可控硅各种波形

合集下载

可控硅知识

可控硅知识

可控硅知识一、可控硅的概念和结构?晶闸管又叫可控硅(Silicon Controlled Rectifier, SCR)。

自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。

今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。

从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

可控硅二、晶闸管的主要工作特性为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。

晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。

注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。

晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。

现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。

这个演示实验给了我们什么启发呢?可控硅这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。

晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。

晶闸管的特点:是“一触即发”。

但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。

控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。

那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。

可控硅的使用方法大全

可控硅的使用方法大全

可控硅的使用方法大全一、概述在日常的控制应用中我们都通常会遇到需要开关交流电的应用,一般控制交流电的时候,我们会使用很多种方法,如:1、使用继电器来控制,如电饭煲,洗衣机的水阀:2、使用大功率的三极管或IGBT来控制:3、使用整流桥加三极管:4、使用两个SCR来控制:5、使用一个Triac来控制:晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。

其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。

同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。

单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-direct ional Controlled Rectifier(BCR)来表示双向可控硅。

请注意上述两图中的红紫箭头方向!可控硅的结构原理我就不提了。

二、可控硅的控制模式现在我们来看一看通常的可控硅控制模式1、On/Off 控制:对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。

2、相角控制:也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小三、我们知道,可控硅的一个导通周期可以有四步:。

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版可控硅(scr: silicon controlled rectifier)是可控硅整流器的简称。

可控硅有单向、双向、可关断和光控几种型别它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。

单向可控硅的工作原理单向可控硅原理可控硅是p1n1p2n2四层三端结构元件,共有三个pn结,分析原理时,可以把它看作由一个pnp管和一个npn管所组成当阳极a加上正向电压时,bg1和bg2管均处于放大状态。

此时,如果从控制极g输入一个正向触发讯号,bg2便有基流ib2流过,经bg2放大,其集电极电流ic2=β2ib2。

因为bg2的集电极直接与bg1的基极相连,所以ib1=ic2。

此时,电流ic2再经bg1放大,于是bg1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到bg2的基极,表成正反馈,使ib2不断增大,如此正向馈迴圈的结果,两个管子的电流剧增,可控硅使饱和导通。

由于bg1和bg2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极g的电流消失了,可控硅仍然能够维持导通状态,由于触发讯号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。

从外形无法判断的可控硅,可用万用表r×100或r×1k 挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的範围)时,黑表笔所接的是控制极g,红表笔所接的是阴极c,余下的一只管脚为阳极a。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的⼯作原理及原理图标签:可控硅(358)双向可控硅的⼯作原理1.可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由⼀个PNP管和⼀个NPN管所组成 当阳极A加上正向电压时,BG1和BG2管均处于放⼤状态。

此时,如果从控制极G输⼊⼀个正向触发信号,BG2便有基流ib2流过,经BG2放⼤,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放⼤,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流⼜流回到BG2的基极,表成正反馈,使ib2不断增⼤,如此正向馈循环的结果,两个管⼦的电流剧增,可控硅使饱和导通。

 由于BG1和BG2所构成的正反馈作⽤,所以⼀旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作⽤,没有关断功能,所以这种可控硅是不可关断的。

 由于可控硅只有导通和关断两种⼯作状态,所以它具有开关特性,这种特性需要⼀定的条件才能转化 2,触发导通 在控制极G上加⼊正向电压时(见图5)因J3正偏,P2区的空⽳时⼊N2区,N2区的电⼦进⼊P2区,形成触发电流IGT。

在可控硅的内部正反馈作⽤(见图2)的基础上,加上IGT的作⽤,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越⼤,特性左移越快。

⼀、可控硅的概念和结构?晶闸管⼜叫可控硅。

⾃从20世纪50年代问世以来已经发展成了⼀个⼤的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。

今天⼤家使⽤的是单向晶闸管,也就是⼈们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第⼀层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。

