提高)【巩固练习】一、选择题1.把多项式1-x 2+2xy-y 2分解因式的结果是()A.(1)(1)x y x y +--+ B.(1)(1)x y x y --+-C.(1)(1)x y x y ---+ D.(1)(1)x y x y +-++2.按一定的规律排列的一列数依次为:111111,,,,,2310152635┅┅,按此规律排列下去,这列数中的第7个数是( )A .145 B .140 C .146 D .1503.根据下表中的规律,从左到右的空格中应依次填写的数字是()000110010*********A .100,011 B .011,100 C .011,101 D .101,1104.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是( )A .m >nB .m <nC .m =nD .不能确定5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,那么对折n 次后折痕的条数是 ( )A .2n -1B .2n +1C .2n -1D .2n +16.如图所示,图(1)是一个水平摆放的小正方体木块,图(2),(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去, 至第八个叠放的图形中,小正方体木块总数应是 ( )A.66B.91C.120D.153二、填空题7.若非零实数a ,b 满足2244a b ab +=,则b a = .8.已知分式)1)(2(12---x x x ,当x = 时,分式的值为0.9.在实数范围内分解因式 = .4(1)x y -+-2(x+y (10. 有一大捆粗细均匀的电线,现要确定其长度的值,从中先取出1米长的电线,称出它的质量为a ,再称其余的电线总质量为b ,则这捆电线的总长度是 米.11.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行11第二行 12 12第三行 13 16 13第四行 14 112 112 14第五行 15 120 130 120 15… …… …根据前五行的规律,可以知道第六行的数依次是: .12.让我们轻松一下,做一个数字游戏:第一步:取一个自然数n 1=5 ,计算n 12+1得a 1;第二步:算出a 1的各位数字之和得n 2,计算n 22+1得a 2;第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3;…………依此类推,则a 2012=_______________.三、解答题13.(1)设x ,,求代数式的值.y =2223()(2)xy x y x y +--+(2)已知,,求的值.x =y =22x y x y ++14.阅读下列题目的计算过程:xx x +---12132=)1)(1()1(2)1)(1(3-+---+-x x x x x x (A )=(x -3)-2(x -1) (B )=x -3-2x +1 (C )=-x -1 (D )(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 .(2)错误的原因 .(3)本题目正确的结论为 .15.已知271x x x =-+,求2421x x x ++的值.16. 设12211=112S ++,22211=123S ++,32211=134S ++,…, 2211=1(1)n S n n +++设...S =+++S 的值 (用含n 的代数式表示,其中n 为正整数).【答案与解析】一、选择题1.【答案】A ;【解析】22222121(2)1()(1)(1)x xy y x xy y x y x y x y -+-=--+=--=+--+.2.【答案】D ;【解析】每个分数的分子均为1,分母为21n +或21n -(当n 为奇数时加1,当n 为偶数时减1),7为奇数,因而其分母为27150+=.3.【答案】B ;【解析】通过观察,不难发现两个并排的短横表示0,而一条长横表示1,所表示的数是从上往下看,因而表格中的两个空格中所填的数这011和100 .4.【答案】C ;【解析】设地球仪赤道半径为r ,则2(1)22m r r πππ=+-=;设地球赤道半径为R ,则2(1)22n R R πππ=+-=,所以相等.5.【答案】C ;【解析】除了第一次对折得到1条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍.6.【答案】C ;【解析】每增加一层所多出的个数为原来最下面一层个数加4,列出前面几组数据,第一个叠放的图形小正方体木块总数:1,第二个叠放的图形小正方体木块总数:1+(1+4),第三个叠放的图形小正方体木块总数:1 +(1+4)+(1+4×2,第n 个叠放的图形小正方体木块总数:1 +(1+4)+(1+4×2)+…+[1+4(n - 1)]=2(1)422n n n n n -+=-(n 表示第几个叠放的图形),当n =8时,共有2288120⨯-=.二、填空题7.【答案】2;【解析】将原式改写为22440a ab b -+=,所以2(2)0a b -=,可求出b =2a .8.【答案】-1;【解析】由题意210x -=且(2)(1)0x x --≠,所以x =-1.9.【答案】;2(x+y-2( 【解析】此题如果按一般方法去分解,须将2(x y)+展开,结果将问题复杂化了,其实原式可化为2(x y)4(x y)4+-++,将x y +看成一个整体,再用公式法分解因式.2(x y)4(x y 1).