4.9函数y=Asin(ωx+φ) 的图象(1)

合集下载

【高中数学经典】函数y=Asin(ωx+φ)的图象重难点题型(举一反三)

【高中数学经典】函数y=Asin(ωx+φ)的图象重难点题型(举一反三)

【高中数学】函数y=Asin (ωx+φ)的图象重难点题型【举一反三系列】【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】用“五点法”作sin()y A x ωϕ=+的简图,主要是通过变量代换,设z x ωϕ=+,由z 取30,,,,222ππππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.用“五点法”作图象的关键是点的选取,其中横坐标成等差数列,公差为4T .【知识点2 函数y=Asin (ωx+φ)中有关概念】()sin()0,0y A x A ωϕω=+>>表示一个振动量时,A 叫做振幅,2T πω=叫做周期,12f T ωπ==叫做频率,x ωϕ+叫做相位,x=0时的相位ϕ称为初相.【知识点3 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换:sin()y A x ωϕ=+sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍得到的(横坐标不变),它的值域[-A ,A],最大值是A ,最小值是-A.若A<0可先作y=-Asinx 的图象,再以x 轴为对称轴翻折.A 称为振幅. 2.周期变换:函数()sin 01y x x R ωωω=∈>≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换:函数()sin y x x R ϕ=+∈,(其中0ϕ≠)的图象,可以看作把正弦曲线上所有点向左(当ϕ>0时)或向右(当ϕ<0时)平行移动ϕ个单位长度而得到.(用平移法注意讲清方向:“左加右减”).一般地,函数()sin()0,0y A x A x R ωϕω=+>>∈,的图象可以看作是用下面的方法得到的:(1) 先把y=sinx 的图象上所有的点向左(ϕ>0)或右(ϕ<0)平行移动ϕ个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的1ω倍(纵坐标不变);(3) 再把所得各点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A 倍(横坐标不变).【考点1 正、余型函数作图】【例1】(2019•岳麓区校级学业考试)知函数,x∈R.(1)填写下表,用“五点法”画在一个周期内的图象.x0π2π000(2)求函数f(x)的最小正周期和单调递增区间.【分析】(1)利用三角函数求值完成表格,通过五点法作图化简函数的图象.(2)利用三角函数的周期公式以及正弦函数的单调区间的求法,求解即可.【答案】解:(1)填表和作图如下.(4分)x0π2π030﹣30(2)函数f(x)的最小正周期为,又,k∈Z,解得,所以函数f(x)的单调递增区间为,k∈Z.【点睛】本题考查三角函数的图象的画法,三角函数的值的求法,函数的单调性以及函数的周期的求法,考查计算能力.【变式1-1】(2018秋•海淀区期末)已知函数.(Ⅰ)求T的最小正周期T;(Ⅱ)求f(x)的单调递增区间;(Ⅲ)在给定的坐标系中作出函数的简图,并直接写出函数f(x)在区间上的取值范围.【分析】(Ⅰ)利用正弦函数的周期公式即可计算得解;(Ⅱ)利用正弦函数的单调性即可求解;(Ⅲ)利用五点作图法即可画出函数f(x)在一个周期内的图象,根据正弦函数的性质即可求解.【答案】(本小题满分11分)解:(Ⅰ).……………………(2分)(Ⅱ)由,k∈Z,……………………(4分)可得:,k∈Z.所以函数f(x)的单调递增区间是:,k∈Z.……………………(6分)(Ⅲ)列对应值表如下:2x+0π2πx﹣f(x)020﹣20通过描出五个关键点,再用光滑曲线顺次连接作出函数的简图如图所示.……………………(8分)可得函数在区间上的取值范围是.……………………(11分)注:中每一个端点正确给(1分),括号正确(1分).【点睛】本题主要考查了正弦函数的图象和性质,考查了五点法作函数y=A sin(ωx+φ)的图象,考查了数形结合思想的应用,属于中档题.【变式1-2】(2018秋•香坊区校级期末)某同学用“五点法”画函数,在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxy=A sin(ωx+φ)0300(1)请将上表数据补充完整;函数f(x)的解析式为f(x)=(直接写出结果即可);(2)根据表格中的数据作出f(x)一个周期的图象;(3)求函数f(x)在区间上的最大值和最小值.【分析】(1)由题意补充完整表格,写出f(x)的解析式;(2)根据表格中的数据作出f(x)一个周期的图象即可;(3)求出函数f(x)在区间上的最大值和最小值即可.【答案】解:(1)由题意,补充完整下表是;ωx+φ0π2πxy=A sin(ωx+φ)030﹣30写出函数f(x)的解析式为f(x)=3sin(2x﹣);(2)根据表格中的数据作出f(x)一个周期的图象,如图所示;(3)函数f(x)=3sin(2x﹣),x∈[﹣,0],2x﹣∈[﹣,﹣];∴x=﹣时,f(x)在区间上取得最大值为﹣,x=﹣时,f(x)取得最小值为﹣3.【点睛】本题考查了三角函数的图象与性质的应用问题,是基础题.【变式1-3】(2019•望花区校级学业考试)函数f(x)=A sin(ωx﹣)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(Ⅰ)求函数f(x)的解析式和当x∈[0,π]时f(x)的单调减区间;(Ⅱ)f(x)的图象向右平行移动个长度单位,再向下平移1个长度单位,得到g(x)的图象,用“五点法”作出g(x)在[0,π]内的大致图象.【分析】(Ⅰ)根据条件求出A,ω的值,即可求函数f(x)的解析式,结合函数的单调性即可求当x∈[0,π]时f(x)的单调减区间;(Ⅱ)根据三角函数的图象平移关系求出g(x)的解析式,利用五点法进行作图即可.【答案】解:(Ⅰ)∵函数f(x)的最大值是3,∵函数图象的相邻两条对称轴之间的距离为,∴最小正周期T=π,∴ω=2.(2分)所以f(x)=2sin(2x﹣)+1令+2kπ≤2x﹣≤+2kπ,k∈Z,即+kπ≤x≤+kπ,k∈Z,(4分)∵x∈[0,π],∴f(x)的单调减区间为[,].(5分)(Ⅱ)依题意得g(x)=f(x﹣)﹣1=2sin(2x﹣),列表得:x0π2x﹣﹣0πg(x)﹣020﹣2﹣(7分)描点(0,﹣),(,0),(,2),(,0),(,﹣2),(π,﹣),(8分)连线得g(x)在[0,π]内的大致图象.(10分)【点睛】本题主要考查三角函数图象和性质,根据条件求出函数的解析式以及利用五点法作图是解决本题的关键.【考点2 图象变换与解析式】【例2】(2019秋•芜湖期末)给出下列8种图象变换方法:①图象上所有点的纵坐标不变,横坐标缩短到原来的;②图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;③图象上所有点的横坐标不变,纵坐标缩短到原来的;④图象上所有点的横坐标不变,纵坐标伸长到原来的2倍;⑤图象向右平移个单位;⑥图象向左平移个单位;⑦图象向右平移个单位;⑧图象向左平移个单位.请选择上述变换方法中的部分变换方法并按照一定顺序排列将函数y=sin x的图象变换到函数的图象,要求写出每一种变换后得到的函数解析式.(只需给出一种方法即可).【分析】利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:将函数y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;再把所得图象的横坐标变为原来的2倍,可得y=sin(x+)的图象;再把所得图象的纵坐标变为原来的倍,可得y=sin(x+)的图象.即按照⑥②③的顺序进行.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.【变式2-1】说明由函数y=sin x的图象经过怎样的变换就能得到下列函数的图象:(1)y=sin(x+);(2)y=sin(2x﹣);(4)y=5sin(3x﹣);(3)y=sin(x+).【分析】由条件根据函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:(1)把y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;(2)把y=sin x的图象向右平移个单位,可得y=sin(x﹣)的图象;再把所得图象的横坐标变为原来的倍,纵坐标不变,可得y=sin(2x﹣)的图象;(4)把y=sin x的图象向右平移个单位,可得y=sin(x﹣)的图象;再把所得图象的横坐标变为原来的倍,纵坐标不变,可得y=sin(3x﹣)的图象;再把所得图象的纵坐标变为原来的5倍,横坐标不变,可得y=5sin(3x﹣)的图象;(3)把y=sin x的图象向左平移个单位,可得y=sin(x+)的图象;再把所得图象的横坐标变为原来的3倍,纵坐标不变,可得y=sin(x+)的图象;再把所得图象的纵坐标变为原来的倍,横坐标不变,可得y=sin(x+)的图象;【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于中档题.【变式2-2】y=sin(﹣2x+)经过怎样变换得到y=sin2x的图象.【分析】首先,化简函数y=﹣sin(2x﹣),然后,结合图象平移进行求解即可.【答案】解:∵y=sin(﹣2x+)=﹣sin(2x﹣),先将该函数图象关于x轴对称,得到函数y=sin(2x﹣),然后,再将所得函数图象向左平移个单位,得到函数y=sin2x的图象,即为所求.【点睛】本题重点考查了三角函数图象平移变换,三角函数诱导公式等知识,属于中档题.解题关键是熟练应用平移变换.【变式2-3】请说明由函数y=cos(x+)图象经过怎样的变换可得到y=cos x的图象.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【答案】解:把函数y=cos(x+)图象的每一点的横坐标变为原来的一半,可得函数y=cos(x+)的图象;再把所得图象向右平移个单位,可得到y=cos x的图象.【点睛】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.【考点3 由图象求解析式】【例3】(2019春•静宁县校级期末)已知函数的部分图象如图所示,(1)求f(x)的解析式;(2)求f(x)的单调增区间和对称中心坐标;【分析】(1)根据图象求出A,ω和φ,即可求函数f(x)的解析式;(2)根据正弦函数即可得到结论.【答案】解:(1)由题设图象知,A=2,周期T=2(﹣)=π,∴ω==2.∵点(,2)在函数图象上,∴2sin(2×+φ)=2,即sin(+φ)=1.又∵0<φ<,从而+φ=,即φ=.故函数f(x)的解析式为f(x)=2sin(2x).(2)由(1)可知f(x)=2sin(2x).令2x≤,可得:≤x≤∴f(x)的单调增区间[,],k∈Z;令2x=kπ,可得x=,∴f(x)的对称中心坐标为(,0).【点睛】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.【变式3-1】(2019春•秦州区校级期末)已知函数y=A sin(ωx+φ)(A>0,ω>0,0<φ<)的图象如图所示.(1)求这个函数的解析式,并指出它的振幅和初相;(2)求函数在区间[﹣,﹣]上的最大值和最小值,并指出取得最值时的x的值.【分析】(1)由函数图象观察可知A,可求函数的周期,由周期公式可得ω,由点(,2)在函数图象上,结合范围φ的范围,即可求得φ的值,即可求解.(2)由已知可求2x+∈[﹣,0],利用正弦函数的图象与性质即可求解.【答案】解:(1)由函数图象可知,函数的最大值为2,最小值为﹣2,可得A=2,又=﹣(﹣),所以T=π,可得:=π,可得:ω=2,所以函数的解析式为y=2sin(2x+φ),因为函数的图象经过点(,2),所以2sin(+φ)=2,可得:sin(+φ)=1,又因为0<φ<,所以φ=,所以函数的解析式为y=2sin(2x+),其振幅是2,初相是.(2)因为:[﹣,﹣],所以:2x+∈[﹣,0],于是,当2x+=0,即x=﹣时,函数取得最大值0;当2x+=﹣,即x=﹣时,函数取得最小值﹣2.【点睛】本题主要考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想,熟练掌握公式是解本题的关键,属于中档题.【变式3-2】(2019春•湛江期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示.(Ⅰ)求函数f(x)的解析式;(Ⅱ)若x∈[﹣,],求函数f(x)的值域.【分析】(Ⅰ)由函数f(x)的一段图象求得A、T、ω和φ的值即可;(Ⅱ)由x∈[﹣,]求得2x+的取值范围,再利用正弦函数求得f(x)的最大和最小值即可.【答案】解:(Ⅰ)由函数f(x)=A sin(ωx+φ)的一段图象知,A=2,=﹣(﹣)=,∴T==π,解得ω=2,又x=﹣时,2sin(﹣×2+φ)=2,﹣+φ=,解得φ=;∴函数f(x)的解析式为f(x)=2sin(2x+);(Ⅱ)x∈[﹣,]时,2x+∈[0,],令2x+=,解得x=﹣,此时f(x)取得最大值为2;令2x+=,解得x=,此时f(x)取得最小值为﹣;∴函数f(x)的值域为[﹣,2].【点睛】本题考查了函数f(x)=A sin(ωx+φ)的图象和性质的应用问题,是基础题.【变式3-3】(2019春•小店区校级期中)已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)若函数,求函数y=g(x)的最小正周期及单调递增区间.【分析】(1)根据三角函数的图象求出A,ω和φ的值即可求函数f(x)的解析式;(2)利用三角函数的平移变换可求g(x)的解析式,找出ω的值代入周期公式即可求出函数的最小正周期,根据正弦函数的单调递增区间即可得到f(x)的递增区间;【答案】解:(1)由图象知函数的周期T=2(﹣)=π,即ω===2,则f(x)=A sin(2x+φ),∵0<φ<,∴由五点对应法知2×+φ=π,解得φ=,即f(x)=A sin(2x+),∵f(0)=A sin=A=1,∴A=2,即函数f(x)的解析式f(x)=2sin(2x+);(2)∵=2sin[2(x﹣)+]=2sin(2x﹣),∴函数f(x)的最小正周期为T==π;由﹣+2kπ≤2x﹣≤+2kπ,k∈Z,解得:﹣+kπ≤x≤+kπ,k∈Z,则f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z;【点睛】本题主要考查三角函数的图象和性质,根据图象求出A,ω和φ的值是解决本题的关键,综合考查三角函数的性质,属于中档题.【考点4 函数y=Asin(ωx+φ)性质的应用】【例4】(2018秋•温州期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,0<φ<π)的图象两相邻对称轴之间的距离是,若将f(x)的图象先向右平移个单位,所得函数g(x)为奇函数,函数g(x)的最大值为2.(1)求f(x)的解析式;(2)求f(x)的单调增区间;(3)若,求f(x)的值域.【分析】(1)由周期求得ω,由函数g(x)为奇函数求得φ和b的值,从而得到函数f(x)的解析式.(2)令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数的增区间.(3)由已知可求2x+∈[,π],利用正弦函数的性质可求sin(2x+)∈[0,1],即可得解.【答案】(本题满分为10分)解:(1)∵=2×,∴ω=2,∴f(x)=A sin(2x+φ).又g(x)=A sin[2(x﹣)+φ]为奇函数,且0<φ<π,则φ=,A=2,故f(x)=2sin(2x+)…3分(2)令2kπ﹣≤2x+≤2kπ+,k∈z,求得﹣+kπ≤x≤+kπ,(k∈Z),故函数的增区间为[﹣+kπ,+kπ](k∈Z)…6分(3)∵,∴2x+∈[,π],∴sin(2x+)∈[0,1],∴f(x)=2sin(2x+)∈[0,2],可得若,f(x)的值域为:[0,2].…10分【点睛】本题主要考查由函数y=A sin(ωx+∅)的部分图象求解析式,正弦函数的单调性,考查了转化思想和数形结合思想的应用,属于中档题.(2019春•杨浦区校级期中)已知函数【变式4-1】的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2).(1)求函数f(x)的解析式;(2)将函数y=f(x)的图象向左平移a(a∈(0,2π))个单位后,得到的函数y=g(x)是奇函数,求a的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)由题意根据函数y=A sin(ωx+φ)的图象变换规律,三角函数的奇偶性,求得a的值.【答案】解:(1)∵函数的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2),∴A=2,且•=2π,∴ω=.∴2cosφ=1,∴cosφ=,∴φ=(舍去,不满足图象),或φ=﹣,∴f(x)=2cos(x﹣).(2)将函数y=f(x)的图象向左平移a(a∈(0,2π))个单位后,得到的函数y=g(x)=2cos(x+﹣)的图象,由于g(x)是奇函数,∴﹣=,∴a=.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,函数y=A sin(ωx+φ)的图象变换规律,属于中档题.【变式4-2】(2018秋•遂宁期末)如图,函数的图象与y 轴交于点(0,1),若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求θ和ω的值;(2)求函数f(x)的单调递增区间与对称轴方程.【分析】(1)由特殊点的坐标求出φ的值,由周期求出ω,可得函数的解析式.(2)利用余弦函数的单调性和它的图象的对称性,求得函数f(x)的单调递增区间与对称轴方程.【答案】解:(1)∵函数的图象与y轴交于点(0,1),将x=0,y=1代入函数y=2cos(ωx+θ)得,因为,所以.又因为|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.可知函数周期为T=π,由ω>0,所以.因此.(2)由,得,所以函数的单调递增区间为.由,得.所以函数f(x)图象的对称轴方程为.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由特殊点的坐标求出φ的值,由周期求出ω,余弦函数的单调性和它的图象的对称性,属于基础题.【变式4-3】(2019秋•大庆期末)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y 轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,﹣2).(1)求f(x)的解析式及x0的值;(2)求f(x)的增区间;(3)若x∈[﹣π,π],求f(x)的值域.【分析】(1)利用函数图象确定函数的振幅,周期,利用f(0)=1求出φ,求出f(x)的解析式,y 轴右侧的第一个最高点即可求出x0的值;(2)通过正弦函数的单调增区间,直接求函数f(x)的增区间;(3)通过x∈[﹣π,π],求出x+的范围,然后利用正弦函数的值域求f(x)的值域.【答案】解:由图象以及题意可知A=2,,T=4π,ω==,函数f(x)=2sin(x+φ),因为f(0)=1=2sinφ,|φ|<,所以φ=.∴f(x)=2sin(x+).由图象f(x0)=2sin(x0+)=2,所以x0+=k∈Z,因为在y轴右侧的第一个最高点的坐标分别为(x0,0),所以x0=.(2)由,k∈Z,得,k∈Z,所以函数的单调增区间为.(3)∵x∈[﹣π,π],∴x+,∴≤sin(x+)≤1.2sin(x+)≤2.所以函数的值域为:[].【点睛】本题是中档题,考查函数解析式的求法,阿足协还是的单调增区间的求法,函数的值域的求法,考查计算能力.【考点5 数形结合思想】【例5】(2019秋•顺庆区校级期末)五点法作函数的图象时,所填的部分数据如下:x﹣ωx+φ﹣0πy﹣1131﹣1(1)根据表格提供数据求函数f(x)的解析式;(2)当时,方程f(x)=m恰有两个不同的解,求实数m的取值范围.【分析】(1)由表中的最大值和最小值可得A的值,通过=T,可求ω.根据对称中点坐标可知B=1,图象过(﹣)带入求解φ,可得函数f(x)的解析式.(2)当时,求解内层的范围,结合三角函数的图象,数形结合法,f(x)=m恰有两个不同的解,转化为f(x)与y=m图象有两个交点的问题求解即可求实数m的取值范围.【答案】解:由表中的最大值为3,最小值为﹣1,可得A=,由=T,则T=2π.∴,∵y=2sin(ωx+φ)的最大值是2,故得B=3﹣2=1.此时函数f(x)=2sin(x+φ)+1.∵图象过(﹣)带入可得:﹣1=2sin(+φ)+1,可得:φ=﹣,(k∈Z).解得:φ=,∵φ,∴φ=﹣.故得函数f(x)的解析式为f(x)=2sin(x﹣)+1(2)当时,则x﹣∈[0,],令u=x﹣,u∈[0,],则y=2sin u+1的图象与与y=m图象有两个交点.从图象可以看出:当x=时,函数f()=,y=2sin u+1的图象与与y=m图象有两个交点.那么:.∴实数m的取值范围是[,3)【点睛】本题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决本题的关键.要求熟练掌握函数图象之间的变化关系.【变式5-1】(2019春•城关区校级期末)已知函数f(x)=A sin(ωx+φ),x∈R(其中)的图象如图所示.(1)求函数f(x)的解析式及其对称方程;(2)当时,方程f(x)=2a﹣3有两个不等的实根x1,x2,求实数a的取值范围,并求此时x1+x2的值.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,可得函数的解析式,再根据正弦函数的图象的对称性,求出它的对称方程.(2)根据题意,当时,y=f(x)的图象与直线y=2a﹣3有两个不同的交点,可得,从而求得x1+x2的值.【答案】解:(1)由图知,.由,即,故,所以.又,所以,故.令则,所以f(x)的对称轴方程为.(2)∵,∴f(x)=2sin(2x+)∈[﹣1,2].所以方程f(x)=2a﹣3有两个不等实根时,y=f(x)的图象与直线y=2a﹣3有两个不同的交点.∵,当时,f(x1)=f(x2),所以,故.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由特殊点的坐标求出φ的值,正弦函数的定义域和值域,正弦函数的图象的对称性,属于基础题.【变式5-2】(2019秋•香坊区校级月考)如图是函数的部分图象.(1)求函数f(x)表达式;(2)若函数f(x)满足方程,求在[0,2π]内的所有实数根之和.【分析】(1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)由题意利用正弦函数的图象的对称性,求得结论.【答案】解:(1)根据函数的部分图象,可得A=1,•=﹣,求得ω=2.再根据五点法作图,可得2+φ=π,∴φ=,∴f(x)=sin(2x+).(2)满足方程,在[0,2π]内,2x+∈[,],共有4个根,设这4个根为x1,x2,x3,x4,且x1<x2<x3<x4,则根据正弦函数的图象的对称性可得2x1++2x4+=2 x2++2 x3+=,故x1+x4=x2+x3=,∴在[0,2π]内所有实数根之和为x1+x2+x3+x4=.【点睛】本题主要考查由函数y=A sin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象的对称性,属于基础题.【变式5-3】(2019春•郴州期末)如图为函数f(x)=sin(ωx+φ)(A>0,ω>0,|φ|<)的图象.(Ⅰ)求函数f(x)=A sin(ωx+φ)的解析式;(Ⅱ)若x∈[0,]时,函数y=[f(x)]2﹣2f(x)﹣m有零点,求实数m的取值范围.【分析】(Ⅰ)根据图象得到f(x)的周期,零点和最小值,从而得到f(x)的解析式;(Ⅱ)根据x的范围,得到f(x)的范围,再由函数y=[f(x)]2﹣2f(x)﹣m有零点,可得方程m=[f (x)]2﹣2f(x)有实根,解出[f(x)]2﹣2f(x)的范围即可得m的范围.【答案】解:(Ⅰ)由图象可知,,∴,ω=2,∵,k∈Z,及|φ|<,∴φ=,而f(0)=,A>0,∴A=,∴;(Ⅱ)∵x∈[0,],∴,∴f(x)∈,又函数y=[f(x)]2﹣2f(x)﹣m有零点,∴方程m=[f(x)]2﹣2f(x)有实根,∵f(x)∈,∴[f(x)﹣1]2﹣1∈[﹣1,3],因此,实数m的取值范围为[﹣1,3].【点睛】本题考查了利用函数f(x)=sin(ωx+φ)的部分图象求解析式和函数的零点,考查了数形结合思想和方程思想,属中档题.。

