《自动控制原理》3-6+线性系统的稳态误差分析

合集下载

自动控制原理第三章习题解答

自动控制原理第三章习题解答
σ % = e −πξ /
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

3-6线性系统的稳态误差计算

3-6线性系统的稳态误差计算
i=1 n 1 i k =1 n2 k j =1 j l =1 l
m 1
m2
2
+ 2ζ kτk s +1) + 2ζlTs +1) l
∏(T s +1)∏(Ts
=
2
K ⋅ G0 (s) sν
sR(s) 1 essr = lim = = s→0 1+ G (s) 1+ limGk (s) k
s→0
1 1 = K 1+ Kp 1+ lim ν ⋅ G0 (s) s→0 s
三、扰动作用下的稳态误差(3) 扰动作用下的稳态误差(3) [例]系统结构图如图所示。当 r(t) = n(t) = 1(t) 系统结构图如图所示。 时,求系统的稳态误差 ess;若要求稳态误差 为零,如何改变系统结构。 为零,如何改变系统结构。 解:该系统对给定输入而言属于Ⅰ型系统。 该系统对给定输入而言属于Ⅰ型系统。 所以当给定输入为单位阶跃函数时的稳态误差 essr = 0
3、单位抛物线输入时的稳态误差
R(s) =
1 s3
sR(s) 1 essr = lim = = 2 s→0 1+ G (s) lims ⋅ Gk (s) k
s→0
1 1 = K Ka lim ν −2 ⋅ G0 (s) s→0 s
∞ 1 = K 0
Ka
根据
ν =0,1 ν =2 ν ≥3
m2
=
K ⋅ G0 (s) ν s
K-开环增益
系统型别(即积分环节的个数) ν − 系统型别(即积分环节的个数)
当ν =0,无积分环节,称为0型系统 无积分环节,称为0
当 = ,有一个积分环节,称为Ⅰ型系统 ν 1 有一个积分环节,称为Ⅰ

《自动控制原理》第三第讲

《自动控制原理》第三第讲

误差系数 Kp Kv Ka
单位阶跃 输入
r(t) = u(t)
单位速度 输入
r(t) = t
单位加速 度输入
r(t) = 1 t 2 2
0
K0 0
1 1+K
I
∞ K0
0
II
∞ ∞K
0


1

K
1
0
K
1. 稳态误差与输入信号有关;与开环增益有关;与积分环节的个 数有关。
2. 减小或消除稳态误差的方法: a、增加开环放大系数K; b、提高系统的型号数;
R(s)
E(s) -
G1 ( s)
+ G2 (s) C(s)
H (s) (b)
通常,给定输入作用产生的误差为系统的给定误差
(E=R-HC),扰动作用产生的误差为扰动误差。认为扰动输入时 系统的理想输出为零,故从输出端的误差信号为:
En
= C理想
− C实际
=
−C实际
=
−Cn
= − G2 1+ G1G2 H
=
lim sv+1R(s)
s→0
lim sv + K
s→0
由上式可见, ess 与系统的型号v﹑开环增益K及输入信号
的形式及大小有关,由于工程实际上的输入信号多为阶跃信号
﹑斜坡信号(即等速度信号) ﹑抛物线信号(即等加速度信号) 或者为这三种信号的组合, 所以下面只讨论这三种信号作用 下的稳态误差问题.
Ka
m
G(s)H (s)
=
K sv
∏ (τ is +1)
i =1
n−v
∏ (Tjs +1)

