七年级上册数学全册单元试卷同步检测(Word版 含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学全册单元试卷同步检测(Word版含答案)
一、初一数学上学期期末试卷解答题压轴题精选(难)
1.
(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;
(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;
(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.
【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(2)解:结论DE=BD+CE成立;理由如下:
∵∠BDA=∠BAC=α,
∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,
∴∠CAE=∠ABD,
在△ADB和△CEA中,
∴△ADB≌△CEA(AAS),
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE;
(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,
∴∠CAE=∠ABD,
在△ABD和△CEA中,
∴△ABD≌△CEA(AAS),
∴S△ABD=S△CEA,
设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,
∴S△ABC= BC•h=12,S△ACF= CF•h,
∵BC=2CF,
∴S△ACF=6,
∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,
∴△ABD与△CEF的面积之和为6.
【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.
2.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧
(1)若AB=18,DE=8,线段DE在线段AB上移动
①如图1,当E为BC中点时,求AD的长;
②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;
(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则
________.
【答案】(1)解:①
又 E为BC中点

②设,因点F(异于A、B、C点)在线段AB上,可知:
,和
当时,
此时可画图如图2所示,代入得:
解得:,即AD的长为3
当时,
此时可画图如图3所示,代入得:
解得:,即AD的长为5
综上,所求的AD的长为3或5;
(2) .
【解析】【解答】(2)①若DE在如图4的位置
设,则

(不符题设,舍去)
②如DE在如图5的位置
设,则

代入得:
解得:
则 .
【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种
情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;
(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.
3.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.
4.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.
(1)求出∠AOB及其补角的度数;
(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°
(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.
∠DOE与∠AOB互补,
理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补
【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.
5.已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=50°,设∠BOE=
(1)若射线OE在∠BOC的内部(如图所示):
①若 =43°,求∠COD的度数;
②当∠AOD=3∠COE时,求∠COD的度数;
(2)若射线OE恰为图中某一个角(小于180°)的角平分线,试求的值.
【答案】(1)①∵∠BOC=180°−∠AOC,∠AOC=120°
∴∠BOC=180°−120°=60°
∵∠COE=∠BOC−∠BOE,∠BOE=n=43°
∠COD=∠DOE−∠COE,∠DOE=50°
∴∠COD=50°−(60°−43°)=33°
②当∠DOE在∠BOC之间时,设∠COD=x,则由题意可得:120+x=3(50+x)无解;
当OD在∠AOC之间时,设∠COD=x,则由题意可得120-x=3(50-x)解得x=15°
所以当∠AOD=3∠COE时,∠COD=15°
(2)解:如图,
当OE1平分∠BOC时,
∵∠AOC=120°
∴∠BOC=180°−120°=60°
∴n=∠BOE1= ∠BOC=30°;
如图,
当OE2平分∠BOD2时,
n=∠BOE2=∠D2OE=50°;
如图,
当OE3平分∠COD3时,
∵∠E3OC=∠D3OE3=50°,∠BOC=180°−∠AOC=180°−120°=60°
∴n=∠BOE3=∠BOC+∠E3OC=60°+50°=110°;
如图,
当OE4平分∠AOC时,
∵∠COE4= ∠AOC= ×120°=60°
∠BOC=180°−∠AOC=180°−120°=60°
∴n=∠BOE4=∠BOC+∠COE4=60°+60°=120°
【解析】【分析】(1) ① 根据平角的定义,由∠BOC=180°−∠AOC 算出∠BOC的度数,根据角的和差,由∠COE=∠BOC−∠BOE ,∠COD=∠DOE−∠COE ,算出∠COD的度数;②扶摇分类讨论:当∠DOE在∠BOC之间时,设∠COD=x,则∠AOD=120+x,∠COE=50+x,根据∠AOD=3∠COE 列出方程,求解即可;当OD在∠AOC之间时,设∠COD=x,则则∠AOD=120-x,∠COE=50-x,根据∠AOD=3∠COE 列出方程,求解即可,综上所述即可得出答案;
(2)需要分类讨论:①当OE1平分∠BOC时,根据平角的定义算出∠BOC 的度数,根据角平分线的定义得出n=∠BOE1= ∠BOC=30°;② 当OE2平分∠BOD2时,n=∠BOE2=∠D2OE=50°;③ 当OE3平分∠COD3时, n=∠BOE3=∠BOC+∠E3OC ,④ 当OE4平分∠AOC时, n=∠BOE4=∠BOC+∠COE4,综上所述即可得出答案。