从晶闸管的电路符号〔图2(b)〕可以看到,它和⼆极管⼀样是⼀种单⽅向导电的器件,关键是多了⼀个控制极G,这就使它具有与⼆极管完全不同的⼯作特性。

可控硅励磁基本知

可控硅励磁基本知
30
三、恰甫其海电厂励磁系统简介
EXC9000型全数字式静态励磁系统主要特 点是功能软件化、系统数字化。本系统的 数字化不仅体现在调节器,也体现在功率 柜和灭磁柜。励磁系统的各个部分均能实 现智能检测、智能显示、智能控制、信息 智能传输和智能测试 。
31
1、调节柜
EXC9000励磁调节器 为双微机三通道调节 器,其中A、B通道为 微机通道,其核心控 制器件是32位总线工 控机,C通道为模拟通 道。
27
二、整流原理
通过对以上逆变的分析,我们可以看出: • ①要实现逆变,应使Ud为负值,所以三相全控桥式整流
电路实现逆变的第一个条件是控制角α应在大于90°和小 于180°范围绕内。 • ②要实现逆变,负载必须为电感性,且原先三相桥处在整 流状态下工作,即转子绕组原先励磁具有能量。因而三相 全控桥式整流电路实现逆变的第二条件是负载呈电感性且 原先储有能量,当负载是纯电阻时,三相全控桥电路不能 实现逆变。 • ③逆变就是直流侧电感中储存的能量向交流电源反馈送的 过程,因而逆变时交流侧电源不能消失,这就构成了三相 全控桥式整流电路实现逆变的第三个条件。
24
二、整流原理 类似的,作出控制角α=60°时的全控桥整 流输出电压波形如图所示。
25
二、整流原理
当60°<α<90°时,晶闸管换相时瞬时值 已为负值,由于电感的作用,导通的晶闸 管继续导通,整流输出出现了负的电压波 形,使整流电压值降低。电感性负载当 α=90°时,在电流连续情况下输出电压波 形的正负面积相等,输出电压的平均值为 零,如图所示。
3
二、整流原理 励磁设备是电厂的辅助设备之一,它是把 交流电整流成直流电供给转子磁极,通过 水轮机带动转子转动以形成旋转磁场切割 定子绕组,在定子绕组中感应成电动势, 通过导线向负荷供电。

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图

双向可控硅的工作原理及原理图双向可控硅的工作原理1、可控硅就是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它瞧作由一个PNP管与一个NPN管所组成当阳极A加上正向电压时,BG1与BG2管均处于放大状态。

此时,如果从控制极G 输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。

因为BG2的集电极直接与B G1的基极相连,所以ib1=ic2。

此时,电流ic2再经BG1放大,于就是BG1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱与导通。

由于BG1与BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅就是不可关断的。

由于可控硅只有导通与关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化2,触发导通在控制极G上加入正向电压时(见图5)因J3正偏,P2区的空穴时入N2区,N2区的电子进入P2区,形成触发电流IGT。

在可控硅的内部正反馈作用(见图2)的基础上,加上IGT的作用,使可控硅提前导通,导致图3的伏安特性OA段左移,IGT越大,特性左移越快。

TRIAC的特性什么就是双向可控硅:IAC(TRI-ELECTRODE AC SWITCH)为三极交流开关,亦称为双向晶闸管或双向可控硅。

TRI AC为三端元件,其三端分别为T1(第二端子或第二阳极),T 2(第一端子或第一阳极)与G(控制极)亦为一闸极控制开关,与SCR最大的不同点在于TRIAC无论于正向或反向电压时皆可导通,其符号构造及外型,如图1所示。

因为它就是双向元件,所以不管T1 ,T2的电压极性如何,若闸极有信号加入时,则T1 ,T2间呈导通状态;反之,加闸极触发信号,则T1 ,T2间有极高的阻抗。

可控硅

可控硅

1.2.4 可控硅1. 可控硅的结构与工作原理可控硅是在硅二极管基础上发展起来的一种大功率半导体器件。

它又称“晶体闸流管”简称“晶闸管”。

它具有三个PN结四层结构。

可控硅有三个电极,分别为阳极(A)、阴极(K)、控制极(G)。

其外形及电路符号如图1-20所示。

可控硅主要有螺栓型、平板型、塑封型和三极管型。

通过的电流可能从几安培到千安培以上。

图1-20 可控硅及电路符号图1-21 可控硅工作原理可控硅的工作原理可以通过下面的实验电路加以说明。

如图1-21(a)所示,接好电源,阴极与阳极间加正向电压,即阳极接电源E1的正极,阴极接电源E1的负极,控制极接E2的正极,这时S为断开状态,灯泡不亮,说明可控硅不导通。