+-+-22(x y)4(x y)4(x y 2)=+-++=+- 10.【答案】(1b a+)米【解析】先取1米长的电线,称出它的质量为a ,其余电线质量为b ,则其余电线的长度为b a米,这捆电线的总长度为(1b a+)米.11.【答案】16、130、160、160、130、16 ; 【解析】每行中相邻两个数相加等于上一行中间的数值.12.【答案】65;【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律.由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,a 4=26;…;这样就发现规律:每三个为一个循环,2012÷3=670……2;即a 2012= a 2=65.答案为65.三、解答题13.【答案与解析】(1)2223()(2)xy x y x y +--+ =22223(2)(2)xy x xy y x y +-+-+=2222322xy x xy y x y+-+-- =.2xy x -当x ,y .22-=-(2)∵ ,21)3x ==-=-21)3y ==+=+∴ 22x y x y +=+.317==14.【答案与解析】(1)B ;(2)去分母; (3)23211x x x---+32(1)(1)(1)(1)(1)x x x x x x --=-+-+-322(1)(1)x x x x --+=+-11(1)(1)1x x x x--==+--.15.【答案与解析】因为 271x x x =-+,所以 , 所以 2117x x x -+=,即187x x +=,所以 242222111151149x x x x x x x ++⎛⎫=++=+-= ⎪⎝⎭ 所以 24215149x x x =++.16.【答案与解析】22111(1)n S n n =+++=21111[]2(1)(1)n n n n +-+⨯++=2111[]2(1)(1)n n n n ++⨯++=21[1(1)n n ++∴S=1(112+⨯+1(1)23+⨯+1(134+⨯+…+1(1(1)n n ++ 1111111=1223341n n n +-+-+-++-+L 1=11n n +-+122++=n n n .(利用拆项111(1)1n n n n =-++即可求和).。
2019届成都市中考数学基础巩固专题复习(一)数与式
走进2019年中考初中数学基础巩固复习专题(一)数与式【知识要点】1.实数的有关概念(1)实数分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎩⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩正整数整数零负整数有理数实数正分数分数负分数无理数-无限不循环小数------(有限小数和无限循环小数) 实数还可以分为:正实数、零、负实数;有理数还可以分为:正有理数、零、负有理数。
解题中需考虑数的取值范围时,常常用到这种分类方法。
特别要注意0是自然数。
(2)数轴数轴的三要素:原点、正方向和单位长度。
实数与数轴上的点是一一对应的,这种一一对应关系是数学中把数和形结合起来的重要基础。
在数轴上表示的两个数,右边的数总比左边的数大。
(3)绝对值绝对值的代数意义:绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。
(4)相反数、倒数相反数以及倒数都是成对出现的,零的相反数是零,零没有倒数。
“任意一对相反数的和是零”和“互为倒数的两个数的积是1”的特性常作为计算与变形的技巧。
(5)三种非负数 ||a a a a 、、()20≥形式的数都表示非负数。
“几个非负数的和(积)仍是非负数”与“几个非负数的和等于零,则必定每个非负数都同时为零”的结论常用于化简求值。
(6)平方根、算术平方根、立方根的概念2.实数的运算(1)实数的加、减、乘、除、乘方、开方运算,整数指数幂的运算。
(2)有理数的运算法则在实数范围仍然适用;实数的运算律、运算顺序。
(3)加法及乘法的运算律可用于实数运算的巧算。
(4)近似数的精确度、有效数字、科学记数法的形式为a a n⨯≤<10110(其中,||n 为整数)。
(5)实数大小的比较:两个实数比较大小,正数大于零和一切负数;两个正数,绝对值大的数较大;两个负数,绝对值大的数较小。
常用方法:①数轴图示法。
②作差法。
③平方法等。
【复习点拨】(1)了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
北师大初中数学中考总复习:数与式综合复习--知识讲解(提高)-精品
中考总复习:数与式综合复习—知识讲解(提高)【考纲要求】(1) 借助数轴理解相反数和绝对值的意义,会求有理数的倒数、相反数与绝对值.理解有理数的运算律,并能运用运算律简化运算;(2)了解平方根、算术平方根、立方根的概念,了解无理数和实数的概念,知道实数与数轴上的点一一对应;会用根号表示数的平方根、立方根.了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;(3)了解整式、分式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算.会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识网络】【考点梳理】考点一、实数的有关概念、性质1.实数及其分类实数可以按照下面的方法分类:实数还可以按照下面的方法分类:要点诠释:整数和分数统称有理数.无限不循环小数叫做无理数. 