函数y=Asin(ωx φ)的图象

函数y=Asin(ωx φ)的图象
二、y=函si数n(ωy x+sin)的x图象,,可以0看的作图是象把周y=期sin变(x换+T)=的2
图象上所有点的横坐标 缩短 (当ω>1时)或 伸长 (当
1
0<ω<1时)到原来的 倍(纵坐标不变)而得到.
横坐标变为原来的 1 倍
y sinx
纵坐标不变
y sinx
y cos x
y
sin
0
3
0
-3 0
新知探究 A的变化引起图象上的点纵坐标的伸缩变换
三、函数y Asinx+的图象振幅变换 A决定最值
y=Asin(ωx+)的图象,可以看作是把y=sin(ωx+)的
图象上所有点的纵坐标 伸长(当A>1时)或 缩短(当
0<A<1时)到原来的
A倍(横坐标不变)而得到.
y sinx
纵坐标变为原来的A倍 横坐标不变
y
sin
21x
3
纵坐标变为原来的3倍 横坐标不变
y
3sin
2
x
3
o 7 2 5 7
3
6
-1 -2
12
6
y
3
12 3
sin
2
x
6
3
6
-3
5 ห้องสมุดไป่ตู้ x
3
y sin x
先平移后伸缩
步骤1 步骤2 步骤3 步骤4
y
1
o
-1
2
y
1
o
-1 2
1y
2
3 2
x
(沿x轴平行移动)
3
2 2
x
的图象之间的关系。
2x 3
0

函数y=Asin(ωχ+φ) 课件(1)高中数学人教A版2019选择性必修一册

函数y=Asin(ωχ+φ) 课件(1)高中数学人教A版2019选择性必修一册
点 B相对于点 A 始终落后

24
则甲 、 乙距离地面的高度差ℎ = 1 − 2 =55 sin(
=55 sin(


15


)+
2
sin(
利用 + = 2
ℎ=110 sin



15



sin(
48
15


15
13
)+65.
24


15

rad, 此时乙距离地面的高度为2 =55sin( t-
纵坐标伸长A>1 (缩短0<A<1)到原来的A倍
典例解析
例1
1

画出函数 y=2sin(3x- 6 )的简图 .

解 : 先画出函数y=sinx的图象 ; 再把正弦曲线向右平移 6 个单位长度 ,
得到函数的图象 ; 然后使曲线上各点的横坐标变为原来的
1
3
倍 , 得到函数 的图象 ;
1

最后把曲线上各点的纵坐标变为原来的 2 倍 , 这时的曲线就是函数y=2sin(3x- 6 )
那么点 P 的纵坐标 y就等于 sinx . 以 ( x , y ) 为坐标描点 , 可得正弦函数 y =sinx
的图象 .