6.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.
(1)若,,求∠D的度数;
(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.
【答案】(1)解:∵BD平分∠ABC,
∴∠CBD= ∠ABC= ×75°=37.5°,
∵CD平分△ABC的外角,
∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,
∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.
(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).
∵∠M+∠N+∠CBM+∠NCB=360°,
∴∠D=180°- ∠CBM-∠NCB- ∠NCE.
=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.
=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.
= ∠M+ ∠N- ∠NCB- ∠NCE= ,
或写成
【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;
(2)由四边形内角和与角平分线性质即可求解.
7.探究题
学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题。

(1)小明遇到了下面的问题:如图1,l1∥l2,点P在l1、l2内部,探究∠A,∠APB,∠B 的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=________.
(2)如图2,若AC∥BD,点P在AB、CD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.
过点P作PE∥AC.
∴∠A=________
∵AC∥BD
∴________∥________
∴∠B=________
∵∠BPA=∠BPE-∠EPA
∴________.
(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:
已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180°.
【答案】(1)∠APB=∠A+∠B
(2)∠1;PE;BD;∠EPB;∠APB=∠B -∠1
(3)证明:过点A作MN∥BC
∴∠B= ∠1
∠C= ∠2
∵∠BAC+∠1+∠2=180°
∴∠BAC+∠B+∠C=180°
【解析】【解答】解:(1)如图:
由平行线的性质可得:∠1=∠A, ∠2=∠B,
∴∠1+∠2=∠A+∠B
即APB=∠A+∠B
⑵解:过点P作PE∥AC.
∴∠A=∠1
∵AC∥BD
∴ PE ∥ BD
∴∠B=∠EPB
∵∠APB=∠BPE-∠EPA
∴∠APB=∠B -∠1
【分析】根据图形做出平行辅助线,探究角度关系。