《自动控制原理》第三章 35 稳态误差计算

《自动控制原理》第三章 35 稳态误差计算

两种定义的联系: E ' ( s ) E ( s ) H (s)
H ( s ) 1时, E ( s ) E ' ( s )
能源与动力学院 第三章 线性系统的时域分析法
3
1. 误差与稳态误差的定义…
e(t ) L1[ E (s)] L1[e (s) R (s)] L1[ R (s) ] 1 G(s)H (s)
3-6 线性系统的稳态误差计算 (Steady-state error)
稳定性 系统性能 动态性能
稳态性能 稳态误差
稳态性能
原理性误差 结构性误差 (附加稳态误差)
系统结构 输入类型、形式 摩擦,间隙 死区等非线性
能源与动力学院
第三章 线性系统的时域分析法
1
3-6 线性系统稳态误差计算
本节内容:
N(s)
C(s)
G2 (s)
H (s)
输出端误差定义
E'n
(s)
Cn(s)
G2(s)
1G1(s)G2(s)H(s)
N(s)
输入端误差定义
En(s)
Cn(s)H(s)
G2(s)H(S) 1G1(s)G2(s)H(s)
ets (t ) ess (t ) 稳态误差
ess ( )
Lim
s0
sE (s)
Lim
s0
1
sR (s) G(s)H
(s)
ess():终值误差 条件s: E(s)在右半平面及析 虚( 轴原 上点 解除外)
能源与动力学院 第三章 线性系统的时域分析法
4
1. 误差与稳态误差的定义…
例1
R(s) E(S)
误差与稳态误差的定义 系统的类型 输入作用下稳态误差计算 扰动作用下稳态误差 减小或消除稳态误差的措施

自动控制原理3.6 线性系统的稳态误差

自动控制原理3.6 线性系统的稳态误差
§3 — 6 稳态误差的分析计算
系统稳态误差是系统的稳态性能指标,是系统控 制精度的一种度量,它是控制系统设计中的一项重要 技术指标。 一、误差与稳态误差:
1、误差:被控量的希望值 c0(t )和实际值 c(t )之差:
(t) c0(t) c(t)
2、稳态误差:当 t 时系统误差的极限值:
二、给定输入下的稳态误差与静态误差系数:
1、阶跃

入下的esr与静
态位置误
差系数K

p
r(t) A 1(t),R(s) A
s
esr
令K

p
lim sE(s)
s0

lim
s0
Gk
(s
lim
s0
)
1
s A
A
Gk s
esr
1
lim
As0
Gk
1 Kp
(
s)
0型:K p
ess

lim (t)
t
§3---6 稳态误差的分析计算
稳态误差的分析计算(续)
▲稳态误差是指在稳定条件下,加入输入信号后经 过足够长的时间,其瞬时响应已衰减到微不足道时, 稳态响应的期望值与实际值之差。因此,只有稳定 的系统讨论稳态误差才有意义。
●单位反馈系统的r(t)即为要求值:r(t) c0(t)

lim
s0
K
G0(s)

K

esr

A 1 K
1型:K p

lim
s0
K s
G0(s)


esr 0
1型以上:同1型一样ess 0

自动控制原理实验报告--控制系统的稳定性和稳态误差

自动控制原理实验报告--控制系统的稳定性和稳态误差

本科实验报告课程名称:自动控制原理实验项目:控制系统的稳定性和稳态误差实验地点:多学科楼机房专业班级:学号:学生姓名:指导教师:2012 年5 月15 日一、实验目的和要求:1.学会利用MATLAB 对控制系统的稳定性进行分析; 2.学会利用MATLAB 计算系统的稳态误差。

二、实验内容和原理:1.利用MATLAB 描述系统数学模型如果系统的的数学模型可用如下的传递函数表示nn n m m m a s a s b s b s b s U s Y s G ++++++==-- 11110)()()( 则在MATLAB 下,传递函数可以方便的由其分子和分母多项式系数所构成的两个向量惟一确定出来。

即num=[b 0,b 1 ,…, b m ]; den=[1,a 1,a 2 ,…,a n ]例2-1 若系统的传递函数为5234)(23+++=s s s s G 试利用MA TLAB 表示。