6
在单位圆上拖动起点0 , 使点 0 绕点 1 旋转 到1 , 你发现图象有什么
变化 ?如果使点0 绕点 1 旋转
φ=
6

,
6 3
,-


3
或者旋转一个任意角 φ呢
m , 求在转动一周的过程中 , H关于t 的函数解析式 ;

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

高中 函数y=Asin(ωx+φ)的图象及性质 知识点+例题 全面

辅导讲义――函数y =Asin(ωx +φ)的图象及性质教学内容1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)振幅 周期 频率 相位 初相 AT =2πωf =1T =ω2πωx +φφ2.用五点法画y =A sin(ωx +φ)一个周期内的简图 五个特征点的取法:设X =ωx +φ,由X 取0,2π,π,23π,π2来求出相应的x 的值,及对应的y 值,再描点作图.如下表所示.x0-φω π2-φω π-φω 3π2-φω 2π-φω ωx +φ 0 π2 π 3π2 2π y =A sin(ωx +φ)A-A3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的步骤如下:[例1] 函数)421sin(2π+=x y 的周期,振幅,初相分别是______________.[巩固1] 函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则ω=______;ϕ=______知识模块1 y =A sin(ωx +φ)精典例题透析[巩固] 若关于x 的方程01sin sin 2=+-+m x x 有解,则实数m 的取值范围为_____________.[例5] 要得到)21sin(x y -=的图象,只需将)621sin(π--=x y 的图象_______________.[巩固1] 为得到函数)3cos(π+=x y 的图象,只需将函数x y sin =的图象_____________________.[巩固2] 为得到函数)62sin(π-=x y 的图象,只需将函数x y 2cos =的图象_____________________.[例6] 已知函数x x f πsin )(=的图象的一部分如左图,则右图的函数图象所对的函数解析式为_____________.[巩固1] 函数)0,0,0)(sin()(πϕωϕω<<>>+=A x A x f 的部分图象如图所示,则)(x f 的解析式为____________.[巩固2] 已知函数),0,)(sin()(πϕπωϕω<<->∈+=R x x A x f 的部分图象如图所示,则函数)(x f 的解析式 是_______________.[例7] 设函数f (x )=3sin(ωx +φ)(ω>0,-π2<φ<π2)的图象关于直线x =2π3对称,它的周期是π,则下列说法正确的是________.(填序号)[例](1)已知函数f (x )=2sin(ωx +φ)(其中ω>0,|φ|<π2)的最小正周期是π,且f (0)=3,则ω=_____,φ=_______.(2)已知函数f (x )=A sin(ωx +φ) (A >0,|φ|<π2,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.[巩固] 如图为y =A sin(ωx +φ)的图象的一段.(1)求其解析式;(2)若将y =A sin(ωx +φ)的图象向左平移π6个单位长度后得y =f (x ),求f (x )的对称轴方程.题型三:函数y =A sin(ωx +φ)的性质[例] (2014·重庆改编)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)当x ∈[0,π2]时,求函数y =f (x )的最大值和最小值.[巩固] 已知函数f (x )=A sin(ωx +φ)(x ∈R ,ω,A >0,0<φ<π2)的最大值为2,最小正周期为π,直线x =π6是其图象的一条对称轴.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x -π12)-f (x +π12)的单调递增区间.1.(2013·山东)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A .3π4B .π4C .0D .-π42.(2013·浙江)函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是__________.3.已知函数f (x )=2sin(ωx +φ)(ω>0,且|φ|<π2)的部分图象如图所示,则函数f (x )的一个单调递增区间是______________.4.电流强度I (安)随时间t (秒)变化的函数I =A sin(ωt +φ)(A >0,ω>0,0<φ<π2)的图象如右图所示,则当t =1100秒时,电流强度是_____________.5.已知函数f (x )=2sin ωx 在区间[-π3,π4]上的最小值为-2,则ω的取值范围是_________________.6.设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°, KL =1,则f (16)的值为________.,7.某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6) (x =1,2,3,…,12,A >0)来表示,已知6月份的月平均气温最高,为28℃,12月份的月平均气温最低,为18℃,则10月份的平均气温值 为________℃.夯实基础训练。

函数y=Asin(ωx+φ)的图象与性质(一)

函数y=Asin(ωx+φ)的图象与性质(一)
数 y=Asin(ωx+φ)图象与性质的影响?函数 y=Asin(ωx+φ)中含有三个不同的参数,
你认为应该按怎样的思路进行研究?
答案
能.可以先研究 φ 对函数 y=sin(x+φ)图象的影响,再依次研究 ω,A 对函数
y=Asin(ωx+φ)图象的影响.
问题 2:函数 y=sin x 的图象与 y=sin(x+φ)的图象有什么关系?
π
π
3
3
(2)将函数 y=sin x 的图象上所有的点向右平移 个单位长度得到函数 y=sin 的图象,再把函数 y=sin y=sin

3
-
π
3
的图象.
π
3
的图象上各点的横坐标扩大到原来的 3 倍,就得到函数
课前预学
方法总结
课堂导学
伸缩变换的解题关键及方法
关键:确定伸缩量.
1
解决方法:已知函数 y=f(x)的图象,作函数 y=f(ωx)(ω>0)的图象, 为伸缩量.
π
6
图象上的一点,则点 G'
1
2
, 与 G″(2x,y)分别
在哪个函数图象上?
答案
G'
1
2
, 是 y=sin 2 +
问题 3:(1)函数 y=sin 2 +
π
6
图象上一点;G″(2x,y)是 y=sin
π
1
2
+
π
6
图象上的一点.
π
,x∈R 的图象,可看作是把 y=sin + ,x∈R 图象上
30
+
π
6
π