如将S闭合,即给控制极加上正电压,这时灯泡亮了,说明可控硅处于导通状态。

可控硅导通后,将S断开,去掉控制极上的电压,灯泡仍然亮了,说明可控硅一旦导通后,控制极就失去了控制作用。

如果给阴极与阳极间加反向电压,如图1-21(b)即阳极接E负极,阴极接E的正极。

这时给控制极加电压,灯泡不亮,说明可控硅不导通。

如将E极性对调,即控制极加反向电压如图1-21(c)所示,阳极与阴极间无论加正、反向电压,可控硅都不导通。

通过以上说明,可控硅导通必须具备两个条件:一是可控硅阴极与阳极间必须加正向电压,二是控制极电路也要接正向电压。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

如图1-21(d),当改变RP的触点位置时可使灯泡的亮度逐渐减少,并完全熄灭。

当灯泡熄灭后,不论如何改变RP触点的位置,灯都不会再亮,这说明了可控硅已不再导通。

此试验进一步表明,当可控硅导通后控制极就起动了控制作用,此时要使可控硅再度处于关断状态,就要降低可控硅阳极电压或通态的电流。

可控硅的控制极电压、电流,一般是比较低的,电压只有几伏,电流只有几十至几百毫安,但被控制的器件中可以通过很大的电压和电流,电压可达几千伏、电流可达到千安以上。

可控硅工作原理及参数详解

可控硅工作原理及参数详解
下图的典型可控硅应用电路,可以用来调节灯泡的亮度。电路输入的220V交流电压经桥式整流后得到脉冲直流电压VP,此时可控硅VT为阻断状态,电路是不导通的;
随着脉冲直流电压VP通过可调电阻RP1、R1对电容C1进行充电,当电容C1上的电压足以触发可控硅VT时,可控硅导通后负载回路畅通,从而使电灯泡点亮,如下图所示:
这两个值与之前介绍的IDRM、VDRM是一样的,只不过IDRM、VDRM是在控制G极断开、可控硅阻断状态下测量的,而IRRM、VRRM是在可控硅A、K极接反向电压下测量的。
如果在可控硅阳极A与阴极K间加上反向电压时,开始可控硅处于反向阻断状态,只有很小的反向漏电流流过。当反向电压增大到某一数值时,反向漏电流急剧增大,这时,所对应的电压称为反向不重复峰值电压VRSM(Peak Non-Repetitive Surge Voltage)。
如果反向电压增大到某一数值时,反向漏电流急剧增大,此时所对应的电压称为反向门极峰值电压IGM(Reverse Peak Gate Voltage),使用时不应超过此值。
上面我们讨论的是常用的P型门极、阴极端受控的可控硅,还有一种不常用的N型门极、阳极端受控的可控硅,其原理图符号如下图所示,两者的原理是完全一样的,读者可自行分析一下。
调节可调电位器RP1即可控制电容C1的充电速度(充电常数越大充电速度越慢),这样施加在灯泡上的交流电压的平均值就可以随之调整,从而调节电灯泡的高度。
原文链接点击这里
但问题是,大多数时候VAK的电压不会那么容易(主动)下降,我帮主当得好好的,凭什么让我下台?老子有的是钱!
狡兔死,走狗烹,电压VGK深谙其中道理,也早早从“门极关断可控硅”手中重金买下简单的办法让灯泡熄灭。你丫的,我给你立下汗马功劳不让我当帮主,只有拆你的台了。如下图所示:

可控硅知识的问与答

可控硅知识的问与答

可控硅知识的问与答陈浩南一、可控硅的概念和结构?晶闸管又叫可控硅。

自从20世纪50年代问世以来已经发展成了一个大的家族,它的主要成员有单向晶闸管、双向晶闸管、光控晶闸管、逆导晶闸管、可关断晶闸管、快速晶闸管,等等。

今天大家使用的是单向晶闸管,也就是人们常说的普通晶闸管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极〔图2(a)〕:第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。

从晶闸管的电路符号〔图2(b)〕可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

图2二、晶闸管的主要工作特性为了能够直观地认识晶闸管的工作特性,大家先看这块示教板(图3)。

晶闸管VS与小灯泡EL串联起来,通过开关S接在直流电源上。

注意阳极A是接电源的正极,阴极K接电源的负极,控制极G通过按钮开关SB接在3V直流电源的正极(这里使用的是KP5型晶闸管,若采用KP1型,应接在1.5V直流电源的正极)。