当传递函数的分子或分母由若干个多项式乘积表示时,它可由MA TLAB 提供的多项式乘法运算函数conv( )来处理,以获得分子和分母多项式向量,此函数的调用格式为 p=conv(p1,p2)其中,p1和p2分别为由两个多项式系数构成的向量,而p 为p1和p2多项式的乘积多项式系数向量。

conv( )函数的调用是允许多级嵌套的。

例2-2 若系统的传递函数为)523)(1()66(4)(232++++++=s s s s s s s s G试利用MA TLAB 求出其用分子和分母多项式表示的传递函数。

2.利用MATLAB 分析系统的稳定性在分析控制系统时,首先遇到的问题就是系统的稳定性。

判断一个线性系统稳定性的一种最有效的方法是直接求出系统所有的极点,然后根据极点的分布情况来确定系统的稳定性。

对线性系统来说,如果一个连续系统的所有极点都位于左半s 平面,则该系统是稳定的。

MATLAB 中根据特征多项式求特征根的函数为roots( ),其调用格式为r=roots(p) 其中,p 为特征多项式的系数向量;r 为特征多项式的根。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

自动控制原理稳态误差

自动控制原理稳态误差

自动控制原理稳态误差相关的基本原理引言自动控制原理是研究如何通过对被控对象进行测量和调节,使其输出达到期望值的一门学科。

在实际应用中,我们往往希望被控对象能够快速、准确地达到期望值,并且能够稳定在该期望值附近。

然而,由于各种因素的影响,被控对象在实际操作中往往会存在一定的误差。

稳态误差就是描述系统输出与期望值之间的偏差。

稳态误差的定义稳态误差是指系统在长时间运行后,输出与期望值之间的持续偏差。

通常使用误差函数来描述稳态误差,常见的有积分误差、百分比偏差等。

稳态误差分类根据系统输入信号和输出响应之间的关系,稳态误差可以分为以下几种类型:阶跃输入信号下的稳态误差当输入信号为阶跃函数时,系统响应过程中存在一个阶段性变化。