有理数和无理数统称实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数.实数和数轴上的点是一一对应的关系. 要点诠释:实数和数轴上的点的这种一一对应的关系是数学中把数和形结合起来的重要基础. 3.相反数实数a 和-a 叫做互为相反数.零的相反数是零.一般地,数轴上表示互为相反数的两个点,分别在原点的两旁,并且离原点的距离相等. 要点诠释:两个互为相反数的数的运算特征是它们的和等于零,即如果a 和b 互为相反数,那么a+b =0;反过来,如果a+b =0,那么a 和b 互为相反数. 4.绝对值一个实数的绝对值就是数轴上表示这个数的点与原点的距离.一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零,即 如果a >0,那么|a|=a ; 如果a <0,那么|a|=-a ; 如果a =0,那么|a|=0. 要点诠释:从绝对值的定义可以知道,一个实数的绝对值是一个非负数. 5.实数大小的比较(1)在数轴上表示两个数的点,右边的点所表示的数较大.(2)正数都大于0;负数都小于0,两个负数绝对值大的那个负数反而小. (3)对于实数,a b 、0=0=0a b a b a b a b a b a b ⇔⇔⇔->>;-;-<<. 要点诠释:常用方法:①数轴图示法;②作差法;③作商法;④平方法等.6.有理数的运算(1)运算法则(略).(2)运算律:加法交换律 a+b=b+a;加法结合律 (a+b)+c=a+(b+c);乘法交换律 ab=ba;乘法结合律 (ab)c=a(bc);分配律 a(b+c)=ab+ac.(3)运算顺序:在加、减、乘、除、乘方、开方这六种运算中,加、减是第一级运算,乘、除是第二级运算,乘方、开方是第三级运算.在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算,也就是先算乘方、开方,再算乘、除,最后算加、减.算式里如果有括号,先进行括号内的运算.如果只有同一级运算,从左到右依次运算.7.平方根如果x2=a,那么x就叫做a的平方根(也叫做二次方根).要点诠释:正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根.8.算术平方根正数a的正的平方根,叫做a的算术平方根.零的算术平方根是零.要点诠释:从算术平方根的概念可以知道,算术平方根是非负数.9.近似数及有效数字近似地表示某一个量准确值的数,叫做这个量准确值的近似数.一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫这个数的有效数字.10.科学记数法把一个数记成±a×10n的形式(其中n是整数,a是大于或等于1而小于10的数),称为用科学记数法表示这个数.考点二、二次根式、分式的相关概念、性质1.二次根式的概念形如a(a≥0) 的式子叫做二次根式.2.最简二次根式和同类二次根式的概念最简二次根式是指满足下列条件的二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.要点诠释:把分母中的根号化去,分式的值不变,叫做分母有理化.两个含有二次根式的代数式相乘,若它们的积不含二次根式,则这两个代数式互为有理化因式.常用的二次根式的有理化因式:与互为有理化因式;(1)a a(2)a b a b +-与互为有理化因式;一般地a c b a c b +-与互为有理化因式;(3)a b a b +-与互为有理化因式;一般地c a d b a d b +-与c 互为有理化因式. 3.二次根式的主要性质(1)0(0)a a ≥≥; (2)()2(0)a a a =≥;(3)2(0)||(0)a a a a a a ≥⎧==⎨-<⎩;(4)积的算术平方根的性质:(00)ab a b a b =⋅≥≥,;(5)商的算术平方根的性质:(00)a a a b b b=≥>,. 4. 二次根式的运算 (1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类二次根式分别合并. (2)二次根式的乘除二次根式相乘除,把被开方数相乘除,根指数不变. 要点诠释:二次根式的混合运算:1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果. 5.代数式的有关概念(1)代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.用数值代替代数式里的字母,计算后所得的结果,叫做代数式的值.代数式的分类:(2)有理式:只含有加、减、乘、除、乘方运算(包含数字开方运算)的代数式,叫做有理式. (3)整式:没有除法运算或者虽有除法运算但除式里不含字母的有理式叫做整式. 整式包括单项式和多项式.(4)分式:除式中含有字母的有理式,叫做分式.分式的分母取值如果为零,分式没有意义. 6.整式的运算(1)整式的加减:整式的加减运算,实际上就是合并同类项.在运算时,如果遇到括号,根据去括号法则,先去括号,再合并同类项.(2)整式的乘法: ①正整数幂的运算性质:m n m n a a a +=;()m n mn a a =;()m m m ab a b =;m n m n a a a -÷=(a ≠0,m >n).其中m 、n 都是正整数.②整式的乘法:单项式乘单项式,用它们的系数的积作为积的系数,对于相同字母,用它们的指数的和作为积里这个字母的指数,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式. 单项式乘多项式,用单项式去乘多项式的每一项,再把所得的积相加.