晶闸管与电源的这种连接方式叫做正向连接,也就是说,给晶闸管阳极和控制极所加的都是正向电压。

现在我们合上电源开关S,小灯泡不亮,说明晶闸管没有导通;再按一下按钮开关SB,给控制极输入一个触发电压,小灯泡亮了,说明晶闸管导通了。

这个演示实验给了我们什么启发呢?图3这个实验告诉我们,要使晶闸管导通,一是在它的阳极A与阴极K之间外加正向电压,二是在它的控制极G与阴极K之间输入一个正向触发电压。

晶闸管导通后,松开按钮开关,去掉触发电压,仍然维持导通状态。

晶闸管的特点:是“一触即发”。

但是,如果阳极或控制极外加的是反向电压,晶闸管就不能导通。

控制极的作用是通过外加正向触发脉冲使晶闸管导通,却不能使它关断。

那么,用什么方法才能使导通的晶闸管关断呢?使导通的晶闸管关断,可以断开阳极电源(图3中的开关S)或使阳极电流小于维持导通的最小值(称为维持电流)。

可控硅的一些基本知识

可控硅的一些基本知识

可控硅的一些基本知识摘要:可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。

它具有体积小、效率高、寿命长等优点。

在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。

它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。

可控硅分单向可控硅和双向可控硅两种可控硅(Silicon Controlled Rectifier) 简称SCR,是一种大功率电器元件,也称晶闸管。

它具有体积小、效率高、寿命长等优点。

在自动控制系统中,可作为大功率驱动器件,实现用小功率控件控制大功率设备。

它在交直流电机调速系统、调功系统及随动系统中得到了广泛的应用。

可控硅分单向可控硅和双向可控硅两种。

双向可控硅也叫三端双向可控硅,简称TRIAC。

双向可控硅在结构上相当于两个单向可控硅反向连接,这种可控硅具有双向导通功能。

其通断状态由控制极G决定。

在控制极G上加正脉冲(或负脉冲)可使其正向(或反向)导通。

这种装置的优点是控制电路简单,没有反向耐压问题,因此特别适合做交流无触点开关使用。

结构编辑大家使用的是单向晶闸管,也就是人们常说的普通晶闸可控硅管,它是由四层半导体材料组成的,有三个PN结,对外有三个电极第一层P型半导体引出的电极叫阳极A,第三层P型半导体引出的电极叫控制极G,第四层N型半导体引出的电极叫阴极K。

从晶闸管的电路符号可以看到,它和二极管一样是一种单方向导电的器件,关键是多了一个控制极G,这就使它具有与二极管完全不同的工作特性。

以硅单晶为基本材料的P1N1P2N2四层三端器件,起始于1957年,因为它的特性类似于真空闸流管,所以国际上通称为硅晶体闸流管,简称晶闸管T,又因为晶闸管最初的在静止整流方面,所以又被称之为硅可控整流元件,简称为可控硅SCR。

在性能上,可控硅不仅具有单向导电性,而且还具有比硅整流元件(俗称"死硅")更为可贵的可控性。

常见的几种二极管整流电路解析,可控硅整流电路波形分析

常见的几种二极管整流电路解析,可控硅整流电路波形分析

常见的几种二极管整流电路解析,可控硅整流电路波形分析常见的几种二极管整流电路解析:二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=vi-vd。

当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。

半波整流电路输入和输出电压的波形如图所示。

对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。

但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。

平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。

通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。

(2)半波整流电路的交流利用率为50%。

(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。

(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

全波整流当输入电压处于交流电压的正半周时,二极管D1导通,输出电压V o=vi-VD1。

当输入电压处于交流电压的负半周时,二极管D2导通,输出电压V o=vi-VD2。

由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。

晶体二极管组成的各种整流电路。

一、半波整流电路。

可控硅

可控硅

三象限双向可控硅:3 Quadrants Triac,简称3Q四象限双向可控硅:4 Quadrants Triac,简称4Q三象限与四象限在产品性能上、应用范围上有何区别呢?家电中的电气负载,例如马达、阀门、灯管或者加热器等等,都需要接通或切断输送给它的功率,有些则要求输入功率能够在一定范围内改变。

使用双向可控硅(TRIAC: Tri-electrode AC switch)的固态功率控制电路具有简单、可靠、价格低廉的优点,在负载功率变化的家电中得到广泛的应用。