根据输出与期望值之间的偏差大小和持续时间的不同,可以将阶跃输入信号下的稳态误差分为零稳态误差、常数稳态误差和无限稳态误差三种情况。

零稳态误差当系统输出在长时间运行后与期望值完全一致时,称系统具有零稳态误差。

这意味着系统能够快速、准确地响应输入信号,并最终达到期望值。

常数稳态误差当系统输出在长时间运行后与期望值存在一个固定的偏差时,称系统具有常数稳态误差。

虽然系统能够达到期望值附近,但始终存在一个固定的偏差。

无限稳态误差当系统输出在长时间运行后与期望值之间的偏差持续增大,并且无法消除时,称系统具有无限稳态误差。

这种情况下,系统无法达到期望值。

正弦输入信号下的稳态误差当输入信号为正弦函数时,系统响应过程中存在周期性变化。

对于正弦输入信号下的稳态误差,我们通常关注其幅频特性和相频特性。

幅频特性描述了输出信号的幅值与输入信号频率之间的关系。

对于稳定系统,幅频特性通常是一个函数,它可以用来衡量系统对不同频率的正弦输入信号的响应能力。

当幅频特性在某个频率处衰减到0时,称该频率为系统的截止频率。

相频特性相频特性描述了输出信号与输入信号相位之间的关系。

对于稳定系统,相频特性通常是一个函数,它可以用来衡量系统对不同相位的正弦输入信号的响应能力。

自动控制原理 第三章第5

自动控制原理  第三章第5
E(s) R(s) H(s)C(s)
2
(2)从输出端定义:
误差 E'(s) 等于系统希望输出量的希望值
Cr (s)与实际值C(s)之差。
E ' (s)
Cr
(s)
C(s)
1 H (S )
R(s)
C(s)
R(s)
1 Cr (s) H (s)
E(s)
G1 ( s)
N (s)
C(s)
G2 (s)
3
i 1
n
(Tj S 1)
j 1
S0 K S
K p
K
Kp
limG(s)H (s)
s0
G(0)H (0)
K s
Kp
K
Kv
lim sG(s)H (s)
s0
s
s
Kv 0
Kv
K
Kv
0 1 1
0 1
Ka
lim sG(s)H (s)
s0
s2
K s
KKaa
0 K
1 2
都跟系统的型别有关,下面按系统型别分类
输入信号
r (t )
1 2
t2
,
sin t,试求系统的稳态误差。
解:
当r (t )
1 2
t 2时
E(s)
e
(s)R(s)
1
R(s) G(s)
1
S3
1
1 TS
1 S2
1
S
1 T
反变换得:
e(t )
T
e2
1t T
T (t
T)
ess
lim e(t)
t
7
当r(t) sin t时,

自动控制原理第3章总结

自动控制原理第3章总结

一阶系统特点:
1. 响应曲线在[0,) 的时间区间中始终不会超过其稳态值,把这样的响
应称为非周期响应。无振荡 2.一阶系统的单位阶跃响应是一条初始值为0,以指数规律上升到终值1的
曲线。 3. ※实验中求取时间常数的方法--输出响应为0.632时对应的时间。 4.一阶系统可以跟踪单位阶跃信号,因为无稳态误差。
Td
n
2 1 2
ln( 1 )
p
2 (ln 1 )2
p
ts
3.5
n
ts
4.4
n
2.2 1 2
N
, 0.02
1.75 1 2
N
, 0.05
3-3 二阶系统的时域分析
3.3.4 二阶系统的动态性能指标 总结:
c(t) 1
1
1 2
ent
sin(dt ), t
0
c(t)
% e 1 2 100%
n s1j
j
j n 1 2
s1
0
s2
s1,2 j n (d) 0
0
j n 1 2
n
s2
s1,2 n j n 1 2
(e) 1 0
j
s1
s2
0
s1,2 n n 2 1 (c) 1
j
s1
s2
0
s1,2 n n 2 1
(f ) 1
3-3 二阶系统的时域分析来自s2 2n s n2 R C
2L
3-3 二阶系统的时域分析
3.3.1 二阶系统的数学模型
标准化二阶系统的结构图为:
R(s)
+﹣
n2
C(s)
s(s+2ξn)
n2

自动控制原理3.6 控制系统的稳态误差

自动控制原理3.6 控制系统的稳态误差
R(s) + - B(s) H(s) Gc(s) + + Go(s) C(s)
反馈控制系统的一般结构图 R(s)——给定参考输入r(t)的象函数;C(s)——输出c(t)的象函数 N(s)——扰动量n(t)的象函数; B(s)——反馈量的象函数 Gc(s)——控制环节的传递函数; Go(s)——被控对象的传递函数 H(s)——反馈环节的传递函数
G c ( s )G o ( s ) H ( s ) B ( s ) H ( s )C ( s ) R(s) 1 G c ( s )G o ( s ) H ( s )
响应的期望值就是R(s),所以系统给定误差的象函数
应是:
1 Er ( s) R( s) B( s) R( s) 1 Gc ( s )Go ( s ) H ( s ) 1 R( s) e ( s) R( s) 1 G(s)
由扰动输入信号引起的误差称为扰动稳态误差,
它反映了系统抑制扰动的能力。 对于恒值调节系统,给定的参考输入是不怎么变 化的,需要分析稳态响应在扰动作用于系统后所
受到的影响。因此,常以扰动稳态误差去衡量恒
值调节系统的稳态性能。
二、系统的类型
设系统的开环传递函数为:
Gc ( s ) K1 ( j s 1) s ( i s 1)
统的稳态误差总是不可避免的;

当稳态误差足够小可以忽略不计的时候,可以认为
系统的稳态误差为零,这种系统称为无差系统,而 稳态误差不为零的系统则称为有差系统; 应当强调的是,只有当系统稳定时,分析系统的稳 态误差才有意义!!