多项式乘多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.③乘法公式:22()()a b a b a b +-=-; 222()2a b a ab b ±=±+.④零和负整数指数:在mnm na a a-÷=(a ≠0,m ,n 都是正整数)中,当m =n 时,规定01a =;当m <n 时,如m-n =-p(p 是正整数),规定1ppa a -=. 7.因式分解(1)因式分解的概念把一个多项式化成几个整式的积的形式,叫做多项式的因式分解. 在因式分解时,应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,题目中没有指定数的范围,一般是指在有理数范围内分解. ②因式分解以后,如果有相同的因式,应写成幂的形式,并且要把各个因式化简.(2)因式分解的方法①提公因式法:ma+mb+mc =m(a+b+c).②运用公式法:22()()a b a b a b -=+-;2222()a ab b a b ±+=±;③十字相乘法:2()x a b x ab +++()()x a x b =++.④运用求根公式法:若)0(02≠=++a c bx ax 的两个根是1x 、2x , 则有:))((212x x x x a c bx ax --=++.(3)因式分解的步骤①多项式的各项有公因式时,应先提取公因式;②考虑所给多项式是否能用公式法分解. 要点诠释:因式分解时应注意:①在指定数(有理数、实数)的范围内进行因式分解,一定要分解到不能再分解为止,若题目中没有指定数的范围,一般是指在有理数范围内因式分解;②因式分解后,如果有相同因式,应写成幂的形式,并且要把各个因式化简,同时每个因式的首项不含负号;③多项式的因式分解是多项式乘法的逆变形. 8.分式(1)分式的概念形如AB的式子叫做分式,其中A 和B 均为整式,B 中含有字母,注意B 的值不能为零. (2)分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A A MB B M ⨯=⨯,A A MB B M÷=÷.(其中M 是不等于零的整式) 要点诠释:分式有意义⇔分母≠0; 分式无意义⇔分母=0;分式值为0 =00.⎧⇔⎨⎩分子,分母≠分式值为1=0.⎧⇔⎨⎩分子分母,分母≠分式值为正⇔分子、分母同号. 分式值为负⇔分子、分母异号.(3)分式的运算 ①加减法:a b a b c c c ±±=,a c ad bcb d bd ±±=. ②乘法:ac acb d bd=. ③除法:a c a d adb d bc bc÷==. ④乘方:nn n a a b b ⎛⎫= ⎪⎝⎭(n 为正整数).要点诠释:解分式方程的注意事项:(1)去分母化成整式方程时不要与通分运算混淆;(2)解完分式方程必须进行检验,验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.列分式方程解应用题的基本步骤: (1)审——仔细审题,找出等量关系; (2)设——合理设未知数; (3)列——根据等量关系列出方程; (4)解——解出方程; (5)验——检验增根; (6)答——答题.【典型例题】类型一、实数的概念、运算及因式分解1.在数轴上表示a 、b 、c 三个数的点的位置如图所示.化简:|a-b|+|a-c|-|b+c|.【思路点拨】通过观察数轴得到a 、b 、c 的符号,通过确定绝对值里的式子的符号,来去掉绝对值符号. 【答案与解析】由上图可得b <c <0<a , ∴ a-b >0,a-c >0,b+c <0.∴ |a-b|+|a-c|-|b+c|=(a-b)+(a-c)-(-b-c)=2a .【总结升华】由绝对值的定义我们知道:如果m >0,那么|m|=m ;如果m <0,那么|m|=-m ;如果m =0,那么|m|=0.要去掉绝对值符号,首先要弄清m 的值是正、是负,还是零.举一反三:【变式】阅读下面的材料,回答问题:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1,AB OB b a b ===-;当A 、B 两点都不在原点时: (1)如图1-2,点A 、B 都在原点的右边,AB OB OA b a b a a b =-=-=-=-;(2)如图1-3,点A 、B 都在原点的左边, ()AB OB OA b a b a a b a b =-=-=---=-=-; (3)如图1-4,点A 、B 在原点的两边,()AB OA OB a b a b a b a b =+=+=+-=-=-.B ba A 图1-3O 0O 0bB 图1-2a AO (A ) 0bB 图1-1综上,数轴上A 、B 两点之间的距离AB a b =-. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5的两点之间的距离是 ;数轴上表示1和-3的两点之间的距离是 .(2)数轴上表示x 和-1的两点A 和B 之间的距离是 .如果2AB =,那么x = . 【答案】(1)3,3,4;(2)1x =或3x =-.依据阅读材料,所获得的结论为AB a b =-,结合各问题分别代入求解. (1)253,2(5)3,1(3)4-=---=--=;(2)(1)1AB x x =--=+; 因为2AB =,所以12x +=,所以12x +=或12x +=-.所以1x =或3x =-.2.(2014春•当涂县校级期中)分解因式. (1)﹣18x 2y 2+9x 4﹣6x 3y . (2)1﹣m 2﹣n 2+2mn . (3)﹣a+2a 2﹣a 3.