此类做辅助线的方法变式多,是考试热点问题。

8.在直角坐标系中,已知点A(a,0),B(b,c),C(d,0),a是-8的立方根,方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,d为不等式组的最大整数解.
(1)求点A、B、C的坐标;
(2)如图1,若D为y轴负半轴上的一个动点,当AD∥BC时,∠ADO与∠BCA的平分线交于M点,求∠M的度数;
(3)如图2,若D为y轴负半轴上的一个动点,连BD交x轴于点E,问是否存在点D,使S△ADE≤S△BCE?若存在,请求出D的纵坐标y D的取值范围;若不存在,请说明理由.【答案】(1)解:-8的立方根是-2,
∴a=-2,
方程2x3b-5-3y2b-2c+5=1是关于x,y的二元一次方程,
∴,
解得,,
不等式组的最大整数解是5,
则A(-2,0)、B(2,4)、C(5,0)
(2)解:作MH∥AD,
∵AD∥BC,
∴MH∥BC,
∵∠AOD=90°,
∴∠ADO+∠OAD=90°,
∵AD∥BC,
∴∠BCA=∠OAD,
∴∠ADO+∠BCA=90°,
∵∠ADO与∠BCA的平分线交于M点,
∴∠ADM= ∠ADO,∠BCM= ∠BCA,
∴∠ADM+∠BCM=45°,
∵MH∥AD,MH∥BC,
∴∠NMD=∠ADM,∠HMC=∠BCM,
∴∠M=∠NMD+∠HMC=∠ADM+∠BCM=45°;
(3)解:存在,
连AB交y轴于F,
设点D的纵坐标为y D,
∵S△ADE≤S△BCE,
∴S△ADE+S△ABE≤S△BCE+S△ABE,即S△ABD≤S△ABC,
∵A(-2,0),B(2,4),C(5,0),
∴S△ABC=14,点F的坐标为(0,2),
S△ABD= ×(2-y D)×2+ ×(2-y D)×2=4-2y,
由题意得,4-2y D≤14,
解得,y D≥-5,
∵D在y轴负半轴上,
∴y D<0,
∴D的纵坐标y D的取值范围是-5≤y D<0.
【解析】【分析】(1)根据立方根的概念、二元一次方程组的定义、一元一次不等式组的解法分别求出a、b、c、d,得到点A、B、C的坐标;(2)作MH∥AD,根据平行线的性质得到∠BCA=∠OAD,得到∠ADO+∠BCA=90°,根据角平分线的定义得到∠ADM+∠BCM=45°,根据平行线的性质计算即可;(3)连AB交y轴于F,根据题意求出点F的坐标,根据三角形的面积公式列出方程,解方程即可.
9.已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意
点.BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.
(1)探究:
求∠C的度数.
(2)发现:当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.
(3)应用:如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.
【答案】(1)解:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分线,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+90°,
∴∠ABD=∠BAC+45°,
又∵∠ABD=∠BAC+∠C,
∴∠C=45°
(2)解:不变.
理由如下:∵∠ABE=∠OAB+∠AOB,∠AOB=90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分线,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+∠AOB,
∴∠ABD=∠BAC+ ∠AOB,
又∵∠ABD=∠BAC+∠C,
∴∠C=∠AOB=45°
(3)解:延长ED,BC相交于点G.
在四边形ABGE中,
∵∠G=360°﹣(∠A+∠B+∠E)=50°,
∴∠P=∠FCD﹣∠CDP=(∠DCB﹣∠CDG)
=∠G= ×50°=25°
【解析】【分析】(1)(2)根据三角形外角的性质和角平分线的性质进行解答;