一、误差与稳态误差
根据控制系统的一般结构,可定义系统的误差与稳态 误差。 N(s)
其中, G ( s ) Gc ( s )Go ( s ) H ( s ) 为开环传递函数。

自动控制原理第三章

自动控制原理第三章
令 K a = lim S 2 G ( s ) H ( s ) = lim s →0 s →0
K S v2 (3 70)
(3 69)
K a 静态加速度误差系数
Static acceleration error constant
(3-70)
0 K a = K ∞
ν = 0,1 ν =2 ν ≥3
控制 对象
C(s) (s) G2 (s)
N (s) R(s) E(s) (s) G1 (s) H (s)
控制器
N (s) R(s) E(s) G1(ss) () H (s)
G2 (s)
C(s) G2 (s) (s)
输出对扰动 的传递函数
N(s) C(s)
图3-23 控制系统
G1 (s)
H (s)
G2 ( s ) C (s) = M N (s) = N ( s ) 1 + G1 ( s )G2 ( s ) H ( s )

系统类型(type)与系统的阶数(order)的区别

G0 ( s ) H 0 ( s ) = Π (Ts S + 1) Π (T j S + 1)
i =1 j =1
m
n ν
G ( s) H ( s) =
K Π (τ i s + 1) sν
m
Π (T j s + 1) j =1
i =1 n ν
, n≥m
s →0

K p = lim H ( s ) R ( s )
s →0
(3 66)
K p : 静态位置误差系数
Static position error constant
由式(3 63)知:

自动控制原理(第二版)(赵四化)章 (3)

自动控制原理(第二版)(赵四化)章 (3)

(s) C(s) 1
R(s) Ts 1
(3-13)
第3章 时域分析法 图3-5 一阶系统的动态结构图
第3章 时域分析法
3.2.1 一阶系统的单位阶跃响应
设输入
R(s) 1 s
则输出量的拉氏变换为
C(s) (s) 1 1 1 1 1
s Ts 1 s s s 1/T
单位阶跃响应为
1t
C(s)
(s)R(s)
s2
n2 2ns
n2
1 s
其中, 由
s2 2 ns n2 0
可求得两个特征根
s1,2 n n 2 1
(3-22)
第3章 时域分析法
1) ξ>1, 过阻尼
ξ>1

, 2 1 s1,2=-ξωn±ωn
为两个不相等的负实数根, 即有
C(s)
n2
A1 A2 A3
(s)
C(s) R(s)
s2
n2 2ns
n2
(3-21)
其中, ξ为阻尼比, ωn为无阻尼自然振荡频率, 它们 均为系统参数。
第3章 时域分析法
由式(3-21)可以看出, 二阶系统的动态特性 可以用ξ和ωn这两个参数的形式加以描述。 如果0<ξ<1, 则闭环极点为共轭复数, 并且位于左半s平面, 这时系统 叫做欠阻尼系统, 其瞬态响应是振荡的。 如果ξ=1, 那 么就叫做临界阻尼系统。 而当ξ>1时, 就叫做过阻尼系 统。 临界阻尼系统和过阻尼系统的瞬态响应都不振荡。 如果ξ=0, 那么瞬态响应变为等幅振荡。
此时系统输出响应的拉氏变换为
C(s)
1 Ts 1
1 s2
1 s2
T s
T2 Ts 1