正弦型函数y=Asin(ωx φ)的图象及应用

正弦型函数y=Asin(ωx φ)的图象及应用

第4讲 正弦型函数y =A sin(ωx +φ)的图象及应用【高考会这样考】1.考查正弦型函数y =A sin(ωx +φ)的图象变换.2.结合三角恒等变换考查y =A sin(ωx +φ)的性质及简单应用.3.考查y =sin x 到y =A sin(ωx +φ)的图象的两种变换途径.1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点如下表所示2.函数y =sin x3A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.4.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下: (1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k ∈Z)成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z)成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin ⎝⎛⎭⎫2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4C .2,1π,-π8 D .2,12π,-π8答案 A2.已知简谐运动f (x )=A sin(ωx +φ)⎝⎛⎭⎫|φ|<π2的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π3解析 由题图象知T =2(4-1)=6⇒ω=π3,由图象过点(1,2)且A =2,可得sin ⎝⎛⎭⎫π3×1+φ=1,又|φ|<π2,得φ=π6答案 C 3.函数y =cos x (x ∈R)的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x解析 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x .答案 A 4.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .3 解析 y =sin ⎝⎛⎭⎫ωx +π3+2向右平移4π3个单位后得到y 1=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x -4π3+π3+2=sin ⎝⎛⎭⎫ωx +π3-4π3ω+2,又y 与y 1的图象重合,则-4π3ω=2k π(k ∈Z).∴ω=-32k .又ω>0,k ∈Z ,∴当k =-1时,ω取最小值为32,故选C.5.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.解析 由题意设函数周期为T ,则T 4=23π-π3=π3,故T =43π.∴ω=2πT =32.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.解 (1)周期T =2πω=π,∴ω=2,∵f ⎝⎛⎭⎫π4=cos ⎝⎛⎭⎫2×π4+φ=cos ⎝⎛⎭⎫π2+φ=-sin φ=32,∵-π2<φ<0,∴φ=-π3. 【训练1】 已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R.(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?(2)先把y =sin x 的图象向右平移π4个单位,然后把所有的点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.考向二 求函数y =A sin(ωx +φ)的解析式(先根据函数图象的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值.)【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.解析 由图可知:A =2,T 4=7π12-π3=π4,所以T =2k π+π,∴φ=2k π+π3,令k =0,ω=2πT =2,又函数图象经过点⎝⎛⎭⎫π3,0,所以2×π3+φ=π,则φ=π3,故函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π3,所以f (0)=2sin π3=62.答案 62【训练2】 已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式;(2)试写出f (x )的对称轴方程.解 (1)观察图象可知:A =2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sin φ=12.∵|φ|<π2,∴φ=π6.又∵1112π是函数的一个零点,且是图象递增穿过x 轴形成的零点,∴11π12ω+π6=2π,∴ω=2.∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)设2x +π6=B ,则函数y =2sin B 的对称轴方程为B =π2+k π,k ∈Z ,即2x +π6=π2+k π(k ∈Z),解上式得x =k π2+π6(k ∈Z),∴f (x )=2sin ⎝⎛⎭⎫2x +π6的对称轴方程为x =k π2+π6(k ∈Z). 考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R(其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M ⎝⎛⎭⎫2π3,-2.(1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域. 解 (1)由最低点为M ⎝⎛⎭⎫2π3,-2,得A =2.由x 轴上相邻的两个交点之间的距离为π2,得T 2=π2,即T =π,所以ω=2πT =2ππ=2.由点M ⎝⎛⎭⎫2π3,-2在图象上,得2sin ⎝⎛⎭⎫2×2π3+φ=-2,即sin ⎝⎛⎭⎫4π3+φ=-1.故4π3+φ=2k π-π2,k ∈Z ,所以φ=2k π-11π6(k ∈Z).又φ∈⎝⎛⎭⎫0,π2,所以φ=π6.故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)因为x ∈⎣⎡⎦⎤π12,π2,所以2x +π6∈⎣⎡⎦⎤π3,7π6.当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=7π6,即x =π2时,f (x )取得最小值-1.故函数f (x )的值域为[-1,2].利用三角函数图象与x 轴的相邻两个交点之间的距离为三角函数的12个最小正周期,去求解参数ω的值,利用图象的最低点为三角函数最值点,去求解参数A 的值等.在求函数值域时,由定义域转化成ωx +φ的范围,即把ωx +φ看作一个整体.【训练3】 (2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数的解析式;(2)求函数f (x )的递增区间.解 (1)依题意得:A =5,周期T =4⎝⎛⎭⎫π3-π12=π,∴ω=2ππ=2.故y =5sin(2x +φ),又图象过点P ⎝⎛⎭⎫π12,0, ∴5sin ⎝⎛⎭⎫π6+φ=0,由已知可得π6+φ=0,∴φ=-π6∴y =5sin ⎝⎛⎭⎫2x -π6. (2)由-π2+2k π≤2x -π6≤π2+2k π,k ∈Z ,得:-π6+k π≤x ≤π3+k π,k ∈Z ,故函数f (x )的递增区间为:⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z). 规范解答8——怎样求解三角函数的最值问题【问题研究】 (1)在求解中,一定要注意其定义域.(2)主要题型:①求已知三角函数的值域(或最值);②根据三角函数的值域(或最值)求相关的参数;③三角函数的值域(或最值)作为工具解决其他与范围相关的问题. 【解决方案】 ①形如y =a sin x +b cos x +c 的三角函数,可通过引入辅助角φ⎝⎛⎭⎪⎫cos φ=a a 2+b 2,sin φ=b a 2+b 2,将原式化为y =a 2+b 2·sin(x +φ)+c 的形式后,再求值域(或最值);②形如y =a sin 2x +b sin x +c 的三角函数,可先设t =sin x ,将原式化为二次函数y =at 2+bt +c 的形式,进而在t ∈[-1,1]上求值域(或最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,将原式化为二次函数y =±12a (t 2-1)+bt +c 的形式,进而在闭区间t ∈[-2,2]上求最值.【例】 (2011·北京)已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值.[解答示范] (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1=4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1= 3 sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6,所以f (x )的最小正周期为π (2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.(8分)于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-13.(2010·临沂二模)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫x ∈R ,A >0,ω>0,|φ|<π2的图象(部分)如图,则f (x )的解析式是 A .f (x )=2sin ⎝⎛⎫πx +π6(x ∈R)B .f (x )=2sin ⎝⎛⎫2πx +π6(x ∈R C .f (x )=2sin ⎝⎛⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎫2πx +π3(x ∈R) 解析:由三角函数图象可得A =2,T =4×⎝⎛⎭⎫56-13=2=2πω,则ω=π,将点⎝⎛⎭⎫13,2代入f (x )=2sin(πx +φ)可得sin ⎝⎛⎭⎫π3+φ=1,解得φ=π6,∴f (x )=2sin ⎝⎛⎭⎫πx +π6. 4.(2010·福建卷)将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得图象与原图象重合,则ω的值不可能等于A .4B .6C .8D .12解析:将f (x )=sin(ωx +φ)的图象向左平移π2个单位得到函数y =sin ⎝⎛⎭⎫ωx +φ+π2ω所得图象与原图象重合,有ωx +φ+π2ω=ωx +φ+2k π,得ω=4k (k ∈Z).5.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23 B.32 C .2 D .3解析:在区间⎣⎡⎦⎤-π3,π4上的最小值是-2.则ωx 的取值 ⎣⎡⎦⎤-ωπ3,ωπ4,∴-ωπ3≤-π2或ωπ4≥3π2,∴ω的最小值等于32. 6.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f ⎝⎛⎭⎫7π12=________.解析:从图象可知A =2,32T =π,从而可知T =2πω=2π3,ω=3,得f (x )=2sin(3x +φ),又由f ⎝⎛⎭⎫π4=0可取φ=-3π4,于是f (x )=2sin ⎝⎛⎭⎫3x -3π4,则f ⎝⎛⎭⎫7π12=2sin ⎝⎛⎭⎫7π4-3π4=0. 7.(2010·济南二模)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________.解析:据已知两个相邻最高及最低点距离为22,可得⎝⎛⎭⎫T 22+(1+1)2=22,解得T=4,故ω=2πT =π2,即f (x )=sin ⎝⎛⎭⎫πx 2+φ,又函数图象过点⎝⎛⎭⎫2,-12,故f (2)=sin(π+φ) =-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝⎛⎭⎫πx 2+π6. 8.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________. 解析:设x =a 与f (x )=sin x 的交点为M (a ,y 1),x =a 与g (x )=cos x 的交点为N (a ,y 2),则|MN |=|y 1-y 2|=|sin a -cos a |=2⎪⎪⎪⎪sin ⎝⎛⎭⎫a -π4≤ 2. 9.已知函数y =3 sin ⎝⎛⎭⎫12x -π4(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象径过怎么样的变化得到的; (3)求此函数的振幅、周期和初相; (4)求此函数图象的对称轴方程、对称中心.(2)“先平移,后伸缩”.先把y =sin x 的图象上所有点向右平移π4个单位,得到y =sin ⎝⎛⎭⎫x -π4的图象;再把y =sin ⎝⎛⎭⎫x -π4的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫12x -π4的图象,最后将y =sin ⎝⎛⎭⎫12x -π4的图象上所有点的纵坐标伸长到原来的3 倍(横坐标不变),就得到y =3sin(12x -π4)的图象.(3)周期T =2πω=2π12=4π,振幅A =3,初相是-π4.(4)令12x -π4=π2+k π(k ∈Z),得x =2k π+32π(k ∈Z),此为对称轴方程.令12x -π4=k π(k ∈Z)得x =π2+2k π(k ∈Z).对称中心为⎝⎛⎭⎫2k π+π2,0(k ∈Z). 10.已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )的图象的两相邻对称轴间的距离为π2. (1)求f ⎝⎛⎭⎫π8的值;(2)将函数y =f (x )的图象向右平移π6个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 解:(1)f (x )=3sin(ωx +φ)-cos(ωx +φ)=2⎣⎡⎦⎤32sin (ωx +φ)-12cos (ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ-π6, 因为f (x )为偶函数,所以对任意x ∈R ,f (-x )=f (x )恒成立,所以sin ⎝⎛⎭⎫-ωx +φ-π6=sin ⎝⎛⎭⎫ωx +φ-π6, 即-sin ωx cos ⎝⎛⎭⎫φ-π6+cos ωx sin ⎝⎛⎭⎫φ-π6=sin ωx cos ⎝⎛⎭⎫φ-π6+cos ωx sin ⎝⎛⎭⎫φ-π6,整理得sin ωx cos ⎝⎛⎭⎫φ-π6=0. 因为ω>0且x ∈R ,所以cos ⎝⎛⎭⎫φ-π6=0又因为0<φ<π,故φ-π6=π2.所以f (x )=2sin ⎝⎛⎭⎫ωx +π2=2cos ωx . 由题意得2πω=2·π2,所以ω=2,故f (x )=2cos 2x .因此f ⎝⎛⎭⎫π8=2cos π4= 2.(2)将f (x )的图象向右平移π6个单位后,得到f ⎝⎛⎭⎫x -π6的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到f ⎝⎛⎭⎫x 4-π6的图象.所以g (x )=f ⎝⎛⎭⎫x 4-π6=2cos ⎣⎡⎦⎤2⎝⎛⎭⎫x 4-π6=2cos ⎝⎛⎭⎫x 2-π3.当2k π≤x 2-π3≤2k π+π(k ∈Z),即4k π+2π3≤x ≤4k π+8π3(k∈Z)时,g (x )单调递减因此g (x )的单调递减区间为⎣⎡⎦⎤4k π+2π3,4k π+8π3(k ∈Z). 1.若函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于( )A .2或0B .-2或2C .0D .-2或0解析:由f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x 得f (x )=2sin(ωx +φ)的图象关于直线x =π6对称,故f ⎝⎛⎭⎫π6等于2或-2. 二、填空题(本题共2小题,每小题5分,共10分)3.把函数y =cos ⎝⎛⎭⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的最小值是________. 解析:由y =cos ⎝⎛⎭⎫x +π3+m 的图象关于y 轴对移,所以π3+m =k π,k ∈Z.即m =k π-π3,k ∈Z ,当k =1时,m 取最小值为2π3. 4.如图所示函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.解析:数形结合法:f (x )=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].由图象知:1<k <3.5.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5. (1)求函数的解析式;(2)指出函数的增区间;(3)求使y ≤0的x 的取值范围.解(1)依题意得:A =5,周期T =4⎝⎛⎭⎫π3-π12=π∴ω=2ππ=2,故y =5sin(2x +φ),又图象过点P ⎝⎛⎭⎫π12,0,∴5sin ⎝⎛⎭⎫π6+φ=0,由已知可得π6+φ=0,φ=-π6,∴y =5sin ⎝⎛⎭⎫2x -π6.(2)函数的增区间为⎣⎡⎦⎤k π-π6,k π+π3,k ∈Z.(3)由5sin ⎝⎛⎭⎫2x -π6≤0得2k π-π≤2x -π6≤2k π∴k π-5π12≤x ≤k π+π12,k ∈Z.∴使y ≤0的x 的取值范围为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z.6.函数y =A sin ⎝⎛⎭⎫ωx +φ)(A >0,ω>0,|φ|<π2的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标. 解:(1)由题图知A =2,T =π,于是ω=2πT =2,将y =2sin 2x 的图象向左平移π12个单位长度,得y =2sin(2x +φ)的图象.于是φ=2×π12=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.(2)依题意得g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π6=-2cos(2x +π6).故y =f (x )+g (x )=2sin ⎝⎛⎭⎫2x +π6-2cos ⎝⎛⎭⎫2x +π6=22sin ⎝⎛⎭⎫2x -π12.由22sin ⎝⎛⎭⎫2x -π12=6,得sin ⎝⎛⎭⎫2x -π12=32.∵0<x <π,∴-π12<2x -π12<2π-π12 ∴2x -π12=π3或2x -π12=2π3,∴x =524π或x =38π,∴所求交点坐标为⎝⎛⎭⎫5π24,6或⎝⎛⎭⎫3π8,6.一、选择题1(2009·山东将函数y =sin2x 的图象向左平移π4个单位再向上平移1个单位所得图象的函数解析式是A .y =cos2xB .y =2cos 2xC .y =1+sin(2x +π4) D .y =2sin 2x解析:将函数y =sin2x 的图象向左平移π4个单位,得到函数y =sin2(x +π4),即y =sin(2x +π2)=cos2x 的图象,再向上平移1个单位,所得图象的函数解析式为y =1+cos2x =2cos 2x .答案:B2.(2009·全国卷Ⅰ)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为A.π6B.π4C.π3D.π2解析:由y =3cos(2x +φ)的图象关于点(4π3,0)中心对称知,f (43π)=0,即3cos(8π3+φ)=0,∴8π3+φ=kπ+π2(k ∈Z),∴φ=kπ+π2-8π3(k ∈Z).|φ|的最小值为|φ|=⎪⎪⎪⎪2π+π2-8π3=π6. 3.(2009·天津)已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π为了得到函数g (x )=cos ωx 的图象只要y =f (x )的图象A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度解析:因为T =π,则ω=2πT =2,f (x )=sin(2x +π4),g (x )=cos2x .将y =f (x )的图象向左平移π8个单位长度时,y =sin ⎣⎡⎦⎤2(x +π8)+π4=sin(2x +π2)=cos2x .4.(2009·江西高考)若函数f (x )=(1+3tan x )cos x ,0≤x <π2,则f (x )的最大值为A .1B .2C.3+1 D.3+2解析:f (x )=(1+3·sin x cos x )·cos x =cos x +3sin x =2sin(x +π6),∵0≤x <π2,∴π6≤x +π6<2π3,∴当x +π6=π2时,f (x )取得最大值2.5.(2009·辽宁高考)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f (π2)=-23,则f (0)=A .-23B .-12C.23 D.12解析:由题意可知,此函数的周期T =2(1112π-712π)=2π3,故2πω=2π3,∴ω=3,f (x )=A cos(3x +φ).f (π2)=A cos(3π2+φ)=A sin φ=-23.又由题图可知f (7π12)=A cos(3×7π12+φ)=A cos(φ-14π)=22(A cos φ+A sin φ)=0,∴f (0)=A cos φ=23.7.已知函数y =A sin(ωx +φ)+n 的最大值为4,最小值是0,最小正周期是π2,直线x =π3是其图象的一条对称轴,若A>0,ω>0,0<φ<π2,则函数解析式为____________.解析:由题设得,A =2,n =2,ω=4,且当x =π3时,sin(43π+φ)=±1,故φ=π6.所求解析式为y =2sin(4x +π6)+2.9.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;(3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是____(4)(2)或(2)(6)____(要求按变换先后顺序填上一种你认为正确的标号即可).解析:y =sin x ――→(4) y =sin(x +π3)――→(2) y =sin(x 2+π3),或y =sin x ――→(2) y =sin 12x ――→(6) y =sin 12(x +2π3)=sin(x 2+π3). 10.已知函数f (x )=3sin(12x -π4),x ∈R.(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?(2)先把y =sin x 的图象向右平移π4个单位,然后纵坐标不变,把所有的点的横坐标扩大为原来的2倍,再横坐标不变,把所有点的纵坐标扩大为原来的3倍,得到f (x )的图象.11(2009·合肥)已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)+2cos 2ωx ,x ∈R(ω>0),在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.解:(1)f (x )=32sin2ωx +12cos2ωx +32=sin(2ωx +π6)+32.令2ωx +π6=π2,将x =π6代入可得:ω=1 (2)由(1)得f (x )=sin(2x +π6)+32.经过题设的变化得到的函数g (x )=sin(12x -π6)+32.当x =4kπ+43π,k ∈Z 时,函数取得最大值52.令2kπ+π2≤12x -π6≤2kπ+32π,即x ∈[4kπ+4π3,4kπ+103π],k ∈Z 为函数的单调递减区间.正弦型函数y =A sin(ωx +φ)的图象及应用【高考会这样考】1.考查正弦型函数y =A sin(ωx +φ)的图象变换.2.结合三角恒等变换考查y =A sin(ωx +φ)的性质及简单应用.3.考查y =sin x 到y =A sin(ωx +φ)的图象的两种变换途径.1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点如下表所示2.函数y =sin x3A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.4.图象的对称性函数y =A sin(ωx +φ)(A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下: (1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中 ωx k +φ=k π+π2,k ∈Z)成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z)成中心对称图形. 一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出φ由特殊点确定. 一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意:(1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.双基自测1.(人教A 版教材习题改编)y =2sin ⎝⎛⎭⎫2x -π4 的振幅、频率和初相分别为( ). A .2,1π,-π4 B .2,12π,-π4C .2,1π,-π8 D .2,12π,-π82.已知简谐运动f (x )=A sin(ωx +φ)⎝⎛⎭⎫|φ|<π2的部分图象如图所示,则该简谐运动的最小正周期T 和初相φ分别为( ).A .T =6π,φ=π6B .T =6π,φ=π3C .T =6,φ=π6D .T =6,φ=π33.函数y =cos x (x ∈R)的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为( ).A .-sin xB .sin xC .-cos xD .cos x4.设ω>0,函数y =sin ⎝⎛⎭⎫ωx +π3+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( ). A.23 B.43 C.32D .3 5.(2011·重庆六校联考)已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.考向一 作函数y =A sin(ωx +φ)的图象【例1】►设函数f (x )=cos(ωx +φ)⎝⎛⎭⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝⎛⎭⎫π4=32. (1)求ω和φ的值;(2)在给定坐标系中作出函数f (x )在[0,π]上的图象.【训练1】 已知函数f (x )=3sin ⎝⎛⎭⎫12x -π4,x ∈R.(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?考向二 求函数y =A sin(ωx +φ)的解析式(先根据函数图象的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图象上的一个特殊点确定φ值.)【例2】►(2011·江苏)函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图所示,则f (0)的值是________.【训练2】 已知函数y =A sin(ωx +φ)(A >0,|φ|<π2,ω>0)的图象的一部分如图所示.(1)求f (x )的表达式;(2)试写出f (x )的对称轴方程.考向三 函数y =A sin(ωx +φ)的图象与性质的综合应用【例3】►(2012·西安模拟)已知函数f (x )=A sin(ωx +φ),x ∈R(其中A >0,ω>0,0<φ<π2)的图象与x 轴的交点中,相邻两个交点之间的距离为π2,且图象上的一个最低点为M ⎝⎛⎭⎫2π3,-2.(1)求f (x )的解析式;(2)当x ∈⎣⎡⎦⎤π12,π2时,求f (x )的值域.【训练3】 (2011·南京模拟)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数的解析式;(2)求函数f (x )的递增区间.规范解答8——怎样求解三角函数的最值问题3.(2010·临沂二模)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫x ∈R ,A >0,ω>0,|φ|<π2的图象(部分)如图,则f (x )的解析式是A .f (x )=2sin ⎝⎛⎭⎫πx +π6(x ∈R)B .f (x )=2sin ⎝⎛⎭⎫2πx +π6(x ∈R C .f (x )=2sin ⎝⎛⎭⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎫2πx +π3(x ∈R) 4.(2010·福建卷)将函数f (x )=sin(ωx +φ)的图象向左平移π2个单位,若所得图象与原图象重合,则ω的值不可能等于A .4B .6C .8D .125.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23 B.32C .2D .3. 6.已知函数f (x )=2sin(ωx +φ)的图象如图所示,则f ⎝⎛⎭⎫7π12=________.7.(2010·济南二模)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________.8.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为________.9.已知函数y =3 sin ⎝⎛⎭⎫12x -π4(1)用五点法作出函数的图象;(2)说明此图象是由y =sin x 的图象径过怎么样的变化得到的;(3)求此函数的振幅、周期和初相; (4)求此函数图象的对称轴方程、对称中心.10.已知函数f (x )=3sin(ωx +φ)-cos(ωx +φ)(0<φ<π,ω>0)为偶函数,且函数y =f (x )的图象的两相邻对称轴间的距离为π2.(1)求f ⎝⎛⎭⎫π8的值;(2)将函数y =f (x )的图象向右平移π6个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )的单调递减区间. 1.若函数f (x )=2sin(ωx +φ)对任意x 都有f ⎝⎛⎭⎫π6+x =f ⎝⎛⎭⎫π6-x ,则f ⎝⎛⎭⎫π6等于( )A .2或0B .-2或2C .0D .-2或0二、填空题(本题共2小题,每小题5分,共10分)3.把函数y =cos ⎝⎛⎭⎫x +π3的图象向左平移m 个单位(m >0),所得图象关于y 轴对称,则m 的最小值是________. 4.如图所示函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________.. 5.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象过点P ⎝⎛⎭⎫π12,0,图象上与点P 最近的一个最高点是Q ⎝⎛⎭⎫π3,5.(1)求函数的解析式;(2)指出函数的增区间;(3)求使y ≤0的x 的取值范围.6.函数y =A sin ⎝⎛⎭⎫ωx +φ)(A >0,ω>0,|φ|<π2的一段图象如图所示.(1)求函数y =f (x )的解析式;(2)将函数y =f (x )的图象向右平移π4个单位,得到y =g (x )的图象,求直线y =6与函数y =f (x )+g (x )的图象在(0,π)内所有交点的坐标.一、选择题1(2009·山东将函数y =sin2x 的图象向左平移π4个单位再向上平移1个单位所得图象的函数解析式是A .y =cos2xB .y =2cos 2xC .y =1+sin(2x +π4) D .y =2sin 2x2.(2009·全国卷Ⅰ)如果函数y =3cos(2x +φ)的图象关于点(4π3,0)中心对称,那么|φ|的最小值为A.π6B.π4C.π3D.π23.(2009·天津)已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π为了得到函数g (x )=cos ωx 的图象只要y =f (x )的图象A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度4.(2009·江西高考)若函数f (x )=(1+3tan x )cos x ,0≤x <π2,则f (x )的最大值为A .1B .2C.3+1 D.3+25.(2009·辽宁高考)已知函数f (x )=A cos(ωx +φ)的图象如图所示,f (π2)=-23,则f (0)=A .-23B .-12C.23 D.127.已知函数y =A sin(ωx +φ)+n 的最大值为4,最小值是0,最小正周期是π2,直线x =π3是其图象的一条对称轴,若A>0,ω>0,0<φ<π2,则函数解析式为____________.9.给出下列六种图象变换方法:(1)图象上所有点的纵坐标不变,横坐标缩短到原来的12;(2)图象上所有点的纵坐标不变,横坐标伸长到原来的2倍;(3)图象向右平移π3个单位;(4)图象向左平移π3个单位;(5)图象向右平移2π3个单位;(6)图象向左平移2π3个单位.请用上述变换中的两种变换,将函数y =sin x 的图象变换到函数y =sin(x 2+π3)的图象,那么这两种变换正确的标号是________(要求按变换先后顺序填上一种你认为正确的标号即可).10.已知函数f (x )=3sin(12x -π4),x ∈R.(1)画出函数f (x )在长度为一个周期的闭区间上的简图;(2)将函数y =sin x 的图象作怎样的变换可得到f (x )的图象?11(2009·合肥)已知函数f (x )=sin 2ωx +3sin ωx sin(ωx +π2)+2cos 2ωx ,x ∈R(ω>0),在y 轴右侧的第一个最高点的横坐标为π6.(1)求ω;(2)若将函数f (x )的图象向右平移π6个单位后,再将得到的图象上各点横坐标伸长到原来的4倍,纵坐标不变,得到函数y =g (x )的图象,求函数g (x )的最大值及单调递减区间.。