但是用普通的Triac控制感性负载会出现不受控的情况,而新的三象限Triac解决了普通Triac使用时出现的问题。

用相位控制来改变功率家电中的马达不论是分段调节或者是连续调节,大都采用串联式交流马达。

可以用电子转速控制电路来提高平均驱动电压,以维持较稳定的输出速度。

对於要求成本低的系统,使用Triac的相位控制电路是个很好的方案。

正确地设计相位控制电路、正确地选用Triac,就可以实现可靠、简单、经济的控制电路。

图1是一个简单的例子,其中只用了6个元件:一只Triac、两个电阻器、一个电容器、用於触发Triac的双向触发二极管(DIAC, DI-electrode AC switch),以及用於设定触发延迟时间的可变电阻器,图中没有为满足EMC要求所需要的滤波元件。

图1中的100nF电容器通过固定与可变电阻器充电到二极交流开关的击穿电压,大约为32V。

加在Triac 控制极上的电流脉冲触发Triac使之在随後的半个交流电周期中导通,在电源为正半周时,这个过程重复发生,图中10kΩ的电阻器用来避免过高的电流流到100nF电容器而造成损坏,1MΩ的可变电阻器的作用是控制电容器的充电速度,从而改变触发脉冲的相位角,控制负载上的平均功率。

图1: 通用型相位控制电路要确保正确地进行触发,在I GT处在最高电平的时间最少为10μs,这是由47Ω电阻器来做到的,它限制了振幅,同时延长控制极上脉冲延续的时间,控制极电流脉冲的幅度至少要等於Triac额定的I GT最大值以确保正确地触发。

可控硅的基本工作原理及在调光器中的使用

可控硅的基本工作原理及在调光器中的使用

可控硅的基本工作原理及在调光器中的使用篇一:led可控硅调光原理及问题led可控硅调光原理及问题时间:2021-11-1920:26:44来源:作者:1.前言如今,led照明已沦为一项主流技术。