(3)延长ED,BC相交于点G,根据四边形形内角和为360°求得∠G的度数,再根据三角形外角的性质和角平分线的性质求∠P的度数.
10.已知:直线EF//MN,点A、B分别为EF,MN上的动点,且∠ACB= a,BD平分∠CBN交EF于D.
(1)若∠FDB=120°,a=90°.如图1,求∠MBC与∠EAC的度数?
(2)延长AC交直线MN于G,这时a =80°,如图2,GH平分∠AGB交DB于点H,问∠GHB是否为定值,若是,请求值.若不是,请说明理由?
【答案】(1)解:如图1,过C作CP∥EF.
∵EF∥MN,∴EF∥MN∥CP.
∵EF∥MN,∴∠NBD=180°-∠FDB=180°-120°=60°.
∵BD平分∠CBN,∴∠CBD=∠NBD=60°,∴∠MBC=180°-∠CBD-∠NBD=180°-60°-60°=60°.
∵CP∥MN,∴∠PCB=∠MBC=60°,∴∠ACP=∠ACB-∠BCP=90°-60°=30°.
∵EF∥CP,∴∠EAC=∠ACP=30°
(2)解:∠GHB为定值50°.理由如下:
∵∠CBN是△CBG的外角,∴∠BCG=∠CBN﹣∠AGB.
∵GH平分∠AGB,BD平分∠CBN,∴∠HGB∠AGB,∠DBN∠CBN.
∵∠DBN是△HGB的外角,∴∠GHB=∠DBN﹣∠HGB∠CBN∠AGB(∠CBN ﹣∠AGB)∠BCG(180°-80°)=50°,故∠GHB是定值50°.
【解析】【分析】(1)过C作CP∥EF,进而得到EF∥MN∥CP,根据平行线的性质,求出∠DBN的度数,进而求出∠MBC、∠EAC的度数;(2)根据∠CBN是△CBG的外角,
得到∠BCG=∠CBN﹣∠AGB.根据角平分线的定义得到∠HGB∠AGB,∠DBN
∠CBN.由三角形外角的性质得到∠GHB=∠DBN﹣∠HGB∠CBN∠AGB
(∠CBN﹣∠AGB)∠BCG,即可得出结论.
11.如图,在△ABC中,点E在AC边上,连结BE,过点E作DF∥BC,交AB于点D.若BE 平分∠ABC,EC平分∠BEF.设∠ADE=α,∠AED=β.
(1)当β=80°时,求∠DEB的度数.
(2)试用含α的代数式表示β.
(3)若β=kα(k为常数),求α的度数(用含k的代数式表示).
【答案】(1)解:∵β=80°,
∴∠CEF=∠AED=80°,
∵BE平分∠ABC,
∴∠BEC=∠CEF=80°,
∴∠DEB=180°﹣80°﹣80°=20°;
(2)∵DF∥BC,
∴∠ADE=∠ABC=α,
∵BE平分∠ABC,
∴∠DEB=∠EBC=
∵EC平分∠BEF,
∴β=∠CEF=(180°﹣)=90°﹣α;
(3)∵β=kα,
∴90°﹣α=kα,
解得:α=
【解析】【分析】(1)根据对顶角的性质得到∠CEF=∠AED=80°,根据角平分线的定义即可得到结论;
(2)根据角平分线的定义和平行线的性质即可得到结论;
(3)根据题意列方程即可得到结论.
12.如图,直线和直线互相垂直,垂足为,直线于点B,E是线段AB上一定点,D为线段OB上的一动点(点D不与点O、B重合),直
于点,连接AC.
(1)当,则 ________°;
(2)当时,请判断CD与AC的位置关系,并说明理由;
(3)若、的角平分线的交点为P,当点D在线段上运动时,问的大小是否会发生变化?若不变,求出的大小,并说明理由;若变化,求其变化范围. 【答案】(1)40
(2)解:由(1)可得:∠CDO=∠BED,
∵,
∴∠A=∠BED,
∴AC∥DE,
∵CD⊥DE,
∴AC⊥CD;
(3)解:∠P的大小不会发生变化,理由如下:
如图,连接PD并延长,
∵CP平分∠OCD,PE平分∠BED,
∴∠1= ∠OCD,∠2= ∠BED,
即∠1+∠2= (∠OCD+∠BED),
∵∠CDO=∠BED,
∴∠OCD+∠BED=∠OCD+∠CDO=90°,
∴∠1+∠2=45°,
∵CD⊥DE,
∴∠3+∠4=90°,
∵∠5=∠3−∠1,∠6=∠4−∠2,
∴∠P=∠5+∠6=∠3−∠1+∠4−∠2=∠3+∠4−(∠1+∠2)=45°,
即∠P的大小是定值45°.
【解析】【解答】解:(1)∵直线,CD⊥DE,
∴∠EDB+∠BED=90°,∠CDO+∠EDB=90°,
∴∠CDO=∠BED=50°,