【思路点拨】如果多项式各项含有公因式,就先提出这个公因式,再进一步分解因式.分解因式必须进行到每一个因式都不能再分解为止. 【答案与解析】解:(1)﹣18x 2y 2+9x 4﹣6x 3y=﹣3x 2(6y 2﹣3x 2+2xy ); (2)1﹣m 2﹣n 2+2mn=1﹣(m ﹣n )2=(1+m ﹣n )(1﹣m+n ); (3)﹣a+2a 2﹣a 3=﹣a (1﹣2a+a 2)=﹣a (1﹣a )2. 【总结升华】(1)如果多项式的第一项系数是负数,一般要提出负号,使括号内的第一项系数是正数,以便于观察是否可以进一步分解因式.(2)在提取公因式时,一是要真确确定公因式,二是要注意一步到位;分解因式一定要彻底.举一反三:【变式】分解因式:2212a a b -+-= .【答案】本题是四项,应采用分组分解法,分组分解法主要有两种,一是二二分组,另一种是一三分组, 本题应采用一三分组法进行分解.原式2222(12)(1)a a b a b =-+-=--(1)(1)a b a b =-+--.类型二、分式的有关运算3.我们把分子为1的分数叫做单位分数.如12,13,14…,任何一个单位分数都可以拆分成两baA 图1-4O 0B个不同的单位分数的和,如111236=+,1113412=+,1114520=+,… (1)根据对上述式子的观察,你会发现1115=+O,请写出□,○所表示的数;(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+∆,请写出△,⊙所表示的式,并加以验证.【思路点拨】等式右边的第一个分母是左边的分母加1,第二个分母是前两个分母的乘积,如果设左边的分母为n ,则右边第一个分母为(n +1),第二个分母为n (n +1). 【答案与解析】(1)□表示的数为6,○表示的数为30;(2)△表示的式为1+n ,⊙表示的式为)1(+n n .验证:)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++=,所以上述结论成立.【总结升华】通过对三组式子的观察,不难找出规律. 举一反三:【变式】若0<x <1,则21x xx 、、的大小关系是( ).A .21x x x << B .21x xx << C .xx x 12<< D .x x x <<21【答案】C.4.计算222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭. 【思路点拨】在进行分式的四则运算时,一定要注意按运算顺序进行,并注意结合题目的具体情况及时化简,以便简化运算过程. 【答案与解析】222214(2)244x x x x x x x x x +--⎛⎫-÷-⎪--+⎝⎭2221(2)(2)(2)4x x x x x x x x ⎡⎤+-=--⎢⎥---⎣⎦ 22221(2)(2)(2)4(2)4x x x x x x x x x x x +-=------- 22444x x x x x --=---22(4)()4x x x x ---=-414x x -==-. 【总结升华】在进行分式的四则运算时,要注意利用运算律,寻找合理的运算途径.举一反三:【变式】计算3213411x x x x x -+----. 【答案】 3213411x x x x x -+---- 31341(1)(1)x x x x x x -+=+--+-33134(1)(1)x x x x x x x -++-+-=+-33(1)(1)x x x -=+-3(1)3(1)(1)1x x x x -==+-+.类型三、二次根式的运算5.已知【思路点拨】这是一道二次根式化简题,在化为最简二次根式的过程中,要注意a ,b 的符号,本题中没明确告诉a ,b 的符号,但可从a+b=-9,ab=12中分析得到. 【答案与解析】∵a+b=-9,ab=12,∴a <0,b <0.··22124 3.a b ab ab ba b a ab b a b a∴+=+=-=-=--- 【总结升华】1.明确运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的;2.在二次根式的混合运算中,原来学过的运算律、运算法则及乘法公式仍然适用;3.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能收到事半功倍的效果.举一反三: 【变式】估计32×12+20的运算结果应在 ( ) A. 6到7之间 B. 7到8之间 C. 8到9之间D. 9到10之间【答案】本题应计算出所给算式的结果,原式1620425=+=+,由于45 6.25<<,即25 2.584259+<<,所以<<. 故选C.6.若a ,b 为实数,且b =355315a a -+-+,试求22b a b a a b a b++-+-的值. 【思路点拨】本题中根据b =355315a a -+-+可以求出a ,b ,再对2b a a b ++-2b a a b +-的被开方数进行配方、化简.【答案与解析】 由二次根式的性质得3503350..5305a a a a -⎧∴-=∴=⎨-⎩≥,≥,150,0.b a b a b ∴=∴+-,><ab >0,22()()222.b a b a a b a b a b a b ab aba b b a ab ab ab ab a b b a ab ab ab ab b+-++-+-=-+-=-+-⎛⎫=- ⎪⎝⎭= 当32321515.51555a b ===⨯=,时,原式 【总结升华】对于形如22b a b a a b a b++-+或形式的代数式都要变为2()a b ab +或2()a b ab -的形式,当它们作为被开方式进行化简时,要注意.a b a b ab +-和以及的符号举一反三:【变式】(1) 若622=-n m ,且2m n -=,则=+n m .