led手电筒、交通信号灯和车灯比比皆是,各个国家正在促进用led灯替代以主电源供电的住宅、商业和工业应用领域中的白炽灯和荧光灯。

改用低能效led照明后,同时实现的能源节省量将可以非常不可思议。

仅在中国,据政府*估算,如果三分之一的照明设备市场转为led产品,他们每年将可以节省1亿度的用电量,并可以增加2900万吨的二氧化碳排放量。

然而,仍存有一个障碍尚待消除,那就是调光问题。

白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。

因此,这种调光器随处可见。

固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。

白炽灯泡就非常适合进行调光。

具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。

白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。

在尝试对led灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。

要想弄清原因,首先有必要了解可控硅调光器的工作原理、led灯技术以及它们之间的相互关系。

2.可控硅调光的原理图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。

图1前沿可控硅调光器电位计r2调整可控硅(triac)的相位角,当vc2超过diac的击穿电压时,可控硅会在每个ac电压前沿导通。

当可控硅电流降到其维持电流(ih)以下时,可控硅关断,且必须等到c2在下个半周期重新充电后才能再次导通。

灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。

3.led调光存有的问题用于替换标准白炽灯的led灯通常包含一个led阵列,确保提供均匀的光照。

这些led以串联方式连接在一起。

双向可控硅工作原理

双向可控硅工作原理

双向可控硅工作原理简介双向可控硅(Bilateral Controlled Silicon)是一种专门用于交流电控制的半导体器件。

它通常被用于电子设备中的功率控制和开关控制,广泛应用于各个领域,如电动机驱动、电源控制等。

双向可控硅具有双向导电性能,能够控制交流电的正半周期和负半周期的导通和截止。

本文将详细介绍双向可控硅的工作原理及其应用。

工作原理双向可控硅主要由晶体管、触发电路、保护电路和继电器等组成。

它的工作原理可以分为触发、导通和截止三个阶段。

触发阶段在双向可控硅工作的触发阶段,需要通过外部的触发信号来触发晶体管的开关动作。

触发电路会将触发信号转化为适当的电压和电流波形,并将其传递给晶体管。

这样,晶体管的控制端就可以受到适当的电压和电流作用。

导通阶段当晶体管接收到触发信号后,在适当的时刻,其内部PN 结的偏置电压会达到硅控整流器的导通电平。

此时,晶体管的控制端达到启动电压,导通电流开始通过。

双向可控硅的导通电流会一直保持,直到交流电的电流达到零点,或者传感器检测到电流的异常,触发保护电路,停止导通。

截止阶段在截止阶段,当触发信号停止或者交流电流达到零点时,晶体管的控制端的电压会下降到截止电压,此时晶体管停止导通。

应用由于双向可控硅具有双向导电性能,因此可以在交流电源中实现有源功率控制和开关控制。

在工业控制系统中,双向可控硅广泛应用于以下领域:电动机驱动双向可控硅可以实现对电动机的调速控制。

通过控制双向可控硅的触发信号,可以调节电动机的电源电压和频率,从而改变电动机的转速和扭矩。

电源控制双向可控硅可以用于电源控制和UPS(不间断电源)系统中。

通过对交流电源进行控制,可以实现电源电压的稳定输出和对电源质量的改善。

灯控制双向可控硅还可以用于照明系统中的灯控制。

通过调节双向可控硅的导通角,可以实现灯光的调光控制。

温控设备双向可控硅还可以应用于温控设备中,如加热器的温度控制。

通过对双向可控硅的控制,可以实现温度的精确控制。

可控硅scr

可控硅scr

可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。

它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变成交流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。

可控硅和其它半导体器件一样,有体积小、效率高、稳定性好、工作可靠等优点。

它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。

目前可控硅在自动控制、机电应用、工业电气及家电等方面都有广泛的应用。

可控硅从外形上区分主要有螺旋式、平板式和平底式三种。

螺旋式应用较多。

可控硅有三个极----阳极(A)、阴极(C)和控制极(G),管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN 结,与只有一个PN结的硅整流二极管在结构上迥然不同。

可控硅的四层结构和控制极的引入,为其发挥“以小控大”的优异控制特性奠定了基础。

可控硅应用时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。

目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。

一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。

我们可以把从阴极向上数的第一、二、三层看面是一只NPN型号晶体管,而二、三、四层组成另一只PNP型晶体管。

其中第二、第三层为两管交迭共用。

可画出图1的等效电路图。

当在阳极和阴极之间加上一个正向电压E,又在控制极G和阴极C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基极电流Ib2,经放大,BG2将有一个放大了β2 倍的集电极电流IC2 。

因为BG2集电极与BG1基极相连,IC2又是BG1 的基极电流Ib1 。

BG1又把Ib1(Ib2)放大了β1的集电极电流IC1送回BG2的基极放大。

如此循环放大,直到BG1、BG2完全导通。

事实上这一过程是“一触即发”的,对可控硅来说,触发信号加到控制极,可控硅立即导通。

可控硅整流电路分析

可控硅整流电路分析

第2章整流电路主要容:单相可控整流电路的工作原理、波形分析及计算,续流二极管的作用及有关波形分析。

三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

整流变压器原、附边绕组电流有效值及容量计算。

带平衡电抗器的双反星性大功率整流电路工作原理及波形分析。

变压器漏抗对整流电路的影响。

电路中谐波的产生、组成及抑制方法。

整流电路的谐波和功率因数。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

重点:单相可控整流电路的工作原理、波形分析及计算。

三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

变压器漏抗对整流电路的影响。

电路中谐波的产生、组成及抑制方法。

整流电路的谐波和功率因数。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

难点:三相半波整流电路的波形分析及计算。

三相全控桥的工作原理、波形分析及计算。

整流电路的有源逆变工作原理及实施逆变的条件,逆变颠覆及防止措施。

触发脉冲与主回路电压的同步,移相工作原理。

基本要求:掌握单相各、三相半波、三相全控整流电路在不同性质负载下的工作原理及波形分析,控制角移相围,电流有效值、平均值的计算,对相位控制触发脉冲的基本要求。

理解以带平衡电抗器的双反星性电路为代表的大功率整流电路工作原理。

掌握变压器漏抗对整流电路的影响。

了解电路中谐波的产生、组成及拟制方法。

掌握整流电路的谐波和功率因数。

掌握整流电路的有源逆变工作状态及实施逆变的条件,逆变状态时的能量分析及其物理概念;掌握三相桥式逆变电路对触发脉冲的要求,逆变颠覆及防止措施。

掌握触发脉冲与主回路电压的同步问题,移相工作原理及移相围,了解集成触发器的工作原理及应用。

整流电路:出现最早的电力电子电路,将交流电变为直流电;按组成的器件可分为不可控、半控、全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向或双向,又分为单拍电路和双拍电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档