∵直线和直线互相垂直,
∴∠OCD=40°;
【分析】(1)首先根据题意得出∠EDB+∠BED=90°,∠CDO+∠EDB=90°,由此可以求出∠CDO度数,最后进一步求出答案即可;(2)由(1)可得∠CDO=∠BED,然后进一步利用“同位角相等,两直线平行”证明CD∥AC,最后利用平行线性质进一步求证即可;(3)
连接PD并延长,首先根据角平分线性质得出∠1= ∠OCD,∠2= ∠BED,由此结合题意进一步得出∠1+∠2=45°,再根据三角形外角性质得出∠5=∠3−∠1,∠6=∠4−∠2,据此利用∠P=∠5+∠6进一步计算即可.
13.已知:直线AB与直线CD交于点O,过点O作OE⊥AB.
(1)如图1,OP为∠AOD内的一条射线,若∠1=∠2,求证:OP⊥CD;
(2)如图2,若∠BOC=2∠AOC,求∠COE的度数;
(3)如图3.在(2)的条件下,过点O作OF⊥CD,经过点O画直线MN,若射线OM平
分∠BOD,请直接写出图中与2∠EOF度数相等的角.
【答案】(1)解:∵OE⊥AB ∴∠AOC+∠1= ∵∠1=∠2 ∴∠AOC+∠2=
∴OP⊥CD
(2)解:∵∠AOC+∠BOC= ,且∠BOC=2∠AOC ∴∠AOC= ∵OE⊥AB ∴∠AOE= ∴∠COE= - =
(3)∠AOD、∠BOC、∠FON、∠EOM
【解析】【解答】解:(3)由(2)知:∠AOC=
∵射线OM平分∠BOD
∴∠BOM=∠DOM=∠AON=∠CON=
∵OE⊥AB,OC⊥OF
∴∠AOE=∠COF=
∴∠AOC=∠EOF=
∴∠AOD=∠BOC=∠FON=∠EOM= =2∠EOF
∴与2∠EOF度数相等的角是:∠AOD、∠BOC、∠FON、∠EOM.
【分析】(1)直接根据等量代换即可证明.(2)先根据平角的定义可得∠AOC= ,再利用垂直的定义可得∠AOE= ,从而得出结论.(3)根据(2)中∠AOC= ,分别计算各角的度数,得其中∠EOF= ,根据各角的度数可得结论.
14.已知:直线AB,CD相交于点O,且OE⊥CD,如图.
(1)过点O作直线MN⊥AB;
(2)若点F是(1)中所画直线MN上任意一点(O点除外),且∠AOC=35°,求∠EOF的度数;
(3)若∠BOD:∠DOA=1:5,求∠AOE的度数.
【答案】(1)解:如图,MN为所求
(2)解:若F在射线OM上,
∵MN⊥AB,OE⊥CD,
∴∠AOC+∠COM=90°,∠EOF+∠COM=90°,
则∠EOF=∠AOC=35°;
若F'在射线ON上,
∵MN⊥AB,OE⊥CD,
∴∠DON=∠COM=90°-∠AOC=55°,∠EOD=90°
则∠EOF'=∠DOE+∠DON=145°;
综上所述,∠EOF的度数为35°或145°;
(3)解:∵∠BOD:∠DOA=1:5
∴∠BOD:∠BOC=1:5,
∴∠BOD=∠COD=30°,
∴∠AOC=30°,
又∵EO⊥CD,
∴∠COE=90°,
∴∠AOE=90°+30°=120°.
【解析】【分析】(1)根据垂直的定义即可作图;(2)分F在射线OM上和在射线ON 上分别进行求解即可;(3)依据平角的定义以及垂线的定义,即可得到∠AOE的度数.
15.如图1,将一副直角三角板的两顶点重合叠放于点O,其中一个三角板的顶点C落在另一个三角板的边OA上,已知∠ABO=∠DCO=90°,∠AOB=45°,∠COD=60°作∠AOD的平分线交边CD于点E。

(1)求∠BOE的度数。

(2)如图2,若点C不落在边OA上,当∠COE=15°时,求∠BOD的度数。

【答案】(1)解:∵∠COD=60°,OE为∠COD的平分线,
∴∠COE=30°,
∴∠BOE=∠AOB+∠COE
=45°+30°
=75°;
(2)解:∵∠COE=15°,
∴∠DOE=∠DOC-∠OCE=60°-15°=45°,
∵OE平分∠AOD,
∴∠AOD=2∠DOE=2×45°=90°,
∴∠BOD=∠AOD+∠AOB=90°+45°=135°.
【解析】【分析】(1)OE为∠COD的平分线,求出∠COE的度数,则∠BOE的度数等于∠AOB和∠COE的度数之和;
(2)现知∠COE的度数,则∠DOE度数可求,结合OE平分∠AOD,则∠AOD可求,于是∠BOD的度数可得;。

相关文档
最新文档