(2)若61,10=+<<a a a ,求aa 1-的值. 【答案】(1)3;(2)-2.类型四、数与式的综合运用7.(2014秋•延平区校级月考)如图,用相同规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n 个图中,共有瓷砖 块,其中白色瓷砖 块,黑色瓷砖 块(均用含n 的代数式表示);(2)按上述铺设方案,铺设一块这样的矩形地面共用了1056块瓷砖,求此时n 的值;(3)若黑瓷砖每块4元,白瓷砖每块3元,则问题(2)中,共花多少元购买瓷砖?【思路点拨】(1)根据第n个图形的白瓷砖的每行有(n+1)个,每列有n个,即可表示白瓷砖的数量,再让总数减去白瓷砖的数量即为黑瓷砖的数量;(2)当y=1056时可以代入(1)中函数关系式求出n;(3)和(1)一样可以推出白瓷砖的总块数为(n+1)×n,然后可以推出黑瓷砖数目,再根据已知条件即可计算出钱数;【答案与解析】解:(1)在第n个图中,共有瓷砖(n2+5n+6)块,其中白色瓷砖(n2+n)块,黑色瓷砖(4n+6)块(均用含n的代数式表示);(2)依题意得:n2+5n+6=1056,整理得:n2+5n﹣1050=0,解得:n=﹣35(舍去),n=30,答:此时n的值为30;(3)当n=30时4(4n+6)+3(n2+n)=4×(4×30+6)+3(302+30)=3294(元),答:共花费3294元购买瓷砖.【总结升华】考查了图形的变化规律:解决此题的关键是能够正确结合图形用代数式表示出黑、白瓷砖的数量,再根据题意列方程求解.。
(完整)2019届中考九年级数学总复习资料精编版
2019届中考人教版初中数学总复习资料完整版一有理数知识要点1、有理数的基本概念(1)正数和负数定义:大于0的数叫做正数。
在正数前加上符号“-”(负)的数叫做负数。
0既不是正数,也不是负数。
(2)有理数正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
2、数轴规定了原点、正方向和单位长度的直线叫做数轴。
3、相反数代数定义:只有符号不同的两个数叫做互为相反数。
几何定义:在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
一般地,a和-a互为相反数。
0的相反数是0。
a =-a所表示的意义是:一个数和它的相反数相等。
很显然,a =0。
4、绝对值定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
即:如果a >0,那么|a|=a;如果a =0,那么|a|=0;如果a <0,那么|a |=-a 。
a =|a |所表示的意义是:一个数和它的绝对值相等。
很显然,a ≥0。
5、倒数 定义:乘积是1的两个数互为倒数。
1a a=所表示的意义是:一个数和它的倒数相等。
很显然,a =±1。
6、数的比较大小法则:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。
7、乘方定义:求n 个相同因数的积的运算,叫做乘方。
乘方的结果叫做幂。
如:43421Λan na a a a 个•••=读作a 的n 次方(幂),在a n 中,a 叫做底数,n 叫做指数。
性质:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0。
8、科学记数法定义:把一个大于10的数表示成a ×10n 的形式(其中a 大于或等于1且小于10,n 是正整数),这种记数方法叫做科学记数法。
小于-10的数也可以类似表示。
用科学记数法表示一个绝对值大于10的数时,n 是原数的整数数位减1得到的正整数。
2019届中考总复习数学:数与式
单元检测一 (数与式)命题人:铜仁市万山区大坪中学 田 令A .67.710-⨯B .57.710-⨯C .60.7710-⨯D .50.7710-⨯3.在下列实数3.1415926, , , ,,中无理数的个数有( )A .2个B .3个C .4个D .5个4.如果分式 -- 的值为零,那么x 等于( )A.-2B.2C.-2或2D.1或25.下列等式从左到右的变形,属于因式分解的是( )A.a (x-y )=ax-ayB.x 2+2x+1=x (x+2)+1C.(x+1)(x+3)=x 2+4x+3D.x 3-x=x (x+1)(x-1)6.计算( +1)2 010·( -1)2 019的结果是( )A +1B -1C D.17.若实数a ,b 在数轴上的位置如图所示,则化简 - - +b 的结果是( )A.1B.b+1C.2aD.1-2a 8.已知 =4,则 - -- 的值为( )A.6B.-6C.-D.-9.若(a +b +5)2+|2a ﹣b +1|=0,则(b ﹣a )2017=( )A .1B .﹣1C .52017D .﹣5201710.已知﹣3x m ﹣1y 3与xy m +n 是同类项,那么m ,n 的值分别是( )A .m =2,n =﹣1B .m =﹣2,n =﹣1C .m =﹣2,n =1D .m =2,n =112.若代数式 有意义,则实数m 的取值范围是( )A. m ⩾-2且mB.m ⩾-2C. m>-2D.m>-2且m 13..如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a>b>0),则有( )A.k>2B.1<k<2 C<k<1 D.0<k<14..