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

高中数学_函数Y=Asin(ωx+φ)的图像(第一课时)教学设计学情分析教材分析课后反思

函数sin()(0,0)y A x A ωϕω=+>>的图象(一)一、教材分析本节是人教A 版数学第一册第5章第6节的内容,前一节“正弦函数的性质和图象”主要讲述了正弦函数图象的画法(五点法)、性质及应用。

本节课的主要内容是结合实例,了解)sin(φω+=x A y 的实际意义,会用五点法画出函数的图象,揭示参数φω,,A 变化时对函数)sin(φω+=x A y 图象的形状,位置的影响,讨论函数)sin(φω+=x A y 的图象与正弦函数的关系;通过引导学生对函数图象规律性的探索,让学生体会到从简单到复杂,从特殊到一般的化归思想;通过对参数的分类讨论,让学生深刻认识到图象变换与函数解析式变换的内在联系。

二、教学目标:1. 分别通过对三角函数图像的各种变换的探究和动态演示让学生了解三角函数图像各种变换的实质和内在规律。

2. 通过对函数sin()(0,0)y A x A ωϕω=+>>图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。

3. 培养学生观察问题和探索问题的能力。

三、教学重、难点:教学重点:函数sin()(0,0)y A x A ωϕω=+>>的图像的画法和图像与函数y=sinx 图像的关系,以及对各种变换内在联系的揭示。

教学难点:各种变换内在联系的揭示。

四、教法学法采取各个击破,归纳整合为主线,自主探索、合作学习为主导,教师总结点评为辅助,充分发挥学生的动手能力的教学方法;多媒体辅助教学。

五、教学过程:(一)、新课引入:那么怎么画函数12sin()34y x π=-的图象? (二)、尝试探究探究(一):对 sin()y x ϕϕ=+对的图象的影响问题1:sin()3y x π=+函数周期是多少?你有什么办法画出该函数在一个周期内的图象?学生:用“五点法”作出函数 问题2:比较函数 sin()3y x π=+与sin y x = 的图象的形状和位置,你有什么发现?学生:函数sin()3y x π=+的图象,可以看作是把曲线sin y x =上所有的点向左平移3π个单位长度而得到的. 那么函数sin()3y x π=-的图象?学生:函数sin()3y x π=-的图象,可以看作是把曲线sin y x =上所有的点向右平移3π个单位长度而得到的.问题3:一般地,对任意的 (0)ϕϕ≠,函数 sin()y x ϕ=+ 的图象是由函数 sin y x = 的图象经过怎样的变换而得到的? 归纳:函数sin()y x ϕ=+的图象,可以看作是把曲线sin y x =上所有的点向左(0ϕ>时)或向右0ϕ<(时)平移ϕ个单位长度而得到的.上述变换称为平移变换探究(二):(0)sin y x ωωω>=对的图象的影响问题1:函数sin 2y x =周期是多少?如何用“五点法”画出该函数在一个周期内的图象?问题2:比较函数 sin 2y x =与sin y x = 的图象的形状和位置,你有什么发现?学生:函数 sin 2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标缩短到原来的12倍(纵坐标不变)而得到的. 那么函数1sin()2y x =的图象?学生:函数 1sin()2y x =的图象,可以看作是把sin y x =的图象上所有的点横坐标伸长到原来的 2 倍(纵坐标不变)而得到的.问题3:一般地,对任意的 (0)ωω>,函数 sin y x ω=的图象是由函数sin y x =的图象经过怎样的变换而得到的?归纳:函数sin (0)y x ωω=>的图像可由函数y =sinx 的图像沿x 轴伸长(w<1)或缩短(w>1)到原来的ω1倍(纵坐标不变).......而得到的,称为周期变换。

函数y=Asin(ωx φ)的图象

函数y=Asin(ωx φ)的图象

函数 y=sinx (>0且0) 的图象可以看作 是把 y=sinx 的图象上所有点的横坐标缩短 (当>1时)或伸长(当0< <1时)到原来的1/ 倍(纵坐标不变)而得到的.
所有的点横坐标缩短(>1)
y=sinx
或伸长(0< <1) 1/倍 纵坐标不变
y=sinx
决定函数的周期:T 2
探究: A 对函数图象的影响
D.纵坐标伸长到原来的2倍,横坐标不变.
作正弦型函数y=Asin(x+) 的图象的方法: (1)用“五点法”作图 (2)利用变换关系作图
函数y=Asin(ωx+φ)的图象 平移伸缩变化欣赏
想一想?
问题:把y=sin2x的图象经过怎样的变换就得到
y=sin(2x+ 3
)的图象?
)的图象
(横坐标不变)
y=3sin(
1 2
x
-
4
)的图象
练习2. 为了得到y=3sin(2x+π/5)的图象,只需将函数
y=3sin(x+π/5)的图象上各点的 ( B)而得到.
A.横坐标伸长到原来的2倍,纵坐标不变. B.横坐标缩短到原来的1/2倍,纵坐标不变. C.纵坐标伸长到原来的1/2倍,横坐标不变.
函数y=Asin(ωx+φ)的图象
(1)y=sinx与y=sin(x+)的图象关系; (2)y=sinx与y=sinx的图象关系; (3)y=sinx与y=Asinx的图象关系; (4)y=sinx与y=Asin(x+)的图象关系.
***复习回顾***
y sin x, x [0,2 ]的图象
关键点: (0,0),( ,1),( ,0),( 3 ,1),(2 ,0)

函数y=Asin(ωx φ)的图象 课件

函数y=Asin(ωx φ)的图象 课件

3.求三角函数值域的常用方法 (1)求解形如y=asinx+b(或y=acosx+b)的函数的最值 或值域问题时,利用正、余弦函数的有界性(-1≤sinx (cosx)≤1)求解.求三角函数取最值时相应自变量x的 集合时,要注意考虑三角函数的周期性.
(2)求解形如y=asin2x+bsinx+c(或y=acos2x+bcosx+ c),x∈D的函数的值域或最值时,通过换元,令t=sinx (或cosx),将原函数转化为关于t的二次函数,利用配 方法求值域、最值即可.求解过程中要注意t=sinx(或 cosx)的有界性.
【解析】1.选B.由图象可知,A 2,1 T 5 , 4 12 6 4
T , 2,因为| | ,所以2 ,所以 ,
2
6
2
6
所以2 sin B 4,所以B 2. 2
2.由题意得 2 ,则 2.
所以f x 2sin(2x ),
又因为图象过点( , 2), 12
2
为偶函数;对于函数y=Acos(ωx+φ),当φ=kπ(k∈Z) 时为偶函数,当φ=kπ± (k∈Z)时为奇函数.
2
2.与正弦、余弦函数有关的单调区间的求解技巧 (1)结合正弦、余弦函数的图象,熟记它们的单调区间. (2)确定函数y=Asin(ωx+φ)(A>0,ω>0)单调区间的 方法:采用“换元”法整体代换,将ωx+φ看作一个整 体,可令“z=ωx+φ”,即通过求y=Asinz的单调区间而 求出函数的单调区间.若ω<0,则可利用诱导公式先将 x的系数转变为正数,再求单调区间.
【核心素养培优区】 【易错案例】求三角函数的解析式 【典例】如图是函数y=Asin(ωx+φ)(A>0,ω>0, |φ|<π)的图象,则该函数的解析式为 _y___5_si_n_( _23_x__23__)_或__y__5_s_in_(_23_x___3_)__

第19讲 函数y=Asin(ωx+φ)的图像

第19讲 函数y=Asin(ωx+φ)的图像

D 长度得到函数 y=g(x)的图像,则函数 g(x)的解析式为 ( )
A.g(x)=2sin 2x
C.g(x)=2sin
2������ + π
4
B.g(x)=2sin
2������ + π
8
D.g(x)=2sin
2������-
π 4
图2-19-3
变式题已知函数 f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部 分图像如图 2-19-5 所示,且 A π,1 ,B(π,-1),则 φ 的值
6
6 月份的平均气温最高,为 28 ℃,12 月份的 所以 y=23+5cosπ6(x-6),所以当 x=10
平均气温最低,为 18 ℃,则 10 月份的平均 时,y=23+5cos π × 4 =23-5×1=20.5.
6
2
气温为
℃.
教师备用例题
例 1 [配合例 2 使用] 已知函数
f(x)=Atan(ωx+φ) ������ > 0,|������| < π
的步骤如下: 方法一
方法二
画出y=sin x的图象
步骤1 画出y=sin x的图象
向左(右)平移|φ|个单位长度 ⇓
各点的横坐标变为原来的ω1 倍
得到y=sinx+φ的图象 步骤2 得到y=sin ωx的图象 各点的横坐标变为原来的ω1 倍⇓ 向左(右)平移ωφ个单位长度
得到y=sinωx+φ的图象 步骤3 得到y=sinωx+φ的图象
2
的部分图像如图所示,则 f π =
12
()
A.3
B. 3
C.1
D.
3 3

人教版高中数学课件:4.9 函数y=Asin(ωx+φ)的图象)

人教版高中数学课件:4.9  函数y=Asin(ωx+φ)的图象)