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

自动控制原理 自动控制原理 第三章3:线性定常系统的稳定误差计算P

∞ v R00 ess = K 0
ν =0 ν =1 ν ≥2
13
e ss
∞ R v 00 = K 0
ν = 0 ν = 1 ν ≥ 2
0型系统稳态时不能跟踪斜坡输入 Ⅰ型系统能跟踪斜坡输入,但存在一个稳态位置误差 型系统能跟踪斜坡输入, Ⅱ 型及 Ⅱ 型以上系统 , 稳态时能准确跟踪斜坡输入 型及Ⅱ型以上系统, 信号,不存在位置误差. 信号,不存在位置误差.
( 3 66 )
K p : 静态位置误差系数
K G (s)H (s) = s
20102010-7-11
ν
∏1 i= ∏1 j=
n ν
m
(τ (T
i
s + 1) ,
j
n ≥ m
s + 1)
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
10
第三章 线性系统的时域分析法
K
p
K ,ν = 0 = ∞ ,ν ≥ 1
2 s→ 0
K s v2
s→ 0
20102010-7-11
第三章 线性系统的时域分析法
17
误差系数 类型
静态位置误 差系数
Kp
静态速度误差 系数
Kv
静态加速度误 差系数
K
a
0型
K
∞ ∞
0
0
Ⅰ型
K

0 K
Ⅱ型
20102010-7-11
第三章 线性系统的时域分析法
18
输入
类型
r(t ) = R0
R0 1+ K
e
ss
ν 与 K R (s)
系统型别 开环增益有关 输入信号

自动控制原理

自动控制原理

3-6 线性系统的稳态误差计算把在阶跃函数作用下没有原理性稳态误差的系统,称为无差系统;把具有原理性稳态误差的系统称为有差系统。

非线性因素引起的系统稳态误差称为附加稳态误差,或结构性稳态误差。

习惯上常把系统在阶跃输入作用下的稳态误差称为静差。

因而,0型系统可称为有(静)差系统或零阶无差度系统,一型系统可称为一阶无差度系统,二型系统可称为二阶无差度系统。

4-3 广义根轨迹2、附加开环零点的作用增加开环零点也就是增加了闭环零点,闭环零点对系统性能的影响,相当于减小闭环系统的阻尼,从而使系统的过渡过程有出现超调的趋势,并且这种作用将随闭环零点接近坐标原点的强度而加强。

4-4 系统性能的分析1、 闭环零极点与时间响应经验指出,如果闭环零、极点之间的距离比它们本身的模值小一个数量级,则这一对闭环零、极点就构成了偶极子。

在略去偶极子和非主导零、极点的情况下,闭环系统的根轨迹增益常会发生改变,必须注意核算,否则将导致性能的估算错误。

闭环系统零、极点位置对时间响应性能的影响,可以归纳为以下几点:(1) 稳定性。

如果闭环极点全部位于s 左半平面,则系统一定是稳定的,即稳定性只与闭环极点位置有关,而与闭环零点位置无关。

(2) 运动形式。

如果闭环系统无零点,且闭环极点均为实数极点,则时间响应一定是单调的;果闭环极点均为复数极点,则时间响应一般是振荡的。

(3) 超调量。

超调量主要取决于闭环复数主导极点的衰减率1//d σωξ=,并与其他闭环零、极点接近坐标原点的程度有关。

(4) 调节时间。

调节时间主要取决于最靠近虚轴的闭环复数极点的实部绝对值1n σξω= ;如果实数极点距虚轴最近,并且它附近没有实数零点,则调节时间主要取决于该实数极点的模值。

(5) 实数零、极点影响。

零点减小系统阻尼,使峰值时间提前,超调量增大;极点增大系统阻尼,使峰值时间滞后,超调量减小。

它们的作用,随着其本身接近坐标原点的程度而加强。

(6) 偶极子及其处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

斜坡响应:稳态误差为常数
指令:t=0:.01:20; u=t; lsim(feedback(tf(5*[0,1],conv([1,0],[1.67,1])),1),u,t)
r t Cr (t ) t
t t
输入
Amplitude
ess lim e(t ) lim[ r (t ) b(t )] t (t 1/ K )
0.2
r 1 Cr (t ) H 2 e t Cr t C (t )
50 G G1G2 s 1.67s 1