如图,下列图案均是长度相同的火柴按一定的规律拼搭而成的,若每个围成的正方形面积为1 cm2,则第1个图案面积为2 cm2,第2个图案面积为4 cm2,第3个图案面积为7 cm2,……,依此规律,第8个图案面积为()A.35 cm2B.36 cm2C.37 cm2D.38 cm2二、填空题:15.中国的陆地面积约为9 600 000 km2,将9 600 000用科学记数法表示为.16.若单项式2x3y m与-3x n y2的和为单项式,则m+n的值为.17.若--=x-4+6-x=2,则x的取值范围为.18.已知x,y为实数,且满足-(y-1)-=0,则x2 019-y2 019=.19.化简--的结果是.20.若多项式4x2-kx+25是一个完全平方式,则k的值是.21.代数式a2b﹣2ab+b分解因式为.22.已知a﹣b=3,ab=﹣2,则a2+3ab+b2的值为.23.若与最简二次根式在是同类二次根式,则a=______三、解答题:24计算与化简:(1)()0-3;(2)°(3)-----25.先化简,再求值:(1)先化简,再求值:(+)÷,其中a=+1.(2)先化简,再求值:),其中a=-(3) 先化简,再求值.[(x﹣2y)2+(x﹣2y)(2y+x)]÷2x,其中x=2,y=﹣1(4)先化简,再求值:,其中x=﹣(5)先化简代数式:,并从﹣1,0,1,3中选取一个合适的代入求值.(6)化简求值:,已知x是一元二次方程x2+3x﹣1=0的实数根.26.观察下面的变形规律:=1-;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)证明你猜想的结论;(3)求和:+…+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:数与式综合复习—巩固练习(提高)
【巩固练习】 一、选择题
1. 把多项式1-x 2
+2xy-y 2
分解因式的结果是( )
A.(1)(1)x y x y +--+
B.(1)(1)x y x y --+-
C.(1)(1)x y x y ---+
D.(1)(1)x y x y +-++ 2.按一定的规律排列的一列数依次为:
111111
,,,,,2310152635
┅┅,按此规律排列下去,这列数中的第7个数是( ) A .145 B .140 C .146 D .150
3.根据下表中的规律,从左到右的空格中应依次填写的数字是( )
4.在一个地球仪的赤道上用铁丝打一个箍,现将铁丝半径增大1米,需增加m 米长的铁丝.假
设地球赤道上也有一个铁箍,同样半径增大1米,需增加n 米长的铁丝,则m 与n 的大小关系是( )
A .m >n
B .m <n
C .m =n
D .不能确定
5.将一张长方形纸片对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持
平行,那么对折n 次后折痕的条数是 ( )
A .2n -1
B .2n +1
C .2n
-1 D .2n
+1
6.(2015秋•重庆校级月考)如图图案都是同样大小的小正方形按一定的规律组成的,其中第1个图形中有5个小正方形,第2个图形有13个小正方形,第3个图形有25个小正方形,…,按此规律,则第8个图形中小正方形的个数为( )
A .181
B .145
C .100
D .88
二、填空题
7.若非零实数a ,b 满足2
2
44a b ab +=,则
b
a
= . 8.已知分式)
1)(2(1
2---x x x ,当x = 时,分式的值为0.
9.在实数范围内分解因式
4(1)x y -+-2
(x+y)= . 10. (2015秋•平山区校级月考)化简: (1)当x ≥0时,= ; (2)当a ≤0时,
= ;
(3)当a ≥0,b <0时,
= .
11.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):
第一行 1
1
第二行
12 12
第三行
13 16 13
第四行
14 112 112 14
第五行
15 120 130 120 15
… …… …
根据前五行的规律,可以知道第六行的数依次是: .
12.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数n 1=5 ,计算n 12
+1得a 1; 第二步:算出a 1的各位数字之和得n 2,计算n 22
+1得a 2; 第三步:算出a 2的各位数字之和得n 3,再计算n 23+1得a 3; …………
依此类推,则a 2012=_______________.
三、解答题
13.(2015春•碑林区期中)图①是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.
(1)图②中的阴影部分的面积为 ;
(2)观察图②,三个代数式(m+n )2
,(m ﹣n )2
,mn 之间的等量关系是 ; (3)观察图③,你能得到怎样的代数等式呢?
(4)试画出一个几何图形,使它的面积能表示(m+n )(m+3n ); (5)若x+y=﹣6,xy=2.75,求x ﹣y 的值.
14.阅读下列题目的计算过程:
x
x x +-
--12
132 =
)
1)(1()
1(2)1)(1(3-+---+-x x x x x x (A )
=(x -3)-2(x -1) (B ) =x -3-2x +1 (C ) =-x -1 (D )
(1)上述计算过程中,从哪一步开始出现错误?请写出该步的代号 . (2)错误的原因 . (3)本题目正确的结论为 .