1 2
x,x∈R的简图
结论:
函数y=sin2x, x∈R 的图象,可以看作把
正弦曲线上所有点的横坐标缩短到原来的0.5 倍(纵坐标不变)而得到。
函数y=sin0.5x, x∈R 的图象,可以看作
把正弦曲线上所有点的横坐标伸长到原来的2 倍(纵坐标不变)而得到。
结论:
一般地,函数y=sinωx, x∈R (其中ω >0 且ω ≠1)的图象,可以看作把正弦曲线上所有 点的横坐标缩短(当ω >1时)或伸长(当0< ω <1时)到原来的1/ω倍(纵坐标不变)而得 到。
4.9 函数y=Asin(ωx+φ)的图象
秦皇岛市职业技术学校 李天乐
例1画出函数y=2sinx, x∈R ,y=
1 2
sinx,x∈R的简图
解:这两个函数的周期都是2π,我们先画出它们在 [0,2 π]的简图. 列表:
x sinx 0 0
π /2
1
π
0
3 π/2 -1
2π 0
2sinx
0.5sinx
0
0
2
0.5
0
0
-2
-0.5ቤተ መጻሕፍቲ ባይዱ
0
0
结论:
函数y=2sinx, x∈R 的图象,可以看作把正
弦曲线上所有点的纵坐标伸长到原来的2倍(横 坐标不变)而得到。从而,函数y=2sinx, x∈R 的值域是[-2,2],最大值是2,最小值是-2。
函数y=0.5sinx, x∈R 的图象,可以看作把
正弦曲线上所有点的纵坐标伸长到原来的0.5倍 (横坐标不变)而得到。从而,函数y=0.5sinx, x∈R 的值域是[-0.5,0.5],最大值是0.5,最小 值是-0.5。

函数y=Asin(ωx+φ)的图象(1)

函数y=Asin(ωx+φ)的图象(1)

锦山蒙中学案(高一年级组)班 级 姓 名学 科时 间课 题 函数sin()y A x ωϕ=+的图象(1)学 习 目 标1.理解参数,,A ϕω对sin()y A x ωϕ=+(0,0A ω>>)的图象的影响;2.会用两种方法叙述由x y sin =到sin()y A x k ωϕ=++图象的变换过程.3.会用 “五点法”画出sin()y A x ωϕ=+图象的简图;过 程 双色笔纠错一、课前准备:复习1:回顾五点作图法作正弦函数[]π2,0,sin ∈=x x y 、余弦函数[]π2,0,cos ∈=x x y 图像的方法; 复习2:y=f(x)→y=f(x+a) 左右平移变换:a>0,向 平移a 个单位;a<0,向 平移|a|个单位 y=f(x) →y=f(x)+k 上下平移变换:k>0,向 平移k 个单位; k<0,向 平移|k|个单位 思考:对函数sin()y A x ωϕ=+(0,0A ω>>),你认为怎样讨论参数,,A ϕω对函数图象的影响? 二、新课导学:探究1:探究ϕ对)sin(ϕ+=x y ,R x ∈的图像的影响 (函数图象的左右平移变换)。

新知1:函数sin()y x ϕ=+)0(≠ϕ其中的图像,可以看作将函数sin y x =的图像上所有的点 (当0ϕ>)或 (当0ϕ<)平移 个单位长度而得到。

探究2:探究)0(>ωω对)sin(ϕω+=x y 的图像影响 (函数图象横向伸缩变换——周期变换)。

新知2:一般地,函数sin()y x ωϕ=+(0ω>)的图象可以看作将函数sin()y x ϕ=+的图象上所有的点的横坐标缩短 ( )或伸长( )到原来的 倍(纵坐标不变)而得到。

探究3:探究A (0A >)对sin()y A x ωϕ=+的图像的影响 (函数图象的纵向伸缩变换)。

新知3:一般地,函数Asin()y x ωϕ=+(0,0A ω>>)的图象可以看作将函数sin()y x ωϕ=+的图象上所有点的纵坐标伸长( )或缩短( )到原来的 倍(横坐标不变)而得到。

y=Asin(ωx+φ)的图象与性质(解析版)

y=Asin(ωx+φ)的图象与性质(解析版)