15:36
0
0
5
10
15 Time (sec)
20
25
30
35
非单位反馈情况:
>> step(feedback(tf(50*[0.0,1],conv([1,0],[1.67,1])),2),0:.01:35)
b t C (t )
e t 1 t C (t )
ess lim e(t ) lim[ r (t ) b(t )] 1 1
>> step(feedback(tf(50*[0.0,1],conv([1,0],[1.67,1])),1),0:.01:35)
System: untitled4 Settling Time (sec): 2.49
>> step(feedback(tf(10*[0.0,1],conv([1,0],[1.67,1])),1),0:.01:35) >> step(feedback(tf(10*[0.0,1],conv([1,1],[1.67,1])),1),0:.01:35)
0 5 10 15 Time (sec) 20 25 30 35
单位反馈情况:
15:36

注意:误差、误差响应、稳态分量、瞬态分量、动态误差、稳态误差等概念
从图形和公式中体会误差和稳态误差
t
Step Response
ess lim e(t ) lim[Cr (t ) C (t )] 0.5 0.5
G1 ( s)
+ G ( s) 2
H(s)=1
C(s)
B(s)
H (s)
System: untitled2 Final Value: 1
Amplitude
1 0.8 0.6 0.4 0.2 0
r t Cr (t ) 1 t
50 G G1G2 s 1.67s 1
t t
输入(理想值)
12
Amplitude
10 8 6 4
K=5
K=1
K Td s 1 G Td 0 s 1.67s 1
K=0.3 阶跃响应
2 0
15:36
0
2
4
6
8
10 Time (sec)
12
14
16
18
20
从图形中体会误差和稳态误差
一、稳态误差的定义和基本概念
系统的误差 e(t)的基本定义为输出量的希望值与实际值之差。 典型系统结构如图所示,其误差定义有两种形式:
1 Cr ( s ) R( s ) H ( s)
希望的状态
E ( s) 0
对于扰动信号N(s)而言,希望的情况就是扰动 信号引起的输出为0(R=0,E=0),即系统的 希望输出Cn(t)一点都不受扰动的影响。
总之: 一
15:36
Chope
1 Cr ( s) Cn ( s) Cr ( s) R( s ) H ( s)
E ' (s) E (s) H (s)
e (t (1)输出端定义法:’ ) Cr (t ) C (t )
式中: C r (t ) 为系统输出量的希望值;
e(t)
R(t) E(s)
1/H(s)
N(s)
C r (t )
e’(t) C(s)
C(t)
C(t)为输出量的实际值。
+
r(t)
(2)输入端定义法:e(t ) r (t ) b(t )
b(t)
B(s)
-
G1 ( s)
G2 (s)
式中: r(t)为给定输入; 图 典型反馈系统结构图 b(t)为系统主反馈信号。 H(s)是测量装置的传递函数(通常我们认为是理想的), 故此时误差就是给定输入与测量装置的输出量之差。
15:36
H (s)
误差的定义
“希望值”的基本概念: 希望情况下偏差信号E(S)=0,R(s) Cr (s) H (s) 则系统在输入信号作用下的希望输出为:
第三章 线性系统的时域分析法
3-6 线性系统的稳态误差分析 项目 内容
教 学 目 的 理解稳态及稳态误差的概念,掌握其计算方法和
计算结果,进而熟悉减小或消除稳态误差的措施。
教 学 重 点 稳态误差系数定义和典型输入信号作用下的稳态
误差,即表3-5 ;减小或消除稳态误差的措施。
教学难点
广义(动态)误差的概念和广义(动态)误差系 数的计算方法,各种补偿措施。