15.已知271
x
x x =-+,求24
21x x x ++的值.
16. 设12211=112S +
+,22211=123S ++,322
11
=134
S ++,…, 2211=1(1)n S n n +++
设...S =+S 的值 (用含n 的代数式表示,其中n 为正整数).
【答案与解析】 一、选择题 1.【答案】A ;
【解析】22222
121(2)1()(1)(1)x xy y x xy y x y x y x y -+-=--+=--=+--+. 2.【答案】D ;
【解析】每个分数的分子均为1,分母为21n +或2
1n -(当n 为奇数时加1,当n 为偶数时减1),
7为奇数,因而其分母为2
7150+=.
3.【答案】B ;
【解析】通过观察,不难发现两个并排的短横表示0,而一条长横表示1,所表示的数是从
上往下看,因而表格中的两个空格中所填的数这011和100 .
4.【答案】C ;
【解析】设地球仪赤道半径为r ,则2(1)22m r r πππ=+-=;设地球赤道半径为R ,
则2(1)22n R R πππ=+-=,所以相等. 5.【答案】C ;
【解析】除了第一次对折得到1条折痕,其后,每次对折所得折痕都是上次多出来的折痕的两倍. 6.【答案】B ;
【解析】∵第1个图案中小正方形的个数为3+1+1=5; 第2个图案中小正方形的个数为5+3+1+3+1=13; 第3个图案中小正方形的个数为7+5+3+1+5+3+1=25; …
∴第n 个图形的小正方体的个数(n+1)2
+n 2
;
∴第8个图形中小正方形的个数为92
+(9﹣1)2
=81+64=145个.故选:B . 二、填空题 7.【答案】2;
【解析】将原式改写为22
440a ab b -+=,所以2
(2)0a b -=,可求出b =2a .
8.【答案】-1;
【解析】由题意2
10x -=且(2)(1)0x x --≠,所以x =-1.
9.【答案】
2
(x+y-2); 【解析】此题如果按一般方法去分解,须将2
(x y)+展开,结果将问题复杂化了,其实原
式可化
为
2
(x y)4(x y)4+-++,将x y +看成一个整体,再用公式法分解因式. 2(x y)4(x y 1).+-+-
22
(x y)4(x y)4(x y 2)=+-++=+-
10.【答案】3x ;﹣
a ;﹣3ab
【解析】解:(1)∵x ≥0,
∴
=|3x|=﹣3x ,
故答案为:3x . (2)∵a ≤0, ∴
=|a|
=﹣a ,
故答案为:﹣
a .
(3)∵a ≥0,b <0, ∴
=|3ab|
=﹣3ab
,
故答案为:﹣3ab .
11.【答案】
16、130、160、160、130、16 ;
【解析】每行中相邻两个数相加等于上一行中间的数值. 12.【答案】65;
【解析】本题是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律. 由题目得,a 1=26;n 2=8,a 2=65;n 3=11,a 3=122;看不出什么规律,那就继续:n 4=5,
a 4=26;…;
这样就发现规律:每三个为一个循环,2012÷3=670……2;即a 2012= a 2=65.答案为65.
三、解答题 13.【答案与解析】
解:(1)阴影部分的边长为(m ﹣n ),所以阴影部分的面积为(m ﹣n )2
; 故答案为:(m ﹣n )2
;
(2)(m+n )2﹣(m ﹣n )2
=4mn ; 故答案为:(m+n )2
﹣(m ﹣n )2
=4mn ; (3)(m+n )(2m+n )=2m 2
+3mn+n 2
; (4)答案不唯一:
(5)(x ﹣y )2
=(x+y )2
﹣4xy=(﹣6)2
﹣2.75×4=25, ∴x ﹣y=±5.
14.【答案与解析】 (1)B ; (2)去分母; (3)
2
32
11x x x ---+ 32(1)(1)(1)(1)(1)
x x x x x x --=
-+-+-322(1)(1)x x x x --+=+-11(1)(1)1x x x x --==+--.
15.【答案与解析】
因为 271
x
x x =-+,所以
, 所以 2117x x x -+=,即18
7
x x +=, 所以 2
422
22
111151149x x x x x x x ++⎛⎫=++=+-= ⎪⎝⎭ 所以 24
2
49
.115
x x x =++
16.【答案与解析】
22
111(1)n S n n =+
+
+=
21111[]2(1)(1)
n n n n +-+⨯
++=
211
1[
]2(1)(1)
n n n n ++⨯++
=21
[1](1)
n n +
+
∴S=1(1)12+
⨯+1(1)23+⨯+1
(1)34+⨯+…+1(1)(1)n n +
+
11111
11
=122334
1
n n n +-
+-+-++
-
+ 1=11n n +-
+
1
22++=n n n .
(利用拆项
111
(1)1
n n n n =-++即可求和).。