考点30 y =A sin(ωx +φ)的图象与性质【命题解读】三角函数图象与性质的考查力度有所加强,往往将三角恒等变换与三角函数的图象和性质结合考查,先利用三角公式进行化简,然后进一步研究三角函数的性质.其中三角函数的定义域值域、单调性、奇偶性、周期性、对称性以及图象变换是主要考查对象,难度以中档以下为主 【基础知识回顾】4、与三角函数奇偶性相关的结论三角函数中,判断奇偶性的前提是定义域关于原点对称,奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.常见的结论有:(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z);若为奇函数,则有φ=k π(k ∈Z). (2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z);若为奇函数,则有φ=k π+π2(k ∈Z). (3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z).1.函数y =sin ⎝⎛⎭⎫2x -π3在区间⎣⎡⎦⎤-π2,π上的简图是( )【答案】A【解析】:令x =0得y =sin ⎝⎛⎭⎫-π3=-32,排除B ,D 项,由f ⎝⎛⎭⎫-π3=0,f ⎝⎛⎭⎫π6=0,排除C 项,故选A.2.为了得到函数y =sin ⎝⎛⎭⎫2x -π6的图象,可以将函数y =sin 2x 的图象( )A .向右平移π6个单位长度 B .向右平移π12个单位长度 C .向左平移π6个单位长度 D .向左平移π12个单位长度 【答案】B【解析】:y =sin ⎝⎛⎭⎫2x -π6=sin 2⎝⎛⎭⎫x -π12,故将函数y =sin 2x 的图象向右平移π12个单位长度,可得y =sin ⎝⎛⎭⎫2x -π6的图象.3、 函数f(x)=A sin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f ⎝⎛⎭⎫11π24的值为( )第1题图A . -62B . -32C . -22 D . -1 【答案】D【解析】 由图象可得A =2,最小正周期T =4×⎝⎛⎭⎫7π12-π3=π,则ω=2πT =2.又f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫7π6+φ=-2,得φ=π3,则f(x)=2sin ⎝⎛⎭⎫2x +π3,f ⎝⎛⎭⎫11π24=2sin ⎝⎛⎭⎫11π12+π3=2sin 5π4=-1.故选D .4、(2018苏北四市期末) 若函数f(x)=A sin (ωx +φ)(A>0,ω>0)的图象与直线y =m 的三个相邻交点的横坐标分别是π6,π3,2π3,则实数ω的值为________. 【答案】、. 4【解析】、由题意得函数f(x)的最小正周期T =2π3-π6=2πω,从而ω=4.5、(2018镇江期末) 函数y =3sin ⎝⎛⎭⎫2x +π4的图象两相邻对称轴的距离为________.【答案】、 π2【解析】、由题知函数最小正周期T =2π2=π.图象两相邻对称轴间的距离是最小正周期π的一半即π2. 6、(2020江苏镇江期中考试)设函数()()(sin ,,f x A x A ωϕωϕ=+为参数,且)0,0,0A ωϕπ>><<的部分图象如图所示,则ϕ的值为______.【答案】3π【解析】由图象可得()f x 最小正周期:473126T πππ⎛⎫=⨯+= ⎪⎝⎭,即2ππω=,2ω∴=,又77sin 126f A A ππϕ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭,73262k ππϕπ∴+=+,k Z ∈,23k πϕπ∴=+,k Z ∈,又0ϕπ<<,3πϕ∴=,本题正确结果:3π. 7、 已知函数()sin(2)6f x x π=-的图象C 1向左平移π4个单位得到图象C 2,则C 2在[0,π]上的单调减区间是________.【答案】:[π12,712π] 【解析】、:由题设可知C 2的曲线方程sin(2)3y x π=+,令222232k x k ππ3ππ+≤+<π+,得1212k x k π7ππ+≤<π+.令k =0得C 2在[0,π]上的单减区间为[π12,712π].考向一 函数y =Asin(ωx +φ)的图象及其变换设函数()sin (0)f x x x ωωω=>的周期为π. (1) 求它的振幅、初相;(2) 用“五点法”作出它在长度为一个周期的闭区间上的图象; (3) 说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到.【解析】:(1) ()sin f x x x ωω=12(sin )2x x ωω=+2sin()3x ωπ=+,∵ T =π,∴2πω=π,即ω=2.∴()2sin()3f x x ωπ=+.∴ 函数(x)sin f x x ωω=的振幅为2,初相为3π.(2) 令X =2x +π3,则2sin(2)2sin 3y x x π=+=. 列表,并描点画出图象:(3) (解法1)把sin y x =的图象上所有的点向左平移3π个单位,得到sin()3y x π=+的图象;再把sin()3y x π=+的图象上的点的横坐标变为原来的12(纵坐标不变),得到sin(2)3y x π=+的图象;最后把sin(2)3y x π=+上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到2sin(2)3y x π=+的图象. (解法2)将sin y x =的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到sin 2y x =的图象;再将sin 2y x =的图象向左平移π6个单位,得到sin 2()sin(2)63y x x ππ=+=+的图象;再将sin(2)3y x π=+的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到2sin(2)3y x π=+的图象.变式1、已知函数y =2sin ⎝⎛⎭⎫2x +π3.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝⎛⎭⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.【解析】 (1)y =2sin ⎝⎛⎭⎫2x +π3的振幅A =2,周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝⎛⎭⎫2x +π3=2sin X.(3)(方法1)把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象;再把y =sin ⎝⎛⎭⎫x +π3的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象;最后把y=sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象.(方法2)将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y =2sin ⎝⎛⎭⎫2x +π3的图象.变式2、(2020届山东师范大学附中高三月考)为了得函数23y sin x π⎛⎫=+ ⎪⎝⎭的图象,只需把函数2y sin x =的图象( ) A .向左平移6π个单位 B .向左平移3π单位 C .向右平移6π个单位 D .向右平移3π个单位【答案】A 【解析】不妨设函数2y sin x =的图象沿横轴所在直线平移ϕ个单位后得到函数23y sin x π⎛⎫=+⎪⎝⎭的图象. 于是,函数2y sin x =平移ϕ个单位后得到函数,sin 2()y x ϕ=+,即sin(22)y x ϕ=+, 所以有223k πϕπ=+,6k πϕπ=+,取0k =,6π=ϕ.答案为A . 变式3、(2020届山东省枣庄、滕州市高三上期末)将曲线()cos 2y f x x =上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移4π个单位长度,得到曲线cos 2y x =,则6f π⎛⎫= ⎪⎝⎭( )A .1B .-1C D .【答案】D 【解析】把cos 2y x =的图象向左平移4π个单位长度,得cos 2()cos(2)sin 242y x x x ππ=+=+=-的图象,再把所得图象各点的横坐标变为原来的12倍,纵坐标不变,得图象的函数式为sin(22)sin 4y x x =-⨯=-,sin 42sin 2cos2()cos2y x x x f x x =-=-=,∴()2sin 2f x x =-,∴()2sin63f ππ=-=.故选:D.变式4、(2020届山东省潍坊市高三上学期统考)将函数()πsin 23f x x ⎛⎫=+ ⎪⎝⎭的图象向右平移()0a a >个单位得到函数()πcos 24g x x ⎛⎫=+ ⎪⎝⎭的图象,则a 的值可以为( )A .5π12B .7π12C .19π24D .41π24【答案】C 【解析】由题意知,3()cos(2)sin(2)44g x x x ππ=+=+, 其图象向左平移a 个单位得到函数3()sin(22)4f x x a π=++, 而函数()πsin 23f x x ⎛⎫=+⎪⎝⎭,所以有32243a k πππ+=+ 5224a k ππ=-+,取1k =得1924a π=.答案选C.方法总结:1.y =A sin(ωx +φ)的图象可用“五点法”作简图得到,可通过变量代换z =ωx +φ计算五点坐标.2.由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)图象有两条途径:“先平移后伸缩”与“先伸缩后平移”.考向二 求函数y =Asin(ωx +φ)的解析式例2、下图为函数sin()y A x ωϕ=+的一段图象. (1) 请写出这个函数的一个解析式;(2) 求与(1)中函数图象关于直线2x =π对称的函数图象的解析式.【解析】:(1) 13214,,332T T ωπππ=-=π==又A =3, 由13sin()2y x ϕ=+的图象过(,0)3π,∴103sin()23ϕπ=⨯+,6ϕπ=- (φ为其中一个值). ∴13sin()26y x π=-为所求.(2) 设(,)x y 为所求函数图象上任意一点,该点关于直线2x =π的对称点为(4,)x y π-, 则点(4,)x y π-必在函数13sin()26y x π=-的图象上. ∴ 13sin[(4)]3sin(2)2626x y x ππππ=--=--, 即13sin()26y x π=-+,∴与13sin()26y x π=-的图象关于直线2x =π对称的函数图象的解析式是13sin()26y x π=-+.变式1、(2019苏北四市期末) 函数f (x )=2sin(ωx +φ)(ω>0)的部分图象如图所示,若AB =5,则ω的值为________.【答案】、 π3 【解析】、如图,过点A 作垂直于x 轴的直线AM ,过点B 作垂直于y 轴的直线BM ,直线AM 和直线BM 相交于点M ,在Rt △AMB 中,AM =4,BM =12·2πω=πω,AB =5,由勾股定理得AM 2+BM 2=AB 2,所以16+⎝⎛⎭⎫πω2=25,πω=3,ω=π3.变式2、(1)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +3π4C .f (x )=2sin ⎝⎛⎭⎫14x +3π4D .f (x )=2sin ⎝⎛⎭⎫2x +π4(2)(2019·皖南八校联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ≤π2的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝⎛⎭⎫2,-12,则函数f (x )=________________.【答案】、 (1)B (2)sin ⎝⎛⎭⎫π2x +π6【解析】、(1)由题图可知A =2,T =2×⎣⎡⎦⎤3π2-⎝⎛⎭⎫-π2=4π,故2πω=4π,解得ω=12.所以f (x )=2sin ⎝⎛⎭⎫12x +φ.把点⎝⎛⎭⎫-π2,2代入可得2sin ⎣⎡⎦⎤12×⎝⎛⎭⎫-π2+φ=2, 即sin ⎝⎛⎭⎫φ-π4=1,所以φ-π4=2k π+π2(k ∈Z ), 解得φ=2k π+3π4(k ∈Z ). 又0<φ<π,所以φ=3π4.所以f (x )=2sin ⎝⎛⎭⎫12x +3π4.(2)依题意得22+⎝⎛⎭⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝⎛⎭⎫π2x +φ,由于该函数图象过点⎝⎛⎭⎫2,-12,因此sin(π+φ)=-12,即sin φ=12,而-π2≤φ≤π2,故φ=π6,所以f (x )=sin ⎝⎛⎭⎫π2x +π6.方法总结:确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m2. (2)求ω,确定函数的周期T ,则ω=2πT .(3)求φ,常用方法有以下2种:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;确定φ值时,往往以寻找“五点法”中的特殊点作为突破口考向三 三角函数图象与性质的综合问题例3、(多选题)(2020届山东省滨州市三校高三上学期联考)设函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列结论正确的是( )A .π-是()f x 的一个周期B .()f x 的图象可由sin 2y x =的图象向右平移3π得到 C .()f x π+的一个零点为6x π=D .()y f x =的图象关于直线1712x π=对称 【答案】ACD 【解析】()sin 23f x x π⎛⎫=- ⎪⎝⎭的最小正周期为π,故π-也是其周期,故A 正确;()f x 的图象可由sin 2y x =的图象向右平移6π得到,故B 错误; ()77()()sin sin 066323f f ππππππ⎛⎫+==-== ⎪⎝⎭,故C 正确; sin sin 17175()1262sin 132f πππππ⎛⎫⎛⎫⎛⎫-=== ⎪ =⎪ ⎪⎝⎭⎝⎭⎝⎭,故D 正确. 故选:ACD变式1、(2020届山东省滨州市高三上期末)已知函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,则( ) A .把()y f x =的图象向右平移6π个单位得到函数2sin 2y x =的图象 B .函数()f x 在区间,02π⎛⎫- ⎪⎝⎭上单调递减C .函数()f x 在区间[]0,2π内有五个零点 D .函数()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上的最小值为1 【答案】D 【解析】因为函数()2sin(2)f x x ϕ=+的图象过点,26A π⎛⎫⎪⎝⎭,所以2sin 23πϕ⎛⎫+= ⎪⎝⎭,因此2,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因此()2sin(2)2sin 222sin 266f x x x k x ππϕπ⎛⎫⎛⎫=+=++=+ ⎪ ⎪⎝⎭⎝⎭; A 选项,把()y f x =的图象向右平移6π个单位得到函数2sin 26y x π⎛⎫=- ⎪⎝⎭的图象,故A 错; B 选项,由3222,262k x k k Z πππππ+≤+≤+∈得2,63k x k k Z ππππ+≤≤+∈,即函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的单调递减区间是:2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故B 错; C 选项,由()2sin 206f x x π⎛⎫=+= ⎪⎝⎭得2,6x k k Z ππ+=∈,即,122k x k Z ππ=-+∈, 因此[]0,2x π∈,所以5111723,,,12121212x ππππ=,共四个零点,故C 错; D 选项,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤+∈⎢⎥⎣⎦,因此1sin 2,162x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以[]2sin 21,26x π⎛⎫+∈ ⎪⎝⎭,即()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的最小值为1,故D 正确;故选:D.变式2、(多选题)(2020·蒙阴县实验中学高三期末)关于函数()22cos cos(2)12f x x x π=-+-的描述正确的是( )A .其图象可由2y x =的图象向左平移8π个单位得到 B .()f x 在(0,)2π单调递增C .()f x 在[]0,π有2个零点D .()f x 在[,0]2π-的最小值为【答案】ACD 【解析】由题:()22cos cos(2)1cos 2sin 2)24f x x x x x x ππ=-+-=+=+,由2y x =的图象向左平移8π个单位,得到)))84y x x ππ=+=+,所以选项A 正确;令222,242k x k k Z πππππ-≤+≤+∈,得其增区间为3[,],88k k k Z ππππ-+∈ ()f x 在(0,)8π单调递增,在(,)82ππ单调递减,所以选项B 不正确;解()0,2,4f x x k k Z ππ=+=∈,得:,28k x k Z ππ=-∈,[0,]x π∈, 所以x 取37,88ππ,所以选项C 正确;3[,0],2[,],sin(2)[24444x x x πππππ∈-+∈-+∈-,()[f x ∈, 所以选项D 正确. 故选:ACD变式3、(2020届山东省临沂市高三上期末)已知函数2()2cos 12f x x πω⎛⎫=-⎪⎝⎭(0)>ω的图象关于直线4x π=对称,则ω的最小值为( )A .13B .16C .43D .56【答案】A 【解析】2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭,()1cos 26f x x πω⎛⎫∴=+- ⎪⎝⎭,又因为2()2cos 12f x x πω⎛⎫=- ⎪⎝⎭的图象关于4x π=对称,所以2()46k k Z ππωπ⨯-=∈,即12()3k k Z ω=+∈, 因为0>ω,所以ω的最小值为13.故选:A.方法总结:三角函数性质的综合问题:主要考查单调性、奇偶性、对称性、周期性及性质的应用. 函数零点(方程根)问题:三角函数图象与x 轴(或y =a )的交点,即数形之间的转化问题.1、【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ωϕωϕ=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π,且4g π⎛⎫= ⎪⎝⎭38f π⎛⎫= ⎪⎝⎭A .2- B.CD .2【答案】C【解析】∵()f x 为奇函数,∴(0)sin 0,=π,,0,f A k k k ϕϕ==∴∈∴=Z 0ϕ=;又12π()sin ,2π,122g x A x T ωω=∴==∴2ω=,又π()4g =,∴2A =,∴()2sin 2f x x =,3π()8f =故选C.2、【2018年高考天津理数】将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数A .在区间35[,]44ππ上单调递增B .在区间3[,]4ππ上单调递减C .在区间53[,]42ππ上单调递增D .在区间3[,2]2ππ上单调递减【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为ππsin 2sin2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦. 则函数的单调递增区间满足()ππ2π22π22k x k k -≤≤+∈Z ,即()ππππ44k x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦.函数的单调递减区间满足:()π3π2π22π22k x k k +≤≤+∈Z ,即()π3πππ44k x k k +≤≤+∈Z , 令1k =可得一个单调递减区间为:5π7π,44⎡⎤⎢⎥⎣⎦. 故选A.3、【2017年高考全国Ⅰ理数】已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin(2)cos(2)cos(2)3326C y x x x =+=+-=+,则由1C 上各点的横坐标缩短到原来的12倍变为cos 2y x =,再将曲线向左平移π12个单位长度得到2C ,故选D.4、(2020·山东省淄博实验中学高三上期末)已知函数()sin cos f x x x =-,()g x 是()f x 的导函数,则下列结论中正确的是( )A .函数()f x 的值域与()g x 的值域不相同B .把函数()f x 的图象向右平移2π个单位长度,就可以得到函数()g x 的图象 C .函数()f x 和()g x 在区间,44ππ⎛⎫-⎪⎝⎭上都是增函数 D .若0x 是函数()f x 的极值点,则0x 是函数()g x 的零点 【答案】CD【解析】∵函数f (x )=sinx ﹣cosx =(x 4π-)∴g (x )=f '(x )=cosx +sinx =(x 4π+),故函数函数f (x )的值域与g (x )的值域相同, 且把函数f (x )的图象向左平移2π个单位,就可以得到函数g (x )的图象, 存在x 0=+,4k k Z ππ-∈,使得函数f (x )在x 0处取得极值且0x 是函数()g x 的零点,函数f (x )在,44ππ⎛⎫- ⎪⎝⎭上为增函数,g (x )在,44ππ⎛⎫- ⎪⎝⎭上也为增函数,∴单调性一致, 故选:CD .5、(2020届山东省枣庄市高三上学期统考)将函数()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度得到()g x 图象,则下列判断正确的是( ) A .函数()g x 在区间,122ππ⎡⎤⎢⎥⎣⎦上单调递增 B .函数()g x 图象关于直线712x π=对称 C .函数()g x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 D .函数()g x 图象关于点,03π⎛⎫⎪⎝⎭对称 【答案】ABD 【解析】函数()sin 23f x x π⎛⎫=+⎪⎝⎭的图象向右平移2π个单位长度得到()ππsin 223g x x ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦2πsin 23x ⎛⎫=- ⎪⎝⎭.由于7π7π2ππsin sin 112632g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故7π12x =是()g x 的对称轴,B 选项正确.由于π2π2πsin sin 00333g ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,故,03π⎛⎫⎪⎝⎭是()g x 的对称中心,D 选项正确.由π2ππ2232x -≤-≤,解得π7π1212x ≤≤,即()g x 在区间π7π,1212⎡⎤⎢⎥⎣⎦上递增,故A 选项正确、C 选项错误. 故选:ABD.6、【2020江苏南京上学期开学考试】函数()Asin()f x x ωϕ=+(A >0,ω>0)的部分图象如图所示.若函数()y f x =在区间[m ,n ]上的值域为[2],则n ﹣m 的最小值是_______.【答案】3.【解析】由图象知:()max 2f x =,2A ∴=,又()22628T πω==⨯-=,4πω∴=,()22sin 22f πϕ⎛⎫=+= ⎪⎝⎭,2k ϕπ∴=,k Z ∈,()2sin 22sin 44f x x k x πππ⎛⎫∴=+= ⎪⎝⎭,当()f x =时,1244x k πππ=-+或15244x k πππ=+,1k Z ∈,181x k ∴=-或185x k =+,1k Z ∈; 当()2f x =时,2242x k πππ=+,2k Z ∈,282x k ∴=+,若n m -最小,则12k k =,()min 3n m ∴-=,本题正确结果:3.7、【2017年高考山东卷理数】设函数ππ()sin()sin()62f x x x ωω=-+-,其中.已知π()06f =.(1)求;(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数的图象,求在π3π[,]44-上的最小值. 【答案】(1);(2)最小值为.【解析】(1)因为ππ()sin()sin()62f x x x ωω=-+-,所以03ω<<ω()y f x =()y g x =()g x 2ω=32-1()cos cos 2f x x x x ωωω=--π)3xω=-.由题设知π()06f=,所以πππ63k-=ω,k∈Z.故,k∈Z,又,所以.(2)由(1)得()23f x xπ⎛⎫=-⎪⎝⎭.所以()4312g x x xπππ⎛⎫⎛⎫=+-=-⎪ ⎪⎝⎭⎝⎭.因为π3π[,]44x∈-,所以2,1233xπππ⎡⎤-∈-⎢⎥⎣⎦,所以当123xππ-=-,即4xπ=-时,取得最小值.3cos2x xωω=-1sin cos)22x xωω=-62kω=+03ω<<2ω=()g x32-。

第1课时 函数y=Asin(ωx+φ)的图象变换 课件(经典公开课)

第1课时 函数y=Asin(ωx+φ)的图象变换 课件(经典公开课)
【问题思考】
1.对于同一个 x,函数 y=2sin x,y=sin x 和 y= sin x 的函数值有
何关系?
提示:对于同一个 x,y=2sin x 的函数值是 y=sin x 的函数值的
2 倍,而 y= sin x 的函数值是 y=sin x 的函数值的 .
2.填空:(1)A(A>0)对y=Asin(ωx+φ)的图象的影响
移 个周期,即向右平移 个单位长度,得到图象对应的函数为
y=2sin
答案:D
-
+
=2sin
-
,故选 D.
2.要得到函数 f(x)=cos
-
的图象,只需将函数 g(x)=cos 2x
的图象(
)
A.向左平移 个单位长度
B.向右平移 个单位长度
C.向左平移 个单位长度
D.向右平移 个单位长度
提示:∵f(x)=cos
D.横坐标伸长到原来的 倍,纵坐标不变,再向右平移 个单位长度
分析:先结合诱导公式,将两条曲线转化成同名的三角函数,再
结合左加右减、上加下减原则以及伸缩变换,即可得出答案.
解析:因为 y=cos =sin
+
,所以把 y=sin x 上各点的横坐标
伸长到原来的 5 倍,纵坐标不变,得到函数 y=sin 的图象,再将得
【问题思考】
1.函数 y=sin x,y=sin 2x 和 y=sin x 的周期分别是什么?
提示:2π,π,4π.
2.当 y=sin x,y=sin 2x 和 y=sin x 这三个函数的函数值相同时,x
的取值有什么关系?
提示:当这三个函数的函数值相同时,y=sin 2x 中 x 的取值是

函数 y=Asin(ωx+φ)的图象

函数 y=Asin(ωx+φ)的图象
点要分清是第几个零点.
π B.向右平移 个单位 4 π D.向右平移 个单位 8
π π 解析:y=sin-2x+4=sin-2x-8,只需将
y=sin(-2x)
π π 的图象向右平移8个单位,即可得到 y=sin-2x+4的图象.
答案:D
6.
A
三角函数图象进行平移变换时注意提取 x 的系数,
或向右( 0) 平移 | | 个单位
或伸长(0 1 ) 1 为原来的 倍
或缩短(0 A 1 )