15:36
说明
稳态误差的定义:对于稳定的系统,误差信号 的稳态分量称为系统的稳态误差,以 ess 表示。
基本公式
ess lim e (t ) lim[r (t ) b (t )]
t t
注意:误差、误差响应、稳态分量、瞬态分量、 稳态误差等概念 注意:两种误差定义的统一性其关键在于反馈 传递函数H(s)的确定性、可靠性、准确性。
从系统输出端定义的稳态误差,概念清晰,
物理意义明确,也符合基本定义,但在实际 C r (t ) 系统中 无法测量,因而,一般只有数学 意义。而从系统输入端定义的稳态误差,它 在系统中是可以测量的,因而具有实用性。 对于单位反馈系统,要求输出量C(t)的变化 规律与给定输入r(t)的变化规律一致,所以 给定输入r(t)也就是输出量的希望值 , Cr ) r (t ) 即 Cr (t ) 。 (t此时,上述两种定义统一为 e(t)= r(t) - c(t)
e t r t c t
全称:误差响应的
4.瞬态分量:t<ts 的 e t r t c t 全称:误差响应的 瞬态分量;
5.动态误差:全称:误差响应的稳态部分,即 t>ts后误 差响应的变化关系; 6.稳态误差: ess lim e(t ) lim[ r (t ) b(t )] t t
t
1
r(t)=1(t)
R(t) E(s)
0.8
N(s)
C(t)
G1 ( s)
+ G ( s) 2
H(s)=2
C(s)
Amplitude
B(s)
0.6
H (s)
System: untitled1 Final Value: 0.5
0.4
System: untitled1 Settling Time (sec): 7.37
讲授技巧及注 表达式推导、图形显示和表格总结相辅相成。 意事项
15:36
稳定性、过渡过 程性能(动态性能)和 稳态性能是我们分析 系统、评价系统、改 善系统时所用的三类 重要衡量标准。
15:36
3-6 控制系统的稳态误差
系统响应的稳态分量(例如t>ts 的输出分量)反映了系 统跟踪给定控制信号或希望输出信号的准确度或抑制扰动 信号的恢复能力。通常用稳态误差来衡量。它与系统本身 的结构、参数及外作用的形式有关,也与元件的不灵敏、 零点漂移、老化及各种传动机械的间隙、摩擦等因素有关。 本书只讨论由于系统结构、参数及外作用等因素所引起的 稳态误差,即原理性误差。 给定稳态误差(由给定输入引起的稳态误差) 扰动稳态误差(由扰动输入引起的稳态误差) 给定输入量变化时,要求系统输出量以一定的精度跟 随输入量的变化,因而用给定稳态误差来衡量系统的稳态 性能。给定输入量不变时,需要分析输出量在扰动作用下 所受到的影响,因而用扰动稳态误差来衡量系统的稳态性 能。

15:36
说明
对于非单位反馈系统,若设定义1的误差为 E’(s), 定义2的误差为E(s),则E(s)与E’(s)的关系如下:
E ' (s) E (s) H (s)
可见,两种定义对非单位反馈系统是存在差异的, 但两种定义下的误差之间具有确定的关系,即误差 E’(s)可以直接或间接地由 E(s)来确定。从本质上 看,它们都能反映控制系统的控制精度。在本书以 后的讨论中,将采用第二种误差定义。 E(t)通常 也称为系统的误差响应,它反映了系统在输入信号 和扰动信号作用下整个工作过程中的精度。误差响 应中也包含有瞬态分量和稳态分量两个部分,如果 所研究的系统是稳定的,那么当时间t趋于无穷大 时,瞬态分量趋近于零,剩下的只是稳态分量。
注意:误差、误差响应、稳态分量、瞬态分量、动态误差、稳态误差等概念
e 1.误差: t r t c t 或 e t Cr t c t
一般意义;
2.误差响应:包括输入误差和干扰误差,也有具体误差响 应曲线的意思; 3.稳态分量:t>ts 的 稳态分量;
t t
0.2
8 G G1G2 s 11.67s 1 3s 1
0 20 40 60 Time (sec) 80 100 120
0
15:36
从图形和公式中体会误差和稳态误差
阶跃响应:零稳态误差
Linear Simulation Results 20 18 16 14 12
15:36
原理性误差、给定稳态误差、扰动稳态误差。
>> step(feedback(tf(1*[0.0,1],conv([1,1],[1.67,1])),1),0:.01:35)
相关文档
最新文档