为原来的A倍
2. A、 、 对函数 y A sin(x ) 图象的影响?
讲授新课
例1. 下图是某简谐运动的图象.试根据图 象回答下列问题: (1)这个简谐运动的振幅、周期与频率各 是多少? (2)从O点算起, 到曲线上的哪一点, 表示 完成了一次往复运动?如从A点算起呢? (3)写出这个简谐运动的函数表达式.
进行周期变换时,需要将 x 的系数变为原来的,要特别注意相位 变换,周期变换的顺序,顺序不同,其结果也不同.
复习回顾
1. 如何由y sin x的图象得到函数 y A sin(x )图象 ?
) y sin x 横坐标向左( 0 y) sin(x ) 横坐标缩短( 1) y sin(x )纵坐标伸长( A 1y A sin(x )
2. 振幅变换: 3. 周期变换: 4. 平移变换:
Y=SinX 横坐标不变 Y=SinX Y=ASinX 纵坐标变为原来的A倍
Y=SinX
纵坐标不变 Y=SinωX 横坐标变为原来的1/ω倍 左移(ψ>0)或 右移(ψ<0) │ψ│
Y=Sin(X+ψ),

《函数y=Asin(ωx φ)的图象(1)》教学实录

《函数y=Asin(ωx φ)的图象(1)》教学实录

《函数y=Asin(ωx+φ)的图象(1)》教学实录【课例导读】高境界的数学教学应基于思维发展,包括重视数学知识的内在联系,凸现核心知识的价值,数学规律的形成和思维逐步深入的过程,数学思想方法的提炼以及数学理性精神的体验等方面。

而优质的数学思维又集中表现在如何有效地提出问题与解决问题的过程中,因而我们的数学活动可以以问题为研究的起点,以问题为研究的主线,并以问题的解决作为最终的教学目标。

具体到这节课上,王荣鑫老师采用了“问题引领,自主建构”的教学方式,合理优化了问题的情境,有效凸显了问题的作用,并让学生在对问题的探究体验中,掌握科学的研究方法,提升了数学的思维品质,这种带有研究意味的教学方法与思路给我们的数学教学带来了启发。

【执教者简介】王荣鑫,江苏省邗江中学数学教师,扬州市中青年教学骨干,曾获江苏省高中青年数学教师优秀课评比二等奖、扬州市优质课评比一等奖、扬州市基本功大赛一等奖、扬州市骨干教师展示一等奖等荣誉,有多篇论文在学术期刊上发表。

【课例呈现】一、呈现背景、创设情境(课前投影展示欢乐世界摩天轮动态画面)师:同学们,请看大屏幕,摩天轮上的每一点随着时间的推移在周而复始地运动,从中我们可以抽象出如下数学模型。

(PPT动画演示点P绕圆心做匀速圆周运动)师:大家回忆一下,我们如何将单位圆上的任意一点P 的位置表示出来?生:通常是建立直角坐标系,用坐标来表示点P位置。

师:我们建立如图所示的平面直角坐标系,圆O的半径为A,P0为圆O上的一点,以射线OP0为终边的角为φ,P 点从P0出发沿圆O逆时针运动,P点每秒转过的弧度为ω,求x秒后,P点的纵坐标y。

(学生经过计算,得到结果)生:y=Asin(ωx+φ)。

二、启发引导、提出问题师:函数y=Asin(ωx+φ)刻画了P点的运动规律,今天我们一起研究这个新函数的图象。

你觉得这个函数与学过的哪个函数有联系呢?生:y=sinx。

师:你为什么觉得这两个函数有联系呢?生:这两个函数都是刻画周期运动的函数,另外,我觉得这两个函数的解析式很像,都有正弦符号,我猜他们之间应该有联系吧。

高三数学y=Asin(ωx+φ)的图象

高三数学y=Asin(ωx+φ)的图象

பைடு நூலகம்
图像的一条对称轴是直线 x 8 (Ⅰ)求; (Ⅱ)求函数 y f ( x) 的单调增区间;

课堂小结 对于三角函数的变换问题,要注意 y=sin(x+φ)→y=sin(ωx+φ)与 y=sinωx→y=sin(ωx+φ)的区别,不同名的要先化为同 名。 2、由图象求解析式 y=Asin(ωx+φ)+b时一般先确定平 衡位置,再确定A,ω的大小,确定φ时要先一点 代入。 研究高次或多个三角函数组合在一起的函数的性质时, 一般先将原函数化成 y=Asin(ωx+φ)+b的形式后再研究。
【例1】P64(2003年春季高考· 上海)已 知函数f(x)=Asin(ωx+φ),x∈R(其中 A>0,ω>0)在一个周期内的图象如图所 示。求直线y= 与函数 f(x)图象的所 3 有交点的坐标
练习:写出下列函数图象的解析式 (1)将函数y=cosx的图象上所有点横坐 标缩为原来的一半,纵坐标保持不变, 然后把图象向左平移 个单位,得到所 3 求函数的图象。 (2):若函数y=f(x)的图象上每一点的纵 坐标保持不变,横坐标伸长到原来的 2 倍, 然后将整个图形沿x轴向左平移 2 个单位, 沿y轴向下平移1个单位,得到曲线与 1 y cos x 的图象相同,求f(x)的表达 2 式(说明具体过程)
单调递增区间是:ωx+φ∈[2 kπ- ,2 kπ+ ],2k∈Z.
2
单调递减区间是ωx+φ∈[2 3 kπ+ 2 ,2 kπ+ ], k ∈ Z. 2
(5)y=cos(ωx+φ)也类似。 重点、难点: 函数y=Asin(ωx+φ),x∈R(其中 A>0,ω>0)的图象、性质。及图象与 解析式间的互求。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.作y=2sinx,
x
1 y= sinx 的简图,并与y=sinx的图象进行比较 2
0
π
2
π

2

sin x
2 sin x
1 sin x 2
0
0
0
1
2
1 2
0
0
0
−2
− 1 2
-1
0
0
0
y 2 1 o π 6 -1 -2
π
2
y=2sinx
y=sinx
y= 1 sinx 2πຫໍສະໝຸດ 3π 22πx
上述变换可简记为: y=sinx的图象
1 x的简图,并与y=sinx的图象比较。 2 2π 解:先作函数y=sin2x的图象。 其周期T=______________ ω =π
例2.画出y=sin2x ,y=sin
x
0
π
2x
0
π
0
4
π
2

2
π
0

4
π
2

sin 2 x
y
1
−1
0
1
-π
Y=sin2x Y=sin 1/2 x = Y=sinx
教学引入: 教学引入:
在物理学科,简谐振动中位移与时间的关系, 在物理学科,简谐振动中位移与时间的关系, 交流电中电流与时间的关系 都可以表示成形如 y=Asin(ωx+φ)的解析式。 的解析式。 的解析式 函数y=Asin(ωx+φ)的图象有什么特征?A,ω,φ 的图象有什么特征? 函数 的图象有什么特征 对图象又有什么影响? 对图象又有什么影响 今天我们首先来看A,ω对函数 对函数y=Asin(ωx+φ) 的 今天我们首先来看 对函数 影响。 影响。
练习: 2.函数y=sin3x的周期是多少?它的图象是由y=sinx 的图 象作什么变换而得到?
解: T=2π/ω=2π/3 Y=sinx
各点的横坐标缩短到原来的 1/3倍 纵坐标不变) 1/3倍 (纵坐标不变)
y=sin3x的图象
3.把正弦曲线 把正弦曲线y=sinx图象上所有点的横坐标伸长到原 把正弦曲线 图象上所有点的横坐标伸长到原 来的5倍 纵坐标不变 就得到函数( 纵坐标不变),就得到函数 来的 倍(纵坐标不变 就得到函数 y=sin1/5 x )的图 的图 象.
(A>0,ω>0)中,A为振幅 为振幅, (2)y=Asinωx (A>0,ω>0)中,A为振幅, 值域为[ T=2π/ω。 值域为[-A,A],周期 T=2π/ω。 A引 A], 起图象的纵向伸缩,称之为振幅变换; 起图象的纵向伸缩,称之为振幅变换; ω引起图像的横向伸缩,称之为周期变 引起图像的横向伸缩, 引起图像的横向伸缩 换。
函数y=Asin(ωx+φ) 的 §4.9 函数 图象( ) 图象(1)
y
高一数学组:李王刚
x

题:函数y=Asin x和y=Asinωx 的图像 函数 和
教学目的:掌握用“五点法”画函数 教学目的:掌握用“五点法”画函数y=Asinx和y=Asinωx的图 和 的图 对函数图象的影响作用; 象,明确A与ω对函数图象的影响作用;并会由 明确 与 对函数图象的影响作用 y=sinx的图象通过变换得出 的图象通过变换得出y=Asinωx的图象。 的图象。 的图象通过变换得出 的图象 教学重点: “用五点法”作函数 教学重点: 用五点法”作函数y=Asinx和y=sinωx的简图及振 和 的简图及振 幅、周期对正弦函数图象的影响。 周期对正弦函数图象的影响。 教学难点:在直角坐标中会寻找“五点”的位置及由 教学难点:在直角坐标中会寻找“五点”的位置及由y=sinx的 的 图象变为y=Asinωx的图象规律。 的图象规律。 图象变为 的图象规律
课堂小节:
y=sinωx的 (1)用“五点法”作y=Asinx 或y=sinωx的 五点法” 简图时,先要确定周期,再将周期四等份, 简图时,先要确定周期,再将周期四等份,找 出五个关键点: T/4、T/2、3T/4、 出五个关键点:0、T/4、T/2、3T/4、T,然后 再列表、描点、作光滑曲线连接五个点。 再列表、描点、作光滑曲线连接五个点。
各点的纵坐标伸长到原来的2倍 y=2sinx的图象 (横坐标不变) 各点的纵坐标缩短到原来的1/2倍 y=sinx的图象 y= 1 sinx的图象 (横坐标不变)
2
一般地,函数y=Asinx,x∈R(A>0且 1) 1)的图 一般地,函数y=Asinx,x∈R(A>0且A≠1)的图 y=Asinx,x 象,可以看作把y=sinx,x∈R的图象上所有点横 可以看作把y=sinx, y=sinx 坐标不变,纵坐标变为原来的A倍而得到。我们把 坐标不变,纵坐标变为原来的A倍而得到。 A称为振幅,这一变换被称为振幅变换。 称为振幅,这一变换被称为振幅变换。 为伸长; 为缩短。 若A>1,为伸长;若0<A<1,为缩短。 为伸长 为缩短 A引起图象的纵向伸缩,它决定函数的最大(最 引起图象的纵向伸缩,它决定函数的最大( 即其值域为[ 小)值,即其值域为[-A,A] 。
练习:
1 1.函数y= 3sinx,y=4sinx的振幅分别是多少?
它们的图象是由y=sinx的图象作怎样的变换而得到?
解: 它们的振幅分别是1/3,4 把函数y=sinx的图象上所有点的横坐标不变,纵 1 坐标缩短到原来的1/3倍,即得到y= 3 sinx的图象。 把函数y=sinx的图象上所有点的横坐标不变, 纵坐标伸长到原来的4倍即得到y=4sinx的图象。
4. 为了得到 为了得到y=3sin(2x+π/5)的图象 只需将函数 的图象,只需将函数 的图象 y=3sin(x+π/5)的图象上各点的 ( B)而得到 而得到. 的图象上各点的 而得到 A.横坐标伸长到原来的 倍,纵坐标不变 横坐标伸长到原来的2倍 纵坐标不变 纵坐标不变. 横坐标伸长到原来的 B.横坐标缩短到原来的 倍,纵坐标不变 横坐标缩短到原来的1/2倍 纵坐标不变 纵坐标不变. 横坐标缩短到原来的 C.纵坐标伸长到原来的 倍,横坐标不变 纵坐标伸长到原来的2倍 横坐标不变 横坐标不变. 纵坐标伸长到原来的 D.纵坐标伸长到原来的 倍,横坐标不变 纵坐标伸长到原来的1/2倍 横坐标不变 横坐标不变. 纵坐标伸长到原来的
π
2
o -1
π
3π 2



x
上述变换可简记为:
各点的横坐标缩短到原来的1/2倍 Y=sinx的图象 y=sin2x的图象 (纵坐标不变) 各点的横坐标伸长到原来的2倍 Y=sinx的图象 y=sin 1 x的图象 2 (纵坐标不变)
一般地,函数y=sinωx,x∈R(ω>0且 一般地,函数y=sinωx,x∈R(ω>0且ω ≠1) y=sin 1) 的图象,可以看作把y=sinx,x∈ 的图象,可以看作把y=sinx,x∈R的图象上的所有 y=sinx,x 点纵坐标不变,横坐标变为原来的1/ω倍而得到。 点纵坐标不变,横坐标变为原来的1/ω倍而得到。 1/ 这一变换就称为周期变换。 这一变换就称为周期变换。 为缩短; 为伸长。 若ω>1,为缩短;0<ω<1,为伸长。 为缩短 为伸长 ω决定函数的周期 决定函数的周期T=2π/ω,它引起图像的横向 决定函数的周期 它引起图像的横向 伸缩。 伸缩。
相关文档
最新文档